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Abstract
In this paper we study the smoothing of a semistable Fano variety over a perfect field k. In

characteristic 0, the reduced semistable Fano degenerate fibers of Mori fibrations are classified.
In positive characteristic, under a suitable W2 lifting assumption, we prove that a semistable
Fano variety always appears as a degenerate fiber in a semistable family if it has a global log
structure (in the sense of Fontaine-Illusie-Kato) of semistable type. A geometric criterion for
the existence of a log structure of semistable type is given.

1. Introduction

1. Introduction
In this paper we investigate the possible reduced semistable degenerate fibers of a smooth

Fano family. The investigation is motivated by the following two problems:
(1) Given a projective algebraic variety X (defined over the field of complex numbers)

whose Kodaira dimension is −∞. Then conjecturally there is a modification X′ → X
and a fibration f : X′ → B (Mori fibration) such that X′ is smooth projective and
the general fibers of f are smooth Fano varieties. Analogous to Kodaira’s theory
of degenerations of elliptic curves, the geometry of the singular fibers (usually non-
normal) of f have great influence on the birational geometry of X. The simplest
possible non-normal singularities in the fibers of f are the semistable singularities
(those which are analytically isomorphic to a product of normal crossing singulari-
ties). Conjecturally ([1, Conjecture 0.2]), after a finite base change and a birational
modification, the family can always be brought to a semistable family ([1]). Hence
it’s natural to ask about what kind of Fano varieties with semistable singularities
appears in a semistable family with Fano general fibers.

(2) Let X be a projective smooth Fano variety over a local field K of mixed character-
istic. One can not hope generally that X has a smooth model even after a base field
extension. However, it is conjectured that after a finite extension K ⊆ L, XL would
have a semistable model, i.e., there exists a semistable family X over OL whose
generic fiber is isomorphic to XL. Therefore it is natural to ask about what kind
of Fano varieties with semistable singularities appears to be the central fiber of a
semistable model of a Fano manifold defined over K.

The degeneration of Fano manifolds is studied by T. Fujita [6], who gives a complete list of
the reducible singular fibers in a (minimal) family of del Pezzo manifolds over an algebraic
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curve (A Fano manifold X is called del Pezzo if indX = dim X − 1). Later, Y. Kachi [12]
proves that all d-semistable normal crossing del Pezzo surfaces are contained in Fujita’s list
by showing that each d-semistable del Pezzo surface has a smoothing. This smoothability
property is generalized to arbitrary dimensional d-semistable normal crossing Fano varieties
defined over an algebraically closed field of characteristic zero by N. Tziolas [25]. Since any
family over a curve can always be modified into a family with normal crossing fibers ([21]),
Tziolas’s work classifies the simplest Fano degenerate fibers of a 1-parameter family of Fano
manifolds.

However the Mori fibrations generally have higher dimensional bases, in which case the
normal crossing singularities are no longer enough for the degenerate fibers ([13]). The
same problem appears in the moduli problem of varieties, while the base space of a family
is usually of higher dimension. The simplest example in which the degeneration can not
be normal crossing is the 2-parameter family of surfaces defined by t1 = x1y1 and t2 =
x2y2. Conjecturally ([1, Conjecture 0.2]), the best singularities that one can hope for is the
semistable singularities (étale locally a product of normal crossing singularities) and any
geometric generic integral family can be modified into a semistable family. Given pairs
(X,DX) and (Y,DY) such that X, Y are smooth and DX , DY are normal crossing divisors. A
log morphism f : (X,DX) → (Y,DY) (A morphism f : X → Y such that f −1(DY) ⊆ DX) is
called semistable if formal locally f is isomorphic to the spectrum of

k[[y1, . . . , yr]]→ k[[x1, . . . , xn]],

yi �→ xli−1+1 + · · · + xli ,

where 0 = l0 < l1 < · · · < lk ≤ n. Here k ≤ r, DY = {y1 · · · yk = 0} and DX = {x1 · · · xlk = 0}.
In the first part of this paper, we study the problem about which kind of semistable Fano

varieties may appear in a semistable family whose general fibers are smooth Fano varieties.
We work over a perfect field and allow the degenerate fibers to have self intersections. The
main results are:

Theorem 1.1 (Corollary 4.4). Let k be a field of characteristic 0 and X be a Fano
semistable variety. Let r ≥ 1 be an integer. Then the followings are equivalent:

(1) there exists a smooth variety with a normal crossing divisor (X ,DX ) which is
semistable (Definition 2.1) over (B,DB) such that
(a) B is an r-dimensional smooth variety over k, 0 ∈ B is a k-point, and DB is a

simple normal crossing divisor whose number of branches at 0 is r;
(b) X0 
 X as log varieties.

(2) X has a log structure (in the sense of Kato-Fontaine-Illusie) of semistable type over
(k,Nr �→ 0) (Definition 2.3).

A variety with semistable singularities is called ’Fano’ if its dualizing sheaf is an anti-
ample invertible sheaf. Since ampleness is open in family, the fibers near X in Theorem 1.1
are automatically Fano.

For the readers who are not familiar with log geometry in the sense of Kato-Fontaine-
Illusie, the condition that a semistable variety has a log structure of semistable type is a
global condition on how the components of the variety intersect each other. For example,
if X is a union of two smooth components X1 and X2 which intersect transversely along a
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smooth variety D. Then X has a log structure of semistable type if and only if NX1/D ⊗NX2/D

is a trivial line bundle on D (d-semistable condition in [5]).

Theorem 1.2 (Corollary 4.5). Let k be a perfect field of characteristic p > 0 and X be a
log variety which is semistable log smooth over (k,Nr �→ 0) (Definition 2.3) for some r ≥ 0.
Assume that dim X < p. If X is Fano and admits a log smooth lifting over (W2(k),Nr �→
0), then there exists a smooth variety with a normal crossing divisor (X ,DX ) which is
semistable over (B,DB) such that

(1) B is an r-dimensional smooth variety over k, 0 ∈ B is a k-point, and DB is a simple
normal crossing divisor whose number of branches at 0 is r;

(2) X0 
 X as log varieties.

Moreover if r = 1 (i.e., X is d-semistable in the sense of [5]), then X appears in a semistable
reduction over the ring of Witt vectors W(k).

The second part of this paper is devoted to a geometric description of the existence of a log
structure of semistable type. When the variety admits only normal crossing singularities, this
is Friedman’s d-semistable condition ([5]) on the first tangent sheaf of X. In fact, a normal
crossing variety admits a log structure of semistable type over (k,N �→ 0) if and only if its
first tangent sheaf T 1

X is trivial ([20], [14]). When X has general semistable singularities,
some new phenomena appear:

• Even when X has only simple normal crossing singularities, the log structure of
semistable type may exist for r � 1. This log structure is induced from an embedding
of X into a virtually r-dimensional family and is different from the log structure
constructed in [20] and [14] when r = 1. As a simple example illustrating this
phenomenon, let us consider the case when M is a smooth variety and Di, i = 1, 2, 3
are connected smooth divisors of M such that D1 ∪ D2 ∪ D3 is normal crossing.
Let X = D3 ∩ (D1 ∪ D2), then X is a normal crossing variety with two components
Xi = D3 ∩ Di, i = 1, 2. X admits a log structure MX by restricting the log structure
on M induced by D1∪D2∪D3 on X. Such log structure has N2 on each component,
i.e., MX |X\X1∩X2 
 N2. However, the log structure constructed in [20] and [14] for X
has N on each component. The extra N comes from the normal direction along D3.
In other words, the log structures of X are sensitive to the embedding codimension.
• There is no simple criterion for the existence of log structures of ’embedding type’

for higher codimension r as in [14]. Let us consider the example above. The log
structure MX naturally decomposes into a direct sum of the log structures induced
by D3 and D1 ∪ D2. These two log structures represent two normal directions of X
in M. More generally, if a semistable variety is a complete intersection of normal
crossing divisors D1, . . . ,Dr, it is natural to consider the log structures induced from
each Di, instead of the log structure induced from

∑
Di. It turns out that there is a

simple obstruction theory on the existence of such family of log structures (instead
of a single log structure). See Theorem 5.8. The anonymous referee informs us that
a similar phenomenon is also observed in [8].
• When X admits general semistable singularities or r > 1, T 1

X is not the right obstruc-
tion to the existence of a log structure of semistable type. We have a generalized
notion of d-semistability (Definition 5.9). A semistable variety admits a log struc-
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ture of semistable type if and only if it is d-semistable (Theorem 5.10).
As an application, we show that if X is a product of Fano hypersufaces and one of the

product factors is of dimension ≥ 2. Then X does not admit a log structure of semistable
type. As a consequence, it has no semistable smoothing (Example 5.12).

The technique that we use in the proof of Theorem 1.1 and Theorem 1.2 is the log de-
formation, which is first used by Y. Kawamata and Y. Namikawa to smooth certain normal
crossing Calabi-Yau varieties in [20] (although they do not use the formal language of log
geometry). There are two advantages of using log deformations:

(1) If we endow a normal crossing singularity x1 · · · xr = 0 with the canonical log struc-
ture, it becomes smooth in the category of log scheme. Although there are many
types of deformations of x1 · · · xr = 0, the log smooth deformation of x1 · · · xr = 0
which respects the canonical log structure is quite simple. There are two types of
log smooth deformations of x1 · · · xr = 0: one keeps the type of the singularity by
x1 · · · xr = 0, the other one smooths it by x1 · · · xr = t. Therefore, if we choose
the log smooth deformation which smooths the singularities, we automatically get a
semistable family.

(2) Generally, semistable Fano varieties are obstructed. However, one can show that
they are unobstructed under the log smooth deformation. In fact, their log obstruc-
tion spaces vanish (Proposition 3.6).

In [25], Tziolas proves the vanishing of the log obstruction space of a d-semistable normal
crossing Fano variety by normalizing the singularities and reducing the vanishing theorem
to the Akizuki-Nakano-Kodaira vanishing theorem of log pairs. However, in the semistable
case, the method of normalizing becomes combinatorially more complicated. In this paper,
we use the full power of log geometry which is introduced by Fontaine-Illusie and is devel-
oped by K. Kato [16]. By using Kato’s decomposition theorem of log de Rham complex
(Theorem 31), we are able to prove a general Akizuki-Nakano-Kodaira type vanishing theo-
rem for semistable log varieties (Theorem 3.5 and Corollary 3.6). The vanishing of the log
obstruction space of semistable log Fano varieties is an easy consequence.

As long as the log deformation is unobstructed, we are able to lift the semistable log
variety over a complete ring (provided that there is a lifting of an ample line bundle). Then
we prove the limit preserving property of semistable log smooth morphisms (Proposition
4.2) and use Artin’s approximation theorem to extend the family to a variety base.

Y. Zhu informs us that Kawamata also obtains a vanishing theorem of semistable vari-
eties in [18], aiming at generalizing J. Kollar’s work in [22] to semistable varieties. Our
Akizuki-Nakano-Kodaira type vanishing theorems (Theorem 3.5 and Corollary 3.6) differ
from Kawamata’s vanishing theorem. We consider the log de Rham complex (which con-
trols the log deformation) instead of the de Rham complex of Du Bois which is considered
in [18].

This paper is organized as follows:
In section 2 we introduce the notions in log geometry which are necessary for this paper.

We also introduce Kato’s obstruction theory of log smooth deformations.
In section 3 we prove an Akizuki-Nakano-Kodaira type vanishing theorem for semistable

log varieties (Theorem 3.5 and Corollary 3.6) by using Kato’s decomposition theorem of log

1A detailed proof of this theorem is lacked in [16]. We present a proof in the appendix.
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de Rham complex (Theorem 3). As a consequence, we prove that the obstruction space of
the log smooth deformation of a semistable log Fano variety vanishes (Proposition 3.7).

In section 4 we prove the limit preserving property of the semistable log smooth mor-
phisms (Proposition 4.2) and the main results of this paper (Theorem 1.1 and Theorem 1.2).

Section 5 is devoted to a geometric criterion for the existence of a log structure of
semistable type. These results generalize [20] and [14] in several directions. The main
results are Theorem 5.8 and Theorem 5.10. Some examples are also given.

The appendix presents a proof of Kato’s decomposition theorem (Theorem 3) for the
readers’ convenience. This proof is standard but is missing in the literatures.

Notations: We mainly follow the notions and notations in [16] with some exceptions:
• We use the capital letters X, Y , etc. to denote log schemes. If X is a log scheme, we

denote X to be the underlying scheme and αX : MX → OX to be the log structure.
Denote MX :=MX/O

∗
X .

• the notation Nr �→ 0 stands for the log structure associated to the zero map from Nr

to the structure ring.
• We denote a log cotangent sheaf by Ω instead of ω as in [16].
• All log structures are defined on the small étale site.

2. Logarithmic Geometry and Logarithmic Deformation

2. Logarithmic Geometry and Logarithmic Deformation
A log scheme is a triple X = (X,MX , α) consisting of
• a scheme X,
• a sheaf MX (on the small étale topology on X) of monoids and
• a morphism of sheaves of monoids α : MX → OX from MX to the multiplication

monoid (OX ,×) such that

α|α−1O∗X : α−1O∗X → O∗X

is an isomorphism.
(MX , α) is called the log structure of the log scheme. Usually, α is omitted in the notation if
there is no danger of ambiguity.

For any morphism of sheaves of monoids α : P → OX , one can associate to it a log
structure Pa → OX functorially. If P is a constant sheaf of monoids, then it is called a
chart of Pa.

A typical example of log schemes is the log pair. Let (X,D) be a pair consisting of a
scheme X and a reduced subscheme D on X of codimension 1. We can construct a log
structure MD on X by

MD(U) = { f ∈ OX(U)| f |U\D ∈ O∗X(U \ D)}.
A morphism of log schemes f : X → Y consists of a morphism of the underlying schemes

f : X → Y and a morphism of sheaves of monoids f ∗ : f −1MY → MX . We say that f is
strict if ( f −1MY)a 
MX . f is called log smooth if

(1) the underlying morphism is locally of finite presentation and
(2) for any commutative diagram
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T ′ ��

i
��

X

f
��

T ��

g
��

Y

of log schemes such that i is a strict closed immersion whose ideal of definition I
satisfies I2 = 0, there exists locally on T a dotted arrow g rendering the diagram
commutative.

A typical example of log smooth morphisms is the semistable morphism. Our notion gener-
alizes the notion in [1, §0.3].

Definition 2.1. Let X and Y be Noetherian schemes. Suppose that DX ⊆ X and DY ⊆ Y
are reduced Cartier divisors. A morphism of pairs f : (X,DX)→ (Y,DY) is called semistable
if the following two conditions hold.

(1) X, Y are regular and DX ⊆ X, DY ⊆ Y are normal crossing divisors,
(2) for each point x ∈ X such that f (x) = y, there are étale morphisms U → X and

V → Y which send x′ ∈ U and y′ ∈ V to x and y respectively, and a morphism g

rendering the diagram

U
x′ �→x ��

g

��

X

f
��

V
y′ �→y �� Y

commutative. Here g is formally isomorphic to the formal spectrum of

ÔV,x → (OV,x[[x1, . . . , xn]]/I)∧,

f �→ f ,

where the ideal I is generated by

ri −
li∏

j=li−1+1

x j.

Here 0 = l0 < l1 < · · · < lm ≤ n, and

DY ×Y V = {r1 · · · rm = 0}, DX ×X U = {x1 · · · xlm = 0}.
In particular, {ri} is a subset of a regular systems of parameters in ÔV,x.

A semistable morphism is log smooth if X and Y are endowed with the log structures
induced by the divisors DX and DY . This is a direct consequence of the following criterion
of Kato.

Theorem 2.2 ([16, Theorem 3.5]). Let f : X → Y be a morphism of fine log schemes.
Then f is log smooth if and only if given any étale local chart Q→MY , there exists an étale
local chart P→MX, and a chart of f , Q→ P, such that

(a): Ker(Qgp → Pgp) and the torsion part of Coker(Qgp → Pgp) are finite groups of
order invertible on X, and
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(b): the induced morphism X → Y ×SpecZ[Q] SpecZ[P] is smooth (in the usual sense).

Let f : X → Y be a semistable morphism. By restricting the log structures on the fibers
of f at y ∈ Y , we get a log variety Xy which is log smooth over (k,Nr �→ 0) where r is the
number of formal branches of DY at y. This suggests the following definition.

Definition 2.3. A log variety X is semistable log smooth over a log field (k,Nr �→ 0) if
there is a log smooth morphism X → (Spec(k),Nr �→ 0), such that for every point x ∈ X,
there exists

• a pointed scheme (U, u),
• an étale morphism U → X which sends u to x 2 and
• a diagram of log schemes

U

��

g �� Spec(k[x1, . . . , xn]/(x1 · · · xl1 , xl1+1 · · · xl2 , . . . , xlr−1+1 · · · xn),Nn)

π
����������������������������

(k,Nr �→ 0),

where g is strict, log smooth and the log structure of

Spec(k[x1, . . . , xn]/(x1 · · · xl1 , xl1+1 · · · xl2 , . . . , xlr−1+1 · · · xn)

is induced by

α : Nn → k[x1, . . . , xn]/(x1 · · · xl1 , xl1+1 · · · xl2 , . . . , xlr−1+1 · · · xn), α(ei) = xi.

Here ei = (0, . . . , 1, . . . , 0) ∈ Nn where 1 is placed on the i-th component.
Under a suitable order of x1, . . . , xn and 0 = l0 < l1 < · · · < lr = n, the map on the log

structure of the morphism π is induced by

N
r → Nn, ei �→ eli−1+1 + · · · + eli .

In this case we say that the log structure MX is of semistable type over (k,Nr �→ 0).

Given a morphism of log schemes f : X → Y , the relative cotangent sheaf of f is defined
by

ΩX/Y := ΩX/Y ⊕ (M gp
X ⊗Z OX)/ ∼,

where ∼ is a OX-submodule generated by
(1) (dα(a), 0) − (0, a ⊗ α(a)) with a ∈MX , and
(2) (0, 1 ⊗ a) with a ∈ Image( f −1(MY)→MX).

The canonical morphism M gp
X → ΩX/Y is denoted by dlog. If f is log smooth, then ΩX/Y

is locally free ([16, Proposition 3.10]). The log cotangent sheaf controls the log smooth
deformation of a log smooth variety ([16], [15]).

Theorem 2.4 ([16, Proposition 3.14]). Let f : X → Y be a log smooth morphism between
fine log schemes and let i : Y → Y ′ be a strict closed immersion such that Y is defined in
Y ′ by a square zero ideal I. Then there is an obstruction class ob f ,i ∈ H2(X, (ΩX/Y)∨ ⊗ I)

2We do not require that k(u) 
 k(x).
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such that ob f ,i = 0 if and only if there exists a log smooth morphism of fine log schemes
f ′ : X′ → Y ′ whose restriction on Y is isomorphic to f .

Remark 2.5. Let Y be a fine log scheme and i : Y → Y ′ be a strict thickening (i.e., i is a
closed immersion defined by a nilpotent ideal sheaf where i is strict as a log morphism). Let
X be a fine log scheme which is log smooth over Y . If X is affine, then there exists a unique
lifting (up to non-unique isomorphisms) over Y ′ ([16, Proposition 3.14]). Étale locally a log
smooth lifting can be described as follows (loc. cit.).

Choosing a chart P of X and a chart Q of Y as in Theorem 2.2, we get the following
diagram

X ��

f
��

X′

f ′
��

Spec(Z[P]) ×Spec(Z[Q]) Y ��

��

Spec(Z[P]) ×Spec(Z[Q]) Y ′

��
Y �� Y ′,

where f is strict and étale. We can complete the diagram by the dotted arrows so that f ′

is strict, étale and the square on the top is a fiber product ([10, Exposé 1, Proposition 8.1]).
Here X′ is a log smooth lifting of X over Y ′.

3. Kodaira-Akizuki-Nakano Vanish for Semistable Log Varieties

3. Kodaira-Akizuki-Nakano Vanish for Semistable Log Varieties
In this section we prove that semistable log Fano varieties are unobstructed under log

smooth deformations. To prove this we need to establish the Kodaira-Akizuki-Nakano van-
ishing theorem for semistable log smooth varieties. As corollaries, we prove the main results
in this paper.

Definition 3.1. Let k be a field and X be a variety over k. X is said to be semistable if for
each point x ∈ X, there exists an étale morphism U → X which sends u ∈ U to x (we do not
require that k(u) 
 k(x)) such that

ÔU,u 
 k(u)[[x1, . . . , xn]]/(x1 · · · xl1 , xl1+1 · · · xl2 , . . . , xlr−1+1 · · · xlr ).

Here 0 = l0 < l1 < · · · < lr ≤ n.

This definition allows singularities like x2 + y2 = 0 defined over k = R.
Let X be a semistable variety over k. Since it is étale locally a product of normal crossing

singularities, X is Gorenstein and the dualizing sheaf ωX/k is an invertible sheaf.

Definition 3.2. A complete semistable variety X is called Fano if its dualizing sheaf ωX/k

is anti-ample, i.e., ω−1
X/k is ample.

For a semistable log variety, the log canonical sheaf is isomorphic to the dualizing sheaf
of the underlying variety.
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Lemma 3.3. Let X be a semistable log smooth variety over k = (k,Nr �→ 0), then∧dim X ΩX/k 
 ωX/k.

Proof. For simplicity, let us consider the normal crossing singularity. Denote by Z =
{x1 · · · xr = 0} a closed subspace of U = Spec(k[x1, . . . , xn]). Then

∧n−r ΩZ/k is an invertible
sheaf generated by

dx1

x1
∧ · · · ∧ dxr

xr
∧ dxr+1 ∧ · · · ∧ dxn.

The dualizing sheaf ωZ/k has the same expression by the adjunction formula. Since
semistable varieties are locally products of normal crossing singularities, the lemma is
proved (We omit the verification of compatibilities here). �
The following theorem is due to Kato [16]. Since the arguments are simple modifications

of those given in [3], the author does not provide the detailed argument. For the convenience
of the readers, we provide the detailed proof in the appendix.

Theorem 3.4 ([16, Theorem 4.12]). Let k be a perfect field of characteristic p > 0 and X
be a log variety which is semistable log smooth over k = (Spec(k),Nr �→ 0). If X has a log
smooth lifting over (SpecW2(k),Nr �→ 0), then there is an isomorphism

τ<pF∗Ω•X/k 

⊕
0≤i<p

Ωi
X′/k[−i]

in D(X′). Here F : X → X′ is the relative Frobenius morphism over k.

By using the same method as in [3, Lemma 2.9], we have the following

Theorem 3.5. Let k be a perfect field of characteristic p > 0 and X be a semistable log
smooth variety over k = (Spec(k),Nr �→ 0). Assume that X is proper over k and dim X < p.
Suppose that X has a log smooth lifting over (Spec(W2(k)),Nr �→ 0). Then for any ample
line bundle A on X, we have

Hi(X,Ω j
X/k ⊗ A) = 0

for dim X < i + j, and

Hi(X,Ω j
X/k ⊗ A−1) = 0

for i + j < dim X.

Proof. Consider the Frobenius square of log varieties

X
FX

�����������������

F
��

�

���
��

f

���
��

��
��

��
��

��
��

X′
g ��

f ′

��

X

f
��

k
Fk �� k.

First Part. Since A is ample, by Serre’s vanishing there is an integer m � 0 such that

Hi(X,Ω j
X/k ⊗ Apm+1

) = 0, i > 0.
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By the spectral sequence of hypercohomology

Epq
1 := Hq(X,Ωp

X/k ⊗ Apm+1
)⇒ Hp+q(X,Ω•X/k ⊗ Apm+1

),

we obtain

H
i(X,Ω•X/k ⊗ Apm+1

) = 0, i > dim X.

Due to Theorem 3.4, we obtain

F∗(Ω•X/k ⊗ Apm+1
) 


⊕
0≤i<dim X

Ωi
X′/k ⊗ g∗Apm

[−i].

Hence we deduce that

Hi(X′,Ω j
X′/k ⊗ g∗Apm

) = 0, dim X < i + j.

Since the underlying morphism of g is an isomorphism,

Hi(X,Ω j
X/k ⊗ Apm

) = 0, dim X < i + j.

Continuing this induction, we obtain

Hi(X,Ω j
X/k ⊗ A) = 0, dim X < i + j.

Second Part. The proof of the second part is almost the same. Since X is Gorenstein, by
Serre-Grothendieck duality (cf. [11]), we have

Hi(X,Ω j
X/k ⊗ A−pm

) = 0, m � 0, i + j < dim X.

This can be proved as follows:
Since X is Gorenstein, by Serre-Grothendieck duality, we have

Hi(X,Ω j
X/k ⊗ A−pm

)∨ = Hdim X−i(X, ωX/k ⊗ (Ω j
X/k)∨ ⊗ Apm

) = 0, m � 0

for 0 < i < dim X. Hence

H
i(X,Ω•X/k ⊗ A−pm

) = 0, 0 < i < dim X, m � 0.

Due to Theorem 3.4, we deduce that

F∗(Ω•X/k ⊗ A−pm
) 


⊕
0≤i<dim X

Ωi
X′/k ⊗ g∗A−pm−1

[−i].

We have

Hi(X,Ω j
X/k ⊗ A−pm−1

) = 0, i + j < dim X.

By induction we obtain that

Hi(X,Ω j
X/k ⊗ A−1) = 0, i + j < dim X.

�
In this case,

∧dim X ΩX/k is isomorphic to the dualizing sheaf ωX/k. Therefore the two
vanishing results are related by Serre-Grothendieck duality. We present here the separated
proofs because our argument holds for more general log smooth varieties (e.g. allowing hor-
izontal divisors), in which case the dualizing sheaf may be different from the log canonical
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sheaf.
By the standard technique of reduction mod p , we have the following corollary.

Corollary 3.6. Let K be a field of characteristic 0 and X be a semistable log smooth
variety over K = (Spec(K),Nr �→ 0). Then for any ample line bundle A on X, we have

Hi(X,Ω j
X/K ⊗ A) = 0, dim X < i + j

and

Hi(X,Ω j
X/K ⊗ A−1) = 0, i + j < dim X.

Proof. Let R be a subring of K such that R is finitely generated over Z and X is defined
over Spec(R). Namely there is a log smooth morphism

X → (Spec(R),Nr �→ 0)

such that X 
 X ×(Spec(R),Nr �→0) K and the closed fibers of X are semistable log smooth.
By shrinking Spec(R) we may assume that Spec(R) is smooth over Spec(Z). Hence for each
geometric closed point Spec(k(p)) → Spec(R) where k(p) is a perfect field of characteristic
p > dim X, there is a dotted arrow fulfilling the diagram

Spec(k(p)) ��

��

Spec(R)

��
Spec(W2(k(p))) ��

		������
Spec(Z) .

As a consequence, the closed fiber Xk(p) has a log smooth lifting to (Spec(W2(k(p))),Nr →
0). By Theorem 3.5,

Hi(X,Ω j
Xk(p)
⊗ A) = 0

for dim X < i + j, and

Hi(X,Ω j
Xk(p)
⊗ A−1) = 0

for i + j < dim X. Now the corollary follows from the semi-continuity theorem for coho-
mologies. �

Proposition 3.7. Let k be a field and X be a semistable log Fano variety over k =
(k,Nr �→ 0).

(1) if char(k) = 0, then H2(X, (ΩX/k)∨) = 0 and H2(X,OX) = 0.
(2) Assume that k is perfect and char(k) = p > 0. If dim X < p and X admits a log

smooth lifting over (W2(k),Nr �→ 0), then H2(X, (ΩX/k)∨) = 0 and H2(X,OX) = 0.

Proof. By Theorem 3.5 and Corollary 3.6, we see that

H2(X, (ΩX/k)∨) = Hn−2(X,ΩX/k ⊗ ωX/k) = 0.

By Lemma 3.3, we obtain that
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H2(X,OX) = H2(X,
dim X∧
ΩX/k ⊗ ω−1

X/k) = 0.

�

4. Smoothing of Semistable Log Fano Varieties

4. Smoothing of Semistable Log Fano Varieties
The vanishing theorems in the last section ensure the lifting of a semistable log Fano

variety to a complete DVR. To extend this family to a variety base, we need to study the
limit preserving property of semistable log smooth morphisms (Proposition 4.2). First we
would like to generalize the notion of semistable log smooth morphisms.

Definition 4.1. Let Y be a log scheme which has a global chart Nr. A morphism f : X →
Y is a semistable log smooth morphism if étale locally there exists a chart Nn → MX on X
and a chart of f ,

N
r =

r⊕
i=1

Nei → Nn =

n⊕
i=1

Ne′i

ei �→ eli−1 + · · · + eli

where 0 = l0 < l1 < · · · < lr = n, such that the induced morphism

X → Y ×SpecZ[Nr] SpecZ[Nn]

is strict and log smooth.

This definition generalizes Definition 2.3. If (Y,DY) is a smooth variety with the log
structure induced by a simple normal crossing divisor DY , then the underlying morphism of
a semistable log smooth morphism f : X → Y is semistable in the sense of Definition 2.1.

Proposition 4.2. Given a k[Nr]-algebra A, denote by Alog the log algebra A whose log
structure is given by the composition of Nr → k[Nr] and the structure homomorphism
k[Nr]→ A. Then the pseudo-functor from the category of k[Nr]-algebras to the category of
groupoids

F (k[Nr]→ A) = the groupoid of log scheme X which is semistable log smooth over Alog

is limit preserving. That is to say, for any directed system {Ai}i∈I of k[Nr]-algebras Ai, the
canonical functor

σ : F (lim−−→
i∈I

Ai)→ lim−−→
i∈I

F (Ai)

is an equivalence.

Proof. Denote A′ = lim−−→i
Ai. The fully faithfulness of σ is formal. It suffices to prove that

σ is essentially surjective, i.e., for any X ∈ F (A′), there exists an index i0 and Xi0 ∈ F (Ai0 )
such that its base change on A′ is X.

Step 1: Since X is locally of finite presentation over Spec(A′), there exists an index i1
and a scheme Xi1 locally of finite presentation over Spec(Ai1 ) such that its base change on
Spec(A′) is X.
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Step 2: Consider the pseudo-functor from the category of Ai1 -schemes to groupoids:

LogAi1
(X) = the groupoid of fine log structures on X over Alog

i1
.

It is proved in [24, Theorem 1.1] that this pseudo-functor is represented by an algebraic stack
locally of finite presentation over Ai1 . Therefore LogAi1

is limit preserving. Applying LogAi1

on the directed inverse system {Xi1 ×Spec(Ai1 ) Spec(Ai)}i≥i1 , we have a categorical equivalence

LogAi1
(X) 
 lim−−→

i≥i1

LogAi1
(Xi1 ×Spec(Ai1 ) Spec(Ai)).

Therefore there exists an index i2 ≥ i1 and a fine log structure over

Xi2 = Xi1 ×SpecAlog
i1

SpecAlog
i2

such that the base change of the log scheme Xi2 over A′ is X. So far, Xi2 is not necessarily
semistable log smooth over Alog

i2
.

Step 3: We show in this step that there exists an index i0 ≥ i2 such that

Xi0 = Xi2 ×SpecAlog
i2

SpecAlog
i0

is semistable log smooth over Alog
i0

. Fixing a point x ∈ X, there exists an étale local chart
N

n →MX at x, and a chart of f ,

N
r =

r⊕
i=1

Nei → Nn =

n⊕
i=1

Ne′i

ei �→ eli−1+1 + · · · + eli

where 0 = l0 ≤ l1 < · · · < lr = n, such that the induced morphism

X → SpecA′ log ×SpecZ[Nr] SpecZ[Nn]

is smooth in the usual sense. There exists an index i3 ≥ i2 such that the diagram

X ��

��

SpecZ[Nn]

��
SpecA′ log �� SpecZ[Nr]

factors through

Xi3
��

��

SpecZ[Nn]

��
SpecAlog

i3
�� SpecZ[Nr]

and the induced morphism

Xi3 → SpecAlog
i3
×SpecZ[Nr] SpecZ[Nn]

is smooth in the usual sense. Hence locally at the preimages of x ∈ X, Xi3 is semistable
log smooth over Alog

i3
. Since X is quasi-compact, there exists an index i0 ≥ i2 such that
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Xi0 = Xi2 ×Alog
i2

Alog
i0

is semistable log smooth over Alog
i0

. �

Theorem 4.3. Let k be a field and X be a projective log variety which is semistable log
smooth over k = (k,Nr �→ 0). Assume that H2(X, (ΩX/k)∨) = 0 and H2(X,OX) = 0. Then
there exists a log variety X which is semistable log smooth over (B,DB) such that

(1) B is an r-dimensional smooth variety over k. 0 ∈ B is a k-point. DB is a simple
normal crossing divisor whose number of branches at 0 is r;

(2) X0 
 X as log varieties.

Proof. By Theorem 2.4, X has a log smooth lifting X̂ over the formal log scheme

B̂ = (Spfk[[x1, . . . , xr]],Nr = ⊕r
i=1Nei, ei �→ xi).

In other words, we have a sequence of log smooth morphisms

X(m) → B(m)

where

B(m) =
(
Spec(k[x1, . . . , xr]/(x1, . . . , xr)m),Nr = ⊕r

i=1Nei, ei �→ xi

)
,

such that X(1) 
 X and for every m1 < m2, we have

X(m1) 
 X(m2) ×B(m2) B(m1).

Since H2(X,OX) = 0, any ample line bundle on X has a lifting over B̂. Denote

B1 = (Spec(k[[x1, . . . , xr]]),Nr = ⊕r
i=1Nei, ei �→ xi).

By Grothendieck’s existence theorem, there exists a variety X1 over Spec(k[[x1, . . . , xr]]),
whose formal completion is the underlying formal scheme of X̂ . To make X1 semistable
log smooth over B1, it remains to put a suitable log structure on X1. This is done as follows.

By Remark 2.5, étale locally there is a commutative diagram

X ��

f
��

X1

f ′

��
Spec(k[Nn]) ×Spec(k[Nr]) k ��

��

Spec(k[Nn]) ×Spec(k[Nr]) Spec(k[[x1, . . . , xr]])

��
k �� Spec(k[[x1, . . . , xr]]),

(4.1)

where f is strict and étale, f ′ is étale and the square on the top square is a fiber product of
schemes. The morphism Spec(Z[Nr]) → Spec(Z[Nn]) is induced by the homomorphism of
monoids

N
r =

r⊕
i=1

Nei → Nn =

n⊕
i=1

Ne′i

ei �→ eli−1+1 + · · · + eli .

Here 0 = l0 < l1 < · · · < lr ≤ n. This shows that X1 → B1 is semistable. When
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X1 is endowed with the pullback log structure through f ′, (4.1) becomes a diagram of log
schemes. It can be shown that such log structure on X1 (étale locally) is determined by
unique isomorphisms (c.f. the arguments of Theorem 4.2.8 in [23]). Therefore, these local
log structures glue to a global one on X1 so that X1 is semistable log smooth over B1.

To extend the family X1 over a variety base, let us consider the pseudo-functor from the
k[Nr]h-algebras to groupoids:

G (k[Nr]h → A) = {groupoids of semistable log smooth varieties over Alog}.
Here k[Nr]h is the henselization of k[Nr] at the maximal ideal generated byNr. Alog is the log
algebra A whose log structure is given by the composition of Nr → k[Nr]h and the structure
homomorphism k[Nr]h → A. By Proposition 4.2, this functor is limit preserving. Since
X1 ∈ G (k[[Nr]]), by applying Artin’s approximation ([2, Theorem 1.12]) to the functor G ,
there exists X h

1 ∈ G (k[Nr]h) whose base change on k is X. Since k[Nr]h is the direct limit
of algebras that are étale over k[Nr]. By Proposition 4.2, there is an k[Nr]-algebra R which
is étale over k[Nr], and a semistable log smooth morphism X → B := SpecRlog such that
X h

1 ∼ X ×k[Nr]log (k[Nr]h)log as log schemes. By the constructions, X → B satisfies the
claims in the theorem. �

Corollary 4.4. Let k be a field of characteristic 0 and X be a Fano semistable variety.
Let r ≥ 1 be an integer. Then the followings are equivalent:

(1) there exists a log variety X which is semistable log smooth over (B,DB) such that
(a) B is an r-dimensional smooth variety over k, 0 ∈ B is a k-point, and DB is a

simple normal crossing divisor whose number of branches at 0 is r;
(b) X0 
 X as log varieties.

(2) X has a log structure of semistable type over (k,Nr �→ 0).

Proof. A semistable morphism f : (X ,DX ) → (B,DB) is log smooth if we endow X

and B with the log structures induced by the divisors DX and DB. If X is isomorphic to
a fiber Xb of a semistable morphism, then the log structure restricted on Xb gives X a log
structure of semistable type over (k,Nr �→ 0). In this case r is the number of formal branches
of DB passing b.

The converse is the combination of Proposition 3.7 and Theorem 4.3. �

By the same arguments, we get the following corollary.

Corollary 4.5. Let k be a perfect field of characteristic p > 0 and X be a log variety X
semistable log smooth over (Spec(k),Nr �→ 0) for some r ≥ 0. If X is Fano, dim X < p and
X admits a log smooth lifting over (SpecW2(k),Nr �→ 0), then there exists a smooth variety
with a normal crossing divisor (X ,DX ) which is semistable over (B,DB) such that

(1) B is an r-dimensional smooth variety over k, 0 ∈ B is a k-point, and DB is a simple
normal crossing divisor whose number of branches at 0 is r;

(2) X0 
 X as log varieties.

In particular, if X is semistable log smooth over (k,N �→ 0) (i.e., d-semistable in [5]), then
X appears in a semistable reduction over W(k).
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5. A Geometric Criterion for the Existence of log structures of semistable type

5. A Geometric Criterion for the Existence of log structures of semistable type
Given a semistable variety X, in this section we give a geometric criterion for the existence

of the log structure of semistable type over (k,Nr �→ 0). Fix an algebraically closed field k
and a semistable variety X of pure dimension n. Denote T i

X = E xti(ΩX ,OX).
Let us consider the semistable morphism f : (X,DX) → (Y,DY) and a point y ∈ DY .

Assume for simplicity that DY is simple normal crossing. Let D1, . . . ,Dr be the components
of DY that pass through y. Then f −1(y) =

⋂r
i=1 f −1(Di) is the complete intersection of

normal crossing divisors f −1(Di) in X. This suggests the following:

Definition 5.1. A semistable variety X is r-embeddable if there is a smooth variety M and
normal crossing divisors D1, . . . ,Dr of M such that Di and Dj have no common components
for each i � j, D =

⋃r
i=1 Di is a normal crossing divisor and X =

⋂r
i=1 Di.

A semistable variety is always étale locally r-embeddable for some r ≥ 0.

Lemma 5.2. Let X be a semistable variety and x ∈ X be a point. Then there is an integer
r ≥ 0, an étale morphism φ : U → X and a point p ∈ U such that

(1) φ(p) = x,
(2) U ⊂ V where V is an affine smooth variety,
(3) V has the coordinates

(x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk),

i.e., regular functions xi j, yi ∈ OV(V) so that the induced morphism

ψ : V → Ak1+···+kr+k

is étale. These coordinates satisfy the following conditions.
• ψ−1(0) = {p}.
• Di j := {xi j = 0} is a connected smooth divisor in V.
• U =

⋂r
i=1
⋃ki

j=1 Di j.

Proof. By the definition of semistable varieties and Artin’s approximation ([2, Corollary
2.6]), there is a diagram of pointed varieties

(U, p)
φ



���
��

��
�� ϕ

���
��������

(X, x) (U′, 0)

where φ, ϕ are étale morphisms and U′ is an open subvariety of

V ′ = Spec(k[x′11, . . . , x′1k1
, . . . , x′r1, . . . , x′rkr

, y′1, . . . , y
′
k]/(x′11 · · · x′1k1

, . . . , x′r1 · · · x′rkr
)).(5.1)

By [10, Exposé 1, Proposition 8.1], after a shrinking of U there is an affine variety V ren-
dering the diagram

U
i ��

φ

��

V

φ′

��
U′ �� V ′
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commutative. Here φ′ is étale and i is a closed immersion. Shrink V if necessary, then V ,
xi j := φ′∗x′i j and yi := φ′∗y′i satisfy the conditions in the Lemma. �

Definition 5.3. The data

(φ : (U, p)→ (X, x),U ⊂ V,
(
x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk)

)
in Lemma 5.2 is called a standard chart of X at x.

Let X be a semistable variety and

(φ : (U, p)→ (X, x),U ⊂ V,
(
x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk)

)
be a standard chart. Denote Di = {xi1 · · · xiki = 0} and πi : D̃i → Di be the normalization.
Denote

NU,i := πi∗ND̃i
|U(5.2)

where ND̃i
is the constant étale sheaf of monoids N.

Definition 5.4. A semistable variety X is virtually r-embeddable if there are étale
sheaves of monoids N1, . . . ,Nr on X such that for every point x ∈ X there is a standard
chart

(φ : U → X,U ⊂ V, (x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk))

satisfying

φ−1Ni 
 NU,i, (c.f. (5.2)) i = 1, . . . , r.

Such standard chart is called admissible. Denote the subset

ZNi = {x ∈ X|rank(N gp
i )x > 1}.(5.3)

An r-embeddable semistable variety is always virtually r-embeddable. Let X =
⋂r

i=1 Di ⊂
M be as the notations in Definition 5.1. Let πi : D̃i → Di be the normalization, then
Ni := πi∗ND̃i

|X , i = 1, . . . , r make X virtually r-embeddable.
By the local description of Ni, we see that the associated sheaf of groups N gp

i is a
constructible sheaf of abelian groups on X. As a consequence, ZNi is a closed subvariety of
X.

Proposition 5.5. Let (X,N1, . . . ,Nr) be a virtually r-embeddable semistable variety.
Then

Xsing =

r⋃
i=1

ZNi .

For each 1 ≤ i ≤ r the subsheaf

LNi := {ξ ∈ T 1
X | supp(ξ) ⊂ ZNi}

of T 1
X is invertible on ZNi and the natural morphism
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r⊕
i=1

τi∗LNi → T 1
X

is an isomorphism. Here τi : ZNi → X is the closed immersion.

Proof. Since all statements are étale locally, it suffices to verify the proposition on an
admissible standard chart

(φ : U → X,U ⊂ V, (x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk))

satisfying

φ−1Ni 
 NU,i, (c.f. (5.2)) i = 1, . . . , r.

Denote xi = xi1 · · · xiki , then φ−1ZNi is defined by

xi/xi1 = 0, xi/xi2 = 0, . . . , xi/xiki = 0

in U. From these local equations we see that

Xsing =

r⋃
i=1

ZNi .(5.4)

Next, let us compute T 1
X on the admissible standard chart. Recall thatΩU is quasi-isomorphic

to

I/I2 → ΩV |U
where I = (x1, . . . , xr) is the defining ideal of U in V . So

T 1
U 
 coker(τ : H om(ΩV |U ,OU) 
 Derk(OV ,OV) ⊗ OU →H om(I/I2,OU)).

Note that I/I2 is a free OU-module, of which the quotient classes [x1], · · · , [xr] form a basis.
τ sends ∂

∂xi j
to the map

I/I2 → OU , [xk] �→
⎧⎪⎪⎨⎪⎪⎩

xi/xi j, k = i

0, k � i.

and sends ∂
∂yi

to the zero map 0 : I/I2 → OX . This shows that

T 1
U 


r⊕
i=1

H om(Ii/IIi,OU) ⊗ OU/(xi/xi1, . . . , xi/xiki).(5.5)

Here Ii is the sheaf of ideals in OV generated by xi = xi1 · · · xiki . It is easy to see that Ii|φ−1ZNi

is an invertible sheaf on φ−1ZNi . As a consequence,

LNi |U 
H om(Ii/IIi,OU) ⊗ OU/(xi/xi1, . . . , xi/xiki)(5.6)

is invertible on φ−1ZNi ⊂ U. Again by (5.5), the canonical morphism
r⊕

i=1

τi∗LNi → T 1
X

is an isomorphism on U. �
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Lemma 5.6. Let (X,N1, . . . ,Nr) be a virtually r-embeddable semistable variety. Then
for each i, there is a distinguished ’diagonal’ element Δi ∈ H0(X,Ni) such that for every
x ∈ X, (Δi)x ∈ (Ni)x 
 Nki(x) is the diagonal element (1, 1, . . . , 1).

Proof. Choose an admissible standard chart

(φ : U → X,U ⊂ V, (x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk)).

Denote Di = {xi1 · · · xiki = 0}. Let D̃i → Di be the normalization. Denote

1i = (1, . . . , 1) ∈ H0(D̃i,ND̃i
)

be the diagonal element. Define Δi ∈ H0(U,Ni) to be the image of 1i through the canonical
maps

H0(D̃i,ND̃i
) 
 H0(Di,NDi)→ H0(U,Ni).

Since the diagonal element (1, . . . , 1) ∈ Nr is fixed under every automorphism of Nr, such
Δis are compatible over different admissible standard charts and glue to the distinguished
element required in the Lemma. �

Definition 5.7. Let (X,N1, . . . ,Nr) be a virtually r-embeddable semistable variety. An
admissible family of log structures of r-embedding type on (X,N1, . . . ,Nr) is a family of
log structures (M1, . . . ,Mr) such that for each 0 < i ≤ r, Mi 
 Ni.

Let M be a log structure on X and a ∈ H0(X,M ). Denote by τ : M →M the canonical
map. Then

τ−1(a) : U �→
{
m ∈M (U)

∣∣∣τU(m) = a|U
}

is an O∗X-torsor. We denote by La its associated invertible sheaf.

Theorem 5.8. Let (X,N1, . . . ,Nr) be a virtually r-embeddable semistable variety, then
it admits an admissible family of log structures (M1, . . . ,Mr) of r-embedding type if and
only if there are L1, . . . ,Lr ∈ Pic(X) such that Li|ZNi


 LNi for each i. Moreover, for each
i = 1, . . . , r, the assignment

Mi �→ LΔi (c.f. Lemma 5.6)

gives a one-to-one correspondence between

• the isomorphic classes of log structures Mi on X such that Mi 
 Ni, and
• the isomorphic classes of pairs (Li, εi) consisting of an invertible sheaf Li ∈ Pic(X)

and an isomorphism εi : Li|ZNi

 LNi .

Proof. Let Ki be the sheaf of groups defined by

0→ Ki → O∗X → O∗ZNi
→ 0.

This induces an exact sequence of cohomologies

H1(X,O∗X)→ H1(ZNi ,O
∗
ZNi

)
δ→ H2(X,Ki).(5.7)

Since LNi is invertible (Proposition 5.5), it defines a cohomological class [LNi] ∈
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H1(ZNi ,O
∗
ZNi

). The first part of the theorem is a consequence of the following two claims:

Claim 1: The pseudo-functor from the small étale site Xét

obNi : U ∈ Xét �→ the groupoid of log structures MU on U such that MU 
 Ni|U
is a Ki-gerbe. Thus the obstruction to the existence of a log structure Mi on X such
that Mi 
 Ni is [obNi] ∈ H2(X,Ki).

Claim 2: δ([LNi]) = [obNi].

In fact, by the two claims, there exists a log structure Mi on X such that Mi 
 Ni if and only
if [obNi] = δ([LNi]) = 0. Since (5.7) is exact, this is equivalent to that LNi can be extended
to an invertible sheaf on X. The proof of the last part of the theorem is contained in the proof
of claim 2.

Proof of Claim 1:
By [24, Corollary A.2], obNi is a stack over Xét. First we show that obNi(U) � ∅ when

(φ : U → X,U ⊂ V, (x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk)).

is an admissible standard chart. Then

U =
r⋂

i=1

Di ⊂ V, Di = {xi1 · · · xiki = 0}.

Define

MDi : V ′ ∈ Vét �→ { f ∈ OV ′ | f is invertible outside Di ×V V ′},
then MDi |U ∈ obNi(U).

It remains to show that the log structures in obNi are locally isomorphic and the sheaf of
automorphism groups of obNi is isomorphic to Ki.

Let U′ ∈ Xét be an étale neighborhood of x ∈ X and M ∈ obNi(U
′), by [24, Proposition

2.1], there is an admissible standard chart U → U′ → X such that
• M |U has a chart Nki 
 (Ni)x →M |U , and
• the composition

(Ni)x →Mx →Mx 
 (Ni)x

is the identity.
Denote by

(φ : U → X,U ⊂ V, (x11, . . . , x1k1 , . . . , xr1, . . . , xrkr , y1, . . . , yk))

the standard chart mentioned above. We see that the log structure Mi|U → OU is isomorphic
to

N
ki ⊕ O∗U → OU

(e j, u) �→ uui jxi j, j = 1, . . . , ki

for some ui j ∈ O∗U after a suitable shrinking. In the formula, e j is (0, . . . , 1, . . . , 0) ∈ Nki

where 1 lies on the j-th component.
As a consequence, the log structure Mi|U is determined by ui1, . . . , uiki ∈ O∗U . Every two
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such log structures are isomorphic as shown in the following diagram

N
ki ⊕ O∗U

ϕ ��

��										
N

ki ⊕ O∗U

��
OU .

Here ϕ(e j, u) = (e j, vi ju) for some vi j ∈ O∗U which satisfies

vi jxi j = xi j, j = 1, . . . , ki.

Therefore

vi j = 1 + a jxi/xi j, xi = xi1 · · · xiki

for some a j ∈ OU after a suitable shrinking of U. Since xi = 0 on U, (vi1, . . . , viki) is
determined by their product

vi1 · · · viki = 1 +
ki∑

j=1

a jxi/xi j.

This shows that there is a natural isomorphism

A utU(M ) 
 Ker(O∗U → O∗ZNi×XU).

Omitting the verification of compatibility we show that

A utU′(M ) 
 Ki|U′ .
This finishes the proof of claim 1.

Proof of Claim 2:
By [7, IV. 3.1.1], δ(LNi) ∈ H2(X,Ki) is represented by the gerbe

Ex(LNi) : U ∈ Xét �→ {(L , ε)|L ∈ Pic(U), ε : L |ZNi×XU 
 L∨Ni
|ZNi×XU}.

Since any fully-faithful functor between gerbes is an equivalence, it suffices to construct a
functor

F : obNi → Ex(LNi)

such that

IsoU(a, b) 
 IsoU(Fa, Fb)

for each admissible standard chart U of X and for each a, b ∈ obNi(U).
Let U′ ∈ Xét and MU′ ∈ obNi(U

′), then the preimage τ−1
U′Δi of the diagonal element

Δi ∈ Ni (Lemma 5.6) under the canonical morphism

τU′ : MU′ →MU′ 
 Ni|U′
is an O∗U′-torsor. Hence τ−1

U′Δi ⊗O∗U′ OU′ is an invertible sheaf on U′ which is generated by xi

locally on each standard chart U. Therefore we have an isomorphism

εMU′ : τ−1
U′Δi ⊗O∗U′ OU′ |ZNi×XU′ 
 L∨Ni

.
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This shows the equivalence of two gerbes and implies the last statement of the theorem.
Define

F : obNi → Ex(LNi),

MU′ �→ (τ−1
U′Δi ⊗O∗U′ OU′ , εMU′ ).

We leave it to the readers to verify that F keeps the isomorphism groups. This proves claim
2. �
Theorem 5.8 suggests the following generalized notion of d-semistability.

Definition 5.9. A semistable variety X is called d-semistable if the following conditions
hold.

(1) There is an integer r > 0 such that X is virtually r-embeddable. Denote N1, . . . ,Nr

be the sheaves of monoids in Definition 5.1.
(2) For each i = 1, . . . , r, LNi 
 OZNi

.

When r = 1, this is exactly the notion of d-semistability in [5].

Theorem 5.10. Let X be a semistable variety, then the followings are equivalent:

(1) X admits a log structure of semistable type over (Spec(k),Nr �→ 0).
(2) For each i = 1, . . . , r, there is a log structure Mi on X and a log morphism

πi : (X,Mi)→ (Spec(k),N �→ 0)

such that

(X,M1, . . . ,Mr)

is a virtually r-embeddable semistable variety and (M1, . . . ,Mr) is an admissible
family of log structures of r-embedding type. Moreover the canonical homomor-
phism

π∗i : N→Mi →Mi

maps 1 to the distinguished diagonal element Δi ∈Mi (Lemma 5.6).
(3) X is d-semistable (Definition 5.9).

Proof. (1)⇔(2): Assume that we have (M1, . . . ,Mr) as in (2). Denote by π∗i : N → Mi

the morphism induced by πi. The diagram

M =M1 ⊕O∗X M2 ⊕O∗X · · · ⊕O∗X Mr �� OX

N
r

⊕r
i=1 π

∗
i



0 �� k



gives a log structure of semistable type over (Spec(k),Nr �→ 0). Conversely, assume that

π : (X,M )→ (Spec(k),Nr �→ 0)

is semistable log smooth. Let Mi ⊂M be the subsheaf of monoids defined by

Mi(U) = {m ∈M (U)|∃m′ ∈M (U),m + m′ ∈ π∗(Nei)}.
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On a chart as in Definition 2.3, Mi is generated by eli−1+1, . . . , eli . This shows that
(M1, . . . ,Mr) satisfies the statements in (2).

(2)⇔(3): By Theorem 5.8, (2) and (3) imply that X has a family of log structures
(M1, . . . ,Mr) of r-embedding type. Therefore is suffices to show that for each i = 1, . . . , r,
the diagonal morphism (Lemma 5.6)

N→Mi, 1 �→ Δi

lifts to N→Mi if and only if LMi

 OZMi

.
The short exact sequence

0→ O∗X →M gp
i

τ→Mi
gp → 0

induces the exact sequence

Hom(Z,M gp
i )→ Hom(Z,Mi

gp
)

δ→ Ext1(Z,O∗X) 
 H1(X,O∗X).

Let Δ ∈ Hom(Z,Mi
gp

) be the diagonal morphism. Then it lifts to M gp
i (which is equivalent

to that N → Mi lifts to N → Mi) if and only if δ(Δ) = 0. On the other hand, δ(Δ) is
represented by the O∗X-torsor τ−1(Δi). By Theorem 5.8, the invertible sheaf LΔi , associated
to τ−1(Δi), satisfies

LΔi |ZNi

 LNi .

If N→Mi lifts to N→Mi, we have a log morphism

πi : (X,Mi)→ (Spec(k),N �→ 0).

τ−1(Δi) is isomorphic to the pullback of the k∗-torsor τ−1(1) ⊂ k∗ ⊕N lifting 1 ∈ N. Hence it
is a trivial torsor, so LNi 
 OZNi

.
On the other hand, if LNi 
 OZNi

, the pair (OX , ε) where ε : OX |ZNi

 OZNi

corresponds to
a log structure Mi such that Mi 
 Ni. Since the obstruction of N→Mi lifting to N→Mi

is δ(Δ) = [LΔi] = [OX] = 0, we obtain the theorem. �
By the proof of theorem 5.10, we see that under the correspondence in Theorem 5.8, the

isomorphic classes of Mi having a diagonal element corresponds to the set Aut(OZNi
) 


H0(X,O∗ZNi
). Thus we obtain the following uniqueness of the log structure of semistable

type.

Corollary 5.11. Let (X,N1, . . . ,Nr) be virtually r-embeddable such that LNi 
 OZNi
for

each 1 ≤ i ≤ r. If ZNi s are connected, there is a unique (up to isomorphisms) family of log
structures (M1, . . . ,Mr) satisfying (2) in Theorem 5.10.

As an application of this section, we construct some examples of Fano semistable varieties
that do not have a semistable smoothing.

Example 5.12. For each 1 ≤ i ≤ r, let Xi ⊂ Pni be a simple normal crossing divisor of
degree di ≤ ni. By the adjunction formula,

ωXi 
 ωPni |Xi ⊗ OXi(di) 
 OXi(di − n − 1)

is anti-ample. Thus X =
∏r

i=1 Xi is a semistable Fano variety. We claim that if there is an
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index i such that ni ≥ 3, then X does not admit a log structure of semistable type.
Denote pi : X → Xi be the projection. Then

T 1
X 


r⊕
i=1

p∗i T 1
Xi
.

Now we compute T 1
Xi

. Since we have a short exact sequence

0→ O(−di)|Xi → ΩPni |Xi → ΩXi → 0,

consequently,

T 1
Xi

 O(di)|(Xi)sing .

Hence we obtain

T 1
X 


r⊕
i=1

p∗i O(di)|(Xi)sing .

If ni0 ≥ 3 for some i0, then dim(Xi0 )sing > 0. By Proposition 5.5 and Theorem 5.10, X does
not admit a log structure of semistable type. By Theorem 1.1, X does not admit semistable
smoothing for every r.

Appendix A Proof of Theorem 3

Appendix A. Proof of Theorem 3
In this appendix we give the detailed proof of Kato’s Theorem 3.4 in the (more general)

context of Cartier type morphisms ([16, Definition 4.8]).

Theorem A.1 (K. Kato [16]). Let k be a perfect field of characteristic p > 0. Let f : X →
k = (Spec(k), P �→ 0) be a log smooth and integral morphism between fine log schemes. Let
X′ be the Frobenius base change of X over k as a log scheme. Denote F : X → X′ be the
relative log Frobenius morphism. If f is of Cartier type and X′ has a log smooth lifting over
W2 = (W2(k), P �→ 0), then τ<pF∗ΩX is decomposable.

Remark: If f : X → k is semistable log smooth (Definition 2.3), then f is of Cartier type.
Before proving the theorem we recall some facts about log smooth lifting. Let P be a

monoid and let π : X → k = (Spec(k), P �→ 0) be a log smooth morphism, then a log
smooth lifting of π to W2 = (SpecW2(k), P �→ 0) is a log smooth morphism π′ : X′ → W2

such that π′|k 
 π. Étale locally a log smooth lifting can be described as follows (c.f. [16]
Proposition 3.14):

Choosing a chart Q of X as in Theorem 2.2, we get the following diagram

X ��

f
��

X′

f ′
��

Spec(k[Q]) ×Spec(k[P]) Speck ��

��

Spec(W2[Q]) ×Spec(W2[P]) SpecW2

��
Speck �� SpecW2 ,

where f is strict and étale. We can complete the diagram by the dotted arrows so that f ′
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is strict, étale and the square on the top is a fiber product of schemes (SGA I [10], Exposé
1, Proposition 8.1). X′ is a log smooth lifting of X to W2. When X is affine, such a lifting
X′ is unique up to isomorphisms. As a consequence, if X is integral over k, then X′ is
integral over W2. Hence X′ is flat over W2(k) ([16, Corollary 4.5]). Therefore there exists a
homomorphism ’multiplication by p’ :

×p : OX → OX′ ,

which can induce an isomorphism

OX → pOX′ .

Moreover, every element x ∈ OX′ can be written uniquely as x = a+ pb where a, b ∈ OX . In
particular, we can define a section

σ : OX → OX′

of the canonical projection OX′ → OX by letting σ(a) = a + p × 0.
We can get the following lemma by the above construction.

Lemma A.2. Let X be an integral log smooth variety over k and X′ be a log smooth
lifting of X over W2. Then for each element x ∈ MW2 , its image in OX′ can be written as
σ(a)(1 + pσ(u)) where a, u ∈ OX.

Proof of Theorem A.1. The proof is divided into 5 steps:
Step 1 (Cartier isomorphism):

Lemma A.3. Notations as in Theorem A.1, there is a canonical isomorphism of
OX′-modules

C−1 : Ωq
X′/k → Hq(Ω•X/k),

for any q ∈ Z characterized by

C−1(adlog(b′1) ∧ · · · ∧ dlog(b′q)) = F∗(a)dlog(b1) ∧ · · · ∧ dlog(bq),

where a ∈ OX′ , b1, · · · , bq ∈MX and for each i = 1, . . . , q, b′i is the pullback of bi.
Proof. See Theorem 4.12 in [16]. �

Step 2 (Local Decomposition): Assume that F has a global lifting

G : X(1) → X′(1),

where X(1) (resp. X′(1)) is a log smooth lifting of X (resp. X′) over W2. Then we
have the following facts.
(1) Because X(1) is log smooth and integral over W2, the underlying scheme is

flat over W2(k) ([16, Corollary 4.5]). Thus the multiplication by p induces an
isomorphism

p : ΩX/k →̃ pΩX(1)/W2 .

(2) The image of the canonical homomorphism

G∗ : ΩX′(1)/W2 → G∗ΩX(1)/W2
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is contained in pG∗ΩX(1)/W2 . It follows from the diagram

ΩX′(1)/W2

modp
��

G∗ �� G∗ΩX(1)/W2

modp
��

ΩX′/k
F∗=0 �� F∗ΩX/k.

(3) Since p−1G∗(pΩX′(1)/W2 ) = 0, there is a unique homomorphism G∗
p rendering the

square commutative

ΩX′(1)/W2

G∗ ��

��

pG∗ΩX(1)/W2

ΩX′/k

G∗
p �� F∗ΩX/k.

p



Noticing that ddlog(x) = 0 for any x ∈MX(1) , we have

d(p−1G∗(dlog(x))) = p−1G∗ddlog(x) = 0.

Hence the image of G∗
p is contained in the kernel of the differential of the log de

Rham complex.
For each x ∈MX′(1) , denote a′ be the image of x in OX′(1) . Then, by Lemma A.2,
G∗(a′) = F(a′)(1+ pb) = ap(1+ pb) where a′ is the image of a′ in OX′ and a is
the preimage of a′ in OX . Applying p−1G∗ to

a′dlog(x) = da′,

we get

app−1G∗dlog(x) = ap−1(da + adb).

Then by taking mod p, we can get

G∗

p
(dlog(x)) = dlog(a) + db,

which induces the Cartier isomorphism C−1 in degree one.
Define the homomorphism of complexes

φG :
⊕
Ωi

X′/k[−i]→ F∗Ω•X/k

as follows.
Let

φ0
G = F∗ : OX → F∗OX′ ; φ1

G =
G∗

p
: ΩX′/k → F∗ΩX/k.

For i > 1, φi
G is the composition of

∧i φ1
G and the product

∧i F∗ΩX/k → F∗Ωi
X/k.

Then φG is a quasi-isomorphism, which induces the Cartier isomorphism C−1.
Step 3 (Compatibility):

Lemma A.4. To a pair (G1 : X(1)
1 → X′(1),G2 : X(1)

2 → X′(1)) of the liftings of F,
we can associate canonically a homomorphism
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h(G1,G2) : ΩX′/k → F∗OX

such that
G∗2
p
− G∗1

p
= dh(G1,G2).

If G3 : X(1)
3 → X′(1) is the third lifting of F, one has

h(G1,G2) + h(G2,G3) = h(G1,G3).

Proof. We may assume initially that X(1)
1 and X(1)

2 are isomorphic over W2.
Choose an isomorphism u : X(1)

1 
 X(1)
2 . Then G2u and G1 lift F. Since the set of the

liftings of F is a torsor under the action of Hom(F∗ΩX′/k,OX) 
 Hom(ΩX′/k, F∗OX)
([16, Proposition 3.9]), G2u and G1 differ by a unique hu ∈ Hom(ΩX′/k, F∗OX) and
we have

(G2u)∗

p
− G∗1

p
= dhu.

If v : X(1)
1 
 X(1)

2 is another isomorphism, then u and v differ by a homomorphism
δ : ΩX/k → OX . Therefore G2u and G2v differ by the composition of δ and the
homomorphism F∗ΩX′/k → ΩX/k, which is zero. Therefore, G2u = G2v and hu do
not depend on the choice of u.

Now return to the general case. Since X(1)
1 and X(1)

2 are locally isomorphic, there
exists hu locally (which does not depend on the choice of u). We can glue them
together to obtain h(G1,G2) which satisfies the properties in the lemma. �

Step 4 (Global Decomposition): Fix the following data:
• a lifting X′(1) of X′ over W2,
• an open affine covering U = (Ui)i∈I of X,
• a lifting Gi : U(1)

i → X′(1) of F|Ui over W2 for each i ∈ I, where U(1)
i is a log

smooth lifting of Ui over W2.
According to the arguments above, we have for each i ∈ I a homomorphism of
complexes

φ1
Gi

: ΩX′/k|Ui[−1]→ F∗Ω•X/k|Ui ,

and for each pair (i, j) a homomorphism

hi j = h(Gi|Ui j ,G j|Ui j) : ΩX′/k|Ui j → F∗Ω•X/k|Ui j ,

where Ui j = Ui ∩ U j. These data are connected by

φ1
G j
− φ1

Gi
= dhi j (on Ui j),

hi j + h jk = hik (on Ui jk = Ui ∩ U j ∩ Uk).

Hence they define a homomorphism of complexes of OX′-modules

φ1
X′(1),(U ,(Gi))

: ΩX′/k → Č (U , F∗Ω•X/k),
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where Č (U , F∗Ω•X/k) is the total complex of the Čech bicomplex of the covering U

with values in F∗Ω•X/k.
Notice that there is a canonical quasi-isomorphism of complexes

ε : F∗Ω•X/k → Č (U , F∗Ω•X/k).

Then we have a homomorphism

φ1
X′(1) = ε

−1φ1
X(1),(U ,(Gi))

: ΩX′/k[−1]→ F∗Ω•X/k

in D(X′), which induces C−1. Therefore, τ≤1F∗ΩX/k is decomposable.
Step 5 (Using multiplication structure): φ1

X′(1) induces a morphism in D(X′)

(φ1
X′(1) )⊗

Li : (ΩX′/k)⊗i[−i]→ (F∗Ω•X/k)⊗
i
.

For i < p, by composing (φ1
X′(1) )⊗

Li with

Ωi
X′/k → (ΩX′/k)⊗i, ω1 ∧ · · · ∧ ωi �→ 1

i!

∑
σ∈S i

sgn(σ)ωσ(1) ∧ · · · ∧ ωσ(i)

and the canonical multiplication

(F∗Ω•X/k)⊗
i → F∗Ω•X/k,

we obtain a morphism in D(X′)

φi
X′(1) : Ωi

X′/k[−i]→ F∗Ω•X/k

that induces C−1 on the cohomological level for each i < p. This completes the
proof of the theorem.

�
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