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Abstract
In this note we consider homogeneous Willmore surfaces in S n+2. The main result is that a

homogeneous Willmore two-sphere is conformally equivalent to a homogeneous minimal two-
sphere in S n+2, i.e., either a round two-sphere or one of the Borůvka-Veronese 2-spheres in
S 2m. This entails a classification of all Willmore CP1 in S 2m. As a second main result we show
that there exists no homogeneous Willmore upper-half plane in S n+2 and we give, in terms of
special constant potentials, a simple loop group characterization of all homogeneous surfaces
which have an abelian transitive group.

1. Introduction

1. Introduction
Homogeneous Willmore surfaces are the simplest ones among all Willmore surfaces. Ejiri

[13] constructed the first homogeneous Willmore torus which is not conformally equivalent
to any minimal surface in space forms. In [17], homogeneous minimal tori in S 2n+1 and
in CPn are discussed systematically. So far there has not been any systematic discussion
of homogeneous Willmore surfaces. Very recently homogeneous Willmore 2-spheres have
been studied by Pedit, Ma and Wang in terms of a variational method [19]. In this note we
provide a description of all homogeneous Willmore surfaces in spheres in terms of the loop
group theory developed in [9]. As an application, we derive a classification of homogeneous
Willmore 2-spheres in S n+2. They turn out to be exactly the only homogeneous minimal
2-spheres. Using the loop group theory, it is also easy to derive a characterization of homo-
geneous Willmore complex planes (including tori) in terms of potentials. Note there exist
examples of homogeneous Willmore tori and planes which are not minimal in any space
form, which is different from the 2-sphere. See e.g. [9], [13] and [18]. Moreover, we also
show that there exists no homogeneous Willmore upper half plane.

The paper is organized as follows: Section 2 is a collection of basic results on homo-
geneous Riemann surfaces. Then we recall some basic results on the loop group theory
of Willmore surfaces in Section 3. In Section 4 we derive a description of homogeneous
Willmore planes with abelian group action. Section 5 provides a non-existence theorem
of homogeneous Willmore upper half plane. Then we end this paper with a proof of the
classification of homogeneous Willmore 2-spheres in spheres.

The present paper was basically finished in 2012. It was finalized after the second named
author had written separately a note on a partial result of this paper.

2010 Mathematics Subject Classification. 58E20, 53C43, 53A30, 53C35.
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2. Basic Results

2. Basic Results2.1. Introductory definitions and results.
2.1. Introductory definitions and results. The notion of a homogeneous Willmore sur-

face can be given in several ways. We adopt here the most direct one. Note that for a
Riemannian manifold we denote by Con f (M) the group of conformal diffeomorphisms.

Definition 2.1. Let X = H/H0 be a connected homogeneous Riemann surface with a
connected Lie group H and a closed Lie subgroup H0 of bi-holomorphic maps of X and let
y : X → S m be a Willmore immersion. Then y is called “homogeneous” relative to H, if
there exists a (continuous) homomorphism R : H → Con f (S m) such that y(h.p) = R(h)y(p)
for all p ∈ X and all h ∈ H.

Since X = H/H0 is a two-dimensional real manifold with a Riemannian metric g and a
transitive conformal action of the connected group H, we can assume that either X � RP2

or X = H/H0 is a Riemann surface and H a transitive group of bi-holomorphic maps.
From the classification of homogeneous Riemann surfaces we obtain: (See Theorem

V.4.1 of [15])
(1) The universal cover X̃ of X is either the unit sphere S 2, the unit disk E (which we

will frequently replace by the bi-holomorphically equivalent upper half-plane H), or
the whole complex plane.

(2) The cylinder C∗ = C \ {0}.
(3) The tori T � C/, where  is a rank two lattice in C.

It turns out that for each of the spaces listed above any (connected) transitive Lie group
of bi-holomorphic automorphisms contains a transitive subgroup of a special type. Below
we list these groups. The following result is well known (It can be derived from Theorem
V.4.1 of [15]).

Theorem 2.2. Let X denote any of the homogeneous Riemann surfaces listed above.

(1) If X � S 2, then each transitive Lie group of bi-holomorphic maps contains a conju-
gate of SU(2)/{±I}.

(2) If X � H, then each transitive Lie group of bi-holomorphic maps contains a conju-
gate of the group Δ of real upper triangular matrices of determinant 1 and positive
diagonal elements.

(3) If X � C, then each transitive Lie group of bi-holomorphic maps contains the group
of all translations.

(4) If X = C∗, then each transitive Lie group of bi-holomorphic automorphisms contains
C
∗ acting by multiplication.

(5) If X � T � C/, then each transitive Lie group of bi-holomorphic maps contains
the group of all translations.

The original question of dealing with conformal transformations has turned into a ques-
tion of dealing with bi-holomorphic automorphisms of Riemann surfaces. In particular, if
X = H/H0 is a Riemann surface on which the connected group H acts bi-holomorphically
and transitively and y : X → S m is a homogeneous Willmore surface relative to H, then
the natural projection π̃ : M̃ → M yields a Willmore immersion ỹ : M̃ → S m, given by
ỹ = y ◦ π̃. Moreover, there exists some connected transitive group H̃ of bi-holomorphic
automorphisms of X̃ which acts transitively on X̃ and satisfies
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ỹ(γ̃.z) = R(γ̃)ỹ(z) for all z ∈ M̃ and all γ̃ ∈ H̃.

As a consequence we obtain:

Theorem 2.3. If y : X = H/H0 → S m is a homogeneous Willmore surface different from
S 2 and π̃ the natural projection from the universal cover X̃ to X, then the lift ỹ = y ◦ π̃ is a
homogeneous Willmore surface defined on M̃. In particular, ỹ satisfies

(2.1) ỹ(γ̃.z) = R(γ̃)ỹ(z) for all z ∈ M̃ and all γ̃ ∈ H̃,

and R is a homomorphism of Lie groups.

3. The loop group formalism

3. The loop group formalism
From now on, let y : X → S n+2 denote a homogeneous Willmore surface. Then with X̃

denoting the universal cover of X we obtain a homogeneous Willmore immersion ỹ : X̃ →
S n+2. We recall briefly from [9] the basic facts about the loop group approach to Willmore
immersions.

The oriented conformal Gauss map of a conformal immersion y maps each point p of
X to the oriented mean curvature 2-sphere of y at p. In this way, one obtains a map f :
X̃ → SO+(1, n+ 3)/SO+(1, 3) × SO(n). Note that a well-known fact [1, 3, 14] states that y is
Willmore if and only if f is a harmonic map. We refer to [5, 9] for more details.

If X̃ is non-compact, then there exists a smooth extended frame F(z, z̄, λ), the frame of
the conformal Gauss map f of ỹ. Moreover, f : X̃ → SO+(1, n + 3)/SO+(1, 3) × SO(n)
is an associated family of conformally harmonic maps, where f = π(F) for some frame
F : X̃ → SO+(1, n + 3) of f . Here π : SO+(1, n + 3) → SO+(1, n + 3)/SO+(1, 3) × SO(n)
is the standard projection. Every harmonic map from X̃ to some symmetric space can be
derived from some holomorphic potential as well as from some normalized potential (for
notation see [9]).

In the case of X = S 2 there exists some meromorphic potential, a meromorphic one
form on S 2, with the appropriate behaviour in λ which induces the conformal Gauss map f
associated with the Willmore immersion y. Moreover, the monodromy at each pole of the
potential is trivial (= ±I). For more details concerning this case, see [9, 10].

So far we have only discussed potentials for Willmore immersions from X (and its uni-
versal cover X̃) to S n+2. The assumed homogeneity imposes additional restrictions. We have
seen above that there exists some subgroup H of the group of all conformal transformations
of X̃ which acts transitively on X̃ and for which we have:

(3.1) Rhy(z) = y(h(z)), for all z ∈ X̃, h ∈ H,

where Rh is a conformal transformation of S n+2.
This induces (see e.g. [7, 8, 11] ) quite directly from the basic definitions the relation

(3.2) χ(h, λ)F(z, z̄, λ) = F(h(z), h(z), λ)k(z, z̄), for all z ∈ X̃,

where h ∈ H is arbitrary and k is a λ−independent matrix function with values in the stabi-
lizer group K = SO+(1, 3) × SO(n). Here χ(h, λ) is the monodromy matrix depending on h
and λ, which appears due to the path dependence of the lift F.

On the level of potentials we consider on the universal cover X̃ of X a potential which is
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the pull-back of some one-form defined on X. Then the fundamental group π1(X) acts on X̃
and satisfies

(3.3) γ∗η = η for all γ ∈ π1(X).

In the orientable case, this has some restrictive meaning only in the case of cylinders and
tori. Later a similar formula will apply to the only non-orientable homogeneous case.

We will now continue to discuss the homogeneous Willmore surfaces according to what
universal cover they have.

4. The case of X̃ = C

4. The case of X̃ = C
In this section we deal with the cases (3) and (5) above. Let H be a connected Lie subroup

of the group of bi-holomorphic automorphisms of C. Then Theorem 2.2 implies that in this
case there always exists a connected abelian transitive Lie group.

Theorem 4.1.
(1) If y : C → S n+2 is a homogeneous Willmore surface relative to a group H of trans-

lations, then the Maurer-Cartan form α of y can be assumed to be of the form
α = (λ)du + (λ)dv, where (λ) and (λ) are independent of u and v (with
z = u + iv) and satisfy

(4.1) [(λ),(λ)] = 0.

(2) Conversely, if α = (λ)du + (λ)dv has the same form as the Maurer-Cartan form
in Proposition 2.2 of [9] for each λ ∈ S 1, with (λ) and (λ) being constant in
(u, v) and satisfying (4.1), then

(4.2) F(z, z̄, λ) = eu(λ)+v(λ)

is the extended frame of a homogeneous Willmore immersion y : C → S n+2. In
particular, y can be read off from F(z, z̄, λ) by Proposition 2.2 of [9].

Proof. One can apply Proposition 2.2 of [9] and obtain that the Maurer-Cartan form α of
an extended frame F(z, λ) of y satisfying F(0, λ) = I is of the form α = (λ)du + (λ)dv.
The integrability condition then yields that (λ) and (λ) commute. The property of being
equivariant relative to all translations implies F(z + z0, λ)|λ=1 = R(z0)F(z, λ)|λ=1 for any
z0 ∈ C. As a consequence, one has

F(u + vi, λ)|λ=1 = exp(uE1 + vE2)F(0, λ)λ=1 = exp(uE1 + vE2)

for some E1 and E2. Hence (λ)|λ=1 = E1 and (λ)|λ=1 = E2. In particular, (λ) and (λ)
are constant in z and z̄.

The converse part is also a straightforward application of Proposition 2.2 of [9]. From the
form of F stated in (4.2) above it follows that y is homogeneous. �

In the case just discussed one only needs to quote a result which involves the loop group
technique for Willmore surfaces. For the other cases we will need to involve the loop group
technique in more detail.
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5. The case of X̃ = H

5. The case of X̃ = H
In this case, we can assume w.l.g. that the group H contains at least the group

(5.1) H1 =

{
γ =

(
a b
0 a−1

) ∣∣∣∣∣∣ a ∈ R+, b ∈ R
}
, with γ.z =

az + b
0z + a−1 = a2z + ab.

So we have

(5.2) y(γ.z) = χ(γ)y(z)

for γ. Set

σ3 =

(
1 0
0 −1

)
and ν =

(
0 1
0 0

)
.

We have

y(etσ3 .z) = etBy(z) and y(esν.z) = esDy(z).

Here B and D are the images of σ3 and ν by the monodromy representation χ respectively.
Note: we obtain

(5.3) [B,D] = 2D.

It is straightforward to compute

(e1/2 ln(v)σ3ev
−1uν).i = z.

Altogether we thus obtain

(5.4) y(z) = y(u + iv) = e1/2 ln(v)Bev
−1uDy(i) = euDe1/2 ln(v)By(i).

Similarly we obtain for the frame (and equally well for the extended frame):

(5.5) F(z) = F(u + iv) = e1/2 ln(v)Bev
−1uDF(i)k(u, v) = euDe1/2 ln(v)BF(i)k̂(u, v).

Now we apply what was mentioned at the end of the last section. It is well known that one
can classify, up to conjugation, which choices there exist for B and D. In formula (7) of
[20], it is shown that each non-abelian maximal solvable subalgebra of so(1, p) is of the
form s = RS ⊕ with S a semisimple matrix and  an abelian subalgebra of nilpotent
matrices of dimension p − 1 such that [S ,N] = N for all N ∈ . Considering

(5.6)  =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a Xt

a 0 −Xt

X X 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

it is easy to verify the properties listed above for a maximal solvable subalgebra of so(1, p).
Therefore  is maximal solvable.

It follows that up to a conformal transformation of our original Willmore immersion we
can assume that the monodromy group of our homogeneous Willmore upper half-plane has
the form (5.6). In particular, D has the form
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 Xt

0 0 −Xt

X X 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

On the other hand since exp(tν) is a translation along the v−axis, we can view y as an
equivariant surface along v direction. So the corresponding monodromy gives a Delauney
type matrix [4, 12]. But a Delauney type matrix can not be of the above form, since it is
derived by the Maurer-Cartan form of F(z, λ) [12]. Altogether we obtain

Theorem 5.1. There exists no homogeneous Willmore immersion from H to S n+2.

6. The case of X = S 2

6. The case of X = S 2
In this section, we will show that a homogeneous Willmore 2-sphere is conformally equiv-

alent to either the round 2-sphere or one of the Borůvka-Veronese 2-spheres in S 2m. The
main idea is to use the representations of so(3) in so+(1, n + 3) and loop group theory to show
that a representation is irreducible and hence the orbit gives one of the Borůvka-Veronese
2-spheres.

We introduce our main result in Section 6.1. Then we consider the monodromy matrices
of S 2 and their representations in Section 6.2. Using these matrices, in Section 6.3 we obtain
the normalized potentials of the homogeneous Willmore 2-spheres as well as a property of
the matrices. With these preparations, we can show in Section 6.4 that the representation is
necessarily irreducible and obtain the proof of our main result. Finally we also consider the
antipodal symmetries of the surfaces and show whether they will reduce to RP2 or not.

6.1. The main result.
6.1. The main result.

Theorem 6.1. Let y : M → S n+2 be a homogeneous and full Willmore S 2, n ≥ 1. Then
n = 2m − 2 and y is conformally equivalent to the full Borůvka-Veronese 2-sphere in S 2m.

The theorem is a corollary of the following result and the classical results of Borůvka [2]
and Calabi [6] describing homogeneous minimal two-spheres in S n+2.

Proposition 6.2. Each full homogeneous Willmore two-sphere is conformally equivalent
to a minimal two-sphere in S n+2.

In Section 6.4 we will provide a proof of Proposition 6.2. Before proceeding, let’s first
explain the idea of the proof. Since the surface is homogeneous, it can be viewed as an orbit
of a group SO(3) ⊂ SO+(1, n + 3). This induces a representation of so(3) in so+(1, n + 3).
Using this representation, we can describe the Maurer-Cartan form of the surface y. The
Willmore property allows us to introduce the loop parameter λ into the Maurer-Cartan form.
Moreover, we can obtain the normalized potential of y. Finally with the help of the loop
parameter, we can show that the representation is irreducible and hence we can determine
the form of the normalized potential of y. Then by Theorem 1.1 of [21], the surface is
minimal in S n+2.

6.2. The monodromy matrices.
6.2. The monodromy matrices. To begin with, let us first recall some basic results

concerning SO(3). Let T j be a basis of so(3) which satisfies the commutation relations (see
[16])

(6.1) [T3, T2] = −T1, [T3, T1] = T2, [T1, T2] = T3.
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Actually we assume ( setting S 2 = C ∪ {∞}):
(1) The matrix T1 generates rotations about 1 ∈ C: etT1 .z = z cos( 1

2 t)−i sin( 1
2 t)

−zi sin( 1
2 t)+cos( 1

2 t)
;

(2) The matrix T2 generates rotations about i ∈ C: etT2 .z = z cos( 1
2 t)−sin( 1

2 t)
z sin( 1

2 t)+cos( 1
2 t)

;

(3) The matrix T3 generates rotations about 0 ∈ C: etT3 .z = e−itz.

If we have a symmetry y(g.z) = Uy(z) of some Willmore surface into S n+2 with U ∈
SO(n + 3), then the corresponding matrix in SO+(1, n + 3), acting on the Grassmannian, the
frames etc, is naturally of the form (

1 0
0 U

)
.

For a homogeneous Willmore S 2, we can assume that the group acting on the Grassmannian
is contained in the natural SO(n+3) as above. So the monodromy representation χU(g, λ = 1)
takes values in SO(n+3). Considering the representation χU(g, λ) of SO(3) inΛSO+(1, n+3)σ
one can decompose it into irreducible ones.

It is well known that all irreducible representations of SO(3) act on odd-dimensional
spaces and are uniquely determined by the eigenvalues of the image χU(T3, λ) of T3 =
1
2 diag(−i, i) ∈ su(2) under χU (See e.g, Theorem 4.12 of [16]). These eigenvalues all are
of the form ik, where k ∈ Z. Moreover, the irreducible summands can be read off from the
multiplicities of the eigenvalues of χU(T3, λ). As a consequence, we have

Corollary 6.3. The monodromy representation of SO(3) is irreducible on Rn+3 if and only
if the 0−eigenvalue of χU(T3, λ), acting on Rn+4, has multiplicity 2.

Let y : S 2 → S n+2 be a homogeneous Willmore two-sphere. Then the approach of [9]
requires to consider an extended frame, from which y can be reproduced again. If FU(z, λ)
denotes the extended frame associated with the representation χU above, then it turns out to
be useful to also consider the extended frame F̂(z, λ) = FU(0, λ)−1FU(z, λ). This yields the
representation

χ̂(g, λ) = FU(0, λ)−1χU(g, λ)FU(0, λ)

of SO(3) in ΛSO+(1, n + 3)σ. Note that the image of SO(3) of χ is again compact, but not
necessarily contained in ΛSO(n + 3)σ. But all statements about eigenvalues and irreducible
representations made above still hold in the present situation as well.

Under the monodromy representation χ̂(·, λ) relative to F̂ we define (using, by abuse of
notation, χ̂ for dχ̂):

(6.2) χ̂(T1, λ) = A1(λ), χ̂(T2, λ) = A2(λ) an χ̂(T3, λ) = A3.

Note that by [12] (also see below at the end of the proof of the next proposition), A3 does not
depend on λ and is contained in k and in so(n + 3). More precisely, using also the notation

(6.3) S =
(

0 1
−1 0

)
.

we will show
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Proposition 6.4. The matrices Aj(λ) only contain the powers λ−1, λ0, and λ1. Moreover,
the matrices A1(λ) and A2(λ) have the form of a generator of a translationally equivariant
Willmore surface and A3 has the diagonal block form A3 = (0, S , A32), with the 2×2 matrices
0 and S and the n × n matrix A32.

Proof. Let’s consider the matrix A1(λ). We remove 1 from C and consider the universal
cover M̃ � C of M = C \ {1}. We can do this such that the covering map maps 0 to 0 and that
the action of the one parameter group etT1 lifted to M̃ acts by translations parallel to the real
axis. Lifting the extended frame to the universal cover we observe that it attains the value
I at 0, whence the monodromy is of the form etÃ1(λ) and by [4] it follows that Ã1(λ) has the
form as claimed. It is easy to see that actually Ã1(λ) = A1(λ) holds. The claim for A2(λ)
follows verbatim. Let’s consider finally A3. The relation

(6.4) F̂(eitz, λ) = F̂(e−itT3z, λ) = e−tA3(λ)F̂(z, λ)k3(t, z)

and the property F̂(0, λ) = I imply

(6.5) I = e−tA3(λ)k3(t, 0).

From this we infer that A3(λ) actually is independent of λ and contained in k. From (4.7)
of [11] and the last equation we know how the first 4 × 4 block of A3 looks like. Now it is
straightforward to verify that A3 has the form stated. �

6.3. An Application of Wu’s Formula.
6.3. An Application of Wu’s Formula. Using the transformation properties of the one-

parameter groups generated by the T j we introduce a new frame F̃ which permits to apply
Wu’s formula easily. We have y(eiθr) = y(e−θT3 .z) = e−θA3 .y(r). Moreover, considering the
rotation about i ∈ C ⊂ S 2, we have y(r) = e−2 arctan(r)A2 .y(0) and altogether we have the
formula

(6.6) y(eiθr) = e−θA3e−2 arctan(r)A2 .y(0).

For the frame F̂, which satisfies F̂(z = 0) = I, we obtain

(6.7) F̂(eiθr) = e−θA3e−2 arctan(r)A2k2(0, r)k3(θ, r),

where k2 and k3 are the factors occurring in formula (4.7) of [11]. These equations also
hold after introducing λ (note that there is no λ inside the k’s !). Since k2(0, r)k3(θ, r) ∈
SO+(1, 3) × SO(n), we consider a new extended frame of y:

(6.8) F̃(eiθr, λ) = e−θA3e−2 arctan(r)A2(λ)eθA3 .

Note that F̃ and F̂ have the same monodromy representation, since they only differ by a
gauge in K. Moreover, F̃ is a priori only defined, where the polar representation for z is
valid. However, since A3 is independent of λ and has purely imaginary eigenvalues with
integer imaginary parts, the frame F̃ actually is defined on C∗. The following proposition
shows it is in fact defined on C.

Proposition 6.5. The frame F̃ has the form (where z = u + iv)

(6.9) F̃(z, λ) = F̃(eiθr, λ) = e−θA3e−2 arctan(r)A2(λ)eθA3 = e
−2 arctan(r)

r (uA2(λ)+vA1(λ)).

In particular, F̃ is real analytic at z = 0 and we have F̃(0, λ) = I. As a consequence, F̃ and
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F̂ have the same normalized potential and generate the same Willmore surface.

Proof. In view of (6.8) it suffices to consider

E = e−θA3 arctan(r)A2(λ)eθA3 = arctan(r)exp(−θad(A3)(A2)).

But by (6.1) this unravels to

E = arctan(r)(A2 cos θ + A1 sin θ).

Now in the upper half-plane the angle θ of an element of C in the range (−π, π) is given
by arccos(u/r) and by − arccos(u/r) in the lower half-plane. Hence E = arctan(r)( u

r A2 +√
r2−u2

r A1) = arctan(r)
r (uA2 + vA1) for u + iv in the upper half-plane and E = arctan(r)( u

r A2 −√
r2−u2

r A1) = arctan(r)
r (uA2 + vA1) for u + iv in the lower half-plane. As a consequence, E is

well defined on C and real-analytic there. Finally, it is clear now that E(z = 0) = 0, whence
F̃(0, λ) = I. �

As a consequence of (6.9) we can compute the normalized potential of the given Willmore
immersion by using Wu’s Formula [22]. In the statement of loc.cit one considers the Maurer-
Cartan form of some frame for the given harmonic map (in our case the conformal Gauss
map of the given Willmore surface). Then, at least in some neighbourhood of the base point,
say, z = 0, one can set z̄ = 0, since the frame is real-analytic. From the resulting differential
one-form one computes the normalized potential.

Actually, since the frame F̃ is real-analytic near the origin, one can set z̄ = 0 already
directly in the frame. Doing this we obtain (by using (6.9))

F̃(z, z̄ = 0, λ) = e−zA2(λ)+izA1(λ),

since the real analytic function arctan(r)/r attains the value 1 at r = 0. Now, the Maurer-
Cartan form of F̃(z, z̄ = 0, λ) is

(6.10) hol(α) = (−A2(λ) + iA1(λ))dz.

In view of Proposition 6.4 we can write

(6.11) A1(λ) = λ−1H1 + H0 + λH̄1 and A2(λ) = λ−1L1 + L0 + λL̄1.

From this we derive

Theorem 6.6. We have

(6.12) L1 = −iH1,

and the normalized potential ξ of the given homogeneous Willmore surface is

(6.13) ξ(z)dz = ezβ0β1e−zβ0 = ezad(β0)β1,

where β0 = −L0 + iH0 and β1 = λ
−1(−L1 + iH1).

Proof. The first claim follows from the fact that hol(α) does not contain the power λ = λ1,
as stated in the proof of “Wu’s Formula”, Theorem 2.1 of [22]. From the proof of Theorem
2.1 of [22] it is also clear that we need to consider β1 = λ

−1(−L1 + iH1) and β0 = −L0 + iH0

and solve the ode dψ0 = ψ0β0 with ψ0(0) = I. Since this solution is ψ0(z) = ezβ0 the claim



814 J. Dorfmeister and P. Wang

follows directly from Theorem 2.1 of [22]. �

6.4. Uniqueness of the monodromy representation.
6.4. Uniqueness of the monodromy representation. First we describe A3 explicitly in

view of Proposition 6.4.

Lemma 6.7. We have (up to a conjugation in K) that A3 is a diagonal block matrix

(6.14) A3 = diag{02×2, S , S}, with S = (S 0, S 1, . . . ),

where S j = j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S 0 0
0 · · · 0
0 0 S

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2n j×2n j

and 0 ≤ j ≤ m. See (6.3) for the definition of S .

6.4.1. Irreducibility of the monodromy representation. By Corollary 6.3, the mon-
odromy representation is irreducible if and only if the S 0−term does not show up in (6.14).
Substituting (6.11) and (6.12) into the commutation properties [A3, A2(λ)] = −A1(λ),
[A3, A1(λ)] = A2(λ), [A1(λ), A2(λ)] = A3, we obtain

Lemma 6.8.
(1) [A3, L1] = −iL1, [A3, [A3, L1]] = −L1;
(2) [A3,−L0 + iH0] = −i(−L0 + iH0), [A3, [A3,−L0 + iH0]] = −(−L0 + iH0);
(3) [H0, L0] + 2i[L1, L̄1] = A3;
(4) [L̄1,−L0 + iH0] = 0.

We decompose L1 and −L0 + iH0 according to (6.14)

L1 =

(
0 B1

−Bt
1I1,3 0

)
with B1 =

(
B10 · · · B1m

B20 · · · B2m

)

and

−L0 + iH0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R̂11 R̂00 0 · · · 0
−R̂t

00I1,1 R̂22 0 · · · 0
0 0 R00 · · · R0m

· · · · · · · · · · · · · · ·
0 0 −Rt

0m · · · Rmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Set

Q1 =

(
1 −i
−1 i

)
, Q2 =

(
1 −i
i 1

)
and e0 =

(
1
−i

)
.

By using (1) and (2) of Lemma 6.8 and elementary computations, we derive

Lemma 6.9.
(1) B1 j = 0 for all j � 1 and B11 =

(
a11Q1 · · · a1n1 Q1

)
;

(2) B2 j = 0 for all j � 0, 2, and

B20 =
(

b11e0 b̂11e0 · · · b1n0e0 b̂1n0e0

)
, B22 =

(
c11Q2 · · · c1n2 Q2

)
;

(3) R̂11 = R̂22 = 0 and R̂00 =

(
a −ia
c −ic

)
;
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(4) In the (skew-symmetric) block of matrices Rjk all matrices, except the ones next to
the diagonal, vanish. The matrices Rj, j+1, j = 0, . . . ,m − 1 just right of the diagonal
satisfy R j, j+1 =

(
q( j)

kl Q2

)
1≤k≤n j,1≤l≤n j+1

.

Lemma 6.10. If B20 = 0, then A1(λ), A2(λ) and A3 define an irreducible representation.

Proof. In this case, by (3) of Lemma 6.8, we have R01R̄t
01− R̄01Rt

01 = 0. As a consequence
we have

∑n0
l=1 |q(0)

kl |2 = 0, for all k = 1, · · · , n0. That is, R01 = 0. So all A1(λ), A2(λ) and A3

are of the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
· · · 0 · · ·
0 0 0
· · · 0 · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

As a consequence, the representation is in a smaller space, contradicting the fullness of the
surface. Hence A3 has no S 0 term, i.e., A3 has exactly two 0−eigenvalues and by Corollary
6.3 the representation is irreducible. �

So we only need to show

Lemma 6.11. B20 = 0.

Proof. Suppose B20 � 0. Recall that for Willmore surfaces one has Bt
1I1,3B1 = 0. As a

consequence

Bt
22B20 =

(
c1 jb1ke0

)
1≤ j≤n2,1≤k≤n0

= 0.

Since B20 � 0, one of the b1k satisfies b1k � 0 and hence c1 j = 0 for all j, whence, B22 = 0.
Moreover, by (4) of Lemma 6.3, we have

−R̂t
00I1,1B̄11 + B̄20R01 = 0 and B̄11Rt

01 + R̂00B̄20 = 0.

The last equation reads
(6.15)( ∑n1

j=1 2a1 jq
(0)
1 j Q1 · · · ∑n1

j=1 2a1 jq
(0)
n0 jQ1

)
+ 2

⎛⎜⎜⎜⎜⎜⎝ ab̄11 a ¯̂b11 · · · ab̄1n0 a ¯̂b1n0

cb̄11 c ¯̂b11 · · · cb̄1n0 c ¯̂b1n0

⎞⎟⎟⎟⎟⎟⎠ = 0.

Next we claim that |a| < |c| holds. As a consequence, (6.15) can not holds, since one of the
b1k satisfies b1k � 0.

Now let’s prove the claim. Consider the left upper 4 × 4 diagonal block of the equation
(3) of Lemma 6.8: [H0, L0] + 2i[L1, L̄1] = A3. We obtain that

|c|2 − |a|2 = 1 + 2
∑

j

(|b1 j|2 + |b̂1 j|2 + 2|c1 j|2),

from which we see that |c|2 − |a|2 ≥ 1 > 0.
The above contradiction indicates B20 = 0, which finishes the proof. �

Proof of Proposition 6.2. From the proof of the above lemma we see that |c| > |a| and

a/c ∈ R. Consider the hyperbolic rotation Tt = diag{T1t, I} with T1t =

(
cosh t sinh t
sinh t cosh t

)

and a cosh t + c sinh t = 0. The new representation T1AjT−1
1 has the same form as Aj except
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that now the new ã satisfies ã = 0. So w.l.g. we can assume that a = 0. Now we see that
all of A1(λ), A2(λ) and A3 take values in so(n + 3) and as a consequence, the normalized
potential (6.13) takes values in so(n + 3). By Theorem 1.1 of [21], y is a minimal surface in
S n+2. �

6.5. On homongeneous Willmore RP2.
6.5. On homongeneous Willmore RP2. Finally we consider the case where a homoge-

neous Willmore immersion from the two-sphere descends to a map defined on RP2, i.e.,
where the Willmore two-sphere is invariant under the fixed point free antiholomorphic invo-
lution μ(z) = − 1

z̄ . By (6.16), we obtain

(6.16) y(μ(z)) = y(−eiθ 1
r

) = e−θA3e2 arctan( 1
r )A2 .y(0) = e−θA3e−2 arctan(r)A2eπA2 .y(0).

Here we have used the fact that arctan( 1
r ) + arctan(r) = π

2 .
Let’s consider next the action eπA2 .y(0). It is a rotation of y(0) by degree mπ. Here m is

the degree of the representation and hence half of the dimension of S 2m if y is full in S 2m.
Obviously, eπA2 .y(0) = y(0) if m = 2m̃ and eπA2 .y(0) = −y(0) if m = 2m̃ + 1.

If eπA2 .y(0) = y(0), then we have y(μ(z)) = y(z). If eπA2 .y(0) = −y(0), we have y(μ(z)) =
−y(z).

Summing up we obtain:

Corollary 6.12. Let y be a homogeneous Willmore two-sphere.

(1) If y is full in S 4m̃, it descends to a Willmore immersion from RP2.
(2) The full homogeneous Willmore two-sphere in S 4m̃−2 has an antipodal symmetry

y(−1
z̄

) = −y(z).

Remark 6.13. This can also be read off from the spherical harmonics functions. If the
degree of these function is even, then the surface reduces to an immersion from RP2. Other-
wise the surface has an antipodal symmetry as above. We believe this result is well-known
to experts. But so far we did not find a reference in the literature.
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Note added in proof. Since the acceptance of this paper we have split reference [9] into
three papers. The two papers containing relevant information for the present paper are:

J. Dorfmeister and P. Wang: Weierstrass-Kenmotsu representation of Willmore surfaces
in spheres, to appear in Nagoya Mat. J, doi:10.1017/nmj.2020.6.

J. Dorfmeister and P. Wang: Willmore surfaces in spheres: the DPW approach via the
conformal Gauss map, Abh. Math. Semin. Univ. Hambg. 89 (2019), 77–103.
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