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Abstract
We define the distance between edges of graphs and study the coarse Ricci curvature on edges.

We consider the Laplacian on edges based on the Jost-Horak’s definition of the Laplacian on
simplicial complexes. As one of our main results, we obtain an estimate of the first non-zero
eigenvalue of the Laplacian by the Ricci curvature for a regular graph.

1. Introduction

1. Introduction
The Ricci curvature is one of the most important concepts in Riemannian geometry. There

are some definitions of the generalized Ricci curvature and Ollivier’s coarse Ricci curvature
is one of them (see [13], [14]). It is formulated by the Wasserstein distance on a metric space
(X, d) with a random walk m = {mx}x∈X , where mx is a probability measure on X. The coarse
Ricci curvature is defined as, for two distinct points x, y ∈ X,

κ(x, y) := 1 − W(mx,my)

d(x, y)
,

where W(mx,my) is the 1-Wasserstein distance between mx and my. This definition was
applied to graphs around 2010 and many researchers are focused on this. In 2010, Lin, Lu
and Yau [11] defined the Ricci curvature on vertices of graphs by using the coarse Ricci
curvature of the lazy random walk and they studied the Ricci curvature of product space
of graphs and random graphs. In 2012, Jost and Liu [9] studied the relation between the
Ricci curvature and the local clustering efficient. Recently, the Ricci curvature on graphs
was applied to directed graphs [18] and internet topology [2] and so on. In this paper, we
study the Ricci curvature on edges of graphs.
　 The study of the graph Laplacian has a long and prolific history. In 1847, Kirchhoff
[10] was first defined the graph Laplacian on real valued functions. In the early 1970s,
Fiedler [4] studied the relation between the first non-zero eigenvalue and the connectivity of
a graph. After he was focused on the graph Laplacian, there has been many papers about the
graph Laplacian and its spectrum. In 1935, Bottema [1] introduced the normalized the graph
Laplacian and studied the relation between the normalized graph Laplacian and the transition
probability operator on graphs. Moreover, in 2009, Ollivier [13] obtained an estimate of the
first non-zero eigenvalue of the normalized graph Laplacian by a lower bound of the coarse
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Ricci curvature as follows.

Theorem 1.1 (Ollivier, [13]). Let λΔ0
1 be the first non-zero eigenvalue of the normalized

graph Laplace operator Δ0. Suppose that on (V(G), d,m), κ(x, y) ≥ κV for any (x, y) ∈ E
and for a positive real number κV. Then we have

λΔ0
1 ≥ κV ,

where κ(x, y) is the Ricci curvature on x and y.

Theorem 1.1 is not optimal, so our motivation is obtaining the optimal estimate of the
first non-zero eigenvalue of the graph Laplacian.
　 The graph Laplacian was generalized to simplicial complexes by Eckmann [3] as the
discrete version of the Hodge theory. This graph Laplacian is called the higher order combi-
natorial Laplacian. In 2013, Jost and Horak [8] developed a general framework for Laplace
operators defined by the combinatorial structure of a simplicial complex. Giving the con-
crete weight function defined by Definition 3.3, this Laplacian becomes each graph Lapla-
cian defined before, and one of the most important properties is that the spectrum of this
Laplacian on vertices coincides with that of this Laplacian on edges. In this paper, we ar-
range the weight function, and use this Laplacian. Considering the Ricci curvature on edges,
we obtain the following theorem.

Theorem 1.2. Let G be a d-regular graph and λ1 the first non-zero eigenvalue of the
Laplacian on vertices. Suppose that κ(e, e′) ≥ κE for any e, e′ ∈ E and for a real number
κE > 0. Then we have

λ1 ≥ κE +
2

d
− 1,(1.1)

where κ(e, e′) is the Ricci curvature on e and e′, and the Laplacian here is defined by Jost-
Horak (see Definition 3.4).

　 The estimate of Theorem 1.2 is optimal. In fact, any star graph satisfies equality of
(1.1) (see Remark 4.5). We remark that for a graph G, we could consider the graph G∗ over
the vertex set V(G∗) = E(G), however the spectrum of the normalized graph Laplacian on G
does not coincide with that of the normalized graph Laplacian on G∗ in general (see Remark
4.4 ), and the Laplacian on edges of G defined by Jost-Horak differs from the normalized
graph Laplacian on G∗.
　 This paper is organized as follows. In the 2nd section, we define the Ricci curvature on
edges of a graph and we prove some properties of the Ricci curvature. In the 3rd section,
for a 1-dimensional abstract simplicial complex, we prove some properties of the Laplacian
on edges defined in [8]. Moreover, we prove Theorem 1.2. In the 4th section, we treat some
examples of graphs, and calculate the Ricci curvature and the eigenvalue of the Laplacian.
In the 5th section, considering weighted graphs, and we generalize the results proved in the
previous sections.

2. Properties of Ricci curvature on edges of graphs

2. Properties of Ricci curvature on edges of graphs
Before we define the Ricci curvature on edges, we present some preliminaries.

　 In this paper, G = (V, E) is an undirected connected simple finite graph, where V is the
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set of the vertices and E the set of edges. That is,
(1) for any two vertices, there exists a path connecting them,
(2) there exists no loop and no multiple edge,
(3) the number of vertices and edges is finite.

For x, y ∈ V , we write (x, y) as an edge connecting x and y. We denote the set of vertices of
G by V(G) and the set of edges by E(G).

Definition 2.1. (1) Two distinct edges e and e′ are connected if they have a common
vertex.

(2) A path connecting two edges e and e′ is a sequence of edges {ei}ni=0 such that ei and
ei+1 are connected for 0 ≤ i ≤ n − 1 and e0 = e, en = e′. We call n the length of the
path.

The distance d(e, e′) between two edges e, e′ ∈ E is defined to be the length of a shortest
path connecting e and e′.
　 For any x ∈ V , the neighborhood of x is defined as Γ(x) := {y ∈ V | (x, y) ∈ E} and the
degree of x, denoted by dV

x , is the number of edges connecting v, i.e., dV
x = |Γ(x)|. Similarly,

we define the degree of an edge as following.

Definition 2.2. For any e ∈ E, the neighborhood of e is defined as

Γ(e) := {ē ∈ V | e and ē are connected and e � ē} .
The degree of e, denoted by de, is the number of edges connecting e, i.e., de = |Γ(e)|.
Moreover, G is a d-regular graph if every edge has the same degree d.

With these definitions, we define the Ricci curvature on edges.

Definition 2.3. For any edge e ∈ E, we define a probability measure me on E by

me(ē) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

de
if ē ∈ Γ(e),

0 otherwise.
(2.1)

This defines a random walk m = {mx}x∈X .

Definition 2.4. For two probability measures μ and ν on E, the 1-Wasserstein distance
between μ and ν is written as

W(μ, ν) = inf
A

∑

ē,ē′∈E

A(ē, ē′) d(ē, ē′),

where A : E × E → [0, 1] runs over all maps satisfying
⎧⎪⎪⎨⎪⎪⎩
∑

ē′∈E A(ē, ē′) = μ(ē),
∑

ē∈E A(ē, ē′) = ν(ē′).

Such a map A is called a coupling between μ and ν.
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Remark 2.5. There exists a coupling A that attains the Wasserstein distance (see [7], [16]
and [17]).

One of the most important properties of the Wasserstein distance is the Kantorovich-
Rubinstein duality as stated as follows.

Proposition 2.6 (Kantorovich, Rubinstein). For two probability measures μ and ν on E,
the 1-Wasserstein distance between μ and ν is written as

W(μ, ν) = sup
f :1−Lip

∑

ē∈E

f (ē) (me(ē) − me′(ē)),

where the supremum is taken over all functions on G that satisfy | f (e) − f (e′)| ≤ d(e, e′) for
any e, e′ ∈ E.

Definition 2.7. For any two distinct edges e, e′ ∈ E, the Ricci curvature of e and e′ is
defined as

κ(e, e′) = 1 − W(me,me′)

d(e, e′)
.

If we apply some properties of the Ricci curvature on vertices proved in [9] and [11] to
the Ricci curvature on edges, then we obtain the following results.

Proposition 2.8. If κ(e, e′) ≥ κ0 for any edges e and e′ with d(e, e′) = 1, then κ(e, e′) ≥ κ0
for any pair of edges (e, e′).

Since Proposition 2.8 is proved in the same way as Lemma 2.3 in [11], the proof is
omitted.

Theorem 2.9. For any edges e and e′ with d(e, e′) = 1, we have

κ(e, e′) ≥ −2

⎛⎜⎜⎜⎜⎜⎝1 −
1

de
− 1

de′

⎞⎟⎟⎟⎟⎟⎠
+

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2 +

2

de
+

2

de′
, if de > 1 and de′ > 1

0, otherwise.

Theorem 2.10. For any edges e ∈ E and e′ ∈ Γ(e), we have

κ(e, e′) ≤ |Γ(e) ∪ Γ(e′) |
max {de, de′ } .

Since Theorem 2.9 and Theorem 2.10 are proved in the same way as Proposition 2 and
Theorem 5 in [9], these proofs are omitted.

3. Properties of the Laplacian on edges in the case dim G = 1

3. Properties of the Laplacian on edges in the case dim G = 1
First we review the definition of the cohomology. Let K be an abstract simplicial complex

and S i(K) the set of all i-faces of K. We say that a face F is oriented if we choose an ordering
on its vertices and write [F].
　 The i-th chain group Ci(K,R) of K with coefficients in R is a vector space over the
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real field R with basis Bi(K,R) = {[F] | F ∈ S i(K)}, and the i-th cochain group Ci(K,R) is
defined as the dual of the i-th chain group.

Definition 3.1. For the cochain groups, the simplicial coboundary maps δi : Ci(K,R) →
Ci+1(K,R) are defined by

(δi f )([v0, · · · , vi+1]) =
i+1∑

j=0

(−1) j f ([v0, · · · , v̂ j, · · · , vi+1])

for f ∈ Ci(K,R), where v̂ j means that the vertex v j has been omitted.

Note that the one-dimensional vector space C−1(K,R) is generated by a function f−1 with
f−1(∅) = 1. The δi are the connecting maps in the augmented cochain complex of K with
coefficients in R, i.e, the sequence of the vector spaces with the linear transformations

· · · δi+1←−− Ci+1(K,R)
δi←− Ci(K,R)

δi−1←−− · · · δ1←− C1(K,R)
δ0←− C0(K,R)

δ−1←−− C−1(K,R)← 0

It is easy to show that δiδi−1 = 0, thus the image of δi−1 is contained in the kernel of δi. We
define the reduced cohomology group by

H̃i(K,R) := ker δi/ im δi−1.

In order to define the Laplacian, we define the boundary of the oriented face and the inner
product.

Definition 3.2. Let F′ = {v0, · · · , vi+1} be an (i+1)-face of K and F =
{
v0, · · · , v̂ j, · · · , vi+1

}

an i-face of F′. The boundary of the oriented face [F′] is

∂[F′] =
∑

j

(−1) j[v0, · · · , v̂ j, · · · , vi+1],

and the sign of [F] in the boundary of [F′] is denoted by sgn([F], ∂[F′]) and is equal to
(−1) j.

Definition 3.3. The inner product on the space Ci(K,R) is

( f , g)Ci =
∑

F∈S i(K)

w(F) f ([F]) g([F])(3.1)

for f , g ∈ Ci(K,R), where w :
⋃

i=0 S i(K) → R+ is a function with w(∅) = 0. We call w the
weight function on K.

For the innner product on Ci(K,R), the adjoint δ∗i : Ci+1(K,R)→ Ci(K,R) of the cobound-
ary operator δi is defined by

(δi f1, f2)Ci+1 = ( f1, δ∗i f2)Ci ,

for every f1 ∈ Ci(K,R) and f2 ∈ Ci+1(K,R). The adjoint operator δ∗i is expressed as

(δ∗i f )(F) =
1

w(F)

∑

F′∈S i+1(K):F∈∂F′
sgn([F], ∂[F′]) f ([F′])
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for f ∈ Ci+1(K,R).

Definition 3.4 (Horak, Jost, [8]). We define the Laplace operators on Ci(K,R) as fol-
lows.

(1) The i-dimensional combinatorial up Laplace operator or simply i-up Laplace oper-
ator is defined by


up
i (K) := δ∗i δi.

(2) The i-dimensional combinatorial down Laplace operator or simply i-down Laplace
operator is defined by


down
i (K) := δi−1δ

∗
i−1.

(3) The i-dimensional combinatorial Laplace operator or simply i-Laplace operator is
defined by

i(K) := 
up
i (K) + down

i (K) = δ∗i δi + δi−1δ
∗
i−1.

Remark 3.5. Since their operators are all self-adjoint and non-negative, the eigenvalues
are real and non-negative. In addition, since δiδi−1 = 0 and δ∗i−1δ

∗
i = 0, we have

im
down
i ⊂ kerup

i ,

im
up
i ⊂ kerdown

i .

Thus, λ is a non-zero eigenvalue of i if and only if it is a non-zero eigenvalue of up
i or


down
i .

We represent the Laplace operators by the matrix form. Let Di be the matrix correspond-
ing to the operator δi, DT

i its transpose and Wi the diagonal matrix representing their scalar
product on Ci, then the operators up

i (K) and 
down
i (K) are expressed as


up
i (K) = W−1

i DT
i Wi+1Di

and


down
i (K) = Di−1W−1

i−1DT
i−1Wi.

　 Since a graph is a 1-dimensional abstract simplicial complex and we have W−1 = w(∅) =
0, we obtain 

down
0 (G) = 0 and 

up
1 (G) = 0. As the result, it is sufficient to consider the

following Laplace operator:

0(G) = 
up
0 (G) = W−1

0 DT
0 W1D0

and

1(G) = 
down
1 (G) = D0W−1

0 DT
0 W1.

By the matrix form, λ is a non-zero eigenvalue of 0(G) if and only if it is a non-zero
eigenvalue of 1(G).

Remark 3.6. If W0 and W1 are the identity matrix, then the 0-Laplace operator 0(G)
corresponds to the graph Laplacian, so the operator does not depend on the orientation of
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faces. On the other hand, the 1-Laplace operator 1(G) depends on the orientation of faces.
However, the 1-Laplacian has the same spectrum as the 0-Laplacian, except for the multi-
plicity of the eigenvalue 0, so the spectrum of 1(G) does not depend on the orientation of
faces.

Remark 3.7. If W1 is the identity matrix and if w(vi) is the degree of vi, then the obtained
operator is called the normalized combinatorial Laplace operator and is denoted by Δ0.

In this paper, we want to obtain an estimate of the first non-zero eigenvalue of the 1-
Laplacian by the Ollivier’s Ricci curvature. In order to do so, we assume that W0 is an
identity matrix and w(ei) = 1/dei , and the obtained operator is denoted by 

′
1.

Before we obtain an estimate of the eigenvalues of the Laplacian, we decompose the Lapla-
cian into the diagonal component and the other part


′
1 = Diag(′1) + Ldown,

where

(Ldown f )(e) =
∑

e′∈E(G):v=e∩e′
sgn([v], ∂[e]) sgn([v], ∂[e′]) me(e′) f (e′)

de

de′
.

Proof of Theorem 1.2. By the definition of the Laplacian, λ is a non-zero eigenvalue of

′
0(G) if and only if it is a non-zero eigenvalue of ′1(G). So we consider the eigenvalue

of ′1(G). Let f be an eigenfunction with respect to λ1. Fix any two edges e = (x, y), e′ =
(y, z) ∈ E(G) with d(e, e′) = 1.
　Case 1. If e and e′ are not contained in any triangle, then we orient edges ē ∈ Γ(e)∪ Γ(e′)
as follows (see Fig.1).

(1) If ē = e, or if ē and e are connected by x, then we orient ē with sgn([x], ∂[ē]) = −1.
(2) If ē and e are connected by y, or if ē and e′ are connected by y, then we orient ē with

sgn([y], ∂[ē]) = 1.
(3) If ē = e′, or if ē and e are connected by z, then we orient ē with sgn([z], ∂[ē]) = −1.

Fig.1. Orientation of Γ(e) ∪ Γ(e′)

Then we obtain
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Ldown f )(e) =
∑

ē∈Γ(e) me(ē) f (ē) = λ1 f (e) − 2

d
f (e),

(Ldown f )(e′) =
∑

ē′∈Γ(e′) me′(ē′) f (ē′) = λ1 f (e′) − 2

d
f (e′).

(3.2)

If f is a constant function, then λ1 = 1 + 2/d. In this case, there is nothing to prove. In fact,
by the definition of the Ricci curvature, we see κ ≤ 1. So, we have

κ +
2

d
− 1 ≤ 2

d
< λ1.

Thus we assume that f is not a constant function and by scaling f if necessarily,

sup
e,e′∈E:d(e,e′)=1

| f (e) − f (e′)| = 1.(3.3)

By Proposition 2.6 and (3.2), we have

d(e, e′)(1 − κ) ≥ W(me,me′)

≥
∑

ē∈Γ(e)∪Γ(e′)
f (ē) (me(ē) − me′(ē))

=
∑

ē∈Γ(e)

me(ē) f (ē) −
∑

ē′∈Γ(e′)
me′(ē′) f (ē′)

≥ λ1 f (e) − 2

d
f (e) − λ1 f (e′) +

2

d
f (e′)

= −
⎛⎜⎜⎜⎜⎜⎝

2

d
− λ1

⎞⎟⎟⎟⎟⎟⎠ ( f (e) − f (e′)).

By the symmetry of e and e′, we obtain

| f (e) − f (e′)| ≤ 1 − κ
|2/d − λ1|.

Then, the above inequality holds for any edge, which together with (3.3), implies

λ1 ≥ κ +
2

d
− 1.

　Case 2. If e and e′ are contained in a triangle, then we put e0 := (x, z). We orient the edge
e0 with sgn([x], ∂[e0]) = 1, and orient other edges ē ∈ (Γ(e) ∪ Γ(e′)) \ {e0} in the same way
as Case 1 (see Fig.2).

Then we obtain
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Ldown f )(e) =
∑

ē∈Γ(e) me(ē) f (ē) = λ1 f (e) − 2

d
f (e),

(Ldown f )(e′) =
∑

ē′∈Γ(e′)\{e0}me′(ē′) f (ē′) − 1

d
f (e0) = λ1 f (e′) − 2

d
f (e′),

(3.4)

If f is a constant function, then λ1 = 0. This is a contradiction. Thus f is not a constant
function. By scaling f if necessarily, we assume (3.3). We focus on e0. By (3.4), we have
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Fig.2. Orientation of Γ(e) ∪ Γ(e′)

λ1 f (e0) =
2

d
f (e0) +

1

d
f (e) +

∑

ē∈Γ(e)\(Γ(e′)∪{e′})
me(ē) f (ē) − 1

d
f (e′) −

∑

ē′∈Γ(e′)\(Γ(e)∪{e})
me′(ē′) f (ē′)

=
2

d
f (e0) +

2

d
f (e) +

∑

ē∈Γ(e)\Γ(e′)
me(ē) f (ē) − 2

d
f (e′) −

∑

ē′∈Γ(e′)\Γ(e)

me′(ē′) f (ē′)

=
2

d
f (e0) + λ1 f (e) − λ1 f (e0) − 2

d
f (e0)

= λ1( f (e) − f (e′)).

Thus we obtain

f (e0) = f (e) − f (e′).(3.5)

By Proposition 2.6 and (3.5), we have

d(e, e′)(1 − κ) ≥ W(me,me′)

≥
∑

ē∈(Γ(e)∪Γ(e′))
f (ē)(me(ē) − me′(ē))

=
∑

ē∈Γ(e)\{e0}
me(ē) f (ē) −

∑

ē′∈Γ(e′)\{e0}
me′(ē′) f (ē′)

= λ1 f (e) − 2

d
f (e) − 1

d
f (e0) − λ1 f (e′) +

2

d
f (e′) − 1

d
f (e0)

≥ λ1 f (e) − 2

d
f (e) − λ1 f (e′) +

2

d
f (e′) − 2

d
f (e0)

= −
⎛⎜⎜⎜⎜⎜⎝

2

d
− λ1

⎞⎟⎟⎟⎟⎟⎠ ( f (e) − f (e′)) − 2

d
( f (e) − f (e′)).

By the symmetry of e and e′ and d(e, e′) ≥ 1, we obtain

|4/d − λ1| | f (e) − f (e′)| ≤ 1 − κ

Then, the above inequality holds for any edge, which together with (3.3), implies

λ1 ≥ κ +
4

d
− 1.
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This completes the proof. �

4. Example

4. Example
In this section, we treat some examples of graphs and calculate the eigenvalues of ′1 and

the Ricci curvature.

Example 4.1 (Complete graph Kn). Let Kn denote the complete graph with n vertices.
While the Ricci curvatures on vertices of Kn are equal to (n− 2)/(n− 1), the Ricci curvature
on edges of Kn is equal to 1/2. On the other hand, the first non-zero eigenvalue of ′1(Kn)
is equal to n/2(n − 2).

Fig.3. Complete graph

Example 4.2 (CycleCn). The Ricci curvatures on vertices and those on edges of the cycle
Cn with length n ≥ 4 are all zero. On the other hand, the eigenvalues of ′1(C4) are 0, 1 and
2, and the eigenvalues of ′1(C5) are 0 and (5 ± √5)/4.

Fig.4. Cycle

Example 4.3 (Complete bipartite graph Kn,m). While the Ricci curvatures on vertices of
any complete bipartite graph Kn,m are all zero, the Ricci curvatures on edges e = (x, y), e′ =
(y, z) ∈ E(Kn,m) is

dV
y − 2

m + n − 2
.

If n = 1, then K1,m is called the star graph, and the Ricci curvatures on edges of K1,m are
(m − 2)/(m − 1).

Remark 4.4. For a graph G, we define the graph G∗ over the vertex set V(G∗) = E(G)
such that e, e′ ∈ V(G∗) are connected if e and e′ have a common vertex of G. Then, K∗1,m is
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the complete graph Km+1. The first non-zero eigenvalue of Δ0(K1,m) is 1, and the first non-
zero eigenvalue of Δ0(Km+1) is m+1/m. So, the spectrum of the normalized graph Laplacian
does not always coincide with each other.

Remark 4.5. The first non-zero eigenvalue λ1 of ′1(K1,m) is equal to 1/(m − 1). So, if
m ≥ 3, then λ1 is smaller than the Ricci curvatures. Since the degree of any edge is m − 1,
we have

κ +
2

d
− 1 =

1

m − 1
= λ1.

Fig.5. Complete bipartite graph and star graph

Example 4.6 (Tree T ). While the Ricci curvature on vertices x, y ∈ V(T ) is −2(1−1/dV
x −

1/dV
y ), the Ricci curvature on edges e = (x, y), e′ = (y, z) ∈ E(T ) is

κ(e, e′) =
dV
y

min {de, de′ } +
2dV
y − 2

max {de, de′ } − 2.

If T is a d-regular tree, then the Ricci curvature on edges is (−d + 2)/(2d − 2).

5. Relation between a weight function and a weighted graph

5. Relation between a weight function and a weighted graph
The i-Laplacian depends on the weight function w. On the other hand, the Ricci curvature

depends on the Wasserstein distance. If we figure out a relation between the weight function
and the Wasserstein distance, then we obtain an estimate of the non-zero eigenvalues of i-
Laplacian in more general setting. So, we consider a weighted graph G that has the weight
corresponding the weight function. Let G be a weighted undirected graph, and we generalize
definitions of the distance, the degree, and a probability measure.

Definition 5.1. For two edges e0 and en, let {ei}ni=0 be the shortest path connecting e0 and
en. The distance between e0 and en is defined by

d(e0, en) =
n∑

j=1

w(v j),

where v j is a vertex such that e j−1 and e j are connected by v j.

Definition 5.2. For any edge e, the degree of e is defined by

de =
∑

ē∈Γ(e)

w(ē).
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Definition 5.3. For any edge e, a probability measure me is defined by

me(ē) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w(ē)

de
if ē ∈ Γ(e),

0 otherwise.

By this definition, the operator Ldown is expressed as

(Ldown f )(e) =
∑

ē∈Γ(e):e∩ē=v

w(ē)

w(v)
sgn([v], ∂[e])sgn([v], ∂[ē]) f (ē)

=
∑

ē∈Γ(e):e∩ē=v

me(ē)sgn([v], ∂[e])sgn([v], ∂[ē])
de

w(v)
f (ē).

We obtain lower and upper bounds of the Ricci curvature on a weighted graph.

Theorem 5.4. For any pair of neighboring edges e and e′, we have

κ(e, e′) ≥ −2

⎛⎜⎜⎜⎜⎜⎝1 −
w(e′)

de
− w(e)

de′

⎞⎟⎟⎟⎟⎟⎠
+

Theorem 5.5. We assume that the weight function on V is a constant, say w0. For any
pair of neighboring edges e and e′, we have

κ(e, e′) ≤ w∩
max {de, de′ },

where w∩ :=
∑

ē∈Γ(e)∩Γ(e′) w(ē).

Remark 5.6. Theorems 5.4 and 5.5 are proved in the same way as those of Theorems 2.9
and 2.10. If w(v) = 1, w(e) = 1/de, and |Γ(e)| = de for any vertex v and any edge e, these
results coincide with Theorems 2.9 and 2.10.

Hereafter, we assume that the weight function on E is a constant, say w1. We generalize
the estimate of the first non-zero eigenvalue of down

1 as follows.

Theorem 5.7. Let λ1 be the first non-zero eigenvalue of down
1 . Suppose that κ(e, e′) ≥ κ

for any e, e′ ∈ E and for a real number κ > 0. Then, we have

λ1 ≥ {d(κ − 1) + 2} w1

w0
.

Remark 5.8. Theorem 5.7 is proved in the same way as that of Theorem 1.2. If w0 = 1,
Γ = d and w1 = 1/d, the result coincides Theorem 1.2.
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