2-STRATIFOLD SPINES OF CLOSED 3-MANIFOLDS

J.C. GÓMEZ-LARRAÑAGA, F. GONZÁLEZ-ACUÑA and Wolfgang HEIL

(Received August 6, 2018, revised November 21, 2018)

Abstract

2-stratifolds are a generalization of 2-manifolds in that there are disjoint simple closed branch curves. We obtain a list of all closed 3-manifolds that have a 2 -stratifold as a spine.

1. Introduction

2-stratifolds form a special class of 2 -dimensional stratified spaces. A (closed with empty 0 -stratum) 2 -stratifold is a compact connected 2 -dimensional cell complex X that contains a 1-dimensional subcomplex $X^{(1)}$, consisting of branch curves, such that $X-X^{(1)}$ is a (not necessarily connected) 2 -manifold. The exact definition is given in section $2 . X$ can be constructed from a disjoint union $X^{(1)}$ of circles and compact 2-manifolds W^{2} by attaching each component of ∂W^{2} to $X^{(1)}$ via a covering map $\psi: \partial W^{2} \rightarrow X^{(1)}$, with $\psi^{-1}(x)>2$ for $x \in$ $X^{(1)}$. A slightly more general class of 2-dimensional stratified spaces, called multibranched surfaces and which have been defined and studied in [13], is obtained by allowing boundary curves, i.e. considering a covering map $\psi: \partial W^{\prime} \rightarrow X^{(1)}$, where ∂W^{\prime} is a sub collection of the components of ∂W^{2}.

2-stratifolds arise as the nerve of certain decompositions of 3-manifolds into pieces where they determine whether the $\mathcal{\mathcal { G }}$-category of the 3 -manifold is 2 or 3 ([6]). They are related to foams, which include special spines of 3-dimensional manifolds and which have been studied by Khovanov [10] and Carter [4]. Simple 2-dimensional stratified spaces arise in Topological Data Analysis [2], [11].

Matsuzaki and Ozawa [13] show that 2-stratifolds can be embedded in \mathbb{R}^{4}. Furthermore they show that they can be embedded into some orientable closed 3-manifold if and only if their branch curves satisfy a certain regularity condition. However, the embeddings are not π_{1}-injective, i.e. the induced homomorphism of fundamental groups is not injective. In fact, there are many 2 -stratifolds whose fundamental group is not isomorphic to a 3manifold group; for example there are infinitely many 2 -stratifolds with (Baumslag-Solitar) non-Hopfian fundamental groups. These can not be embedded as π_{1}-injective subcomplexes into 3-manifolds since 3-manifold groups are residually finite.

Further comparing properties of 2 -stratifold groups with 3-manifold groups we note that a 2-stratifold group G is the fundamental group of a graph of groups where each edge group is cyclic and each vertex group is an F-group or a free product of cyclic groups. (This is described in detail in section 2). If G is torsion free then the vertex groups are surface groups. Since the latter (except for Z_{2}) are left-orderable it follows from Corollary 3.6 of [5] that G
is left-orderable. On the other hand, some torsion free 3-manifold groups are left orderable and some are not. For example it is shown in [3] that groups of compact P^{2}-irreducible 3-manifolds M with first Betti number > 0 are left-orderable, but not all Haken manifolds have left orderable groups. Thus the following question arises:

Question 1. Which 3-manifolds M have fundamental groups isomorphic to the fundamental group of a 2 -stratifold?

The fundamental group of a closed 2-manifold S is isomorphic to the fundamental group of a closed 3-manifold M if and only if S is the 2 -sphere or projective plane and M is S^{3} or P^{3}, respectively. Since S^{2} is not a spine of S^{3}, the only closed 3-manifold with a (closed) 2 -manifold spine is P^{3}. This motivates the next question:

Question 2. Which closed 3-manifolds M have spines that are 2 -stratifolds?
The main results of this paper are Theorem 1 which answers question 1 for closed 3manifolds and Theorem 2, which answers question 2 by showing that a closed 3 -manifold M has a 2 -stratifold spine if and only if M is a connected sum of lens spaces, S^{2}-bundles over S^{1}, and $P^{2} \times S^{1}$ s.

2. 2-stratifolds and their graphs.

In this section we review the definitions of a 2 -stratifold X and its associated graph G_{X} given in [7].

A (closed) 2-stratifold is a compact 2 -dimensional cell complex X that contains a 1dimensional subcomplex $X^{(1)}$, such that $X-X^{(1)}$ is a 2-manifold ($X^{(1)}$ and $X-X^{(1)}$ need not be connected). A component $C \approx S^{1}$ of X^{1} has a regular neighborhood $N(C)=N_{\pi}(C)$ that is homeomorphic to $(Y \times[0,1]) /(y, 1) \sim(h(y), 0)$, where Y is the closed cone on the discrete space $\{1,2, \ldots, d\}$ (for $d \geq 3$) and $h: Y \rightarrow Y$ is a homeomorphism whose restriction to $\{1,2, \ldots, d\}$ is the permutation $\pi:\{1,2, \ldots, d\} \rightarrow\{1,2, \ldots, d\}$. The space $N_{\pi}(C)$ depends only on the conjugacy class of $\pi \in S_{d}$ and therefore is determined by a partition of d. A component of $\partial N_{\pi}(C)$ corresponds then to a summand of the partition determined by π. Here the neighborhoods $N(C)$ are chosen sufficiently small so that for disjoint components C and C^{\prime} of $X_{1}, N(C)$ is disjoint from $N\left(C^{\prime}\right)$.

Note that X may also be described as a quotient space $W \cup_{\psi} X^{(1)}$, where $\psi: \partial W \rightarrow X^{(1)}$ is a covering map (and $\left|\psi^{-1}(x)\right|>2$ for every $x \in X^{(1)}$).

We construct an associated bicolored graph $G=G_{X}$ of $X=X_{G}$ by letting the white vertices w of G_{X} be the components W of $M:=\overline{X-\cup_{j} N\left(C_{j}\right)}$ where C_{j} runs over the components of X^{1}; the black vertices b_{j} are the C_{j} 's. An edge e is a component S of ∂M; it joins a white vertex w corresponding to W with a black vertex b corresponding to C_{j} if $S=W \cap N\left(C_{j}\right)$. The number of boundary components of W is the number of adjacent edges of $W . G_{X}$ embeds naturally as a retract into X_{G}.

We label the white vertices w with the genus g of W; here we use Neumann's [16] convention of assigning negative genus g to nonorientable surfaces; for example the genus g of the projective plane or the Moebius band is -1 , the genus of the Klein bottle is -2 . We orient all components C_{j} and S of $X^{(1)}$ and ∂W, resp., and assign a label m to an edge e, where $|m|$
is the summand of the partition π corresponding to the component $S \subset \partial N_{\pi}(C)$; the sign of m is determined by the orientation of C_{j} and S. In terms of attaching maps, m is the degree of the covering map $\psi: S \rightarrow C_{j}$ for the corresponding components of ∂W and $X^{(1)}$.
(Note that the partition π of a black vertex is determined by the labels of its adjacent edges).

3. Structure of $\pi_{1}\left(X_{G}\right)$

In this section we obtain a natural presentation for the fundamental group of a 2 -stratifold X_{G} with associated bicolored graph $G=G_{X}$ and describe $\pi_{1}\left(X_{G}\right)$ as the fundamental group of a graph of groups \mathcal{G} with the same underlying graph G.

For a given white vertex w, the compact 2-manifold W has conveniently oriented boundary curves s_{1}, \ldots, s_{p} such that

$$
\begin{equation*}
\pi_{1}(W)=\left\langle s_{1}, \ldots, s_{p}, y_{1}, \ldots, y_{n}: s_{1} \cdots s_{p} \cdot q=1\right\rangle \tag{*}
\end{equation*}
$$

where $q=\left[y_{1}, y_{2}\right] \ldots\left[y_{2 g-1}, y_{2 g}\right]$, if W is orientable of genus g and $n=2 g, q=y_{1}^{2} \ldots y_{n}^{2}$, if W is non-orientable of genus $-n$.

Let \mathcal{B} be the set of black vertices, \mathcal{W} the set of white vertices and choose a fixed maximal tree T of G. Choose orientations of the black vertices and of all boundary components of M such that all labels of edges in T are positive.

Then $\pi_{1}\left(X_{G}\right)$ has a natural presentation with
generators:
$\{b\}_{b \in \mathcal{B}}$
$\left\{s_{1}, \ldots, s_{p}, y_{1}, \ldots, y_{n}\right\}$, one set for each $w \in \mathcal{W}$, as in (*)
$\left\{t_{i}\right\}$, one t_{i} for each edge $c_{i} \in G-T$ between w and b
and relations:
$s_{1} \cdots s_{p} \cdot q=1$, one for each $w \in \mathcal{W}$, as in (*)
$b^{m}=s_{i}$, for each edge $s_{i} \in T$ between w and b with label $m \geq 1$
$t_{i}^{-1} s_{i} t_{i}=b^{m_{i}}$, for each edge $s_{i} \in G-T$ between w and b with label $m_{i} \in \mathbb{Z}$.

As an example we show in Figure 1 (the graph of) a 2 -stratifold X_{G} with $\pi_{1}\left(X_{G}\right)=\mathcal{F}$, an F-group as in Proposition (III)5.3 of [12], with presentation

$$
\begin{equation*}
\mathcal{F}=\left\langle c_{1}, \ldots, c_{p}, y_{1}, \ldots, y_{n}: c_{1}^{m_{1}}, \ldots, c_{p}^{m_{p}}, c_{1} \cdots c_{p} \cdot q=1\right\rangle \tag{F}
\end{equation*}
$$

where $p, n \geq 0$, all $m_{i}>1$ and $q=\left[y_{1}, y_{2}\right] \ldots\left[y_{2 g-1}, y_{2 q}\right]$ or $q=y_{1}^{2} \ldots y_{n}^{2}$.
Here we have denoted the generators corresponding to the black vertices by c_{i}, rather than b_{i}, to indicate that the finite order elements correspond to attaching disks along the boundary curves of W.

The fundamental group of X_{G} is best described as the fundamental group of a graph of

Fig.1. F-group
groups [8].
If $\pi_{1}\left(X_{G}\right)$ has no elements of finite order, then $\pi_{1}\left(X_{G}\right)$ is the fundamental group of a graph of groups \mathcal{G}, with underlying graph G, the groups of white vertices are the fundamental groups of the $W^{\prime} s$, the groups of the black vertices and edges are (infinite) cyclic.

Elements of finite order occur when a generator b of a black vertex has finite order $o(b) \geq$ 1. In this case we attach 2 -cells d_{b} and d_{e} to C_{b}, the circle corresponding to b, as follows: d_{b} is attached by a map of degree $o(b)$. If e is an edge joining b to w with label m, attach d_{e} with degree $o(c)=o(b) /(o(b), m)$. Letting $\hat{X}_{b}=N\left(C_{b}\right) \cup d_{b} \cup\left(\cup d_{e}\right)$, where e runs over the edges having b as an endpoint, $\hat{X}_{w}=W \cup\left(\cup d_{e}\right)$, where e runs over the edges incident to w, and $\hat{X}_{e}=\left(\hat{X}_{b} \cap \hat{X}_{w}\right)$, for an edge e joining b to w, we obtain a graph of CW-complexes that determines a graph of groups \mathcal{G} with the same underlying graph as G_{X}.

The vertex groups are $G_{b}=\pi_{1}\left(\hat{X}_{b}\right)$ and $G_{w}=\pi_{1}\left(\hat{X}_{w}\right)$, the edge groups are $G_{e}=\pi_{1}\left(\hat{X}_{e}\right)$, the monomorphisms $\delta: G_{e} \rightarrow G_{b}$ (resp. $G_{e} \rightarrow G_{w}$) are induced by inclusion. Then (see for example [17],[18]) $\pi_{1} \mathcal{G} \cong \pi_{1}(\hat{X})$.

Note that the groups G_{b} of the black vertices and the groups G_{e} of the edges are cyclic. For a white vertex w with edges $e_{1}, \ldots e_{p}$ labelled $m_{1}, \ldots m_{p}$ with associated vertex space $X_{w}=W \cup_{i=1}^{r} d_{e_{i}}$ we obtain

$$
G_{w}=\left\langle c_{1}, \ldots, c_{p}, y_{1}, \ldots, y_{n}: c_{1} \cdots c_{p} \cdot q=1, c_{1}^{m_{1}}=\cdots=c_{r}^{m_{r}}=1\right\rangle
$$

where q is as in $(\mathcal{F}), 1 \leq r \leq p$ and $k_{i} \geq 1$.
If all $k_{i} \geq 2$ and $r=p$ then G_{w} is an F-group ([12] p. 126-127). If $r<p$ it is a free product of cyclic groups.

4. Necessary Conditions

In this section we show that a 2-stratifold group that is a closed 3-manifold group is a free product of cyclic or $\mathbb{Z} \times \mathbb{Z}_{2}$ groups.

First consider an F-group \mathcal{F} as in (\mathcal{F}).
Proposition 1 ([12] Proposition (III)7.4). Let H be a subgroup of an F-group. If H has finite index then H is an F-group. If H has infinite index then H is a free product of cyclic groups.

Proposition 2 ([12] p.132). (a) \mathcal{F} is finite non-cyclic if and only if $n=0, p=3$ and $\left(m_{1}, m_{2}, m_{3}\right)=(2,2, m)(m \geq 2)($ the dihedral group of order $2 m)$ or $\left(m_{1}, m_{2}, m_{3}\right)=(2,3, k)$
for $k=3,4$ or 5 (the tetrahedral, octahedral, dodecahedral groups). In each case, c_{1} is a non-central element of order 2 .
(b) \mathcal{F} is finite cyclic if and only if $n=0, p \leq 2$ (the 2-sphere orbifold with at most two cone points) or $n=1, p \leq 1$ (the projective plane orbifold with at most one cone point).

Lemma 1. \mathcal{F} is not a non-trivial free product.
Proof. If $\mathcal{F}=A * B$ with A, B non-trivial, then A and B have infinite index and so, by Proposition 1, A, B and \mathcal{F} are free products of cyclic groups. However, \mathcal{F} is not such a group since it contains a subgroup isomorphic to the fundamental group of an orientable closed surface of genus ≥ 1 (see the remark after Proposition (III) 7.12 in [12]).

The following remark is easy to see.
Remark 1. If $\mathcal{F} \neq \mathbb{Z}_{2}$ then \mathcal{F} has no elements of finite order if and only if \mathcal{F} is a surface group.

Lemma 2. If M is an orientable (not necessarily closed or compact) 3-manifold with $\pi_{1}(M) \cong \mathcal{F}$ then $\pi_{1}(M)$ is cyclic or a surface group.

Proof. We may assume that ∂M contains no 2 -spheres. By Scott's Core Theorem we may assume that M is compact and by Lemma 1 that M is irreducible.

If $\pi_{1}(M)$ is infinite then M is aspherical (see e.g. [1]). It follows that $\pi_{1}(M)$ is torsion-free and from Remark 1 that $\pi_{1}(M)$ is a surface group.

If $\pi_{1}(M)$ is finite then M is closed. If $\pi_{1}(M)$ is also non-cyclic then by Proposition 2, $\pi_{1}(M)$ contains a non-central element of order 2. This can not happen by Milnor [15].

We now consider a 2 -stratifold X_{G} with $\pi_{1}\left(X_{G}\right)=\pi(\mathcal{G})$ as in section 3 .
Up to conjugacy, the only elements of finite order of $\pi_{1}\left(X_{G}\right)$ are contained in the vertex groups; they correspond to black vertices of finite order and elements of white vertices w whose corresponding group in \mathcal{G} is finite. The latter are described in Proposition 2. It is also shown in [12] (proof of Proposition (III)7.12) that in an infinite F-group the only elements of finite order are the obvious ones, namely conjugates of powers of c_{1}, \ldots, c_{p}.

For a group H, denote by $Q H$ be the quotient group of H modulo the smallest subgroup of H containing all elements of finite order of H.

Let w be a white vertex in G_{X}. We say that w is a white hole, if w has label -1 , all of its (black) neighbors have finite order and at most one of its neighbors has order >1.

If G_{X} has more than one vertex, note that $Q \pi_{1}\left(X_{G}\right)$ is obtained from $\pi_{1}\left(X_{G}\right)$ by killing the open stars of all the black vertices representing elements of finite order ≥ 1 of $\pi_{1}\left(X_{G}\right)$ and deleting the white holes. In the example of Figure 1, when genus $g=-1$ (and so $n=1$), $Q \pi_{1}\left(X_{G}\right)=\mathbb{Z}_{2}$. (Note that the white vertex of genus -1 is not a white hole if $p \geq 2, m_{i}>1$).

Proposition 3. If $Q\left(\pi_{1}\left(X_{G}\right)\right)$ has no elements of order 2 , then $H_{3}\left(Q \pi_{1}\left(X_{G}\right)\right)=0$.

Proof. Let G^{\prime} be the labelled subgraph of G_{X} obtained by deleting the open stars of all black vertices representing elements of finite order of $\pi_{1}\left(X_{G}\right)$ and all white holes. $\left(\pi_{1}\left(X_{\emptyset}\right)=\right.$ 1 by definition). Let C be a component of G^{\prime}. Then $Q \pi\left(X_{G}\right)=L *\left(*_{C}\left(\pi\left(X_{C}\right)\right)\right.$, the free product of a free group L with the free product of the $\pi\left(X_{C}\right)$ where C runs over the components of G^{\prime}.

If C consists of only one (white) vertex, then X_{C} is a closed 2-manifold, different from P^{2}, since by assumption $Q\left(\pi_{1}\left(X_{G}\right)\right)$ has no elements of order 2 . We may ignore the C 's consisting of spheres, since they do not contribute to $Q \pi\left(X_{G}\right)$. (A nonseparating 2-sphere only changes the rank of L). In all other cases X_{C} is the total space of a bicolored graph of spaces with white vertex spaces 2-manifolds with boundary, edge spaces circles, and black vertex spaces homotopy equivalent to circles.

Thus every vertex and edge space of X_{C} is aspherical (with free fundamental group) of dimension ≤ 2. By Proposition 3.6 (ii) of [17], X_{C} is aspherical. It follows that $Q \pi_{1}\left(X_{G}\right)$ has (co)homological dimension ≤ 2 and so $H_{3}\left(Q \pi_{1}\left(X_{G}\right)\right)=0$.

The assumption that $Q\left(\pi_{1}\left(X_{G}\right)\right)$ has no elements of finite order is satisfied if $\pi_{1}\left(X_{G}\right)$ is a 3-manifold group: We claim that $Q \pi_{1}(M)$ is torsion free if M is a closed orientable 3manifold.

For let $M=M_{1} \# \ldots \# M_{k}$ be its prime decomposition. If M_{i} is irreducible with infinite fundamental group, then M_{i} is aspherical and so $\pi_{1}\left(M_{i}\right)$ is torsion free; if M_{i} has finite fundamental group, then $Q \pi_{1}\left(M_{1}\right)=1$. Now the claim follows since $Q \pi_{1}(M)=Q \pi_{1}\left(M_{1}\right)$ * $\cdots * Q \pi_{1}\left(M_{k}\right)$.

Lemma 3. Let M be a closed orientable 3-manifold with prime decomposition $M=$ $M_{1} \# \ldots \# M_{k}$. If $\pi_{1}(M) \cong \pi_{1}\left(X_{G}\right)$, then each $\pi_{1}\left(M_{i}\right)$ is infinite cyclic or finite.

Proof. If there is some M_{i} with $\pi_{1}\left(M_{i}\right) \neq \mathbb{Z}$, then M_{i} is irreducible. If $\pi_{1}\left(M_{i}\right)$ is infinite then M_{i} is aspherical and hence $H_{3}\left(Q \pi_{1}\left(M_{i}\right)\right)=H_{3}\left(\pi_{1}\left(M_{i}\right)\right)=H_{3}\left(M_{i}\right) \neq 0$. Since $Q \pi_{1}(M)=$ $Q \pi_{1}\left(M_{1}\right) * \cdots * Q \pi_{1}\left(M_{k}\right)$ it follows that $H_{3}\left(Q \pi_{1}(M)\right) \neq 0$, which contradicts Proposition 3 .

Remark 2. One can give an alternate proof of Lemma 3 by using the fact that 3-manifold groups are virtually torsion free. Using this fact one can show (by looking at torsion-free subgroups instead of torsion-free quotients) that if G is both a 2 -stratifold group and a 3manifold group, then the virtual cohomological dimension of G is at most 2 . By a slight modification of the above proof of Lemma 3 this implies that no connected sum summand of a closed orientable 3-manifold M is aspherical.

Lemma 4. Let M be a closed 3-manifold and suppose $\pi_{1}(M)=\pi_{1}\left(X_{G}\right)$. Then any finite subgroup H of $\pi_{1}(M)$ is cyclic.

Proof. $\pi_{1}\left(X_{G}\right) \cong \pi_{1}(\mathcal{G})$ where \mathcal{G} is a graph of groups in which the groups of black vertices are cyclic and the groups of white vertices are F-groups or free products of finitely many cyclic groups. The finite group H is non-splittable (i.e. not a non-trivial HHN extension or free product with amalgamation). By Corollary 3.8 and the Remark after Theorem 3.7 of [17], H is a cyclic group or isomorphic to a subgroup of an F-group. If H is not cyclic, then (since H is not a non-trivial free product of cyclic groups), H is itself an F-group by

Proposition 1. Since H is a 3-manifold group it follows from Lemma 2 that this case can not occur.

Corollary 1. Let M be a closed orientable 3-manifold. If $\pi_{1}(M) \cong \pi_{1}\left(X_{G}\right)$, then $\pi_{1}(M)$ is a free product of cyclic groups.

Proof. This follows from Lemmas 3 and 4.
Theorem 1. Let M be a closed 3-manifold. If $\pi_{1}(M) \cong \pi_{1}\left(X_{G}\right)$, then $\pi_{1}(M)$ is a free product of groups, where each factor is cyclic or $\mathbb{Z} \times \mathbb{Z}_{2}$.

Proof. If M is orientable this is Corollary 1 (with each factor cyclic). Thus assume M is non-orientable and let $p: \tilde{M} \rightarrow M$ be the 2-fold orientable cover of M. Then $\pi_{1}(\tilde{M})=\pi_{1}\left(X_{\tilde{G}}\right)$ for the 2 -stratifold $X_{\tilde{G}}$, which is the 2 -fold cover of X_{G} corresponding to the orientation subgroup of $\pi_{1}(M)$. Hence $\pi_{1}(\tilde{M})$ is a free product of cyclic groups.

Let $M=\hat{M}_{1} \# \ldots \# \hat{M}_{k}$ be a prime decomposition of $M=M_{1} \cup \cdots \cup M_{k}$. If M_{i} is orientable, then M_{i} lifts to two homeomorphic copies $\tilde{M}_{i 1}, \tilde{M}_{i 2}$ of M_{i}, with each $\hat{\tilde{M}}_{i j}$ a factor of the prime decomposition of \tilde{M} and it follows that $\pi_{1}\left(M_{i}\right)$ is cyclic.

If \hat{M}_{i} is non-orientable and P^{2}-irreducible, then M_{i} lifts to \tilde{M}_{i}, where $\hat{\tilde{M}}_{i}$ is irreducible. Then $\pi_{1}\left(\hat{\tilde{M}}_{i}\right)$, being a factor of the free product decomposition of $\pi_{1}(\tilde{M})$, is finite cyclic, which can not occur since $\pi_{1}\left(M_{i}\right)$ is infinite.

If \hat{M}_{i} is non-orientable irreducible, contains P^{2},s, but is not $P^{2} \times S^{1}$, then by Proposition (2.2) of [19], M_{i} splits along two-sided P^{2}, s into 3-manifolds N_{1}, \ldots, N_{m} such that the fundamental group of the lifts \tilde{N}_{i} is indecomposable, torsion free and not isomorphic to \mathbb{Z}. Since $\pi_{1}\left(\tilde{N}_{i}\right)$ is a factor of the free product decomposition of $\pi_{1}(\tilde{M})$, this can not happen.

Therefore each non-orientable M_{i} is either the S^{2}-bundle over S^{1} or $P^{2} \times S^{1}$, which proves the Theorem.

5. Realizations of spines.

Recall that a subpolyhedron P of a 3-manifold M is a spine of M, if $M-\operatorname{Int}\left(B^{3}\right)$ collapses to P, where B^{3} is a 3 -ball in M.

An equivalent definition is that $M-P$ is homeomorphic to an open 3-ball (Theorem 1.1.7 of [14]).

We first construct 2 -stratifold spines of lens spaces (different from S^{3}), the non-orientable S^{2}-bundle over S^{1}, and $P^{2} \times S^{1}$.

Example 1. Lens space $L(0,1)=S^{3}$.
S^{3} does not have a 2 -stratifold spine. Otherwise such a spine X would be a deformation retract of the 3-ball and therefore contractible. However there are no contractible 2-stratifolds [7].

Example 2. Lens spaces $L(p, q)$ with $q \neq 0,1$.
Let r be the rotation of the disk D^{2} about its center c with angle $2 \pi p / q$, let $1 \in S^{1} \subset$ D^{2} and let $x_{i}=r^{i-1}(1), i=1, \ldots, q$. Let $Y \subset D^{2}$ be the cone of $\left\{x_{1}, \ldots, x_{q}\right\}$ with cone point c. Embed $Y \times I /\left(x_{i}, 0\right) \sim\left(x_{i+1}, 1\right)$ into the solid torus $V=D^{2} \times I /(x, 0) \sim(r(x), 1)$.

The punctured lens space $L(p, q)$ is obtained from V by attaching a 2-handle $D \times I$ with ∂D attached to the boundary curve of $(Y \times I) / \sim$. Then $L(p, q)$ deformation retracts to $(Y \times I) / \sim \cup D$, which is the 2 -stratifold with one white vertex of genus 0 , one black vertex, and one edge with label q.

Example 3. Lens space $L(1,0)=S^{2} \times S^{1}$ and non-orientable S^{2}-bundle over S^{1}.
Consider $S^{2} \tilde{\times} S^{1}$, the non-orientable S^{2}-bundle over S^{1}, as as the quotient space $q\left(S^{2} \times I\right)$ under the quotient map $q: S^{2} \times I \rightarrow S^{2} \tilde{\times} S^{1}$ that identifies $(x, 0)$ with $(\alpha(x), 1), x \in S^{2}$, where α is the antipodal map.

Let $D_{0} \subset S^{2} \times\{0\}$ be a disk and B_{1} be the 3-ball $D_{0} \times I \subset S^{2} \times I$, let D_{1} be the disk $B_{1} \cap$ $S^{2} \times\{1\}$, let A be the annulus $\partial B_{1}-\left(\operatorname{Int}\left(D_{0}\right) \cup \operatorname{Int}\left(D_{1}\right)\right)$, and let B_{2} be the ball $S^{2} \times I-\operatorname{Int}\left(B_{1}\right)$, see Figure 2. Then $S^{2} \times I-\operatorname{Int}\left(B_{2}\right)=S^{2} \times\{0\} \cup B_{1} \cup S^{2} \times\{1\}$ and $S^{2} \tilde{\times} S^{1}-\operatorname{Int}\left(B_{2}\right)=q\left(S^{2} \times I-\right.$ $\left.\operatorname{Int}\left(B_{2}\right)\right)=S^{2} \cup q\left(B_{1}\right)$, where $S^{2}=q\left(S^{2} \times\{0\}\right)=q\left(S^{2} \times\{1\}\right)$. Collapsing the ball $q\left(B_{1}\right)$ across the free face $q\left(D_{1}\right)$ onto $q(A) \cup q\left(D_{0}\right)$ we obtain a collapse of $S^{2} \check{\times} S^{1}-\operatorname{Int}\left(B_{2}\right)$ onto $\left(S^{2}-\operatorname{Int}\left(q\left(D_{1}\right)\right)\right) \cup q(A)$, which is a torus with a disk attached. This is a 2 -stratifold X_{G} with graph G_{X} in Figure 3(b). (The white vertices have genus 0).

Fig.2. $S^{2} \tilde{\times} S^{1}-\operatorname{Int}\left(B_{2}\right) \searrow S^{1} \tilde{\times} S^{1} \cup D^{2}$
A similar construction, considering $S^{2} \times S^{1}$ as the obvious quotient space of $q: S^{2} \times I \rightarrow$ $S^{2} \times S^{1}$ and first isotoping the ball B_{1} such that $D_{0} \cap D_{1}=\emptyset$, we obtain a collapse of $S^{2} \times S^{1}-$ $\operatorname{Int}\left(B_{2}\right)$ onto a Kleinbottle with a disk attached. This is a 2 -stratifold X_{G} with graph G_{X} in Figure 3(a).

Fig.3. 2-stratifold spines of punctured $S^{2} \tilde{\times} S^{1}$ and $P^{2} \times S^{1}$
We would like to thank Mario Eudave-Muñoz for pointing out that in this example the spine for the non-orientable (resp. orientable S^{2}-bundle over S^{1}) is a torus (resp. Kleinbottle) with a disk attached, rather than a Kleinbottle (resp. torus) with a disk attached.

Example 4. $P^{2} \times S^{1}$.
For a one-sided simple closed curve c in P^{2} and a point t_{0} in S^{1} let $X=P^{2} \times\left\{t_{0}\right\} \cup c \times S^{1} \subset$ $P^{2} \times S^{1}$. Observe that the boundary of a regular neighborhood N of X in $P^{2} \times S^{1}$ is a 2-sphere. Since $P^{2} \times S^{1}$ is irreducible, ∂N bounds a 3-ball B^{3} and therefore $P^{2} \times S^{1}-\operatorname{Int}\left(B^{3}\right)=N$, which collapses onto $X=X_{G}$, a 2-stratifold with graph in Figure 3(c).

Proposition 4. If the closed 3-manifold $M_{i}(i=1,2)$ has a 2-stratifold spine and M is a connected sum of M_{1} and M_{2}, then M has a 2-stratifold spine.

Proof. Let K_{i} be a 2-stratifold spine of M_{i}. Let $K_{1} \vee K_{2}$ be obtained by identifying, in the disjoint union of K_{1} and K_{2} a nonsingular point of K_{1} with a nonsingular point of K_{2}. By Lemma 1 of [9], $K_{1} \vee K_{2}$ is a spine of M. Though $K_{1} \vee K_{2}$ is not a 2-stratifold, by performing the operation explained below (replacing the wedge point by a disk) we will change $K_{1} \vee K_{2}$ to a 2-stratifold spine $K_{1} \Delta K_{2}$.

Fig.4. $K_{1} \Delta K_{2}$
A 3-ball neighborhood B^{3} of the wedge point of $K_{1} \vee K_{2}$ intersects $K_{1} \vee K_{2}$ in the double cone shown in Fig.4. Replace, in $K_{1} \vee K_{2}, K_{1} \vee K_{2} \cap B^{3}$ by $A \cup D$, as shown in Fig. 4, where $A=S^{1} \times[0,1]$ is an horizontal cylinder, $\partial A=\left(K_{1} \vee K_{2}\right) \cap \partial B^{3}, D$ is a vertical 2-disk with $A \cap D=\partial D=S^{1} \times(1 / 2)$. The result is a 2-stratifold $K_{1} \Delta K_{2}$. There is a homeomorphism from $B^{3}-(A \cup D)$ onto $B^{3}-K_{1} \vee K_{2}$ which is the identity on the boundary (roughly collapse D to a point) and so $M-K_{1} \Delta K_{2}$ is homeomorphic to $M-K_{1} \vee K_{2}$ which is homeomorphic to R^{3}.

Therefore $K_{1} \Delta K_{2}$ is a 2-stratifold spine of M.

Now Theorem 1 together with the examples and Proposition 4 yields our main Theorem. Here we do not consider S^{3} to be a lens space.

Theorem 2. A closed 3-manifold M has a 2-stratifold as a spine if and only if M is a connected sum of lens spaces, S^{2}-bundles over S^{1}, and $P^{2} \times S^{1}$'s.

Acknowledgements. J. C. Gómez-Larrañaga would like to thank LAISLA and the TDA project from CIMAT for financial support and IST Austria for their hospitality.

References

[1] M. Aschenbrenner, S. Friedel and H. Wilson: Decision Problems for 3-manifolds and their fundamental groups; in Interactions between low-dimensional topology and mapping class groups, Geometry \& Topology Monographs 19, Geon. Topol. Publ., Coventry, 201-236, 2015.
[2] P. Bendich, E. Gasparovicy, C.J. Traliez and J. Harer: Scaffoldings and Spines: Organizing HighDimensional Data Using Cover Trees, Local Principal Component Analysis, and Persistent Homology, Research in computational topology, 93-114, Assoc. Women Math. Ser. 13, Springer, Cham, 2018.
[3] S. Boyer, D. Rolfsen and B. Wiest: Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), 243-288.
[4] J.S. Carter: Reidemeister/Roseman-type moves to embedded foams in 4-dimensional space; in New Ideas in low Dimensional Topology, Series on Knots and Everything 56, World Sci. Publ., Hackensack, NJ, 1-30, 2015.
[5] I.M. Chiswell: Right orderability and graphs of groups, J. Group Theory $\mathbf{1 4}$ (2011), 589-601.
[6] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: Categorical group invariants of 3manifolds, Manuscripta Math. 145 (2014), 433-448.
[7] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: 2-dimensional stratifolds; in A Mathematical Tribute to José María Montesinos Amilibia, Universidad Complutense de Madrid, 395-405, 2016.
[8] J.C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil: 2-stratifold groups have solvable Word Problem, Rev. R. Acad. Cienc. Exactas, Fís. Nat. Ser. A Mat. RACSAM12 (2018), 803-810.
[9] G.W. Knutson: A characterization of closed 3-manifolds with spines containing no wild arcs, Proc. Amer. Math. Soc. 21 (1969), 310-314.
[10] M. Khovanov: sl(3) link homology, Algebr. Geom. Topol. 4 (2004), 1045-1081.
[11] P. Lum, G. Singh, J. Carlsson, A. Lehman, T. Ishkhanov, M. Vejdemo-Johansson, M. Alagappan and G. Carlsson: Extracting insights from the shape of complex data using topology, Nature Scientific Reports 3 (2013), Article ID 12-36.
[12] R.C. Lyndon and P.E. Schupp: Combinatorial Group Theory, Modern Surveys in Math. 89, Springer Verlag, Berlin, 1977.
[13] S. Matsuzaki and M. Ozawa: Genera and minors of multibranched surfaces, Topology Appl. 230 (2017), 621-638.
[14] S. Matveev: Algorithmic Topology and Classification of 3-Manifolds, Algorithms and Computation in Mathematics 9, Springer, Berlin, 2007.
[15] J. Milnor: Groups which act on S^{n} without fixed points, Amer. J. Math. 79 (1957), 623-630.
[16] W. Neumann: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
[17] P. Scott and C.T.C. Wall: Topological Methods in Group Theory; in Homological Group Theory, London Math. Soc. Lecture Notes Ser. 36, Cambridge Univ. Press, Cambridge-New York, 1979.
[18] J.P. Serre: Trees, Springer-Verlag, Berlin-New York, 1980.
[19] G.A. Swarup: Projective planes in irreducible 3-manifolds, Math. Z. 132 (1973), 305-317.
J.C. Gómez-Larrañaga

Centro de Investigación en Matemáticas
A.P. 402 , Guanajuato 36000 , Gto.

México
e-mail: jcarlos@cimat.mx
F. González-Acuña

Instituto de Matemáticas
UNAM, 62210 Cuernavaca, Morelos
México and Centro de Investigación en Matemáticas
A.P. 402, Guanajuato 36000 , Gto.

México
e-mail: fico@math.unam.mx
Wolfgang Heil
Department of Mathematics
Florida State University
Tallahassee, FL 32306
USA
e-mail: heil@math.fsu.edu

