A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE EQUATION

JENN-FANG HWANG

In 1991, Collin and Krust proved that if u satisfies the minimal surface equation in a strip with linear Dirichlet data on two sides, then u must be a helicoid. In this paper, we give a simpler proof of this result and generalize it.

1. Introduction.

Let $\Omega_{\alpha} \subset \mathbb{R}^2$ be a sector domain with angle $0 < \alpha < \pi$. Consider the minimal surface equation

$$\text{div} Tu = 0$$

where $Tu = \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}$ and ∇u is the gradient of u. In 1965, Nitsche [7] announced the following results:

1. Given a continuous function f on $\partial \Omega_{\alpha}$, there always exists a solution u which satisfies the minimal surface equation in Ω_{α} with Dirichlet data f on $\partial \Omega_{\alpha}$;

2. If u satisfies the minimal surface equation with vanishing boundary value in Ω_{α}, then $u \equiv 0$.

Nitsche thus raised the following question: Let $\Omega \subset \Omega_{\alpha}$ and let f be an arbitrary continuous function on $\partial \Omega$. If the Dirichlet problem

$$\begin{cases}
\text{div} Tu = 0 & \text{in } \Omega, \\
u = f & \text{on } \partial \Omega
\end{cases}$$

has a solution, is it unique?

We notice that similar questions for higher dimensions are raised in [6]. Results in this direction were obtained by Miklyukov [5] and Hwang [4] independently, in which the following result was established:

Theorem 1. Let $\Omega \subset \mathbb{R}^2$ be an unbounded domain and let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$. For every $R > 0$, set $B_R = \{x \in \mathbb{R}^2 \mid |x| < R\}$ and $\Gamma_R = \partial(\Omega \cap B_R) \cap \overline{B_R}$. If u and v are both solutions of

$$\begin{cases}
\text{div} Tu = \text{div} Tv & \text{in } \Omega, \\
u = \nu & \text{on } \partial \Omega
\end{cases}$$

then $u \equiv v$.

357
\[\partial B_R. \text{ Denote } |\Gamma_R| \text{ as the length of } \Gamma_R. \text{ And suppose that} \]

\[
\begin{align*}
(i) & \quad \text{div } Tu = \text{div } Tv \quad \text{ in } \Omega, \\
(ii) & \quad u = v \quad \text{ on } \partial \Omega, \\
(iii) & \quad \max_{\Omega \cap B_R} |u - v| = O \left(\sqrt{\int_{R_0}^{R} \frac{1}{|\Gamma_r|} \, dr} \right) \quad \text{as } R \to \infty, \text{ for some positive constant } R_0.
\end{align*}
\]

Then \(u \equiv v \text{ in } \Omega. \)

A stronger version of Theorem 1 was discovered by Collin and Krust [2] independently, which is the following:

Theorem 1*. Let \(\Omega, u, v, B_R, \Gamma_r \text{ and } |\Gamma_r| \text{ as in Theorem 1.} \text{ And suppose that} \]

\[
\begin{align*}
(i) & \quad \text{div } Tu = \text{div } Tv \quad \text{ in } \Omega, \\
(ii) & \quad u = v \quad \text{ on } \partial \Omega, \\
(iii) & \quad \max_{\Omega \cap B_R} |u - v| = o \left(\int_{R_0}^{R} \frac{1}{|\Gamma_r|} \, dr \right) \quad \text{as } R \to \infty, \text{ for some positive constant } R_0.
\end{align*}
\]

Then \(u \equiv v \text{ in } \Omega. \)

In fact, for any unbounded domain \(\Omega \), we have \(|\Gamma_R| = O(R) \), and condition (iii) in Theorem 1* becomes

\[
\max_{\Omega \cap B_R} |u - v| = o(\log R) \quad \text{as } R \to \infty.
\]

In the special case when \(\Omega \) is a strip, then \(|\Gamma_R| \leq \text{constant} \), and condition (iii) becomes

\[
\max_{\Omega \cap B_R} |u - v| = o(R).
\]

On the other hand, in a strip domain \(\Omega \), Collin [1] showed that there exist two different solutions for the minimal surface equation such that \(u = v \text{ on } \partial \Omega \) and \(\max_{\Omega \cap B_R} |u - v| = O(R) \text{ as } R \to \infty. \text{ So condition (iii) is necessary.} \)

This counterexample also answers Nitsche’s question in the negative.

In contrast, the following result is also given in [2].

Theorem 2. Let \(\Omega = (0,1) \times \mathbb{R} \text{ be a strip. Suppose that} \)

\[
\begin{align*}
\text{div } Tu &= 0 \quad \text{ in } \Omega, \\
u(0,y) &= ay + b, \\
u(1,y) &= cy + d
\end{align*}
\]

where \(a, b, c, d \text{ are constant.} \text{ Then } u \text{ must be a helicoid.} \)

The following inequality was discovered by Miklyukov [5, p. 265], Hwang [4, p. 342] and Collin and Krust [2, p. 452]:

\[
(Tu - Tv) \cdot (\nabla u - \nabla v) \geq \frac{\sqrt{1 + |\nabla u|^2} + \sqrt{1 + |\nabla v|^2}}{2} |Tu - Tv|^2
\]

It seems that the method of proof of Theorem 1* can not be used to prove Theorem 2, and so Collin and Krust [2] resorted to the theory of Gauss maps instead.

In this paper, we will point out that the method of proof of Theorem 1 and Theorem 1* could be use to give a simpler proof of Theorem 2. Moreover, we shall generalize Theorem 1* and Theorem 2 to get the more general results as stated in Theorem 3 and Theorem 4. And we will make a remark after Theorem 3 to point out why Collin and Krust [2] could get a better result then Miklyukov [5] and Hwang [4].

Without loss of generality, we may rephrase Theorem 2 in the following form:

Theorem 2*. Let \(\Omega = (b, a) \times \mathbb{R} \) be a strip domain in \(\mathbb{R}^2 \) where \(a, b \) are two constants with \(-\pi/2 < b < a < \pi/2\), and let \(u \in C^0(\overline{\Omega}) \cap C^2(\Omega) \). Suppose that

\[
\begin{align*}
\text{div}Tu &= 0 \quad \text{in} \quad \Omega, \\
u u &= y \tan x \quad \text{on} \quad \partial\Omega.
\end{align*}
\]

Then \(u \equiv y \tan x \) in \(\Omega \); in other words, \(u \) must be a helicoid.

Proof. For any \(y > 0 \), let

\[
\begin{align*}
\Omega_y &= (b, a) \times (-y, y), \\
\Gamma_y &= \{(b, a) \times \{y\}\} \cup \{(b, a) \times \{-y\}\}
\end{align*}
\]

and, set

\[
g(y) = \int_{\Gamma_y} (u - v)(Tu - Tv) \cdot \nu ds = \int_{\partial\Omega_y} (u - v)(Tu - Tv) \cdot \nu ds = \int_{\Omega_y} (\nabla u - \nabla v) \cdot (Tu - Tv)
\]

where \(v \equiv y \tan x \) and \(\nu \) is the unit outward normal of \(\Gamma_y \) and \(\partial\Omega_y \). Since \((\nabla u - \nabla v) \cdot (Tu - Tv) \geq 0\), Fubini's Theorem yields that the derivative \(g'(y) \)
exists for almost all \(y > 0 \) and
\[
g'(y) = \int_{\Gamma_y} (\nabla u - \nabla v) \cdot (Tu -Tv)
\]
whenever \(g'(y) \) exists. Thus, in view of (2), for these \(y \),
\[
g'(y) \geq \int_{\Gamma_y} \frac{\sqrt{1 + |\nabla u|^2} + \sqrt{1 + |\nabla v|^2}}{2} |Tu - Tv|^2
\]
\[
\geq \left(\min_{\Gamma_y} \frac{\sqrt{1 + |\nabla v|^2}}{2} \right) \int_{\Gamma_y} |Tu - Tv|^2,
\]
in which, as \(v_x = y \sec^2 x \), we have
\[
\frac{\sqrt{1 + |\nabla v|^2}}{2} \geq \frac{y \sec^2 x}{2} \geq \frac{y}{2}.
\]
Furthermore, by means of Schwarz's inequality,
\[
|\Gamma_y| \int_{\Gamma_y} |Tu - Tv|^2 \geq \left(\int_{\Gamma_y} |Tu - Tv| \right)^2,
\]
and \(|\Gamma_y| = 2(a - b)\) (in virtue of the special geometry of \(\Omega \)), thus
\[
\int_{\Gamma_y} |Tu - Tv|^2 \geq \frac{1}{2(a - b)} \left(\int_{\Gamma_y} |Tu - Tv| \right)^2.
\]
Hence, for any \(y \) where \(g'(y) \) exists,
\[
g'(y) \geq \frac{y}{4(a-b)} \left(\int_{\Gamma_y} |Tu - Tv| \right)^2
\]
\[
\geq \frac{y}{4(a-b)} \left(\frac{1}{\pi} \int_{\Gamma_y} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu \right)^2.
\]
Now, for all \(y > 0 \), set
\[
h(y) = \int_{\Gamma_y} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu
\]
\[
= \int \int_{\Omega_y} \frac{(\nabla u - \nabla v) \cdot (Tu - Tv)}{1 + (u - v)^2}.
\]
We note that \(h \geq 0 \) and \(h(y) \) increases as \(y \) increases. Thus, if \(h \equiv 0 \), it is easy to see that Theorem 2* holds. Hence we may assume that \(h \neq 0 \) and
that there exist two positive constants y_1 and c_1 such that $h(y) \geq c_1$ for all $y \geq y_1$.

Substituting this into (3), we obtain $g'(y) \geq \frac{c^2}{4(a-b)^2} y$ for almost all $y \geq y_1$, which yields $g(y) - g(y_1) \geq \frac{c^2}{4(a-b)^2}(y - y_1)^2$. Since $|u| = O(|y|)$ on $\partial \Omega$ as $|y| \to \infty$, by [7, p. 256], we have $|u| = O(|y|)$ in Ω as $|y| \to \infty$. Since for all $y > 0$, $g(y) = \int_y^\infty (u-v)(Tu-Tv) \cdot \nu$ and $|Tu-Tv| \leq 2$, we have $g(y) = O(y)$ as $y \to \infty$, which gives a contradiction and completes our proof. \qed

By modifying the proof of Theorem 2*, we can derive the following

Theorem 3. Let $\Omega \subseteq \mathbb{R}^2$ be an unbounded domain and let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Let B_R, Γ_R and $|\Gamma_R|$ be as in Theorem 1. Suppose that

\begin{align*}
(i) \quad \text{div} \, Tu &= \text{div} \, Tv \quad \text{in} \quad \Omega, \\
(ii) \quad u &= v \quad \text{on} \quad \partial \Omega, \\
(iii) \quad \max_{\Omega \cap B_R} |u-v| &= o\left(\frac{1}{|\Gamma_R|} \min_{\Gamma_R} \sqrt{1 + |\nabla v|^2} \, dR\right) \quad \text{as} \quad R \to \infty,
\end{align*}

where R_0 is a positive constant. Then we have $u \equiv v$ in Ω.

Remark.

(a) Notice that condition (iii) depends on $|\nabla v|$ only, without assuming any condition on $|\nabla u|$.

(b) In Theorem 2*, since $\text{div} \, Tu = 0$ in Ω and $u = y \tan x$ on $\partial \Omega$, by [7, p. 256], we have $u = O(|y|)$ in Ω as $|y| \to \infty$. And so, condition (iii) of Theorem 3 holds.

Proof of Theorem 3. The proof is similar to that of Theorem 2*. For every $R > 0$, let

\begin{align*}
M(R) &= \max_{\Omega \cap B_R} |u-v| = \max_{\Gamma_R} |u-v|, \\
Q(R) &= \min_{\Gamma_R} \frac{\sqrt{1 + |\nabla v|^2}}{2}, \\
g(R) &= \int_{\Gamma_R} (u-v)(Tu-Tv) \cdot \nu = \int_{\Omega_R} (\nabla u - \nabla v) \cdot (Tu-Tv) \\
\text{and} \\
h(R) &= \int_{\Gamma_R} \tan^{-1}(u-v)(Tu-Tv) \cdot \nu.
\end{align*}

As in the proof of Theorem 2*, we may assume that $h \neq 0$ and that there exist two positive constants R_1 and C_1 such that $R_1 > R_0$ and

\begin{equation}
4
h(R) \geq C_1 \quad \text{for all} \quad R \geq R_1.
\end{equation}
For almost all $R > 0$, we have

$$g'(R) = \int_{\gamma_R} (\nabla u - \nabla v) \cdot (Tu - Tv)$$

$$\geq \int_{\gamma_R} Q(R)|Tu - Tv|^2$$

$$\geq Q(R)|\Gamma_R|^{-1} \left(\int_{\Gamma_R} |Tu - Tv| \right)^2.$$

Thus $g'(R) \geq (\frac{\pi}{2})^2 C_1^2 |\Gamma_R|^{-1} Q(R)$, for almost all $R > R_1$. Hence, for every R and R_2 such that $R > R_2 > R_1$, we have

$$g(R) - g(R_2) \geq \left(\frac{2C_1}{\pi} \right)^2 \int_{R_2}^R \frac{Q(r)}{|\Gamma_r|} dr.$$

By (4), we have $M(R) > 0$ for all $R \geq R_1$, hence (5) yields, for almost all $R \geq R_1$,

$$g'(R) \geq Q(R)|\Gamma_R|^{-1} \int |Tu - Tv|^2$$

$$\geq g^2(R)Q(R)$$

$$M^2(R)|\Gamma_R|^{-1};$$

and so, for every R and R_2 such that $R > R_2 > R_1$,

$$- \frac{1}{g} \bigg|_{R_2}^R \geq \int_{R_2}^R \frac{g'}{g^2} \geq \int_{R_2}^R \frac{Q(r)}{M^2(r)|\Gamma_r|} dr \geq \frac{1}{M^2(R)} \int_{R_2}^R \frac{Q(r)}{|\Gamma_r|} dr,$$

and then

$$\frac{1}{g(R_2)} \geq \frac{1}{M^2(R)} \int_{R_2}^R \frac{Q(r)}{|\Gamma_r|} dr.$$

Now, since $M(R) > 0$ for all $R \geq R_1$, $M(R)$ is an increasing function of R and, in view of condition (iii),

$$(M(R))^{-1} \int_{R_1}^R \frac{Q(r)}{|\Gamma_r|} dr \to \infty \quad \text{as } R \to \infty,$$

and also

$$\int_{R_1}^R \frac{Q(r)}{|\Gamma_r|} dr \to \infty \quad \text{as } R \to \infty,$$

hence we can choose a constant $R_3 > R_1$ such that

$$(M(R))^{-1} \int_{R_1}^R \frac{Q(r)}{|\Gamma_r|} \geq \sqrt{2\pi} C_1^{-1}, \quad \text{for every } R \geq R_3,$$
UNIQUENESS FOR MINIMAL SURFACE EQUATION

and a constant R_4, $R_4 > R_3$, which depends on R_3, such that
\[\int_{R_1}^{R_4} \frac{Q(r)}{|\Gamma_r|} \, dr = 2 \int_{R_1}^{R_3} \frac{Q(r)}{|\Gamma_r|} \, dr. \]

With this choice of R_3 and R_4, we have
\[
1 \geq \frac{g(R_3) - g(R_1)}{g(R_3)} \\
\geq \left[\left(\frac{2C_1}{\pi} \right)^2 \int_{R_1}^{R_3} \frac{Q(r)}{|\Gamma_r|} \right] \left[(M^2(R_4))^{-1} \int_{R_3}^{R_4} \frac{Q(r)}{|\Gamma_r|} \right] \quad \text{(by (6), (7))} \\
= \left[\left(\frac{2C_1}{\pi} \right)^2 (M^2(R_4))^{-1} \right] \frac{1}{4} \left(\int_{R_1}^{R_3} \frac{Q(r)}{|\Gamma_r|} \right)^2 \quad \text{(by the choice of } R_3, R_4) \\
\geq \frac{C_1^2}{\pi^2} (2\pi^2) C_1^{-2} \quad \text{(again by the choice of } R_3 \text{ and } R_4) \\
\geq 2,
\]
which is desired contradiction. \(\square \)

Remark. The above proof is to show (6), which is the lower bound of $g(R)$, and (7), which is the upper bound of $g(R)$. And from (6) and (7), we get contradiction and so prove the theorem. Miklyukov [5] and Hwang [4] only observed the upper bound of $g(R)$, and so could not derive the better result as in Collin and Krust [2].

Let Ω be a domain in \mathbb{R}^2. Consider the following equation in divergence form
\[
\text{div} A(x, u, \nabla u) = f(x, u, \nabla u),
\]
where
\[
A = (A_1, A_2), \quad A_i : \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}, \quad i = 1, 2, \\
f : \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R},
\]
and
\[
A_i \in C^0 \left(\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^2 \right) \cap C^1(\Omega \times \mathbb{R} \times \mathbb{R}^2), \quad i = 1, 2, \quad f \in C^0(\Omega \times \mathbb{R} \times \mathbb{R}^2).
\]

We rewrite $A(x, u, \nabla u)$ briefly as Au.

Suppose that Au satisfies the following structural condition:
\[
\begin{cases}
(Au - Av) \cdot (\nabla u - \nabla v) \geq |Au - Av|^2 Q(R), \\
\text{ where } R = \sqrt{x^2 + y^2} \text{ and } Q(R) \text{ is a positive function,} \\
(\nabla u - \nabla v) \cdot (Au - Av) = 0, \quad \text{iff } \nabla u = \nabla v.
\end{cases}
\]

(8)
Now we have the following result:

Theorem 4. Let $\partial \Omega = \Sigma^\alpha + \Sigma^\beta$ be a decomposition of $\partial \Omega$ such that $\Sigma^\beta \in C^1$. Let $u, v \in C^2(\Omega) \cap C^1(\Omega \cup \Sigma^\beta) \cap C^0(\overline{\Omega})$ and let $M(R) = \max_{\Omega \cap B_R}(u - v, 0)$. Suppose that

\[
\begin{align*}
(i) & \quad A \\
(ii) & \quad \text{div } Au \geq \text{div } Av \quad \text{ in } \Omega \\
(iii) & \quad u \leq v \quad \text{ on } \Sigma^\alpha \\
(iv) & \quad Au \cdot \nu \leq Av \cdot \nu \quad \text{ on } \Sigma^\beta \\
v) & \quad M(R) = o \left(\int_{R_0}^R \frac{|Q_r|}{|r|} \, dr \right) \quad \text{as } R \to \infty, \text{ where } R_0 \text{ is a positive constant.}
\end{align*}
\]

Then, if $\partial \Omega = \Sigma^\beta$, we have either $u(x) = v(x) + a$ positive constant or else $u(x) \leq v(x)$. Otherwise, $u(x) = v(x)$.

The proof of Theorem 4 is exactly the same as that of Theorem 3. The interested readers may consult [4].

Acknowledgements. The author would like to thank the referee for many helpful comments and suggestions.

References

Received November 4, 1994 and revised April 20, 1995. This author was partially supported by Grant NSC83-0208-M-001-072.

ACADEMIA SINICA
TAIPEI, TAIWAN
R.O.C. 11529