
Hong, S. and Park, J.
Osaka J. Math.
56 (2019), 727–737

LOCAL CONNECTEDNESS OF THE SPACE OF PUNCTURED
TORUS GROUP

Sungbok HONG and Jihoon PARK

(Received December 6, 2017, revised April 13, 2018)

Abstract
We will give a necessary condition for local connectedness of the space of Kleinian punctured

torus group using Bromgerg’s local coordinate system and provide a sufficient condition for
local connectedness on a dense subset of the necessary condition. That is, the collection of the
points where the boundary of the space of punctured torus group is not locally connected is a
dense subset of the points satisfying the necessary condition.

1. Introduction

1. Introduction
The space of Kleinian group that uniformizes a given compact 3-manifold M admits natu-

ral algebraic topology and is denoted by AH(M). The interior of AH(M) is well understood
since late 1970’s (See section 4.3 and 5.4 in [12] for more details). However, in the late
1990’s it was discovered that the topology does not well-behaved at the boundary of the
deformation space. Anderson-Canary [1] showed that the deformation space may contains
components having intersecting closure and McMullen [13] showed that such phenomena
can occur on the closure of a single component. Moreover Bromberg [3] showed that such
phenomena, called now bumponomics, could be much complicated so that AH(M) is not
even locally connected. Recent works ([2],[10],[16]) show self-bumping phenomena in the
Kleinian surface group, but local connectedness is not completely classified even in the sim-
plest case, the space of Kleinian punctured torus group. In this paper, we give a necessary
condition for which the space of Kleinian punctured torus group is not locally connected
at given point σ and a sufficient condition in the sense of almost everywhere, that is the
collection of points satisfying the sufficient condition is a dense subset of the collection of
points satisfying the necessary condition, by using Bromberg’s local coordinate system.

2. Preliminary

2. Preliminary
In this section we give some basic ingredients for our work.

2.1. Deformation space.
2.1. Deformation space.

A Kleinian group is a discrete subgroup of PSL(2,C). Our interest lies on the space of
Kleinian group that uniformizes a given compact 3-manifold M, defined as follows. Let G be
a finitely generated group with n generators, and let (G) be the space of representations of
G in PSL(2,C). Then (G) embeds in (PSL(2,C))n and this embedding gives (G) a natural
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topology. Let H(G) be the set of conjugacy classes of discrete, faithful representations of G
in PSL(2,C). H(G) admits a canonical topology called the algebraic topology by taking the
induced topology on H(G) as a subset of (G). We denote H(G) together with this topology
as AH(G).

If N is a compact, hyperbolizable 3-manifold possibly with boundary and G is isomorphic
to π1(N), then we denote (G) and AH(G) as (N) and AH(N) respectively. Let  be a
collection of disjoint, essential and homotopically distinct annuli and tori in ∂N. Then we
denote (N,) ⊂ (N), AH(N,) ⊂ AH(N) for the collection of those representations σ
for which σ(γ) is parabolic if γ is freely homotopic into  . A representation σ ∈ AH(N,)
is minimally parabolic if σ(γ) is parabolic if and only if γ is freely homotopic into  . It is
well known that the set of both minimally parabolic and geometrically finite representations
in AH(N,), denoted by MP(N,), is the interior of AH(N,). In general, MP(N,)
has many components. If the orientation for N is chosen, we will denote MP0(N,) to be
the component of MP(N,) that contains a representation with the orientation preserving
marking map (See 2.2, 2.4 in [3] for more details).

2.2. Maskit slice.
2.2. Maskit slice.

We are interested in the most simplest case, the space of punctured torus group. Here-
after, we always assume that N = Σ1,1 × [−1, 1], the trivial I-bundle of a compact torus
with one boundary component and  = ∂Σ1,1 × [−1, 1]. In this case, π1(N) = π1(Σ1,1) is
a free group of rank 2 and AH(N,) consists of the conjugacy classes of discrete, faithful
representations σ : π1(N) → PSL(2,C) with added condition that it sends the commutator
of the generators of π1(N) to a parabolic element. The space AH(N,) is a two-dimensional
complex analytic space each of whose interior components is parametrized by the product of
the Teichmüller space of once punctured torus (See 5.3 in [12]). The parametrization can be
extended to AH(N) by the following way. Let ̄ be the compactified Teichmüller space of
once punctured torus by Thurston compactification,  be the Alfors-Bers parametrization
and let � be the diagonal in ∂̄ × ∂̄ . The following theorem is due to Minsky [14] .

Theorem 2.1 (Minsky). There exists a continuous bijection

ν : ̄ × ̄ − � → AH(N,)

and the composition ν ◦ is the identity on MP(N,).

The map ν is not a homeomorphism, but Minsky showed that the restriction of ν on some
slices in ̄ × ̄ −� is a homeomorphsim. If one choose a measured lamination in ∂̄ whose
leaves consist of the simple closed curve γp/q where p/q is determined by the choice of
presentation in π1(N) = 〈a, b〉, then

Theorem 2.2 (Minsky). The restriction of ν to (̄ − {γp/q}) × {γp/q} is a homeomorphism
onto its image.

The image of (̄ − {γp/q}) × {γp/q} has a natural embedding in C, which is known as the
Maskit slice. Here we restrict to the case γ = γ1/0, but it works for any p/q. For each w ∈ C,
define a representation σw ∈ (N) by

σw(a) =
(
iw i
i 0

)
, σw(b) =

(
1 2
0 1

)



Local Connectedness of Punctured Torus Groups 729

Proposition 2.3 (Bromberg). The map

w→ σw
is a homeomorphism from C to its image in (N, ′) where  ′ is the union of ∂Σ1.1 ×

[−1, 1] ⊂ N and the annular neightborhood of the simple closed curve γ1/0.

Now define the set  of C to be the preimage of AH(N, ′) under the map w → σw. It
then consists of two components, each of which is a jordan domain canonically isomorphic
to ̄ −{γ1/0}. Let + be the component that contains the preimage of MP0(N,), and label
the other component −. Also fix the orientation for N such that + contains w ∈ C with
Im w > 0. The set + is called the Maskit slice. There are some elementary facts about the
set  due to Keen-Series [7].

Proposition 2.4 (Keen-Series). (1) If w is in , then w + 2,−w and w̄ are in .
(2) The set  does not intersect R, and therefore + is contained in the upper half

plane.

Fig.1. The Maskit embedding in C. Figure courtesy of David Wright.

2.3. Pleating rays.
2.3. Pleating rays.

Let p/q ∈ Q. LetΩw be the unique invariant component of the region of discontinuity of
σw(π1(Σ1,1)). The p/q-pleating rayPp/q is the set of points w ∈+ so that the component
of the boundary of the convex core of H3/σw(π1(Σ1,1)) facing Ωw/σw(π1(Σ1,1)) is pleated
along the simple closed geodesic labeled by p/q. Keen and Series [7] showed that those
pleating rays, called rational pleating ray, give a partial foliation of  and can be extended
to real pleating rays so that it gives a coordinate system of  called pleating coordinate. As
we don’t need a full strength of the pleating coordinate system, we just list some properties
about rational pleating rays that we will use.

Proposition 2.5 (Keen-Series). For any p/q ∈ Q, the pleating ray Pp/q is non-empty.
Also, Pp/q ⊂ {μ ∈ : 2[p/q] ≤ Re μ ≤ 2([p/q] + 1)}
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Proposition 2.6 (Keen-Series). Pp/q meets ∂ only at a single point {w} for which Ωw/
σw(π1(N)) is conformally equivalent to thrice punctured sphere Σ−N(γp/q). Moreover, Pp/q

separates  into two connected pieces.

2.4. Bromberg’s local coordinate of AH(N,).
2.4. Bromberg’s local coordinate of AH(N,).

Bromberg provides a model space that is locally homeomorphic to AH(N,) near the
Markit slice. In this subsection we will give a brief construction of the model space and
some properties that we need. More details of the contents can be found in [3].

Fix a simple closed curve γ ∈ ∂N that is not homotopic into  . let  ′ be the union of 
and an annulus in ∂N whose core curve is homotopic to γ. Let b be a primitive element of
π1(N) that is freely homotopic to γ. Let W be an open solid torus in the interior of N whose
core curve is isotopic to γ. Let N̂ = N \W and let ̂ be the union of the preimage of  under
the inclusion of N̂ to N and the torus T = ∂W. Then π1(N̂) has presentation

〈π1(N), c | [b, c]〉
Now let σw be a representation of π1(N,) so that

σw(a) =
(
iw i
i 0

)
, σw(b) =

(
1 2
0 1

)

The relation that b and c commute then gives one-dimension complex parameter extension
of the representation σw to σw,z : π1(N̂)→ PSL(2,C) by

σw,z(c) =
(
1 z
0 1

)

Bromberg [3] showed that any representation of (N, ′) is conjugate to a representation
σw with the condition

σw(b) =
(
1 2
0 1

)

and if two representations σ,σ′ of (N, ′) are conjugate and satisfy

σ(b) = σ′(b) =
(
1 2
0 1

)

then their one parameter extension by z are also conjugate. Hence for each σw ∈ MP0(N, ′)
the map sending z to σw,z is well-defined. Now define the set σw ⊂ C by

σw = {z ∈ C | σw,z ∈ AH(N̂, P̂) and Im z > 0}.
Define  ⊂+ × Ĉ by

 = {(w, z) | z ∈ σw or z = ∞}.
The following theorem due to Bromberg show that the set  can be used for a local model
of AH(N,) at every point of MP(N, ′) ⊂ AH(N,)

Theorem 2.7 (Bromberg). For any w ∈ int() , there exist a neighborhood U of (w,∞)
in , a neighborhood V of σw in AH(N,) and a homeomorphism Φ : U → V.
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For convenience, we outline Ito’s summarization [6] about Bromberg’s construction of
the function Φ. See [3] for full details.

Given w ∈ int(), choose a neighborhood U of (w,∞) in  small enough so that the
following holds. Let (w, z) ∈ U. If z = ∞, then Φ(w, z) = σw. If z � ∞, the quotient
manifold

M̂w,z = H3/σw,z(π1(N))

has a rank-2 torus cusp whose monodromy group is generated by σw,z(b) and σw,z(c). Since
we choose U small enough, by the filling theorem due to Hodgson, Kerckhoff and Bromberg
(See Theorem 2.5 in [3]) M̂w,z is c-fillable for every (w, z) ∈ U. More precisely, there
is a complete hyperbolic manifold Mw,z that is homeomorphic to the interior of N and an
embedding φw,z : M̂w,z → Mw,z ,called the c − f illing map, which satifsfy the following
properties:

(1) the image of φw,z is equals to Mw,z minus the geodesic representative of
(φw,z)∗(σw,z(b)),

(2) (φw,z)∗(σw,z(c)) is trivial in π1(Mw,z), and
(3) φw,z extends to a conformal map between the conformal boundaries of M̂w,z and Mw,z.

Φ(w, z) is defined to be an element in AH(N,) associated to Mw,z with the following mark-
ing. Since the restriction of σw,z to π1(N) is equal to σw, the manifold Mw = H3/σw(π1(N))
covers M̂w,z. Denote the covering map by Πw,z : Mw → M̂w,z. Let fw : N → Mw be a ho-
motopy equivalence which induces σw. Then σw,z is defined to be a representation of π1(N)
into PSL(2,C) induced from the marking φw,z ◦ Πw,z ◦ fw : N → Mw,z. This σw,z is faithful,
and hence is contained in AH(N,).

3. Main theorem

3. Main theorem
By Theorem 2.7, we may turn our attention to local topology of . Here is the key

ingredient that describes the shape of neightborhood at a point σw ∈.

Proposition 3.1 (Bromberg). Let (w, z) be a pair of complex numbers with Im z � 0 and
let s be the sign of Im z. The representation σw,z is in AH(N̂, P̂) if and only if there exists an
integer n such that w − snz ∈+ and w − s(n + 1)z ∈−.

Together with the construction of  and the definition of , this gives a numerical
representation on  by

 = {(w, z) ∈+ × Ĉ | z = ∞ or z ∈ (
w +−

n
) ∩ (
w ++

n + 1
) f or some n ∈ Z}.

We do not treat the case when n = −1 or 0 because in each of those two cases z ∈
±w ++ hence it does not violate local connectedness. As Minsky showed that each
component of  is homeomorphic to a closed half plane, our interest relies the shape of the
set (w+

−
n ) ∩ (w+

+

n+1 ). From now on, we will denote it by w,n and call it the solution sets of
w.

Lemma 3.2.  is not locally connected at (w,∞) if and only if there exists some integer
n such that the solution set w,n contains a bounded component.

To prove lemma 3.2, first we need the following lemma.
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Lemma 3.3. If w,n � ∅, then w,n contains a bounded component if and only if w+∂
−

n is
not conained in w+

+

n+1

Proof. The only if case is clear. To prove the other direction, suppose (w+∂
−

n ) � (w+
+

n+1 )
while w,n is connected. Then there exists some point z ∈ ∂+ so that w−z

n �
w++

n+1 . Since
w++

n+1 is a closed subset of C and w−z
n is not contained in the set, there exists ε > 0 so that

Nε(w−z
n ) ∩ w++

n+1 = ∅.
Miyachi[15] showed that rational boundary points of the Maskit slice are simple zeros of

the trace function of accidental parabolic, which is intersection point of associated pleating
ray and the boundary of the Maskit slice. Since rational boundary points are dense in the
boundary of the Maskit slice, we may assume that the point z is now a rational boundary
point meeting a pleating ray Pp/q. Then by proposition 2.6, the pleating ray Pp/q separates
+ into two connected components A, B and intersects ∂+ only at z.

Since Im w++

n+1 is bounded below by Im w+ 3
2 i

n+1 while Pp/q goes to ∞ in the direction of
2(p/q) + ti, t > 0 (see 3.2, 5.1 and 5.3 of [7]), which implies w−Pp/q

n goes to ∞ in the
direction of (w−2(p/q))

n − ti, t > 0, w−Pp/q

n ∩w,n (possibly empty) consists of closed, bounded
components. Since w−Pp/q

n meets w+∂
−

n only at w−z
n which is not contained in w,n, the end

points of the component of w−Pp/q

n ∩w,n must lie on w+∂
+

n+1 . Let α be a bounded component
of w−Pp/q

n ∩ w,n. As the end points of α lie on w+∂
+

n+1 , there is bounded subarc β of w+∂
+

n+1
with the same end points. By proposition 2.5 and the bound on the real part of single period
of the Maskit slice, the real parts of α and β are both bounded. This implies that the real
parts of the region bounded by α and β are bounded and the bound does not depend on the
choice of α and β.

Now suppose z1, z2 be points in A and B respectively so that w−z1
n ,

w−z2
n are both contained

in w,n. Let γ be a path in w,n joining w−z1
n and w−z2

n . Since γ ⊂ w,n ⊂ w+−
n , γ must

intersect w−Pp/q

n ∩ w,n. Hence if w−Pp/q

n ∩ w,n = ∅, it directly leads to a contradiction. Now
suppose w−Pp/q

n ∩ w,n � ∅ and let α be a component of w−Pp/q

n ∩ w,n that γ meets after
starting from w−z1

n and take β for α as above. Since w,n is invariant under z→ z+ 2, the real
part of z1 can be chosen so that w−z1

n is not contained in the region bounded by α and β. Then
γ cross α and enters the region, whose real part is uniformly bounded. Similar arguement
about z1 guarantees that z2 can be chosen appropriately so that w−z2

n is not contained in the
bounded region, hence γ must exit the region. Since γ ⊂ w,n, γ cannot cross β and hence
it cross α again. This implies that once γ cross some subarc of w−Pp/q

n , it cross given subarc
again and return to initial situation. By our choice of z2, it implies γ cannot join w−z1

n and
w−z2

n , a contradiction. �

Proof of Lemma 3.2. Since w,n is the intersection of translated and scaled copies of
+ and − both of which are invariant under the translation action that sends z to z + 2,
it is easy to see that either w,n is connected or contains a bounded component. Hence if
there exists no such integer n, then w,n is connected for all n ∈ Z, which gives  is locally
connected at (w,∞). This gives one direction.

Suppose w,n contains a bounded component for some integer n. Since w,n is invariant
under the translation action z→ z+2, it implies that all the translated images of the bounded
component are contained in w,n, hence any neighborhood of ∞ contains infinitely many of
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them. To complete the proof, we must show that it happens in some neighborhood of (w,∞)
in ,or equivalently show that there exists ε > 0 such that

⋃
w′∈Nε (w) ({w′} × w′,n) contains a

bounded component.
Note that if we translate w to w + v, the solution set w,n = (w+

−
n ) ∩ (w+

+

n+1 ) goes to
w+v,n = (w+v+

−
n ) ∩ (w+v+

+

n+1 ), which shows that w+v,n is nothing but translate one half
plane in the direction of vn and another in the direction of v

n+1 ,or equivalently translate one
half plane in the direction of v

n(n+1) relative to the other. Since w,n contains a bounded
component, by lemma 3.3 there exists a rational boundary point z ∈ ∂+ and ε1 > 0
small enough so that Nε1 (

w−z
n ) ∩ w++

n+1 = ∅. Above observation then shows that for any
w′ ∈ Nn(n+1)ε1 (w), w

′−z
n � w′++

n+1 . By Lemma 3.3, this implies w′,n contains a bounded
component.

It only remains to show that the product of those bounded components in small neigh-
borhood of w is still bounded in . Our main idea is similar to the Bromberg’s rectangular
arguement in [3] with the fixed pleating ray w−Pp/q

n as the role of its vertical length, where
Pp/q is the pleating ray associated to the chosen rational boundary point z in ∂+.

Note that in the proof of Lemma 3.3, we observed that the intersection between w−Pp/q

n

and w,n is contained in a compact, rectangular region {z ∈ C | Im w+ 3
2 i

n+1 ≤ Im z ≤
Im w− 3

2 i
n , Re (w−(2[p/q]+2)

n − 2) ≤ Re z ≤ Re (w−2[p/q]
n + 2)}. Thus in the remaining of

the proof, Without lose of generality, we may consider only two period of w,n under the
translation action z→ z + 2 to guarantee compactness.

Claim 1. The number of components of w,n that intersect w−Pp/q

n is finite.

Proof. Since the pleating ray w−Pp/q

n intersects w+∂
−

n only at w−z
n , w−Pp/q

n \ Nε1 (
w−z

n ) has
compact intersection with the rectangular region above and is disjoint with the closed subset
w+∂−

n of C. Hence there exists ε2 > 0 such that ε2 neighborhood of w−Pp/q

n \ Nε1 (
w−z

n ) is
disjoint with w+∂−

n . Since Nε1 (
w−z

n ) ∩ w++

n+1 = ∅, w−Pp/q

n ∩ w,n ⊂ w−Pp/q

n \ Nε1 (
w−z

n ) so
we may replace the given pleating ray to its compact subarc whose ε2 neighborhood misses
w+∂−

n while intersection with w,n is unchanged.
Suppose the number of components of w,n that intersect w−Pp/q

n is infinite. Take some
infinite sequence {Ci} where Ci is the intersection of w+∂

+

n+1 and some component of w,n
intersecting w−Pp/q

n . Since + is jordan domain, we may consider a homeomorphism f :
R→ ∂+ and the inverse image of {Ci} under the mapping f . It consists of closed subarcs
in bounded region of R, hence there exists subsequence that converges to some point. The
image of such limit point under f is contained in the pleating ray, as the pleating ray is
closed and {Ci ∩ w−Pp/q

n } converges to the same limit point of {Ci}. But since each Ci is the
boundary of some connected component of w,n, its boundary points ∂Ci must lie in w+∂

−
n ,

which lies outside of ε2-neighborhood of the pleating ray. This implies the limit point of
{Ci} can not be contained in w−Pp/q

n , a contradiction. �

Claim 2. There exists ε, ε′ > 0 such that for any w′ ∈ Nn(n+1)ε(w), w′,n ⊂ Nε′(w,n)

Proof. By claim 1, we may denote w,n as w,n = D∪ (∪n
i=1Di) where Di is the component
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of w,n that intersects the pleating ray and D is the union of remaining components in two
period of w,n. As D and Di are pairwise disjoint compact subsets of C, there exists ε3 > 0
small enough so that ε3 < ε1 and N3ε3 (D), N3ε3 (Di) are pairwise disjoint. We further assume
that ε3 is so small so that N3ε3 (D) is disjoint with the pleating ray.

Let t = w+∂
−

n \ Nε3 (w,n) and s = w+∂
+

n+1 \ Nε3 (w,n). Then both t and s consist of finite
subarcs of w+∂

−
n and w+∂

+

n+1 respectively, otherwise there exists two infinite sequence {t j},
{d j} of w+∂

−
n with t j ⊂ t, d j ⊂ D for each j ∈ Z ({s j}, {d′j} for s j ⊂ s, d′j ⊂ D respectively)

whose inverse images under the homeomorphism f : R → w+∂−
n ( f : R → w+∂+

n+1 respec-
tively) appears alternately in a compact subset of R, hence converges to the same limit point
which implies all but finite of {t j} lie in Nε3 (w,n), contradiction. Since each t and s consists
of finite compact sets, there exists ε4 > 0 such that ε4 neighborhood of t ∪ s are disjoint
componentwise.

Now let ε = min(ε3, ε4) and ε′ = 3ε3. Suppose w′ ∈ Nn(n+1)ε(w), or equivalently w′ =
w + n(n + 1)δeiθ for some δ < ε. Then for any x′ ∈ w′,n, after taking translation z →
z − (n + 1)δeiθ to fixing one copy of the Maskit slice w+

−
n , x′ ∈ w++

n+1 + δe
iθ. This gives

x = x′ − δeiθ ∈ w++

n+1 .

Case 1. x ∈ N2ε3 (w,n)
In this case, since d(x, x′) = δ < ε ≤ ε3, x′ ∈ N3ε3 (w,n) = Nε′(w,n)

Case 2. x � N2ε3 (w,n)
Since x ∈ w++

n+1 , it must be the case x � w+
−

n . On the other hand, since x′ = x + δeiθ ∈
w+−

n , we have Nε(x) ∩ w+−
n � ∅. It implies Nε(x) ∩ w+∂−

n � ∅ which gives Nε(x) ∩ t � ∅,
otherwise by definition of t, Nε(x)∩ w+∂−

n ⊂ Nε3 (w,n) which tells that x is within ε+ε3 ≤ 2ε3
of w,n. It leads to a contradiction. Also Nε(x) ∩ w+∂+

n+1 � ∅, since if not, then x ∈ w++

n+1
implies Nε(x) ⊂ w++

n+1 , but then x′ + δeiθ ∈ Nε(x′) ⊂ w++

n+1 + δe
iθ, or equivalently x′ ∈ w++

n+1 ,
which implies that x′ ∈ w,n. It implies that Nε3 (x) ∩ w,n � ∅, which is a contradiction.
The similar areguement in the case t then guarantees that Nε(x) ∩ s � ∅. Since both t and s
intersects Nε(x), their ε4 neighborhood intersect at x, contradicts to our choice of ε4. �

We claim that U =
⋃
w′∈Nn(n+1)ε (w) {w′} ×w′,n contains bounded component, which implies

that, since second coefficients are invariant under the translation action z→ z + 2, any open
subneighborhood of (w,∞) in U contains infinitely many components, which completes the
proof.

Suppose, for a contrary, that U is connected. As the second coefficient is invariant under
the translation action, for convenience we may assume z1, z2 are points in the proof of lemma
3.3 satisfying (w, z1), (w, z2) ∈ U. Any path γ joining (w, z1) and (w, z2) in U must cross w−z

n
in some slice w′,n. Since w′,n ⊂ Nε′(w,n) whose intersection with the pleating ray is
admitted only at {Nε′(Di)}, the path γ cross the pleating ray in the subarc w+z

n ∩ Nε′(Di)
for some i. Since Nε′(D), Nε′(Di) are pairwise disjoint and whenever w′ ∈ Nn(n+1)ε(w) the
solution set w′,n is contained in Nε′(D)∪{∪iNε′(Di)}, γ cannot get across the boundary of the
closure of Nε′(Di) . Uniform bound on the real part of Nε′(Di) is also clear. Then by similar
arguement in the proof of Lemma 3.3 with replacing Nε′(Di) in place of the component of
w,n, we lead a contradiction. �
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By Lemma 3.2 and 3.3, we have seen that whether  is not locally connected or not at
some point (w,∞) in the Maskit slice depends only on the shape of the solution set w,n. It is
an easy observation that the condition (w+∂

−
n ) � (w+

+

n+1 ) is satisfied only when (w+∂
−

n ) ∩
(w+∂

+

n+1 ) � ∅. This condition can be solved in the following way.
Suppose (w+∂

−
n )∩ (w+∂

+

n+1 ) � ∅ and let z ∈ (w+∂
−

n )∩ (w+∂
+

n+1 ). This gives z = w−u
n =

w+v
n+1

for some u, v ∈ ∂+. If one solve it, one obtains w = (n + 1)u + nv and z = u + v. Let
Bn = {w ∈  | w = (n + 1)u + nv f or some u, v ∈ ∂+} = (n + 1)∂+ + n∂+ and let
B =

⋃
n∈Z−{−1,0} Bn. We now state our main theorem.

Theorem 3.4 (Main theorem). If AH(N,) is not locally connected at σ, then σ = σw
up to conjugate in PSL(2,C) for some w ∈ B. The converse holds in the sense of almost
everywhere. That is, B contains the set of the representations at which AH(N) is not locally
connected as a dense subset.

Proof. By Theorem 2.7, AH(N,) is not locally connected at σw ∈ AH(N, ′) if and only
if  is not locally connected at (w,∞). Lemma 3.2 and the previous arguement shows that
it happens only when w ∈ B. The following theorem due to Ma[10] then gives those are the
only possible choices of local disconnectedness, since AH(N,) consists of two components
and hence local disconnectedness implies phenomenon of self-bumping. This gives one half
of the proof.

Theorem 3.5 (Ma). If σ ∈ AH(Σ) is a self-bumping point, then σ is geometrically finite
and has exactly one accidental parabolic class.

To show the remaining part, suppose w ∈ B. We will show that for any neighborhood of w,
it contains a point w′ such that  is not locally connected at (w′,∞). Now fix a neighborhood
Nε(w) ⊂ +. Since w ∈ B, we can write w as w = (n + 1)u + nv for some n ∈ Z and for
some u, v ∈ ∂+. Moreover z = u + v ∈ w,n corresponds to the point of w,n where w+∂

−
n

and w+∂
+

n+1 intersect. Since + is closed in C and z lies on the boundary of its scaled and
translated copy, there exists some point z + δ

n(n+1) ∈ N ε
n(n+1)

(z) such that z + δ
n(n+1) �

w++

n+1 .
Hence for w′ = w + δ ∈ Nε(w), the previous observation gives w

′+∂−
n � w++

n+1 since
z + δn ∈ w+∂

−
n + δn =

w′+∂−
n but z + δn = z + δ

n(n+1) +
δ

n+1 �
w++

n+1 +
δ

n+1 =
w′++

n+1 . Thus by
lemma 3.2 and 3.3,  is not locally connected at (w′,∞). This completes the proof. �

4. A geometric question related to numerical data

4. A geometric question related to numerical data
It is quite natural to ask that the local connectedness is a geometric property. That is, one

can check whether AH(N) is locally connected or not at the given representation σ by using
only geometric condition. In this section we will give an observation that there is some
geometric condition that locally disconnected points enjoy but is too week to convince the
question is supposed to be true.

Note that each component Bn of B is an annulus, as it is a continuous image of R2 and is
homotopic to a scaled and translated copy of the jordan curve ∂+. One can see that each
Bn has two disjoint boundaries one of which consists of the points whose solution set has
an empty interior, and the other consists of the points that  is locally connected. since the
set of points for which  is not locally connected is the dense subset of B, the boundary
of Bn associated to the locally connected points must be contained in the boundary of the
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set of local connectedness. It tells that those jordan curves take the role of barometa for
local connectedness of . Hence we can replace the question to the following one; do those
jordan curves come from geometric data? Unfortunately, it is hard to parametrize the points
on the boundary component ∂+Bn explicitly.

Now we turn to geometric observation on the solution sets. By the construction in [3], the
pair (w, z) ∈  with z � ∞ is mapped to a representation σw,z ∈ AH(N) which uniformizes
a quasi-fuchsian group determined by two conformal marking, which are associated to the
conformal boundary of σw−nz, σw−(n+1)z ∈ AH(N, ′) that are not pair of pants, respectively.
If one takes the translation action z → z + 2 on the second coordinate of (w, z) for m times,
it effects on the conformal boundary of σw−nz by Dehn twist along γ∞ nm times and on the
conformal boundary of σw−(n+1)z by (n + 1)m times. By Ito’s result[5] it corresponds to the
sequence that converges exotically near σw.

Note that if w ∈ Bn and hence two boundary curves of w,n intersect, then for any z ∈ w,n,
either w − nz ∈− or w − (n + 1)z ∈+ close to the boundary of the Maskit slice in uni-
form sense. If we take the Maskit slice to the upper half plane by Matthews biholomorphic
identification of teichmuller space of punctured torus [11], it gives uniform upper bound on
the imaginary part, which encodes length condition on γ. It implies that there exists some
weak geometric condition for w ∈ Bn; if w ∈ Bn, then σw ∈ AH(N) is an exotic limit point
of the sequence of quasi-fuchsian group q f (τnmX, τ(n+1)mY) where τ is the Dehn twist along
simple closed curve γ, X, Y ∈  and either in X or Y , the length of γ is uniformly bounded
below. This gives a weak geometric condition for local disconnectedness. Note that such
condition appears in local connectedness of the linear slices, see [6],[9].

Question 4.1. Is there a geometric property that determines local connectedness of ?

Acknowledgements. We would like to thank to the referee for various useful comments
on our original manuscript.
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