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Dedicated to Edward G. Effros, for his pioneering contributions,
on the occasion of his sixtieth birthday.

The metric nature of the unitary group of a (unital) C*-
algebra is studied in a Banach-algebra framework.

1. Introduction and preliminaries.

The group 2lu of unitary elements in a (unital) C*-algebra 21 is one of the
critical structural components of 21. From [K], each U in 2lu is an extreme
point of the unit ball (21)i of 21; in case 21 is abelian, 2lu is precisely the set
of extreme points of 21. (More generally, when 21 has a separating family of
tracial states, 2lu is precisely the set of extreme points of (91) i ) Proceeding
from this, Phelps [P] shows that the Krein-Milman property holds for 2lu

and (21) i when 21 is abelian—namely, (21) i is the norm closure of the con-
vex hull co(2lu) of 2lu. In [RD], Dye and Russo remove the commutativity
restriction—the Phelps result is valid for every unital C*-algebra. (This has
become known as the "Russo-Dye theorem.") Gardner [G] gives a short and
much simplified proof of the Russo-Dye theorem. A significant strengthen-
ing of the Russo-Dye theorem [KP] (based on a device in [G]) states that
each A in 21 with ||Λ|| < 1 is the (arithmetic) mean of a finite number of
elements of 2lu —in finer detail, of n elements of 2lu when ||A|| < 1 - £ with

n — 3,4, Haagerup [H] establishes a conjecture of Olsen and Pedersen

[OP] by showing that this same is valid even when ||A|| = 1 — ^ (a deep
result).

Are these approximation properties of 2lu in (21) i characteristic of C*-
algebras? Is a Banach algebra 21 with a subgroup 0 of the group 2t inv of
invertible elements in (21)i whose (norm-) closed, convex hull is (21)i (iso-
metrically, isomorphic to) a C*-algebra? We shall see that the answer to
these questions is in the negative. In Section 4, we note that the Wiener al-
gebra (functions with absolutely convergent Fourier series—equivalently, the
group algebra /i(Z) of the additive group Z of integers) has the Russo-Dye
(R-D) approximation property and is not isomorphic to a C*-algebra (even
algebraically).
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Definition 1. If 21 is a Banach algebra and 0 is a subgroup of 2tinv Π (21) i
such that (21)! is the norm closure of co(0), we say that the norm on 21 is
unitary (with group 0).

On the other hand, when our Banach algebra 21 is an algebra of bounded
operators on a Hubert space % equipped with the norm it acquires by as-
signing to each operator in 21 its bound, if (21, 0) satisfies the R-D approx-
imation property, then 21 is a C*-algebra. (See Theorem 4.) Effros, Ruan,
and Choi ([CE], [ER], and [R]) have taught us the importance of 'matricial
norming' and 'operator spaces' in studying operator algebras. With that
background, Blecher, Ruan, and Sinclair have produced a striking charac-
terization [BRS] of those Banach algebras that are isometrically isomorphic
to an algebra of operators on a Hubert space (equipped with the operator-
bound norm). Combining [BRS] with our proposition, we single out those
Banach algebras that are isometrically isomorphic to a C*-algebra in terms
of the norm and potential unitary group. The group 0 may map onto a
proper subgroup of the unitary group of the C*-algebra under the isomor-
phism; a C*-algebra 21 and a proper (norm-) dense subgroup 0 of 2tu will
illustrate this situation. In Proposition 3, we note that, with 21 a C*-algebra,
2lu is maximal in the set of norm-bounded subgroups of 2tinv. When 0 is a
maximal bounded subgroup of 2linv and the elements of 0 have norm 1, then
an isometric isomorphism of 21 with a C*-algebra carries 0 onto the unitary
group of that C*-algebra (Theorem 8).

Definition 2. If the norm on a Banach 21 is unitary for the group 0 and 0
is a maximal bounded subgroup of 2linv, the norm on 21 is said to be maximal
unitary.

In Theorem 6, we show that each finite-dimensional Banach algebra with a
maximal unitary norm is isometrically isomorphic to a C*-algebra. Section
3, contains a study of Banach-algebra norms on C(X), the algebra of all
complex-valued continuous functions on a compact Hausdorff space X under
pointwise operations. Of course, the supremum norm on C(X) is unitary
(with that norm, C(X) is a C*-algebra). We find other unitary norms. When
X is a (finite) set of n points (so that C(X) is C*, with C the complex
numbers), we construct a family of distinct unitary norms for groups 0
containing T1? the group of constant functions on X of modulus 1, such that
0/Tχ is finite. In this case, we construct a Banach-algebra norm on C(X)
that is not unitary. On the other hand, if a Banach algebra algebraically
isomorphic with C(X) has a maximal unitary norm, the isomorphism is an
isometry when C(X) is equipped with its supremum norm (X an arbitrary
compact Hausdorff space—Theorem 19).

The purely C*- and von Neumann algebra properties of the maximal
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bounded subgroups of 2linv form a topic of considerable independent interest.
We examine that topic in another article.

2. Inverse Russo-Dye theorems.

In this section, we study some of the partial converses to the Russo-Dye
theorem. We note, in the proposition that follows, an important structural
feature of the unitary group of a C*-algebra.

Proposition 3. Let % be a C*-algebra (with identity I) andli its group of
unitary elements. Then U is a maximal bounded subgroup of the group %mv

of inυertible elements in 21.

Proof Suppose that 0 is a norm-bounded subgroup of 2linv and that U C 0.
If T G 0 and UH is the polar decomposition of T, then U G U because T
is invertible. Thus H = U*UH = U*T G 0. Let λ be an element of sp(ff).
Then λn G sp(JΓn), so |λ|n < | | # n | | < 00 for all integers n (since Hn G 0).
It follows that |λ| = 1, and since H is positive, λ = 1. Hence sp(ff) = {1},
and H = /. Therefore T = UH = U G U, and it follows that 0 = U, so U
is maximal. D

It follows from Proposition 3 and the Russo-Dye theorem that if (21, || ||)
is a C*-algebra, then || || is maximal unitary (relative to the group 2lu of
unitary elements of 21).

Theorem 4. Let % be a Hilbert space and % be a unital Banach subalgebra
ofB(Ή) (with the norm \\ \\ inherited from B(U)). If\\ \\ is unitary, thenVί
is a C*-algebra (when equipped with the involution inherited from B(Ίί)).

Proof. Since || || is unitary, we can find a subgroup 0 of 2tinv containing
the scalars of modulus 1 such that each U in 0 has norm 1, and such that
each A in the unit ball of (21, || ||) is the || ||-limit of convex combinations of
elements of 0. We show first that any element of 0 is a unitary operator in
B(Ή). Let U be an element of 0. Then \\U\\ = 1, U~ι G 0, and \\U~ι\\ = 1.
For any x in ft, | |*| | = \\U~Wx\\ < \\U^\\\\Ux\\ = \\Ux\\ < \\U\\\\x\\ = ||*||,
so \\Ux\\ = \\x\\. Thus U is an invertible isometry and, therefore, a unitary
operator.

If U G 0, then U* = ί/""1 G 0. Thus the linear space generated by 0 is
a self-adjoint subalgebra of 21 as is its norm closure (by norm continuity of
the adjoint operation). By choice of 0, this norm closure is 21. Hence 21 Is
a C*-algebra. D

Remark 5. In the preceding proof, we have not used the full force of
the conditions imposed on 0. We have proved that the norm-closed linear
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subspace of B(Ή) generated by a group of (invertible) norm 1 operators is a
C*-algebra.

From Proposition 3, the unitary group of a C*-algebra is maximal bounded.
With this added assumption on our group, we obtain the desired inverse
Russo-Dye theorem in the case of a finite dimensional Banach algebra.

Theorem 6. Let (21, || ||) be a (unital) finite dimensional Banach algebra.
If \\ || is maximal unitary, then (21, || ||) is (isometrically isomorphic to) a
C*-algebra.

Proof. Let (5 be a maximal bounded subgroup of 2tinv relative to which || ||
is unitary. Let 21 act on itself by left multiplication; that is, let φι(A)B be
AB for all A, B in 21. Then φι is an isometric representation of 21.

As 21 is finite dimensional, we can find (an inner product and) a norm || ||ft
such that (21, || ||ft) is a Hubert space. The two norms || || and || ||ft are equiv-
alent because 21 is finite dimensional (see [KR, Proposition 1.2.16]). Thus,
the identity mapping i : (21, || ||) —> (21, || ||ft) is bicontinuous. For A in 21, let
φ2(A) be ioφι[A)oi~1, Then φ2 is a faithful, bicontinuous representation of 21
on (21, || ||ft). Therefore, the restriction of φ2 to © is a bounded representation
of the group 0 on the finite dimensional Hubert space (21, || ||ft). In this case,
0 is compact and, therefore, amenable. Thus [D, Theoreme 6] applies, and
there is an invertible operator T in £((2t, || ||ft)) such that U >-> Tφ2(U)T-χ

is a unitary representation of 0 on (21, || ||ft). (This follows, as well, from
the Peter-Weyl theory.) For A in 21, let φ(A) be Tφ2(A)T~ι. Then φ is
a faithful, bicontinuous representation of 21 on (21, || ||ft) such that φ(U) is
unitary whenever £/ E 0.

By choice of 0, every A in 21 is the norm limit of linear combinations of
elements of 0. Hence φ(%) is the norm closed linear subspace of #((21, || ||ft))
generated by the group φ(&) of unitary (hence norm 1) operators. By Re-
mark 5, φ($Ά) is a C*-algebra.

Let U denote the (full) group of unitary operators in /0(2l). Since φ is
bicontinuous, φ~ι{U) is a bounded group of (invertible) elements of (21, || | |),
and φ~λ{U) 3 0 Since 0 is assumed to be maximal, φ~λ(U) = 0, whence

Let A be an element of 21, and suppose that ||^(A)|| < 1. By the Russo-
Dye theorem, φ(A) is a norm limit of convex combinations of elements of
U (= φ{&)). Hence A is a norm limit of convex combinations of elements
of 0. All elements of 0 have norm 1, so ||A|| < 1. On the other hand,
if A £ 21, and ||A|| < 1, then A is a norm limit of convex combinations
of elements of 0. Thus φ(A) is a norm limit of convex combinations of
elements of φ(Φ). All elements of ^(0) have norm 1, so ||^(A)|| < 1. With
A non-zero, then, ll^fllAH^A)!! < 1 and \\φ(A)\\ < \\A\\. At the same
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time, 11̂ (11̂ (̂ )11-̂ )11 < 1, whence U ^ I Π μ U < 1 and ||A|| <
It follows that φ is an isometric isomorphism of 21 with the C*-algebra

D

Lemma 7. Let (21, || ||) be a (unitaϊ) Banach algebra, and φ be a repre-
sentation of 21 on a Hilbert space Ή, such that φ(I) = / and \\φ\\ < 1. If
(21, || ||, 0) satisfies the K-P condition, then 0(21) is a self-adjoint subalgebra
ofB(U). 7/(21, || | | ,0) satisfies the R-D condition (that is, || || is unitary),
then the norm closure 0(2l)= of 0(21) is self-adjoint.

Proof. Let 0 be the group relative to which the K-P condition (or the R-
D condition) is satisfied. With A in 0, \\φ(A)\\ < 1 and ^(A)- 1 ! ! < 1. By
polar decomposition, φ(A) = UH and 0(A~1) = H~λU* where U is unitary
and H is positive in B(U). Now, \\H\\ = \\U*φ(A)\\ < \\φ(A)\\ < 1, and
| |#~ΊI < H^A"1)!/!! < H^A-1)!! < I. Since H is positive, it follows that
H = /, whence φ(A) (= U) is a unitary operator in B(U) and φ(A"1) =
φ(A)*. Thus φ(<S) is a self-adjoint subset of B(Ή) as is its linear span and
the norm closure 05 of that linear span.

If (21, 0) satisfies the K-P condition, then each element of 21 has a multiple
in co0, whence 0(21) is the linear span of 0(0), and 0(21) is self-adjoint.

Suppose that (21, 0) satisfies the R-D condition. Then each T in 21 has
a positive multiple that is in the norm closure of the convex combinations
of elements of 0. By continuity of 0, φ(T) is in the norm closure 25 of the
linear span of 0(0). Thus 0(21) C 25 and 0(21) = C 25. Of course, the linear
span of 0(0) is contained in 0(21). Thus 25 C 0(21)=. Hence 0(21) = = 25,
and 0(21)= is self-adjoint. D

In [CE], Choi and Effros characterize self-adjoint linear spaces of opera-
tors acting on Hilbert spaces (operator systems) up to complete order iso-
morphisms in terms of matrix orderings. In [ER] and [R], Effros and Ruan
characterize (not necessarily self-adjoint) linear spaces of operators acting on
Hilbert spaces (operator spaces) up to complete isometry in terms of their
concept of matricial norming.

With V a vector space over C, the set Mn(V) of n x n matrices with
entries from V is, again, a vector space over C (with entrywise operations).
With A in Mn(C) (= Mn) and vn in Mn(V), we denote by Aυn and υnA the
elements of Mn (V) formed by left and right multiplication of υn by A (in
the obvious sense of matrix multiplication). With these actions of Mn υrt
Mn(V), Mn(V) becomes an Mn-bimodule. Let υn φ υm denote the element
of Mn+m (V) whose principal diagonal blocks (from top to bottom) are υn

and vm and whose off-diagonal blocks have 0 (in V) at each entry.
Effros and Ruan say that V is L°°-matricially normed when each Mn(V)
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is equipped with a norm || | |n such that the family of norms satisfies two
conditions.
(1) ||υnθVm||n+m = max{||υn||n, | |υm | |m}

(2) \\AvnB\\ < | |A| | | |ϋn | |n | |β | |
when υn <E Mn(V), vm G Mm(V), and A, B € Mn, where ||A|| and ||JB|| are
the norms the matrices A and B acquire as bounded operators on O1 equipped
with its l2-norm (that is, its Hilbert-space norm). In [R], Ruan shows that
an L°°-matricially normed space V is completely isometric with a subspace
21 of B(7ί) for some Hubert space 7ί. Of course, each such subspace 21 is
L^-matricially normed by the norms it acquires from the subspaces Mn(2t)
of B(7ίn) where Ήn is the n-fold direct sum of 7ί with itself (each matrix
of operators from 21 acting in the usual fashion on the elements of 7ίn as
column vectors).

We make some observations in connection with the preceding discussion.
Condition (1) causes the norms on an L°°-matricially normed space V to
behave like the supremum norm (bound) of operators on a normed space.
Condition (2) imparts to the normed space on which the operators act its
Hilbert-space structure (the quadratic character of its norm) by virtue of the
norm we have chosen on Mn (by choosing the Hilbert-space norm onC").
That we are dealing with matricial norming and complete isometry is of the
essence in this discussion for each normed space is isometric with an operator
space. To see this, note that with V a normed space and (V#)ι the unit
ball of its dual space, the mapping that assigns to each υ in V the function
v on (V#)ι defined by ϋ(p) = p(v), for each p in {V^)ι is an isometric
linear mapping of V into C((V#)i), from the Hahn-Banach theorem, where
C({V#)ι) is equipped with its supremum norm and (V#)i, provided with
its weak* topology, is a compact Hausdorff space. Of course, C((V#)ι) is a
(commutative) C*-algebra, and as such, has an isometric * representation on
a Hubert space %. Composing this representation and the mapping ϋ H ί ,
V is now isometric with a linear subspace of B(H).

When our L°°-matricially normed space 21 is an algebra with unit / such
that ||/|| = 1 and ||AnJBn||n < p n | | n | | B n | | n for all An and Bn in Mn(2l) and
each positive integer n, Blecher, Ruan, and Sinclair [BRS] tell us that 21
is completely isometric and isomorphic with an algebra of operators on a
Hubert space. On the other hand, when 21 is a normed algebra isometric
with an algebra of operators 55 on a Hubert space Ή, 21 acquires the L°°-
matricial norming of 25. The assumption that 21 is isomorphic and (simply,
rather than, completely) isometric with an operator algebra 55 acting on Ή,
is a more serious restriction on 21 than the assumption of simple isometry is
in the case of a normed space. In general, a unital Banach algebra can fail
to be isomorphic and isometric with an algebra of operators on a Hubert
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space. We can use our unitary-norm techniques and results to see that the
Wiener algebra is not isomorphic and isometric with an algebra of operators
on a Hubert space. Suppose it were. We note (Lemma 20) that the norm
on the Wiener algebra is unitary. From Theorem 4, then, the algebra of
operators on a Hubert space to which it is (as assumed) isometrically iso-
morphic is a C*-algebra. This C*-algebra is commutative and, therefore,
(isometric and isomorphic with) a C(X) for some compact Hausdorff space
X. However, as we note with the aid of Lemma 21, the Wiener algebra is
not even algebraically isomorphic t o a C ( X ) .

Combining the Blecher-Ruan-Sinclair characterization with our Theorem
4, we have a Banach-space characterization of those Banach algebras that
are C*-algebras up to complete isometry. The characterization of the unitary
group of a C*-algebra as a maximal bounded subgroup of elements in the
unit ball of an L^-matricially normed Banach algebra follows, now, from
Proposition 3.

Theorem 8. A unital algebra 21 that is an L°° -matricially normed, Banach
algebra with a unitary norm is completely isometric and isomorphic to a C*-
algebra. If (5 is the group for the unitary norm, that norm is maximal if and
only if 0 maps onto the unitary group of the C*-algebra.

3. Unitary Norms on C(X)

In this section, we discuss the possibility of introducing unitary norms on
C(X), when X is a compact Hausdorff space. We study the properties of
such norms. Let || || denote the supremum norm on C(X), let C(X) mv be the
invertible elements in C(X), and C(X)U be the unitary functions in C(X).
Our approach is to examine the properties of a subgroup © of C(X)inv for
which the || |[-closure S of co<5 is the closed unit ball relative to a normed-
algebra norm on C(X). We develop some general results and apply them to
the case where X has a finite number of points (so that C(X) = C 1, where
\X\ = n).

Lemma 9. If(C(X), || ||') is a Banach algebra, 0 is a subgroup ofC(X) ιny

such that the \\ \\'-closure S o/co® is the closed unit ball of (C(X), || | | '),
then (S is \\ \\-bounded and separates the points of X and (S C C(X)U.

Proof Since || | |' is a Banach-algebra norm on C(X), \f(x)\ < \\f\\' for each
x in X (as f(x) £ sp(/)). Thus | | / | | < \\f\\' for each / in C{X). With u in
0, un G © for each integer n. Thus \u{x)\n = \un(x)\ < \\un\\ < \\un\\' < 1
for each integer n; and \u(x)\ = 1 for all x in X. It follows that 0 C C(X)U

and that © is II ||-bounded.
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Since X is completely regular, C(X) separates the points of X as does
every subset that spans a dense linear manifold in C(X). As co0 is || ||'-
dense in <S, the unit ball of (C(X), || | | '), we have that 0 separates the points
ofX. D

Lemma 10. Let (21, || ||) be a complex Banach algebra and & be a subgroup
°/2linv If the || || -closure S of co 0 is the (closed) unit ball for some norm
|| II' on 21, then (21, || ||') is a normed algebra.

Proof. We show that if A and B are in <S, then AB £ S. From this, we
conclude that if \\A\\' < 1 and ||J3||' < 1, then \\AB\\1 < 1. With T and 5
arbitrary (non-zero) elements of SI, TUTU'"1 and SHSH'"1 are in S. Thus
\\TS\\'\\T\rι\\S\rι < 1 and ||Γ5||' < ||2Ί|'||S||'.

To prove that AB £ <S when A and B are in 5, assume that {An} and
{£?„} are sequences in co(S such that \\An - A\\ -» 0 and ||JBn - JB|| -> 0.
Then An = Σ!j=iaj,nUj)n and Bn = ΣΛ=I ^ . n H ^ , where α i | f l and 6 M are
positive real numbers, Σ j αj>n = Σ * bkn = 1, and Uj}Tl and \4 n are in
0. We have that AnBn = Σ ^ i Σ ^ i ^ ^ / i / ^ n . Now, E/^V^ £ 0
a n d Σj,kaj,nh,n = ( Σ J αi,n) (Σ/c *fc,n) = l Of course, a^nbkyn > 0 and
||AnBn - AJB|| -> 0. Thus AnBn is in the convex hull of 0 and AB £
5. D

Recall, that a subset Y of a linear space is said to be balanced if ay £ Y
whenever y £ Y", α £ C, and |α| < 1.

Lemma 11. // (21, || ||) is a complex Banach algebra and 0 is a bounded
subgroup o/2linv such that ΘU £ 0 whenever θ £ Tx emd {/ £ 0, £Λen co0
and ite norm closure S are balanced sets. For each T in 21, define \\T\\' to
be mϊ{t £ R+ : Γ £ tS}. If each element of%l has a positive multiple in S,
then || || ; is a norm on 21 for which S is the closed unit ball.

Proof. Since both / and —/ are in 0, 0 is in co0. Thus, for each A in
co0, tA £ co0 when 0 < t < 1. With Uj in 0 and Σ]=1ajUj a convex
combination of U\,..., ί/n, the product α^j=i ajUj £ co0, since Ĉ/j £ 0,
where 0 < \a\ < 1 and ^ = αlα)"1. It follows that co0 is balanced. As
multiplication by a scalar is a continuous mapping from 21 into 21, S is also
balanced.

As noted, 0 £ S. By assumption, each A in 21 has a positive multiple
t0A in S. Thus ίA £ S when 0 < t < ίOϊ since <S is convex. Hence 0 is an
internal point of S. It follows from [KR, Proposition 1.1.5], that || || ; is a
semi-norm.

If H7ΊI7 = 0, then t~λT £ S for arbitrarily small positive t. Hence | |Γ|| = 0,
since S is || ||-bounded, and T — 0. Thus || | | ; is a norm on 21.
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If T e S, then | |T|| ' < 1 by the definition of || ||'. If \\S\\ < 1, then
t~λS £ S for t near | |S| | ' and hence t~λS £ S for some monotone sequence
{tn} decreasing to 1. As H^1*? — *S|| —> 0 and S is || ||-closed, we have that
SeS. Thus S = {T e 21: | |Γ| | ; < 1}. D

Lemma 12. // 0 is a || \\-bounded subgroup of C(X)mΛ/, 0 contains the
scalars of modulus 1, and 0 separates the points ofX, then the set R + co0
of positive multiples o/co0 is a \\ \\ -dense subalgebra ofC(X). Let S be the
|| \\-closure o/co0. IfR+S is \\ \\-closed, then there is a norm || ||' on C(X)
such that (C(X), \\ ||') is a normed algebra and S is its unit ball.

Proof. Since 0 contains the scalars of modulus 1, R + c o 0 is the (complex)
algebra generated by 0. As 0 is a || ||-bounded subgroup of C(X)mvi each
element of 0 is a unitary function on X by Lemma 9. Thus, if u G 0,
then ΰ = u~ι 6 0. It follows that R + c o 0 is a subalgebra of C(X) sta-
ble under complex conjugation, containing the constant functions, and sep-
arating the points of X. From the Stone-Weierstrass theorem (compare
[KR, Theorem 3.4.14]), R + c o 0 is || ||-dense in C{X).

If R+<S is || ||-closed, then R+S = C(X). Hence each element of C{X)
has a positive multiple in S. From Lemma 11, there is a norm || ||' on C(X)
with S as its closed unit ball.

From Lemma 10, (C(X), || ||;) is a normed algebra. D

Example 13. With /C a || ||-closed convex subset of C(X), R+/C may fail
to be closed. To see this, let X be the unit interval [0,1], and K the set
of functions / in C([0,1]) such that |/ | < ,̂ where i denotes the identity
transform on [0,1] (that is, ι(t) = t for all t in [0,1]). Of course, K is || ||-
closed and convex. In addition, K is stable under complex conjugation and
separates the points of [0,1].

We suppose, now, that R+/C is || ||-closed and draw a contradiction from
this assumption. Since af £ K, when f € IC and |α| < 1, R+/C is a || ||-
closed, complex subalgebra of C([0,1]) stable under complex conjugation and
separating the points of [0,1]. The algebra obtained from R+/C by adjoining
the one-dimensional space of constant functions has the same properties,
and of course, contains the constants. From the Stone-Weierstrass theorem,
this algebra is C([0,1]). Thus each g in C([0,1]) has the form a + rf with
a a constant, r > 0, and / in /C. If g(0) = 0, then a = 0, since /(0) = 0.
Hence g = rf in this case.

Let g(t) be (t-t2)1/2 for t in [0,1]. (The graph of g is the upper semi-circle
with center at | on the real axis and radius | .) Then g — rf < rt for some
positive r and some / in /C. But g ^ rt for all r in R+. Hence R+/C is not
|| ||-closed.



544 MOGENS L. HANSEN AND RICHARD V. KADISON

Theorem 14. Let X be a finite set of points and (3 be a \\ \\-bounded
subgroup of C(X)mv containing the scalars of modulus 1. The \\ \\-closure S
of co (5 is the closed unit ball for a Banach-algebra norm || ||' on C(X) if
and only if<5 separates the points of X. If (5 separates the points of X} then
|| || and || ||' coincide if and only if (5 is \\ \\-dense in the group C(X)U of
unitary functions on X.

Proof. With X a finite set, C(X) (= O1, where n = \X\) is finite dimensional,
all norms on C(X) are equivalent to || ||, (C(X), || ||') is a Banach algebra
for each normed algebra norm || ||' on C(X), and each linear subspace of
C(X) is || ||-closed. If S is a unit ball, then (5 separates the points of X from
Lemma 9. Since the algebra K+S is || ||-closed, we have that if (5 separates
points, then Lemma 12 applies and S is the unit ball for a Banach-algebra
norm || \\f onC(X).

If Θ is || ||-dense in C(X)U, then without further assumption, S is the
|| ||-closure of co(C(X)u). From the Russo-Dye theorem, the || ||-closure of
co(C(X)u) is the unit ball of (C(X), || | |), so that S is this unit ball.

Again, with X a finite set, if & is not dense in C(X)U, its || ||-closure (5= is a
proper compact subgroup of C(X)U. Since S is the || ||-closure of co(Θ=), we
have that (5= contains the extreme points of <S, from [KR, Theorem 1.4.5].
As the unitary functions in C(X) are the extreme points of the unit ball
(compare [KR, Theorem 7.3.1]), S is not this unit ball, whence || ||' and
|| || are different. D

Remark 15. With X finite and (5 a subgroup of C(X)U separating the
points of X and containing the scalars of modulus 1, there is a Banach-
algebra norm || ||' on C(X) with S its unit ball. From the proof of Theorem
14, each extreme point of S lies in the norm closure (5= of (5. On the other
hand, | |/| | < | |/ | | ; < 1 when / € 5, so that S is contained in the unit ball of
(C(X), || ||). Thus each unitary in S is an extreme point (of the unit ball of
(C(X), || ||) and a fortiori) of S. Hence each element of Θ= is an extreme
point of S and the set of extreme points of S is precisely (5=.

Example 16. We construct some subgroups 0 of C(X)n giving rise to unitary
norms on C(X) distinct from one another and from the supremum norm || ||.
The group 0 will be || ||-closed and (3/Tχ will be finite in each case.

We assume, again, that X is finite, say X = {1,..., n}. We denote by Z m

the group of rath roots of unity. Let m 2 , . . . , mn be integers not less than 2
and define

0(m 2 , . . . , mn) = {u e C(X)U : ^XJu(j) G Z m j , Vj € {2,. . . , n}} .

Then 0(ra2 , . . . , mn) is a closed subgroup of C(X)U containing the scalars of
modulus 1, Ti, and ®(ra2,..., mn)/Ti is Zm2 φ 0 Z m n (to see this, note
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that the mapping u κ-> \u(l)u(2),..., u(l)u(n)j has Ti as kernel and is a ho-
momorphism of ®(ra2,..., mn) onto Z m 2 φ φ Z m J . With j and fc distinct
elements of {1,..., n}, assume that & φ 1, and let i/(/i) be 1 when h φ k
and w(A ) be an element of Zmfc different from 1. Then u G <5(ra2,.. . ,ran)
and u separates j and k. Thus (5(ra2,..., ran) separates the points of X and
gives rise to a unitary norm with unit ball co(Θ(ra2,..., mn))~ whose set of
extreme points is (3(ra2,..., mn) by Remark 15. Of course, <5(ra2,..., mn)
and (5(raj,..., m'n) are different groups unless ra2 = ra2,..., ran = m'n. In
case they are different groups, the extreme point set of the unit ball for the
unitary norm of one group is different from the corresponding set of the
other. Thus the two unitary norms are distinct and different from || ||.

Are all (normalized) Banach-algebra norms on C(X), with X finite, uni-
tary norms? We shall answer this in the negative in Example 18.

Lemma 17. Let X be a finite set, || ||' a norm on C(X) (= C1, when
n = \X\), S the closed unit ball of (C(X), || | | '), and S the set of extreme
points of S. Then \\ ||' is a (normalized) Banach-algebra norm on C(X) if
and only if the constant function 1 is in S (and S) and fg £ S when f and
g are in S.

Proof Since C(X) is finite dimensional, || ||' and || || are equivalent, || ||x

is a Banach-space norm on C(X), and multiplication in C(X) is jointly
continuous relative to || ||'. In the broad sense, || ||' is a Banach-algebra
norm on C(X) without further discussion. What is at issue is the question
of when || ||' is normalized. We have assumed that | | 1 | | ' < 1; if we have the
multiplication inequality for || ||' (||/ f l | |' < \\f\\'\\g\\'), then | | 1 | | ' = ||1 1||' <
| | 1 | | ' 2 , whence | |1 | | '> 1, and | | 1 | | ' = 1.

If II II' is a normalized Banach-algebra norm, then 1 G S, and, for / and
if in 5, \\fg\\'<\\f\\'\\g\\' = I, so f g t S .

Suppose 1 e S and fg £ S when f,g G S. If Y%=iajfj (= /) a n d

Σ)Γ=i bk9k (= β) are convex combinations of elements fj and gk of £, then

(
J } j = lk=l

By assumption, fog^ G S. Moreover, ajbk > 0 and Σj=i ΣZΓ=i α i ^ = l
Thus fg is a convex combination of elements of <S, so fg G S.

Suppose | |/ - fn\\' -+ 0 and \\g - gn\\' ~> 0 as n -> oo, with /„ and gn in
co^. Then fngn G 5, from the preceding argument, and \\fg - /nffn|Γ -> 0
as n ->• oo. Thus fg G S. From the Krein-Milman theorem (S is compact
and convex), S is the || ||;-closure of co£. Thus fg G S when / and g
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are in S; t h a t is, \\fg\\1 < 1 when \\f\\* < 1 and \\g\\' < 1. It follows that

WfdW < ll/ll'llsll'? a n ^ II IΓ is a (normalized) Banach-algebra norm. •

Lemma 17 indicates a technique for constructing (normalized) Banach-
algebra norms on C(X). We start with a compact set T stable under multi-
plication by scalars of modulus 1, included in which are the potential extreme
points of the closed unit ball. In addition, T should contain 1, have the prop-
erty that a product of two of its elements lies in its closed convex hull <S,
and S should contain some || ||-ball of positive radius with center 0.

Example 18. Using the technique just described and Example 16, we con-
struct a Banach-algebra norm on C(X) that is not unitary. Let 0 be the
group 0(3, . . . , 3) of Example 16, where X is {1,..., n}. Let a be a constant
in (0,1), define T to be

e 0 :ΰ(Ί>(2) = l } u { α r . ^ 0,ΰ(I>(2) φ

and let S be the || ||-closed convex hull of T'.
We note, first, that T is || ||-closed. If fm G T and | |/m - /| | -» 0 as

m -> oo, then either /m(l)/m(2) φ 1 and ( / m ( l ) / m ) 3 = α6 or /m(l)/m(2) =

1 and ( C T ) / m ) 3 = l Since JJX)fm(2) -> 7(ϊ)/(2) as m -> oo, either

7JXJfm(2) = 1 for all large m, so that /(ϊ)/(2) = 1 and (/(T)/)3 = 1, or

/m(l)/m(2) = α20 for all large m, where 1 / « G Z 3 , and (/ m ( l )/ m ) 3 = α6

for all large m, so that /(l)/(2) = α20 and ί/(l)/J = «6 In either case,
/ G T and JΓ is closed.

By construction, T contains the scalars of modulus 1. With / and g in T,
f is u or cm and r̂ is u or αu, with ^ and v in 0. Thus /# is a2uυ, auv, or ̂ υ.
If fg is w, then / is u and # is u, so that w and υ are in ^*, ^(1)^(2) = 1,
:v(ϊ)υ(2) = 1, and (wυ)(l)(wt;)(2) = 1. Thus fg = uve T, in this case. If
fg — auv, then either / = an and g = v, or f = u and # = av. In the
first case, ~u(T)u(2) φ 1 and ϋ(ϊ)v(2) = 1. Thus (uυ)(l)(uυ)(2) φ 1, and
fg = ai/u G ̂ ", in this case. Similarly, for the second case. If fg = α2uu,
then fg G 5 since either iw or αiw is in T and 0 G <5. In any event, fg G <S.

From Example 16, co(0)= is the unit ball for a (Banach-algebra) norm
on C(X). Since all norms on C(X) are equivalent, co(0)= contains a |J |̂|-
ball of positive radius with center 0, as does αco(0)= (= co(α0)=). Now,
α0 C S since 0 G S and for each u in 0, either u or an belongs to T. Thus
co(α0)= C 5, and S contains a || ||-ball of positive radius with center 0.

It follows (from Lemma 12) that S is the closed unit ball of a Banach-
algebra norm || ||; on C(X). Each u in 0 such that u(ϊ)u(2) — 1 is an extreme
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point of <S. Moreover, all extreme points of S are in T. Now, ©Π^7 consists
of unitary elements u in C(X) such that u(l) = u(2). Thus co(0Π^Γ)= does
not separate 1 and 2 in X, whence co(0ΠJ^)= φ S. It follows that (SOT does
not contain all the extreme points of S and that there are extreme points in
T of the form aυ with υ in 0. Since (aυ)~ι — a~xυ* ^ T^ we conclude that
the set of extreme points of S does not form a group (and includes functions
that are not unitary). Thus || ||' is a (normalized) Banach-algebra norm on
C(X) that is not unitary.

With some further effort, we can show that T is precisely the set of ex-
treme points of S. To see this, note that if u G 0 Π T, then uf G T when
/ G T. If Mug is ug for g in C(X), then with u in 0 Π T, Mu is a linear
isomorphism of C(X) onto itself that carries S into <S. The same is true
for the inverse Mu of Mu. Hence Mu and Mu have bound not exceeding 1
relative to || ||'. Thus \\MJ\\' < \\f\\\ and

H/ir = \\MuMuf\\ < \\MJ\\:

It follows that | |MU/| | ' = | |/ | | ' and that Mu is a || ||'-isometric linear isomor-
phism of C(X) onto C(X). Thus Mw maps the set of extreme points of S
onto itself. With aυ an extreme point of S and υ (1)^(2) the element θ of
Z3, where 0 / 1, by choosing u appropriately in β Π J , we can arrange that
uv is any previously assigned element w of Θ such that w(l)w(2) = 0. Since
Mu(αυ) = cmt; = ακ;, αw is an extreme point of S for each w in © such that
w(ΐ)w(2) = 0. From our earlier argument, we know that there is an extreme
point of the form αv, where v(l)υ(2) is one of the elements θ of the group
Z 3 different from 1. What we need, to complete the argument that the set
of extreme points of S is precisely T, is that au is an extreme point of S for
some u in 0 such that u(l)u(2) = θ2. We prove this.

Note that the mapping /»->/, complex conjugation, is a real-linear iso-
morphism of C(X) onto itself that carries 0 onto 0. To see this, observe
that if u e C(X)U and u(l)u(j) G Z 3 for j in {2,..., n}, then U(TJUU) =
^(l)w(j) G Z 3 since ti(l)w(j) is the inverse of u(l)u(j) (in Z3). In addition,
complex conjugations carries T onto T. To see this, note that, with / in J7,
either / = u £ 0 and u{l)u{2) = I or f = aυ with v in 0 and ϋ(l)t;(2) is
one of the two elements θ and θ2 of Z 3 different from 1. In the first case,
u(l)u(2) = ^(1)^(2) = 1 and u £ 0, so / G ̂ " in the second case, f = aϋ
and £(ϊ)ϋ(2) = ^07^(2). Since 0 = 02, P" = (9, and v(ϊ)t;(2) is one of 0 bT
02, we have that / G T.

It follows, now, that complex conjugation maps S onto S and the set of
extreme points of S onto itself. If υ in 0 is such that t?(l)u(2) is one of θ or
02, then ϋ(l)ϋ(2) is the other. In one case, aυ (G T) is an extreme point of
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S from our earlier argument and, hence, αυ = aΰ is an extreme point of S
as well; in the other case av is an extreme point of S and, hence, Έυ = av is
an extreme point. It follows that the set of extreme points of S is precisely
T.

Theorem 19. Suppose (51, || ||') is a Banach algebra and 0 is a || \\*-bounded
subgroup o/2linv such that the \\ \\-closure o/co0 is the closed unit ball of
(51, || II'). Suppose, moreover, that 0 is a maximal bounded subgroup o/Sljnv

and that φ is an algebraic isomorphism of 51 onto C(X) for some compact
Hausdorff space X. Then φ is an isometry of (51, || ||') onto (C(X),|| ||)
carrying 0 onto C(X)U.

Proof. By means of the mapping φ, we may identify 51 with C(X) and
regard || ||' as a Banach-algebra norm on C(X). With this identification,
|| ||' and || || are equivalent and the same sets are bounded relative to || ||'
and || ||. Thus 0 is || ||-bounded and is a subgroup of C(X)U by Lemma 9.
Moreover, C(X)U is || ||'-bounded. Since 0 is maximal, 0 = C(X)U. From
the Russo-Dye theorem (Phelps [P] in this case), co(C(X)u)~ is the unit
ball of (C(X), || | |). By assumption, co(0)= is the unit ball of (C(X), || | | ').
Thus the unit balls coincide as do || || and || || ;. D

4. The Wiener algebra.

Suppose (51, || ||) is a complex, commutative, semi-simple Banach algebra
with unit / and || || is unitary relative to the subgroup 0 of 5tinv. Let X
be the space of non-zero, multiplicative linear functionals on 51. Then X is
compact in the weak* topology [KR, Proposition 3.2.20]. With A in 51, let
A(p) be ρ(A) for each p in X. Since each p in X has norm 1, the mapping
A i—> A from 51 to C(X) is a homomorphism of norm 1 taking / to the
constant function 1. As 51 is semi-simple, this mapping is an isomorphism.
Moreover, 0 is a bounded group of invertible elements in C(X). Hence ©
consists of unitary functions on X.

Let L4 be ||Λ|| for each A in 51 and | |/ | | be the supremum norm of
/ for each / in C(X). By assumption, if \\A\\' < 1 and a positive c is
given, then there is a convex combination Σj=i α j ^ j °f elements Uj in 0

such that A —Σ"=1αjf/j < e. On C(X) the supremum norm is'̂ the

smallest possible Banach-algebra norm. Hence L4 — Σ " = 1 Oj ί/j < €, so

A* ~YTj=iajUj'ι\ < e, where A* is the complex conjugate A of A. It

follows that A* is in the || ||-closure of 51. By passing to a suitable positive
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multiple of T, for an arbitrary T in 21, we see that T* is in the || ||-closure

of SI. Suppose An G 21 and 11/-A*!! -» 0. Then | | / - i ; | -> 0, and

as just noted, A*n is in the || ||-closure of 21. Thus / is in the || ||-closure
of 21 when / is. It follows that this || ||-closure is stable under complex
conjugation, contains the constants, and separates the points of X (since 21
does). From the Stone-Weierstrass theorem, this norm closure is C(X). We
also have that the complex algebra generated by © is stable under complex
conjugation and || ||-dense in C(X). Under the assumption that (21, || ||,<5)
satisfies the K-P condition, this last algebra is 21.

Can a proper || ||-dense subalgebra of C(X), stable under complex conjuga-
tion and containing the constant functions, admit a unitary, Banach-algebra
norm? We consider the additive group Z of integers, the Banach algebra
(/i(Z),|| \\ι) under convolution multiplication, and the Hilbert space ^(Z)
(= %). We show that || ||i is unitary with group generated by the multiples
by scalars of modulus 1 of the elements of /χ(Z) corresponding to the func-
tions un that are 1 at some integer n and 0 at all other integers. We show
that this algebra (the Wiener algebra) is not a C*-algebra.

Let the elements of /i(Z) act by (left) multiplication on Z2(Z). This map-
ping is a * isomorphism of Zi(Z) with a self-adjoint subalgebra ΛQ of
where f*(n) = f(-n) for all n in Z and /»-)•/* is the involution on lx

(See [KR, Exercises 3.5.33-3.5.35].) The norm-closure A of Ao is a com-
mutative C*-algebra isomorphic to C(TX), where Ti is the unit circle in C,
the dual group to Z. The mapping that assigns to the image (in C(Ti)) of
an element of Ao the function in /i(Z) corresponding to that element is the
Fourier transform (assigning to the function in C(Tχ) its Fourier series—the
function in /χ(Z)).

Lemma 20. Let 0 be {θun : θ G C, |β| = 1, n G Z}. Then (5 is a
(multiplicative) group of norm 1 elements of /i(Z) and (/X(Z),(5) satisfies
the R-D condition.

Proof Note that un * u_n = u0 and that u0 is the (multiplicative) identity in
/i(Z) (corresponding to / in AQ and the constant function 1 in C(Ti)). Thus
each un is an invertible element in /i(Z) and \\un\\ι = 1. Suppose / G /ι(Z)
and 1 = £f=-oo 1/001 = II/HL For large m, £ | j | > m l/(i)l < «/2, where e is
a preassigned positive number. At the same time,

n

- Σ n ~* °°
j = -n

Thus for a large enough m, (α =) Σ|j|>m I/I?) I < e / 2

| / - Σ 7 = - , n / 0 > 4 < «/2. If f(j) Φ 0, let θj be /(j)|/(j)|-1. Then
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(VJ = ) ΘJUJ G <S a n d

- Σ <e/2.

In addition, 1 - ££_„, \f(j)\ = Σyl>m \f(J)\ = a < c/2. Hence

-if <

If 0 < \\g\\ι < 1, then ||£#||i = 1, where £ = \\g\\ x > 1. We have just noted
that tg is in the norm closure co(0) = of coΘ. Moreover, 0 = ^(uQ + (—u0)) G
c o 0 . Since \\g\\, < 1, we have that g = \\g\\tfg = \\g\Utg + (1 - ||flr||1)0 G
co(0) = . Thus (/i(Z),0) satisfies R-D condition. D

We note, next, that /i(Z) is not (even algebraically) isomorphic to a C*-
algebra.

Lemma 21. If Λ is a norm-dense subalgebra of C(X) for some compact
Hausdorff space X, and Λ is algebraically isomorphic to C(Y) for some
compact Hausdorff space Y', then Λ — C(X).

Proof. Let φ be an (algebraic) isomorphism of Λ onto C(Y). For each x in
X, let px(f) be /(x), where / G C(X). Let σx(g) be px{Φ'ι{g)) for each g
in C(Y). Then σx is a non-zero, multiplicative, linear functional on C(Y)
and corresponds to a (unique) point ζ(x) in Y such that σx(g) = g(ζ(x)) for
each 5 in C(Y) [KR, Corollary 3.4.2]. Thus

φ-\g){x) - p,(Φ~ι(9)) = M<?) = ( f l ^ O ^ ) « 6 I

It follows that φ~ι{g) = g o ζ for each # in C(F). Since ζ transforms a con-
tinuous function g on Y" to a continuous function φ~ι(g) on X, the mapping
ζ is continuous.

If x and a/ are distinct points of X, then f(x) φ f{x') for some / in Λ
(otherwise h(x) = h(xf) for each h in the norm closure, C(X), of .4). We
have that

and ζ(x) φ ζ(xf). Thus ζ is a one-to-one, continuous mapping of X intd^Y.
It follows that ζ(X) is a compact (hence, closed) subset of Y and Y \ C(^)
is an open subset of Y. Let g be a function in C(Y) that vanishes on ζ(X)
Then
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Thus φ~ι{g) = 0 and g = φ(φ'x(g)) = 0. It follows that Y\CP0 is null, from
complete regularity of Y. Thus ζ is a continuous, one-to-one mapping of X
onto Y. Since X and Y are compact Hausdorff spaces, ζ is a homeomorphism
of X onto Y.

With / in C(X), let flf(ζ(a?)) be /(») for each a: in X. Then flf = / o ζ" 1 ,
and g 6 C(Y). Moreover,

Thus / = 0-1(^) G A and .4 = C{X). D

To apply the preceding lemma to the case of /ι(Z), we use the fact that
/i(Z) is isomorphic to the dense subalgebra Λ of C(Ti) and note that not
all continuous functions on TΊ have absolutely convergent Fourier series.
Thus Λ φ C(Tχ). If Λ were isomorphic to a C*-algebra, it would be a
commutative C*-algebra, hence isomorphic to some C(Y). From Lemma 21,
then, Λ would be C(TΊ).

From these considerations, the Wiener algebra provides us with an exam-
ple of a semi-simple Banach algebra (isomorphic to a dense subalgebra of
C(Ti)) with a unitary norm that is not (even isomorphic to) a C*-algebra.
It seems likely to us that the group (5 we have used to establish that the
Lx-norm is unitary on /i(Z) is a maximal bounded subgroup of the invertible
elements in /ι(Z), but we have not proved that. If this is so, then /i(Z) pro-
vides an example of a semi-simple Banach algebra with a maximal unitary
norm that is not a C*-algebra.

References

[BRS] D.P. Blecher, Z.-J. Ruan and A.M. Sinclair, A Characterization of Operator Alge-

bras, J. Funct. Anal., 89 (1990), 188-201.

[CE] M.-D. Choi and E.G. EfFros, Injectivity and Operator Spaces, J. Funct. Anal., 24
(1977), 156-209.

[D] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leur applications,
Acta Sci. Math. Szeged, 12 (1950), 213-227.

[ER] E. Effros and Z.-J. Ruan, On matricially normed spaces, Pacific J. Math., 132
(1988), 243-264.

[G] L.T. Gardner, An Elementary proof of the Russo-Dye Theorem, Proc. Amer. Math.
Soc, 90 (1984), 171.

[H] U. Haagerup, On Convex Combinations of Unitary Operators in C*Άlgebras, Map-
pings of Operator Algebras, Proceedings of the Japan-U. S. Joint Seminar, Univer-
sity of Pennsylvania, 1988, 1-13 (eds. H. Araki and R. V. Kadison), Birkhauser,
Boston, 1991, Progress in Mathematics, 84.

[K] R.V. Kadison, Isometries of operator algebras, Ann. Math., 54 (1951), 325-338.

[KP] R.V. Kadison and G.K. Pedersen, Means and Convex Combinations of Unitary
Operators, Math. Scand., 57 (1987), 249-266.



552 MOGENS L. HANSEN AND RICHARD V. KADISON

[KR] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras,
Academic Press, Orlando, Florida, 1983, 1986, Pure and Applied Mathematics, 100,
volumes III and IV containing solutions to all the exercises, Birkhauser, Boston,
1991, 1992.

[OP] C.L. Olsen and G.K. Pedersen, Convex Combinations of Unitary Operators in von

Neumann Algebras, J. Funct. Anal., 66 (1986), 365-380.

[P] R.R. Phelps, Extreme Points in Function Algebras, Notices Amer. Math. Soc, 11

(1964), 538.

[Ru] Z.-J. Ruan, Subspaces of C*-algebras, J. Funct. Anal., 76 (1988), 217-230.

[RD] B. Russo and H.A. Dye, A Note on Unitary Operators in C*Άlgebras, Duke Math.

J., 33 (1966), 413-416.

Received May 12, 1994.

UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA, PA 19104-6395
E-mail address: liming@math.upenn.edu




