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Abstract
Brauer tree algebras are important and fundamental blocks in the representation theory of

finite dimensional algebras. In this research, we present a combination of two main approaches
to the tilting theory of Brauer tree algebras.

The first approach is the theory initiated by Rickard, providing a direct link between an
ordinary Brauer tree algebra and the Brauer star algebra. This approach was continued by
Schaps-Zakay with their theory of pointing the tree.

The second approach is the theory developed by Aihara, relating to the sequence of muta-
tions from the ordinary Brauer tree algebra to the Brauer star algebra. Our main purpose in this
research is to combine these two approaches.

We first find an algorithm based on centers which are all terminal edges, for which we are
able to obtain a tilting complex constructed from irreducible complexes of length two [13],
which is obtained from a sequence of mutations.

In [1], Aihara gave an algorithm for reducing from tree to star by mutations and showed that
it gave a two-term tree-to-star complex. We prove that Aihara’s complex is obtained from the
corresponding completely folded Rickard tree-to-star complex by a permutation of projectives.

1. INTRODUCTION

1. INTRODUCTION
This work concerns Brauer tree algebras, a widely studied class of algebras of finite rep-

resentation type which includes all blocks of cyclic defect group in modular group rep-
resentation theory. A block of cyclic defect group is a Brauer tree algebra and its Green
correspondent is a Brauer star algebra. Rickard proved [10] that every Brauer tree algebra
has a tilting complex which makes it derived equivalent to the corresponding Brauer star
algebra. Schaps-Zakay [13] , [14] showed that the tilting complexes in the opposite direc-
tion can be constructed from irreducible projective complexes of length two. This is the
all-at-once approach to the theory.

The other main approach is the step-by-step approach going back to König and Zimmer-
mann [6], later formulated in terms of mutations by Aihara [1] and used recently by Chan [3]
and Zvonareva [17]. In this paper we propose to combine and compare the two approaches.
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2. DEFINITIONS AND NOTATION

2. DEFINITIONS AND NOTATION2.1. POINTED BRAUER TREES.
2.1. POINTED BRAUER TREES. We first define Brauer tree algebras.

Definition 2.1. Let e and m be natural numbers. A Brauer tree of type (e,m) is a finite
tree (V, ) where V is the set of vertices,  is the set of edges, | | = e, together with a cyclic
ordering of the edges at each vertex and a designation of an exceptional vertex which is
assigned multiplicity m.

The set of all edges incident to vertex u is denoted by (u). By “cyclic ordering” we mean
that for each edge E in (u) there is a ‘next’ edge in (u) and that edge has a next edge in
(u), etc., until each edge of u is counted exactly once, in which case E is the next one. We
note that if E and F are the only edges of u then F is next after E and E is next after F.

Every Brauer tree can be embedded in the plane in such a way that the cyclic ordering on
each (u) is the counterclockwise direction. The exceptional vertex will be drawn as a black
circle and the other vertices as open circles. Two important examples of Brauer trees are:

(i) The star with the exceptional vertex in the center.
(ii) The linear tree, which includes, for example, the Brauer trees of blocks of cyclic

defect in the symmetric groups.

We relate Brauer trees to the structure of algebras.

Definition 2.2. An algebra A is called a Brauer tree algebra if there is a Brauer tree such
that the indecomposable projective A-modules can be described by the following algorithm:

(i) There is a bijection between the edges of the tree and the isomorphism classes of
simple A-modules, i.e. each edge is labelled by the corresponding isomorphism
class.

(ii) If S is a simple A-module and PS is the projective cover of S then PS ⊇ rad(PS ) ⊇
soc(PS ) � S and rad(PS )/soc(PS ) is a direct sum of one or two uniserial modules
corresponding to the two vertices of the edge, with composition factors determined
by a counterclockwise circuit around the vertex ending at S . When the multiplicity
m is greater than 1, the circuit is made m times altogether.

The Brauer tree algebras for a given tree of type (e,m) are Morita equivalent, and this
Morita equivance is an isomorphism if there is a map of the tree to itself preserving the
cyclic ordering for which the degrees of the simples at corresponding vertices are the same.
The skeleton is the Morita equivalent Brauer tree algebra in which every simple has degree
1. Even when the algebra which interests us is the block of a group algebra, we will not use
the actual block but rather its skeleton.

Definition 2.3. Let e and m be natural numbers with e > 1. Let K be any field containing
a primitive eth root of unity ξ. Let n̂ = em + 1. Let the cyclic group Ce = 〈g〉 act on the
truncated polynomial ring A = K[x]/xn̂, g : x �−→ ξx. The Brauer star algebra of type (e,m)
is the skew group algebra b = A[Ce], in which g and x obey the relation g−1xg = ξx. The
algebra b has e distinct simple modules, corresponding to the idempotents
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fi =
1
e

e−1∑
j=0

ξ−i jg j, i = 1, .., e,

and satisfying fix = x fi+1.

The corresponding indecomposable projective left modules are denoted by Pi = b fi, i =
1, . . . , e. Each Pi is uniserial, and the projective cover of rad(Pi+1) is Pi. We let {xs fi}em

s=0 be
a basis for Pi, and define the following maps:

εi : Pi → Pi, εi ( fi) = xe fi

h̃i j : Pi → Pj, h̃i j ( fi) = xk fi, k ≡ j − i mod e, 0 ≤ k < e.

For i � j, we denote h̃i j by hi j, and for i = j by idi. For any 0 ≤ � ≤ m we call a map
ε�jh̃i j

(
= h̃i jε

�
i

)
normal homogeneous of degree �e + k,

where

k ≡ j − i mod e, 0 ≤ k < e.

Definition 2.4. A cochain map l• between C• and D• is called normal homogeneous if
each component li of l• is normal homogeneous.

Definition 2.5. We call the homomorphism εm
i : Pi → Pi the socle map, for the obvious

reason that it maps the top of Pi into its socle 〈xem fi〉.
Tilting complexes were introduced by Rickard in [9] and a complete treatment of tilting

complexes in group representation theory can be found in [7]. Rickard showed [9] that we
can work with complexes of projective modules and consider all maps up to equivalence
in the homotopy category. A general introduction to complexes, chain maps and homotopy
can be found in [15]. The shift T [n] of a complex T shifts it n degrees to the left if n is
positive, and |n| degrees to the right if n is negative. A complex T of projective modules is a
partial tilting complex if it has no chain maps from itself to a non-trivial shift of itself which
are not homotopic to the zero map. A partial tilting complex becomes a tilting complex
if it is sufficiently large that all the indecomposable projectives can be obtained from the
indecomposable components of the complex by recursively taking mapping cones, direct
summands and shifts (Theorem 6.3.3, [7]). The number of indecomposable components in
a tilting complex will equal the number of simples in the original algebra.

A partial tilting complex T for the Brauer star algebra b is called two-restricted if it is a
direct sum of shifts of the indecomposable complexes

S i : 0 → Pi → 0
Ti j : 0 → Pi → Pj → 0, i < j

where the first nonzero component Pi of S i and Ti j is in degree zero, and the second com-
ponent of Ti j is in degree 1. The complexes S i[n] and Ti j[n] are called elementary. The
map from Ti j to Ti j which is εm

i on Pi and zero on Pj is called the socle chain map. It is
chain homotopy equivalent to the map which is zero on Pi and −εm

j on Pj. A basis of the
endomorphism ring of a two-restricted tilting complex is given by the normal homogeneous
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Fig.1. A pointed Brauer tree

Fig.2. From vertex numbering to edge numbering

maps defined above [13].

Definition 2.6. Let B be a Brauer tree of type (e,m). A pointing on B is the choice,
for each nonexceptional vertex u, of a pair of edges (i, j) which are adjacent in the cyclic
ordering at u. If there is only one edge i at u, then we take (i, i) as the required pair. The tree
B together with a pointing is called a pointed Brauer tree.

Remark 2.1. Recall that we have represented each Brauer tree by a planar embedding
and the cyclic ordering at each vertex u by counterclockwise ordering of the edges in the
plane. We then represent the pointing (i, j) by placing a point in the sector between edge i
and edge j in a small neighborhood of each non-exceptional vertex u, as in Fig.1.

Definition 2.7. Let B be a Brauer tree with vertex set V . The distance d(u) of any vertex
u ∈ V from the exceptional vertex v is the number of edges in a minimal path from u to v
(and hence in any path without backtracking, since the graph is acyclic). For any edge w,
the vertex closest to the exceptional vertex will be called the near end and the other vertex
will be called the far end. The distance of an edge is the distance of the near end.

Definition 2.8. Let B be a Brauer tree with edge set  . A vertex numbering of B is a
Brauer tree with all its vertices numbered by 0, 1, . . . , e. The exceptional vertex is numbered
as 0.

An edge numbering of B is obtained from a vertex numbering by giving each edge the
same number as the vertex at its far end.
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Fig.3. Primary and coprimary edges at a vertex

Fig.4. The left alternating pointing and its edge numbering

Definition 2.9. A Green’s walk for a planar tree is a counterclockwise circuit of the tree
as if one were walking around the tree touching each edge with the left hand. For a Brauer
tree, we assume that each Green’s walk begins at the exceptional vertex. A branch is a
connected component of the tree with the exceptional vertex removed. For any branch, let
the edge connected to the exceptional vertex be called the root.

Each pointing and each choice of an initial branch together determine a vertex numbering
and an edge numbering by starting at the exceptional vertex v, taking a Green’s walk around
the tree which begins with the root of the designated initial branch, and numbering the
vertices and corresponding edges as 1, 2, 3, . . . , e as one comes to the points.

Definition 2.10. At any vertex besides the exceptional vertex, we will call the first edge
that one would meet on a Green’s walk around the tree the primary edge of the vertex, and
the first edge one would meet on a reversed Green’s walk will be called the coprimary edge,
as in Fig.3.

The pointing which puts the point between the entering edge and the primary edge at each
vertex will be called the ordinary pointing and the pointing which puts the point between
the entering vertex and the coprimary edge will be called the reversed pointing. The left
alternating pointing has the point alternately on the left or right of the entering edge, starting
on the left for the edge connected to the exceptional vertex. There is a corresponding dual
pointing. In Fig.4 we have the edge numbering corresponding to the vertex numbering in
Fig.2, which comes from a left alternating pointing.

As described in [14], each pointing determines a two-restricted star-to-tree tilting com-
plex, in which the projectives of the tilting complex are taken from the Brauer star with the
same (e,m) and the opposite algebra of the endomorphism ring in the homotopy category
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Fig.5. The reversed pointing and its edge numbering

is isomorphic to the Brauer tree algebra of the tree which was pointed. The components
Ti of this star-to-tree complex are stalk complexes for edges at the exceptional vertex and
complexes Ti j[−ni] or T ji[−ni + 1], depending on whether the point is after or before i in the
cyclic ordering from the entering edge j. The shifts are adjusted so that every Pi appears in
a unique degree ni.

As an illustration, we take the reversed pointing in Fig.5. The two edges at the excep-
tional vertex are 8 and 11, so these are stalk complexes in degree zero, given by T8 and T11

in the two-restricted tilting complex below. Connected to 8 are 4, 6 and 7. These give inde-
composable tilting complexes T48, T68 and T78. Since 8 and 11 are in degree 0, this requires
4, 6, and 7 to be placed in degree -1 of the complex, and similarly for 10. At the next stage
out, 3, 5 and 9 will be in degree −2, and finally, 1 and 2 will be in degree −3. Thus, with a
little practice, we can read off from the two-restricted tilting complex both the shape of the
tree and the choice of numbering.

The star-to-tree tilting complex of the reversed pointing of the tree given in Fig.5 is as
follows:

T1 : 0 → P1 → P3 → 0
T2 : 0 → P2 → P3 → 0
T3 : 0 → P3 → P4 → 0
T4 : 0 → P4 → P8 → 0
T5 : 0 → P5 → P6 → 0
T6 : 0 → P6 → P8 → 0
T7 : 0 → P7 → P8 → 0
T8 : 0 → P8 → 0
T9 : 0 → P9 → P10 → 0
T10 : 0 → P10 → P11 → 0
T11 : 0 → P11 → 0

A different pointing would give a different tilting complex with isomorphic endomor-
phism ring. In the ordinary pointing, as described in [13], projectives corresponding to
edges of distance zero lie in degree 0, and every other projective is in a degree correspond-
ing to its distance from the exceptional vertex. In the reversed pointing, we get exactly the
opposite, so that all projectives lie in non-positive degrees. We will show below that this
reversed pointing will correspond exactly to one of our mutation algorithms.

Let us demonstrate the connection between the tree-to-star complex for a given pointing
and the star-to-tree complex for the same pointing. As we see, the star-to-tree complex can
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be read off from the pointed Brauer tree by associating one row to each edge, connecting it
to the edge at its near end, with the direction depending on the numbering. In the tree-to-star
complex, we again have one row for each edge, but the projectives appearing in the row
are all the projectives leading back to the exceptional vertex, the direction which is the exact
opposite of the direction in the star-to-tree complex. The beauty of Rickard’s algorithm in [9]
was that one can generate all the projectives (the condition distinguishing a tilting complex
from a partial tilting complex) by taking the mapping cone of rows corresponding to adjacent
vertices along a path to the exceptional vertex. In [11] it was shown that this works as well
when the complex is folded and the two tilting complexes are mutually inverse. We will
denote the projectives of the tilted algebra by Rj.

Example 1 (Tree-to-star complex, [9]). In the tree with the reversed pointing given in
Fig.5, the edge 2 is connected to the exceptional vertex by a path 2, 3, 4, 8. Then, in the tree-
to-star complex, the row corresponding to 2 would be a row T ′2 and the path to the closer
vertex 3 would be a shorter row T ′3.

T ′2 : 0 → R8 → R4 → R3 → R2

T ′3 : 0 → R8 → R4 → R3

We then have R2 = Cone(T ′3 → T ′2) where the vertical maps are the identity. For comparison,
since we gave the entire star-to-tree tilting complex for Fig.5, we will give the entire tree-to-
star tilting complex with the same pointing:

T ′1 : 0 → R8 → R4 → R3 → R1

T ′2 : 0 → R8 → R4 → R3 → R2

T ′3 : 0 → R8 → R4 → R3

T ′4 : 0 → R8 → R4

T ′5 : 0 → R8 → R6 → R5

T ′6 : 0 → R8 → R6

T ′7 : 0 → R8 → R7

T ′8 : 0 → R8

T ′9 : 0 → R11 → R10 → R9

T ′10 : 0 → R11 → R10

T ′11 : 0 → R11

The second mutation algorithm that we will consider, that of Aihara [1], will also be
connected to a pointing, but in this case the correspondence will not be exact. The pointing
we will need will be the left alternating pointing as in Fig.4. The tilting complex of the left
alternating pointing is always of length 2, with the degree corresponding to the parity of the
distance from the exceptional vertex. The tilting complex of the left alternating pointing of
the tree in Fig.4 is as follows:
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T1 : 0 → P1 → P8 → 0
T2 : 0 → P2 → P4 → 0
T3 : 0 → P3 → P4 → 0
T4 : 0 → P1 → P4 → 0
T5 : 0 → P5 → P8 → 0
T6 : 0 → P5 → P6 → 0
T7 : 0 → P7 → P8 → 0
T8 : 0 → P8 → 0
T9 : 0 → P9 → P11 → 0
T10 : 0 → P9 → P10 → 0
T11 : 0 → P11 → 0

Our main theorem will be that the tilting complex resulting from composing the mutations
in the Aihara algorithm will be a permutation of this tilting complex. However, in order
to prove this theorem, we need to gather more information about tilting complexes and
mutations.

Definition 2.11. Consider a sequence {ri}�i=1 of elements of {1, . . . , e}. Set

h = h̃rl−1rl ◦ · · · ◦ h̃r1r2 = ε
α
rl

h̃r1rl .

Then the sequence is short if α = 0 and long if α > 0. We generally represent the sequence
in the form r1 → r2 → · · · → rl.

Example 2. If e ≥ 3,
• 1→ 2→ 3 is short
• 1→ 3→ 2 is long.

In [13] it was shown that a chain map l• : Tik → T jk has the identity map at Pk if
i→ j→ k is short and is the socle map if i→ j→ k is long, and similarly for the dual map
from Ti j to Tik.

2.2. MUTATION.
2.2. MUTATION. It is, of course, possible to define tilting complexes between two gen-

eral Brauer tree algebras. Of particular importance are the tilting mutations of [1], which go
back to work of Rickard [10] and Okuyama [8], or alternatively, to Kauer [5]. Let A be a
finite dimensional symmetric basic algebra, with projective modules Pj. To each j, we can

associate an idempotent ẽ j with 1A =
e∑

j=1
ẽ j.

Definition 2.12. Fix an i and define e0 =
∑
j�i

ẽ j. For any j with 1 ≤ j ≤ e, we define a

complex by

T (i)
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(0th) (1st)

Pj −→ 0 j � i

Qi
πi−→ Pi j = i

where Qi
πi−→ Pi is a minimal projective presentation of ẽ jA/ẽ jAe0A. Now we define T (i) :=
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�
e
j=1T (i)

j . The mutation μ+i of A is A′ � EndDb(A)T (i). We will also consider the dual variant,
as in [12].

T (i)
j
−
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1st) (0th)

0 −→ Pj j � i

Pi
πi−→ Qi j = i

where Qi is the minimal injective hull of the quotient of Pi by the largest submodule con-
taining only components isomorphic to the simple module S i. This injective hull will be a
direct sum of injective modules (which are also projective) whose irreducible socles give the
socles of this quotient. We will denote this by μ− [2] (see, e.g., [17] for more detail in the
case of Brauer trees).

Since A is a symmetric algebra, either version of the mutation will give a tilting complex.
Now let A be the algebra of an edge-numbered Brauer tree. (We recall that the algebra

does not depend on the numbering.) Aihara showed in [1] that there is a simple combina-
torial operation on edges which corresponds to the mutation: The edge j is detached from
both of its endpoints, and each vertex reattached to the tree at the farther end of the edge
which is next before it in cyclic ordering at that vertex. If the edge j is a leaf, then there is
only one reattachment made.

By dualizing Aihara’s main theorem, [1] Theorem 2.2, the mutation μ− would correspond
to the dual version of Aihara’s operation on the Brauer tree, namely, reattaching to the farther
end of the edge which is after it in the cyclic ordering. The diagrams to demonstrate this can
be found in [17].

3. MUTATION REDUCTION

3. MUTATION REDUCTION
The first algorithm for reducing from a general Brauer tree to the star by a series of

mutations is apparently that given in [6]. They operate at each step using a mutation centered
on a leaf, chosen so that, after the mutation, the total distance between all the edges will
be lower. In this procedure, the exceptional vertex, if we are in the case m > 1 where
it is uniquely defined, plays no special role. By their algorithm, if a Brauer tree had the
exceptional vertex at one end, all the edges would be moved to the center and the exceptional
vertex would remain terminal.

Since the purpose of this paper is to compare the step-by-step mutation algorithms with
Rickard’s all-in-one algorithm, for which the Brauer star must have the exceptional vertex
in the middle, we will use a lightly modified version of the algorithm in [6], for which the
recursion is by the distance of all other vertices from the exceptional vertex.

Assume we are given a Brauer tree G, with multiplicity m, as in Def. 2.1. If m > 1, then
there is a designated exceptional vertex v. For m = 1, we assume that one of the vertices has
been chosen as the exceptional vertex v.

Definition 3.1. A mutation reduction is a mutation or sequence of mutations such that
the distance of each vertex from the exceptional vertex does not ever increase, and such that
at least one such distance actually decreases. A mutation reduction which ends at the Brauer
star is called complete.
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Lemma 3.1. Assume we are given a Brauer tree.
(1) A mutation which is a mutation reduction must be centered at a primary edge.
(2) A mutation centered at a primary edge connected to an edge adjacent to the excep-

tional vertex is a mutation reduction.
(3) After a complete mutation reduction, all the edges from a given branch form an inter-

val around the Brauer star, and these intervals follow the counterclockwise ordering of the
branches.

Proof. (1) If the mutation is not centered at a primary edge, then the mutation reattaches
the center at the far end of the edge before it in the cyclic ordering, which is at greater
distance from the exceptional vertex, in contradiction to our assumption that we have a
mutation reduction.

(2) The only mutation which can change the branch structure under a mutation reduction
is a mutation by a primary edge w connected to an edge u adjacent to the exceptional vertex.
Let U be the remaining branches at u. The effect of such a mutation is to create a new branch
by lopping off w and the subgraph S of all edges connected to the exceptional vertex through
the center w of the mutation.

Let t be the coprimary edge at w, and let T be the set of branches at the far end of t. Let W
be the remaining branches connected to the far end of w. After the mutation of type μ+, the
original branch rooted at u will now be replaced by two branches, one rooted at w and now
connected directly to T , while t, which has become coprimary, now has W at its far end. The
other branch will be rooted at u, now connected only to U at its far end, and will follow the
branch rooted at w immediately in the counterclockwise ordering at v.

It remains to show that this operation was actually a mutation reduction. The edge w,
once at distance 1, is now at distance 0. The edge t, once at distance 2, is now at distance 1,
and every edge of T , originally connected to t and thus connected to the exceptional vertex
via three edges, u, w, t, is now connected to v via w and therefore every vertex is at distance
two less than before. Finally, the vertices of W, now all connected to the exceptional vertex
via w, t instead of u, w, all remain at exactly the same distance that they had before, as will
all the vertices in U.

(3) In any complete mutation reduction, each branch is eventually split entirely into sep-
arate leaves attached to the exceptional vertex. However, since this is always done, as de-
scribed above, by separating one branch into two adjacent branches with the same labels as
the original branch, the end result is that all the edges in the original branch correspond to
an interval around the star. �

We will examine two different mutation reduction algorithms, one a version of the original
algorithm given by Aihara [1] and the other our own from [16].
Aihara’s Algorithm [1]

(1) Choose an initial branch.
(2) In a Green’s walk starting at the root of the initial branch choose the first primary

edge w attached to an edge adjacent to the exceptional vertex. If the tree is not a star,
there must be such an edge w. (The edge w need not lie in the initial branch, which
could have been badly chosen as an edge attached to the exceptional vertex with no
other edges attached to it.)
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Fig.6.

(3) By Lemma 3.1(2), the mutation centered on this edge w is a mutation reduction, and
from the proof we see that it creates two adjacent branches from the original, the
first of which in counter-clockwise order is rooted at w.

(4) If w was on the initial branch, let the new initial branch be the new branch rooted at
w, and otherwise let the initial branch remain as before. Begin again from (2).

Algorithm Z [16]
(1) Choose an initial branch. Let d > 1 be the maximal distance of a vertex from the

exceptional vertex v.
(2) In a Green’s walk starting on the initial branch choose the first leaf at distance d,

necessarily a primary edge, as center, and perform a series of mutations centered on
the edge with this label, for as long as it remains a primary edge or until it reached the
exceptional vertex. The distances of all other vertices from the exceptional vertex
will be unchanged.

(3) Choose the next leaf at distance d and proceed as in the previous item.
(4) When there are no leaves left at distance d, then we find the new maximal distance

d′. If d′ = 1 we are finished, and otherwise we set d = d′ and begin again at (2).
In terms of number of steps, this is as inefficient as a mutation reduction algorithm can

be, because at each step, only one edge has its distance reduced by one.
We now construct a numbering on a Brauer tree depending on which algorithm we use.

We number the star by starting with the interval coming from the chosen initial branch and
numbering the edges in order. Since each mutation gives a one-to-one correspondence of
edges, we can pull this numbering back to the Brauer tree. This numbering will be called
the natural numbering corresponding to this algorithm and this choice of initial branch.
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Fig.7.

Example 3. In Fig.6, we got to the Brauer star using Algorithm Z. Taking the branch with
the vertex farthest from the exceptional vertex as initial branch, we get as natural numbering

A = 6, B = 5,C = 4,D = 3, E = 2, F = 1.

Example 4. Now, we follow Aihara’s Algorithm for the same original Brauer tree. In
Fig.7, using the same initial branch, we get a different natural numbering. First we chose
w to be the first primary edge attached to an edge adjacent to the exceptional vertex, which
gives w = D. After performing the mutation with center D, we take a new initial branch
rooted at w, which is to say, at D. As the next step, we take the first primary edge in this new
initial branch, which is E. Since E was already a leaf, it just moves down to the exceptional
vertex and is the new initial branch, as described in the algorithm. Now the leaf F becomes a
primary edge, and the last step is to move it down to the exceptional vertex. However, since
it is not in the initial branch, the leaf E remains the initial branch and thus the numbering
begins with E = 1.

A = 6, B = 5,C = 4,D = 3, E = 1, F = 2

The numbering gives a pointing and this pointing gives us a corresponding star-to-tree tilting
complex as described in §2. We will prove that from Algorithm Z we get a tilting complex
corresponding to the natural numbering derived from the reversed pointing. From Aihara’s
Algorithm we obtain a tilting complex which comes from a pointing but we will show that
it is not usually the pointing corresponding to the natural numbering.

4. MUTATION BY LEAVES

4. MUTATION BY LEAVES
In what follows, given a mutation reduction algorithm, we will label each edge by its

number in the natural numbering. The basic step in Algorithm Z is to take a leaf i which is
a primary edge in a Brauer tree and to do a mutation centered on this leaf, which will be a
mutation reduction to a tree whose algebra is A

′
. Letting A

′′
be the algebra of the original

Brauer tree, the tilting complex of this mutation is expressed in terms of the projectives P
′′
s
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of A
′′
, given by a functor G : Db(A

′
) → Db(A

′′
). Since i is a primary edge attached to some

edge j which is closer to the exceptional vertex, the functor G will act as the identity for
every projective P

′
� of A

′
except P

′
i, and for P

′
i itself we will have the projective cover of its

radical, which is P
′
j because j is a primary edge adjacent to i.

G
(
P
′
s

)
: 0 → P

′′
s → 0, s � i

G
(
P
′
i

)
: 0 → P

′′
j → P

′′
i → 0

Theorem 4.1. For any complete mutation reduction whose centers are always leaves
which are primary edges, the star-to-tree tilting complex of the composed mutations is the
star-to-tree complex of the original tree with the reversed pointing.

Proof. Let A�, A�−1, . . . , A1 be the Brauer tree algebras in the complete mutation reduction
to the Brauer star algebra A0. We number each of the corresponding Brauer trees by the
natural numbering corresponding to this mutation reduction. For each k between 1 and �,
we let

Fk : Db(A0)→ Db(Ak)

F−1
k : Db(Ak)→ Db(A0)

be the functors obtained by composing the functors G+ of the mutations μ+ and, respectively,
the functors G− of the dual mutations μ− in the opposite order. We want to show that the
star-to-tree tilting complex given by F−1

� is the star-to-tree complex given by the reversed
pointing, from which it will follow that the tilting complex inducing F� is Rickard’s tree-to-
star complex for the same reversed pointing, since by the results of [11] the star-to-tree and
tree-to-star complexes are inverse to each other.

Let us prove the theorem by induction on �. If � is 1, then the Brauer tree has only one
edge w not attached to the exceptional vertex v, but rather to some u attached to v. If w is
numbered i after mutation, then u will be numbered by i + 1 since it comes after the new w
in the cyclic ordering of the star. In the tilting complex of μ−i we will have Qi = Pi+1, and
thus it coincides with the star-to-tree complex of the reversed pointing.

Now assume that the theorem is true for � − 1, so that F−1
�−1 gives the star-to-tree complex

of the reversed pointing of the Brauer tree. Let the {P′s} be the projective left modules of
A�−1 and let the {P′′s } be the projective left modules of A�. Let i be the number of the center
of the mutation in the Brauer tree of A�−1 and let j be the number of the next edge after it
in the cyclic ordering. By the rules for numbering edges at a vertex, we must have j > i.
Furthermore, since i is a leaf, P

′
i is uniserial, so the injective hull Q

′
i of P

′
i/soc(P

′
i) is P

′
j.

G−
(
P
′′
j

)
: 0 → P

′
s → 0, s � i

G−
(
P
′′
i

)
: 0 → P

′
i → P

′
j → 0

Case 1. The edge j is not attached to the exceptional vertex:
Let k be the entering edge of the vertex at which i and j meet in the Brauer tree of A�−1,

and assume that it is in degree nk in the tilting complex. Then by the assumption of reversed
pointing, we have i < j < k, and thus F−1

�−1(P
′
i) = Tik[nk + 1] and F−1

�−1(P
′
j) = T jk[nk + 1]. In

this case we will get that the composition

F−1
�

(
P
′′
i

)
= F−1

�−1 ◦G−1
(
P
′′
i

)
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= F−1
�−1

(
Cone

(
P
′
i → P

′
j

))
= Cone

(
F−1
�−1(P

′
i)→ F−1

�−1(P
′
j)
)
.

= Cone

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �� Pi
hik ��

hi j

��

Pk ��

id
��

0

0 �� Pj
h jk �� Pk �� 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Denote the chain map in the cone by l•. We compute Cone(l•) and get:

Pi
(−hik ,hi j) �� Pk ⊕ Pj

(πk+h jk◦π j) �� Pk

where Pk is in degree nk. We want to show that Cone(l•) is homotopy equivalent to Ti j[−nk+

2], which is to say, Ti j shifted so that the Pi is in degree nk − 2.
The vertical maps f• and g• in the following diagram are actually chain maps. This can

be checked by composition or by diagram chasing.

Pi
(−hik ,hi j) ��

id

��

Pk ⊕ Pj
(πk+h jk◦π j) ��

π j

��

Pk

0

��
Pi

hi j ��

id

��

Pj ��

(−h jk ,id)

��

0

0

��
Pi

(−hik ,hi j) �� Pk ⊕ Pj
(πk+h jk◦π j) �� Pk

The composition f•◦g• is the identity, so we need only prove that the composition h• = g•◦ f•
is homotopic to the identity of the mapping cone. We need to find T1 : Pk ⊕ Pj → Pi ,
T2 : Pk → Pk ⊕ Pj such that:

Pi
(−hik ,hi j) ��

id

��

id

��

Pk ⊕ Pj
(πk+h jk◦π j) ��

T1

����������������������

(−h jk◦π j,π j)

��

id

��

Pk

T2

����������������������

0

��

id

��
Pi

(−hik ,hi j) �� Pk ⊕ Pj
(πk+h jk◦π j) �� Pk

To get the equality we want, we choose T1 = 0 and T2 = (−id, 0).
Case 2. Near the exceptional vertex: i is adjacent to the exceptional vertex after doing the

mutation. When we compute the tilting complex of the mutation, the component of P
′′
i also

is two-restricted. In this case we will get that the composition
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F−1
�−1 ◦G−1

(
P
′′
i

)
= Cone

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �� Pi

hi j

��

�� 0

0 �� Pj �� 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is homotopy equivalent to Ti j[−n j + 1] , and equal to F−1

�

(
P
′′
i

)
, which is precisely

what we need for the star-to-tree tilting complex of the reversed pointing. �

5. AIHARA’S ALGORITHM

5. AIHARA’S ALGORITHM
In Cor. 2.6 of [1], Aihara shows that the tree-to-star functor obtained by composing the

mutations in his algorithm gives a tilting complex of length two. We will compare Aihara’s
functor with the completely folded two-term version of Rickard’s tree-to-star functor given
in [11].

Proposition 5.1. We consider an arbitrary Brauer tree algebra. Let σ be the permutation
of 1, . . . , e sending each number in the natural numbering of the tree by Aihara’s Algorithm
to the number of the corresponding edge in the left alternating numbering. Then

(1) The star-to-tree complex obtained by composing the mutations of Aihara’s Algorithm
in reverse order can be obtained from the star-to-tree complex of the left alternating pointing
by permuting the rows by σ.

(2) The tree-to-star complex corresponding to Aihara’s Algorithm is the completely folded
Rickard tree-to-star complex for the left alternating pointing, except that the projectives are
permuted by σ.

Proof. (1) We let � be the number of mutations in the complete mutation reduction.
In the case � = 1, the center of the mutation is a leaf, so the natural numbering is the
reversed numbering, and for a linear tree of length 2, this coincides with the left alternating
numbering, so the permutation is the identity. We let F−1

� be the star-to-tree functor obtained
by composing the inverse mutations, and let H−1

� be the star-to-tree functor given by the left
alternating numbering, with σ� the permutation mapping the natural number of an edge to
its number in the left alternating numbering.

We assume, by induction, that the proposition is true for �−1. Let the P
′
i be the projectives

for �−1 in the natural numbering, and let P
′′
i be the projectives for � in the natural numbering.

Let the Q
′
i be the projectives for � − 1 in the left alternating numbering, and let Q

′′
i be the

projectives for � in the left alternating numbering. For every i, where 1 ≤ i ≤ e, F−1
�−1(P

′
i)

is the star-to-tree complex obtained by composing the mutations of Aihara’s Algorithm and
for every j, where 1 ≤ j ≤ e, H−1

�−1(Q
′
j) is the star-to-tree complex obtained from the left

alternating pointing. By our induction hypothesis, we get

F−1
�−1(P

′
i) = H−1

�−1(Q
′
σ�−1(i))

We recall that for any branch, by Def. 2.9, the edge connected to the exceptional vertex is
called the root. We are now going to perform an inverse mutation centered at a root w, which
will join the branch with root w to the next branch, with root u, where, as stated in Lemma
3.1(3), we have u > w. Let B�−1 be the Brauer tree before the branches rooted at u and w
are joined, and let B� be the Brauer tree after they are joined. We let t be the primary edge
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connected to w in B�−1, and Lemma 3.1(3) shows that w is the numerically highest number
in the branch, so that w > t. We note that for the left alternating numbering the number of
the root is also the highest in the branch, so that the permutation σ always acts as the identity
on roots.

We compute the functor G−1, the inverse of the mutation μ+w centered at w.

G−1
(
P
′′
s

)
: 0 → P

′
s → 0, s � w

G−1
(
P
′′
w

)
: 0 → P

′
w → P

′
u ⊕ P

′
t → 0

Since w and u are both roots, and σ�−1 is the identity on roots, we have
F−1
�−1

(
P
′
u

)
= H−1

�−1

(
Q
′
u

)
: 0 → Pu → 0

F−1
�−1

(
P
′
w

)
= H−1

�−1

(
Q
′
w

)
: 0 → Pw → 0

It remains to calculate F−1
�−1

(
P
′
t

)
.

By the definitions, t is the number assigned to the primary edge at w in the natural num-
bering. In the left alternating pointing, since the point is on the left at the far end of w, it is
the highest number appearing on the branch rooted at w, and since the point at the far end
of t is on the right, the primary edge which we have labelled by t in the natural numbering
will correspond to the lowest number in the branch, which we will denote by i. Thus by
the definition of σ�−1, we have σ�−1(t) = i and by the definition of the star-to-tree tilting
complex of a given numbering, we get a simple complex of length 2 joining Pi with Pw in
numerical order, so we have

F−1
�−1

(
P
′
t

)
= H−1

�−1

(
Q
′
i

)
: 0 → Pi → Pw → 0

We now calculate F−1
� as the composition F−1

�−1 ◦G−1. We first make a general claim that if
i→ j→ k is short, then Pj ⊕ Pi → Pk ⊕ Pj is homotopy equivalent to Tik[1], where the map
is given by (−h jk ◦ π j, π j + hi j ◦ πi). The chain maps are obvious and the composition from
Ti j to itself is the identity, so we need only find a homotopy from the opposite composition
to the identity:

Pj ⊕ Pi
(−h jk◦π j,π j+hi j◦πi) ��

πi

��

Pk ⊕ Pj

πk+h jk◦π j

��
Pi

(−hi j,id)

��

hik �� Pk

(id,0)

��
Pj ⊕ Pi

(−h jk◦π j,π j+hi j◦πi) �� Pk ⊕ Pj

The needed homotopy is given by T = (−π j, 0). With this result in hand, and noting that
i→ w→ u is short because i ≤ t < w < u, we make our calculation.

F−1
�−1 ◦G−1

(
P
′′
w

)
= F−1

�−1

(
Cone

(
P
′
w → P

′
u ⊕ P

′
t

))
= Cone

(
F−1
�−1(P

′
w)→ F−1

�−1(P
′
u) ⊕ F−1

�−1(P
′
t)
)



Mutations and Pointing for Brauer Tree Algebras 705

= Cone

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �� Pw ��

(hwu,id)
��

0

Pi
(0,htw) �� Pu ⊕ Pw �� 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Pw ⊕ Pi → Pu ⊕ Pw

≡ Pi
hiu−→ Pu

The resulting star-to-tree complex is clearly in a two restricted tilting complex. Because G−1

is almost everywhere trivial, the only differences between F� and F�−1 are:
F−1
�−1

(
P
′
w

)
= H−1

�−1

(
Q
′
w

)
: 0 → Pw → 0

F−1
�

(
P
′′
w

)
= H−1

�

(
Q
′′
i

)
: 0 → Pi → Pu → 0

and
F−1
�−1

(
P
′
t

)
= H−1

�−1

(
Q
′
i

)
: 0 → Pi → Pw → 0

F−1
�

(
P
′′
t

)
= H−1

�

(
Q
′′
w

)
: 0 → Pi → Pw → 0

Thus σ� is identical with σ�−1 except on w and t. We have σ�(w) = σ�−1(t) = i and σ�(t) =
σ�−1(w) = w. It remains only to show that H−1

� is indeed the star-to-tree functor for the left
alternating pointing.

Fig.8.

We use the same notation as in the proof of Lemma 3.1(2), except that now our mutation
is going in the opposite direction, so that t will go from being primary to coprimary. In
B�−1, the top graph in Fig.8, let W be the collection of branches at the far end of t, let T
be the remaining branches connected to w, and let U be the collection of branches at the
far end of u. The interval in the natural numbering corresponding to T is [i, . . . , t − 1], the
interval corresponding to W is [t + 1, . . . , w − 1], and the interval corresponding to U is
[w + 1, . . . , u − 1].

In B�, the bottom graph in Fig.8, w is attached to u before U, t has become coprimary,
with T attached to its far end, and W is now attached directly to w. The distances of U and
of W from the exceptional vertex v remain as they were, and the distance of T is increased
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by two, since it was originally attached directly to w, and now u, w and t intervene. Since the
intervals remain the same, and the alternating pointing remains the same, the left alternating
numbering for each is the same, and thus σ� and σ�−1 are identical on U, W and T , and also
on u, where both are fixed.

Thus, for every edge except w and t, the left alternating pointing is exactly as it was. At
the far end of w, the point is on the right, and thus the left alternating pointing assigns to w
the lowest number in the united branches, which was the lowest number in the branch with
root w, which we called i. In the united tree B�, the edge t is coprimary going out from
w and has the point between it and w. Since the edge w has been assigned a low number,
the alternating numbering assigns to t the largest number in the branch originally rooted at
w, which is w. The alternating numbering then gives to every other edge exactly the same
number as before. This proves (1).

(2) By [11] the Rickard tree-to-star complex for the left alternating pointing is the in-
verse of the star-to-tree complex for the same pointing. Since the star-to-tree for Aihara’s
algorithm differs from the star-to-tree for the left alternating pointing only in the order of
the components, the Aihara complex differs from the Rickard complex only by the same
permutation of the projectives, replacing P

′′
j by Q

′′
σ( j) �

In order for Proposition 5.1 to be truly useful, we would like to give a description of the
permutation σ which does not require us to perform the entire Aihara algorithm and find the
natural numbering. This we do in the following corollary, which we first illustrate by giving
the natural numbering of the tree in the example of Fig.4 when we have done the Aihara
algorithm. This numbering can be obtained from a pointing, which we give, but the tilting
complex corresponding to this pointing is not the tilting complex resulting from the Aihara
algorithm. The natural numbering is given in Fig.9 below.

Fig.9.

The vertices at even distance from the exceptional vertex are those numbered 4, 6, 10.
There are only two edges at each of these vertices, so the cyclic permutation of the edges is
just a set of three transpositions, giving σ = (1, 4)(5, 6)(9, 10).

Corollary. The permutation σ is given by the cyclic ordering of edges on the vertices at
non-zero even distance from the exceptional vertex.

Proof. As in the proof of the proposition, we do an induction on �, assuming that the
result holds for � − 1. Thus in σ�−1, the edges at the far end of t are permuted according to
the cyclic ordering at the vertex, from the primary edge i through the numerically increasing
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Fig.10.

starting edges of the branches in T , and then to t, and finally from t back to i. In B�, this
vertex now has an extra edge. The cyclic ordering goes from i though the same sequence of
starting edges in T , to the coprimary edge t, and finally to w. This is precisely the change
we documented in σ�, where now w goes to i and t to w, increasing the length of the cycle
by one. �

Example 5. We illustrate Proposition 5.1 with a simple example. In Fig.10, we have a
linear Brauer tree, which we reduce using Aihara’s Algorithm to a Brauer star with e = 5.
Now we compare this result with the composition of mutations as in Proposition 5.1:

F−1
4 (P

′′
1) : 0 → P1 → P4 → 0

F−1
4 (P

′′
2) : 0 → P2 → P3 → 0

F−1
4 (P

′′
3) : 0 → P2 → P4 → 0

F−1
4 (P

′′
4) : 0 → P1 → P5 → 0

F−1
4 (P

′′
5) : 0 → P5 → 0

This differs from the folded star-to-tree complex for the pointed Brauer tree in Fig.10, con-
structed as in [11], by the ordering of the images. The images of P

′′
1 and P

′′
4 are exchanged,

as are the images of P
′′
2 and P

′′
3.

H−1
4 (Q

′′
1) : 0 → P1 → P5 → 0

H−1
4 (Q

′′
2) : 0 → P2 → P4 → 0

H−1
4 (Q

′′
3) : 0 → P2 → P3 → 0

H−1
4 (Q

′′
4) : 0 → P1 → P4 → 0

H−1
4 (Q

′′
5) : 0 → P5 → 0

For completeness, we give the corresponding tree-to-star complexes.
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H4(P1) : 0 → Q
′′
5 → Q

′′
1 → 0

H4(P2) : 0 → Q
′′
5 ⊕ Q

′′
4 → Q

′′
1 ⊕ Q

′′
2 → 0

H4(P3) : 0 → Q
′′
5 ⊕ Q

′′
4 ⊕ Q

′′
3 → Q

′′
1 ⊕ Q

′′
2 → 0

H4(P4) : 0 → Q
′′
5 ⊕ Q

′′
4 → Q

′′
1 → 0

H4(P5) : 0 → Q
′′
5 → 0

F4(P1) : 0 → P
′′
5 → P

′′
4 → 0

F4(P2) : 0 → P
′′
5 ⊕ P

′′
1 → P

′′
4 ⊕ P

′′
3 → 0

F4(P3) : 0 → P
′′
5 ⊕ P

′′
1 ⊕ P

′′
2 → P

′′
4 ⊕ P

′′
3 → 0

F4(P4) : 0 → P
′′
5 ⊕ P

′′
1 → P

′′
4 → 0

F4(P5) : 0 → P
′′
5 → 0

Since the underlying Brauer trees are the same, the Brauer tree algebras are isomorphic, and
we get isomorphisms of projectives according to the permutation σ, namely P

′′
j ≡ Q

′′
σ( j).

In fact, both algebras are endomorphism rings of tilting complexes which differ only in the
order of the terms. In Fig.11, we give the linear tree with the left alternating pointing.

Fig.11.
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