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Abstract

We establish invariants for the trace map associated to a family of 1D discrete Dirac operators
with Sturmian potentials. Using these invariants we prove that the operators have purely sin-
gular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters
that define the potentials. For rotation numbers of bounded density we prove that these Dirac
operators have purely a-continuous spectrum, as to the Schrodinger case, for some a € (0, 1).
To the Sturmian Schrédinger and Dirac models we establish a comparison between invariants
of the trace maps, which allows to compare the numbers a’s and lower bounds on transport
exponents.

1. Introduction
In this paper we study spectral properties for the family of discrete Dirac operators

me* + Ve, cD”
o)) Digp(m, ) = Do(m, c) + Vagplr =
cD —mc* + Vg,

acting on £3(Z,C?), with almost periodic Sturmian potentials V, 4,. Here m > 0 is the mass
of a particle in the lattice Z, ¢ > 0 represents the speed of light and D* is the adjoint of
the operator D with (Dg)(k) := @(k + 1) — ¢(k), k € Z. The operators D, ,(m, c) act on
Y= ( v ) € (*(Z,C?) as follows
%)
¢ Walk = 1) = Ya(k)) + (mc? + Voo, (k) 1 (k)
[ D (m. )| (k) =
Wk + 1) = y1(0) + (-mc® + Vg, (0)) o)

and the potentials V4, : Z — R are given by
2 Vagpek) = A x1-0,y(k6 + p mod 1)

where 4 € R\ {0} is the coupling constant, 8 € (0, 1) is an irrational rotation number,
p € [0,1) is the phase and y; denotes the characteristic function of an interval / c [0, 1).
Important properties of the Sturmian potentials (2) can be found in [2, 10, 11]. The operators
D, 6,0(m, ¢) are bounded self-adjoint operators on 3(Z,C?).
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The Sturmian Dirac model (1) can be interpreted as a relativistic version of the usual
Schrédinger operator on £2(Z), given by
3) (Hpop 9)(k) = ﬁ [Pk + 1) + ¢k — D] + Vi, (k)(k)
for mass m > 0 and potentials Vﬂ’g’p(k) = Vaiep(k) — 1/m. In fact, by Theorem 1 in [15]
the nonrelativistic limit (¢ — o) of the resolvent of each Sturmian Dirac operator (1) is
the resolvent of the corresponding Sturmian Schrédinger operator (3) (when projected on a
proper subspace). The family of operators H, 4, given by (3) has been intensively studied
and used to describe spectral properties of one-dimensional quasicrystals (see [2, 6, 10,
12]). It is well known [10] that each H, 4, has purely singular continuous spectrum of zero
Lebesgue measure and for a number 6 of bounded density (see the definition in (5)), Hig,p
has purely a-continuous spectrum, for some @ € (0,1). In this paper we show that the
family of Sturmian Dirac operators D, g ,(m, ¢) defined by (1)-(2) also present these spectral
properties (see Theorems 1.1 and 1.2 below).

Spectral properties for discrete Dirac operators Dy (m,c) = Dy(m,c) + VI, of type (1)
has been studied in [5, 15], but with sparse and random potentials V. In [5], it was con-
sidered sparse potentials with randomly distributed positions; the authors have determined
the Hausdorff dimension of the spectral measure and they showed that there is a sharp
transition between pure point and singular continuous spectra. In [15], it was considered
random Bernoulli potentials taking two values; for almost all realizations and for all val-
ues of the mass, it is shown that its spectrum is pure point. For periodic potentials V), it
can be shown, adapting ideas from the Schrédinger context [25], that the Dirac operators
Dy, (m, c) = Do(m,c) + V, 1, of type (1) has purely absolutely continuous spectrum. Along
the aperiodic cases, several classes of potentials have been studied for discrete Schrodinger
operators. These classes include potentials generated by circle maps [14], potentials gener-
ated by substitutions [1, 4, 7, 9] and in special the Sturmian potentials [2, 6, 10, 11], which
lead to purely singular continuous spectrum. Here we are interested in studying this last
class of potentials from a relativistic point of view (i.e. for the Dirac model), and we also
consider the case of mass m = 0, which is not included in the Schrédinger context.

To study spectral properties for the Dirac operators (1)-(2), we follow the usual path of
the context of Schrodinger operators, that is, the construction of the trace map and associated
invariants (see Section 2). Although the trace map x; for Sturmian Dirac model satisfies a
recursive relation similar to the Sturmian Schrédinger case (Proposition 2.1-(1)), the different
forms of the transfer matrices for discrete Schrodinger and Dirac models lead to different
invariants for trace map. For the Sturmian Dirac model the invariants are functions that
depend continuously on the energy E and are given by

A2 223 By (/14 - 2m2c4/12) 2y 2m*ct A omPct

(D) _ 4 4
IP(E) = “E'-= - ——E - Pl

o 6

C C Cc C

+ (m402 + 4m2) 2+ 4,
while in the case of Sturmian Schrédinger model these invariants are constants in the en-

ergy E’ and they are given by (for more details see Proposition 2.1 below and their remarks)

IOE) = dm* 2% + 4.
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The different expressions of these invariants is one of the motivations for our spectral study.

Let 6 € (0,1) be irrational and consider on T = [0, 1) the rotation Ry : T — T given
by Ry(p) = p+6 mod 1. The dynamical system (T, Ry) is strictly ergodic (i.e. uniquely
ergodic and minimal) with the Lebesgue measure on T as the ergodic measure. Note that the
Sturmian potentials (2) can be written as V) 9,(k) = f(R’g(p)), where f : T — R is the men-
surable function given by f(0) = A x{1-6,1(p). Thus, for m > 0, A and 6 fixed, the family (in

p) of Dirac operators {]D 1,0,0(m, c)} is strictly ergodic. Therefore, the spectral properties

of Dy,9,(m, ¢) are independent of [/))E[gélr) Lebesgue almost every p. Due to minimality, there
exists a set X, o(m) C R such that the spectrum of D, g ,(m, ¢) equals X, 4(m) for all p € [0, 1).
Using the invariants IlgD) (E) described above, we show (Theorem 3.1) that X, 4(m) coincides
with the set of zeros of the Lyapunov exponent. By a result of Kotani in [19], extended to the
Dirac model (Theorem 4.1), we conclude that X 4(mm) has zero Lebesgue measure and there-
fore, for any A, 6 and m > 0, the absolutely continuous spectrum of D, g ,(m, ¢) is empty (see
Theorem 4.2). Due to specific properties of the Sturmian potentials V, 4, and using again
the invariants I,((D )(E), we also obtain uniform absence of eigenvalues (see Theorem 5.1).

The following theorem is the first main result of this paper, which describes the spectral
type of the Dirac operators D, g,(m, ¢) defined by (1)-(2). This result will be proven in the
Section 5.

Theorem 1.1. Fix m > 0. For every A, 0, p, the operator D, g ,(m, c¢) has purely singular
continuous spectrum supported on a set of zero Lebesgue measure.

This theorem says that we have a new class of almost periodic relativistic models with
purely singular continuous spectrum of zero Lebesgue measure.

Our second goal is establishing Hausdorff-dimensional properties of spectral measures of
the operators D, ¢ ,(m, c). The definitions of continuity and singularity of a Borel measure
with respect to Hausdorff measure appear in Section 6.

Given 0 € (0, 1) irrational, we consider its expansion in continued fractions (see [2, 18]):

1
9: :[al’a25a37"']

a; +
! 1

a3+

ar +

with uniquely determined a; € Z* = {1, 2,...}. The best rational approximations associated

Pr - [ai,...,a;] are defined by

qk
“) po=0, pi=1 px=api1 +pro fork=2,
go=1, q=a, q=aqi1+qio fork>2.
Recall that @ is called a bounded density number if the following condition holds [10]:

N

1
©) d(0) :=limsup — » a; < co.
N—ooo N =1

Using properties of the Sturmian potentials and the invariants 7 ,ED )(E), we establish upper
and lower bounds on the growth of solutions of the eigenvalue problem D, ,(m, c)¥ = EY
(see Propositions 7.1 and 7.2), which allows us to obtain purely a-continuous spectrum
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for the Dirac operators D, ,(m,c) by a general method described in Theorem 7.1. This
method is well known for discrete Schrodinger operators (see Theorem 1 in [10]) and here
is extended to Dirac operators. The second main result of this paper, which will be proved
in Section 7, is the following.

Theorem 1.2. Fix m > 0 and let 0 be a bounded density number. Then, for any A # 0
there exists a = a(m, A,0) € (0, 1) such that for all p € [0,1) and ® € (>(Z, C?), the spectral
measure for the pair (D, ,(m, c), @) is purely a-continuous, that is, D, ,(m, c) has purely
a-continuous spectrum.

A consequence of Theorem 1.2 is that for the set of numbers 6 of bounded density and for
any A # 0, p € [0,1) and m > 0, the spectrum o(D,g,(m, c)) is a set of positive Hausdorff
dimension. In fact, the positive numbers a’s obtained in Theorem 1.2 are lower bounds for
the Hausdorff dimension of o-(ID,,(m,c)). In Section 8 we compare these numbers a’s
obtained for the Schrodinger and Dirac models with Sturmian potentials (see relations (36)
and (37)).

Although our spectral results (Theorems 1.1 and 1.2) are similar to the corresponding re-
sults obtained in [10] for Sturmian Schrédinger operators, the extension to the Dirac setting
is not immediate and the proofs present important nontrivial parts. We highlight below the
main points that motivated us to study similar properties for the Sturmian Dirac model.

e First of all, as previously mentioned, the different expressions of the invariants
I,ED)(E) and I,ES)(E’). It is important to point out that I,ED)(E) play a central role in
the proofs of Theorem 3.1, Corollary 3.1, Lemma 5.1 and Propositions 7.1 and 7.2;
these results are used to prove Theorems 1.1 and 1.2. Moreover, a comparison be-
tween I,ED)(E) and I,({S)(E’) is developed in Section 8 (see relations (32) and (33)),
which allows us to compare for such models the values of @’s mentioned above and
lower bounds on transport exponents.

e For Dirac operators with periodic potentials their spectra are purely absolutely con-
tinuous and can be characterized by boundedness of traces of transfer matrices, as in
Schrodinger case; such result is used in periodic approximations in Proposition 3.1.

e The validity of a result of Kotani for Dirac operators (Theorem 4.1), whose long
details are not reported here.

e The different representations of the m-functions (see Section 6) and the version of
the Jitomirskaya-Last inequality for discrete Dirac operators (Lemma 6.1), which
are used in the proof of Theorem 7.1.

The organization of this paper is as follows. In Section 2 we establish the trace map
associated with Sturmian Dirac model and invariants for this map. In Section 3 it is shown
that the spectrum of Sturmian Dirac operators coincides with the set of zeros of the Lyapunov
exponent. In Section 4 we establish zero Lebesgue measure spectrum and empty absolutely
continuous spectrum for all Sturmian Dirac operators. In Section 5 we establish absence of
point spectrum for all Sturmian Dirac operators and we present the proof of Theorem 1.1.
In Section 6 we introduce the m-functions for discrete Dirac operators, we present their
relation with spectral measures, Jitomirskaya-Last inequality for discrete Dirac operators
and recall the definitions of @-singular and a-continuous Borel measure. In Section 7 we
extend to Dirac operators a criterion to establish a-continuity of spectral measures of a
whole-line Dirac operator from power-law bounds on the solutions of a half-line and so we
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prove Theorem 1.2. Finally, Section 8 is dedicated to comparison of the invariants of the
trace maps, of the dimension estimates and of lower bounds on exponents of transport, for
Sturmian Schrédinger and Dirac models.

2. Sturmian Dirac Trace Map and Associated Invariants

In this section we discuss the trace map associated with the Sturmian Dirac model (1)-
(2). In first place, we need to recall the local structure of Sturmian sequences. The Sturmian
words S over the alphabet A = {0, A} are defined by

(6) So=0, S;=0""2 Sp=8SF'Sy fork>1,

where the numbers a;’s are the coeflicients of the continued fraction expansion of 6. By
definition, S is a prefix of Sy, for each & > 1 and has length |S;| = g — oo. Itis
known [2, 12] that the one-sided infinite sequence defined by w, = lim;_ Sk coincides
with the potential sequence {V,90(k)}rez+ defined by (2).

Consider the Sturmian Dirac operators D, g ,(m, ¢) defined by (1)-(2). If ¥ = ( Zl ) isa
2

solution of the eigenvalue equation

(7) D), (m, ¥ = E¥
with £ € R, then for k > 1,

Yk +1) Yi(1)
© ( i ) =T (B Vagy ()T (m. . V""”’(l))( 1(0) )
where

mict = (E = V)? mc* +E -V
c? c

1+

T(m,E,V) =
me* —(E-V)
c

1

Fixed mass m > 0 and energy E, for each word w = wy - --wy € AX, we define the transfer
matrix

M(m,E,w) :=Tm,E,wy)---T(m, E,w).
Thus, if ¥ is solution of (7), then by (8) we have
©9) Pk +1) = M(m, E, Vag,(1) - Vag,(k)P(1), k=1,

Yi(k+1) )
va(k) )

Fixed m, E, A, 6 and taking p = 0, we consider the notation

with P(k + 1) :(

My = M(m,E,V,90(1)---Vigo(qr)
= T, E,Vagolgr)---T(m,E,Vygo(l)), k=1,

and we define the matrices
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mc* —E2 mc*+E
1+

c? c
My = T(m,E,0) =
mc? — E
1
c
and
M., = T(m,E,A)T(m,E,0)"
- Amc* + E - Q) 4 - (mc? + E)mc*> + E — Q)
c? c c?
Pl A(mc? + E)
-z 1= —
c c
‘We note here that

My € SL(2,R) := {B € M (R) : det(B) = 1}, Vk > —1.
Using (6) one obtains the following recursive relation for the matrices Mj:
(10) My = Mo M, k> 0.
Now consider the Chebyshev polynomials Uy(x), x € R, defined by
(11) U_i(x)=0, Upx)=1, Ur(x)=xUi_1(x) = Ugp(x) for k> 1.

For these polynomials, the quantity Uy Uy_» — U?_, is constant in k:

k-1
(12) UlUia - Ul =U U - U} =-1, YkeZ'.

Given a matrix B € S L(2,R) and using (11) one shows by induction on k that (see [2])
(13) B = Up1(tr (B))B — Upa(tr (B) L,

where tr (B) denotes the trace of the matrix B.
The following result establishes a recursive relation and invariants for the traces of the
matrices M, defined above.

Proposition 2.1. Let {x;};>_1 be the sequence defined by x;, := tr (M},).
() If lxx_1| > 2 for k > 1, then

Uy, (x5-1) Uap,—1(x1)

(14) Xir1 = Uam—l(xk)mxk = Ugypy2(x1) X021 — Uak—l(xk—l)Xk_z )

(ii) The quantity

(15) I;ED) 1= X7, + X+ [ (MM 1)) = Xpsr ¢ tr (MM )

is constant in k and

2
7 = o o A
k -1 cb c6

+ (m4c2 + 4m2) 2 +4

4
o E- cf’/l

243 4 (/14 - 2m2c4/12)E2 . 2m*cr 3 omiet
6
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forallk > —1.

Remarks: 1. We call the recursive relation (14) Sturmian Dirac trace map, which is analo-
gous to Schrodinger case (Proposition 2 in [2]). In (i) the hypothesis |x;_1| > 2 implies that
Ug—1(xi-1) # 0.

2. In the particular case of Fibonacci potential V4, where 6§ = (\/5 —1)/2,one has aq; = 1
for all k € Z*, and the relation (14) becomes X1 = XgXr_1 — Xk_2.

3. The quantities I,ED) = I,ED)(m, ¢, E, 2), defined in (15), are the Dirac invariants for the
trace map. Fixed m, ¢ and A, I]ED) can be seen as a polynomial function of the energy E; in
this case to emphasize the dependence on the energy E, we write I,({D>(E ). For the Sturmian
Schrédinger model (3), these invariants are constant in the energy E’ and takes the values
I]ES)(E’) = 4m>A° + 4 (see [2] for mass m = 1/2). In Section 8 we compare IE?)(E) with
I(_Sl)(E’) for energies E, E’ in the corresponding spectra (see relations (32) and (33)).

4. For fixed m > 0,4 and E we can obtain, via nonrelativistic limit, the invariants of the
Schrodinger trace map from the Dirac invariants:

lim (I = m*c?A%) = 4m? % + 4 = 1.

c—00

Proof of Proposition 2.1:
(i) The recursive relation (14) follows from relations (10)-(13). For more details see [2].
(ii) For matrices A, B € S L(2, R) the following properties are valid:

tr(AB) = tr (A)tr (B) - tr (AB™'), tr(AB)=1tr(BA) and 1r(A™')=1tr(A).

Using these properties for the matrices M}, we have

tr (Mk_+11Mk_1Mk+1Mk) tr ((MkMkH)_l) tr (M My) — tr (Mo MMM )

= [tr (M MO = tr (MM,

= [tr (Mo MO = tr (M) tr (MM, ) + tr (M)

= [tr (MM = tr (M) [tr (MM )t (M) — tr (M)]
+[tr (Mys1)])* =2

= Xy + 3+ [0 (MM = X 0 (MgMig) = 2

S )

On the other hand, using the recursive relation (10), we can obtain that

r (MM M My) = e (M MM M)

-1
tr (Mk—lMZk+]+l (M;:kﬂ) Mk_—llMI:I)

tr (M M My M)
— (D)
= 1" -2

Therefore, IIED) = I,il_); = IE?), Vk > 0, that is, I,ED) is constant in k.
To conclude the proof, let us calculate this invariant:
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I = 1% = 3+ %+ [tr (Mo Mo = xox-y tr (M Mo)
24_E22 /122 24—E—/122
_ (2+L) +(2__) +(2+u)

c? c?

2.4 2 2 2.4 (5 2
_(2+mc E)(z_/l_)(2+mc (E /l))

c? c?

2+

c? c?

A2 (2+ m2c* —E2)(2+ m2c* —(E—/l)z)

m?c* — (E — 1)? ~ (2+ m2c* —E2)

* 2 c? c?

(E-)* 2EXE-1° E* A AmPt A = 2E - )22 = 2E% Q7
= - +—+4+—=+

ct c4 ct c4 ct
m*e3 A% — m2cA A2 [(E — )+ EZ] + E2(E - )22

+ C6
_ A—:E“ ) 2_/23153 N (/14 _ 2,,:204/12)E2 N 2m224/13E ) mz()c4/14

C C C C C

+ (m4c2 + 4m2) A% +4.

The next result is a version of the Proposition 4 in [2] for the Sturmian Dirac model (1).
We omit the proof, since this can be done as in [2] using Chebyshev polynomials (11) and
Proposition 2.1.

Proposition 2.2. The sequence {x;}x>—1, with x; = tr (My), is unbounded if and only if
g1l <2, gl > 2, xggerl > 2
for some ko > 0. This number ky is unique, it holds that

Xk+111%
IXesa] > "”2& >2 fork >k

and

% > C%  for some C > 1,

with qy. the positive integers given in (4).
If {xx}i>—1 is bounded, then

bl <2+ 4+ 1D fork> -1,

where IE?) = I(_lf)(m, ¢, E, ) is given by Proposition 2.1.

3. Spectrum and Vanishing Lyapunov Exponents

In this section our goal is to show that the spectrum (r(D,w,p(m, c)) = X 9(m) of the
Sturmian Dirac operators (1)-(2) coincides with the set of zeros of the Lyapunov exponent.
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Fixedm > 0, 4 € R\ {0} and 6 € (0, 1) irrational, we denote X y(m) by X.

By the subadditive ergodic theorem [3], for each E € C there exists a number ['(E) > 0,
called Lyapunov exponent, such that for almost every p € [0, 1) with respect to Lebesgue
measure,

1
T(E) := lim +In[|Mn, E, Vigo(D)- - Vago k)]

where M(m, E,Va,(1)---Vae,(k)) are the transfer matrices of the relation (9). We note
that the Lyapunov exponent I' = I'(E) is a function of E € C.
Now, we consider the set Z of real zeros of the Lyapunov exponent function, that is,

Z={EeR:I(E)=0}
The main result of this section is the following.

Theorem 3.1. Let D, ,(m, c) be the Dirac operators defined by (1)-(2). For any A,6,p
and m > 0, we have ~ = Z.

Consider the stable set

B:{EGR: bl <2+ 44+ 10 forallkz—l},

where I(_ll)) = IEL]))(m, ¢, E, ) is given by Proposition 2.1.

The proof of Theorem 3.1 use ideas of [2, 8] and will be obtained from the next three
Propositions. In fact, combining these propositions we get the following chain of inclusions
¥ Cc B c Z c %, which proves the theorem.

Proposition 3.1. X C B.

Proof. Form > 0, 4 € R\ {0} and 6 € (0, 1) irrational, consider the operator D, ¢ o(m, ¢) on
{*(Z,C?), defined by (1). Let {D, 4,0(m, ¢)} 1 be the sequence of g,-periodic Dirac operators
on ¢*(Z,C?), defined by (1), with potentials V, 4, o defined by (2), where 6; = p/qy is the
best approximation to 6 given by (4). These potentials V4, ¢ are periodic with period g,
taking the values Sy = V,0(1) - Vag.0(gx) on its period, and o (D, 4, 0(m,c)) = {E € R :
|xx] < 2}. We have that D, o(m, c) is the strong limit of D, 4, o(m, ¢) as k — co. Denoting
Qr =R\ o(Dyg,00m,c)) ={E € R: [x¢] > 2}, it follows from Theorem VIII.24 in [24] (see
also [28]) that

(16) U Int

NeN

c X,

Mo

k>N

where Int(Q) denotes the interior of a set Q and X = R\ X.
Using Proposition 2.2 and (16), we obtain

B C UInt

NeN

c X,

Mo

k>N

which implies the result. m|
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Proposition 3.2. B C Z.

Proof. Fix m, A, 0 and pick some p € [0, 1) for which I'(E) exists. Suppose there exists
E € B such that I'(E) > 0. By Osceledec’s theorem [21] there exists a solution ¥ of the
eigenvalue equation (7) with

¥+ Dl < e ™" for large n.

Since E € B there is a constant C = 2 + /4 + I_lf) such that
17) |xe| = [trM(m, E,Sp)| < C Vk>1,

where S = Vago(1) - - Vago(gr). Now, the word S occur in the sequence V, 4, for all p, as
being Vg, (n+1)---Vyg,(n+ qi) for n > ng (see [11, 12]). Thus, we can use (17) for each
p. Pick ng such that, for every n > ng and every j € Z*, the solution ¥ obeys

(18) 190+ il < e 2 ).
Now, we choose k such that e~3"®% < L. Considering the word
SiSk=Vaep(l+ 1) Vg, (I +qi)--Vygp(l+2q;) for [>np,
and applying the Cayley-Hamilton theorem, we obtain
(19) P +2q0) —tr M(m, E, S )P (L + q1) + P(1) = 0.
By (17) and (19) we have
(20) 2C max {Il‘i’(l +2g0l, (1 + Qk)ll} > (L + 2g0)ll + CINP U + goll = (PO

Finally, using (18) with n = [ and j = g or j = 2¢, and then (20), one obtains

max (I[P + 2g0l1L 19U+ goll] < e D% 1P
< e 2T 20 max (1P + 2g0)ll 1 + g0l
< max {9 + 2g0)ll 9 + goll}
which is a contradiction. |

Proposition 3.3. Z Cc %

Proof. Let E € X°. We introduce the two-components Green’s function [5, 15]

(0100 (Daogom )~ E1) " 614)

B

[ G;}e’p(k, 1;E) ]

) .
szi,]él,p(k’ L E) <52,k, (D/l,e,p(m, c)— EI) 51,1>
so that
Gl (k. 1,E)
Dyg,(m,c)— E o = 61.1(k),
(Dapp(m,c) )( G%}H’p(k,l;E) 1,1(k)

where {0] k, d2x}rez 1s the canonical basis of 2(Z,C?). By Combes-Thomas estimate for
discrete Dirac operators (Proposition 1 in [23]), there exist constants A = dist(E,X) > 0 and
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b = b(m, c) > 0 such that for k € Z and 8 € {1, 2}, it holds that

2
|G§,1e,p(k,1;E)| < Ke—blk—u.

This implies that the solution ¥ = ( v ) of the eigenvalue equation (7), with initial
2

conditions ¢(1) = 0 and ¥,(0) = 1, grows exponentially with a rate » > 0 (that is,
IP(k + 1)|| = Ce’™ for € > 0 and large k), due to constancy (in k) of the Wronskian:

[( Gl 1 E)

G?\ (k,1;E)

) ,‘I’(k)] = Gl (k+ 1,1, EYo(k) = G3y ,(k, 1; E)p (k + 1).
1,0.p

It follows from (9) that
|Mn, E, Vi3 o(1) - VgD = Ik + DIl > Ce™,

which implies
1 1.
[(E) = lim T In||M(m, E, V,0,(1) -+ Vg (0)|| > lim (% InC + r) =r>0.
Therefore E € Z€. O

Since the spectrum X = O'(D 1,0,0(m, c)) is compact and the bounds on the traces x; =
tr (M) for energies E € X depend continuously on E (see definition of stable set 3), we can
find a global bound for these traces. We conclude this section with a result that will be used
in Section 5.

Corollary 3.1. For each m > 0 and 1 € R\ {0}, there exists a constant C,(m) € (2, o)
such that for all irrational € (0, 1), E € X and k € Z*, we have

max{|xcl, [y, |z} < Ca(m) ,
where x; = tr M(m, E,S}), yx = xx—1 and z; = tr M(m, E, S ;S ;—1).
Proof. By Proposition 2.1(ii) the invariant
1) 1D = 3+ yp + 2 — i

is a polynomial function in E and is uniformly bounded on X (compact set) by a constant
Ci.2(m) > 0. For every E € X, there exists the constant C, 1(m) := 2 + /4 + C; ,(m) such that
using the Proposition 3.1 and definition of the stable set 3, we obtain

Ixe| < Coa(m) and |yl < Co(m), VkeZ.

Now, solving the equation (21) in the variable z; and using the boundedness of x; and yy,

one obtains
D
xillyel + Jx2y? + 41D

|zl < 5 <Cym), VkeZ',

Coa(m)? + /Coa(m)* + 4Cy (m)
2

. Therefore, the result follows. m]

where C(m) :=
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4. Zero-Measure Spectrum

In this section we establish zero Lebesgue measure spectrum for all Sturmian Dirac oper-
ators D 9,(m, ¢), with m > 0 (see Theorem 4.2). Consequently, these operators have empty
absolutely continuous spectrum.

Let (Q, T, ) be an ergodic dynamical system and f : Q@ — R a measurable bounded
function. Define potentials

Vok) = f(T"w), weQ, keZ,
and consider the ergodic family of Dirac operators {D,(m, ¢)},eq On 2(Z,C?), defined by
c Wk = 1) = ya(K)) + (mc? + V() w1 (k)
(22) [Dw<m, c)( . )} (k) =
’ ek + 1) = g1 (k) + (—me® + V(b)) ga(k)

Similarly to the Sturmian case, due to subadditive ergodic theorem [3], for each fixed m > 0
and E € C there exists a number ['(E) = I'(m, E) € [0, o), called Lyapunov exponent,
defined by

[(E) = Jim & In|MOn, E, V(1) V(M)

for p-almost every w € Q, where M(m, E, V(1) ---V,(k)) are the transfer matrices associ-
ated with D,,(m, ¢). Let

Z={EeR:T(F)=0}L

The following theorem is a version of a result of the Kotani theory [19] adapted for the
Dirac operators (22). We omit the proof since this is very long and analogous to the case of
Schrédinger operators.

Theorem 4.1. Let {D,(m, ¢)}ueca be a ergodic family of Dirac operators defined by (22)
with potentials V,,(k) = f(T*w) that are u-almost surely not periodic and f : Q@ — Ris a
function that takes a finite number of values. Then {(Z) = 0, where € denotes the Lebesgue
measure.

Remark. The hypothesis that the potentials V,,(k) = f(T*w) are u-almost surely not
periodic implies that f is not constant. In fact, if f is constant then V,, is periodic for all
weQand u(QQ)=1+0.

Since the family of Sturmian Dirac operators {D 10,00, c)} is strictly ergodic (see

pel0,1)
Introduction) with potentials V, 4, not periodic and taking two values 0 or 4 # 0, then by

using Theorems 3.1 and 4.1, we get the following result:

Theorem 4.2. Let D, ¢,(m, c) be the Dirac operators defined by (1)-(2). For any A,6,p
and m > 0, the spectrum . = o (D 1,0,0(m, c)) has zero Lebesgue measure and the absolutely
continuous spectrum of D, g ,(m, ) is empty.
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5. Absence of Point Spectrum

In this section we establish absence of point spectrum for all Sturmian Dirac operators
Dy g,(m, c) with m > 0 (Theorem 5.1), and we present the proof of Theorem 1.1.

For studying the behavior of solutions of the eigenvalue equation (7), we consider the
norm || - ||, on a lattice interval of length L € R, L > 1, defined on functions ¥ : Z* — C?,

i
Pk = ( va(k) )’by

IL] 1/2
¥, = {Z IMOI + (L = LLDIN(LL] + 1)||2J ;
k=1

where |[P(K)|> = |y1(k)]> + [Y2(k)[> and | L] denotes the integer part of L. The behavior
Y1k +1) ) for

of ||P||, can be investigated through behavior of |[P||;, where P(k + 1) = ( (k)
2

k > 1, since there exists constants Dy, D, > 0 such that
DYl < Ml < Dol -

We will assume that a solution ¥ of (7) has normalized initial condition (N.I.C.) in the sense
that

1P = 1 (D + [g2(0) = 1.

Now, due to partition Lemma (see [10, 11]), every sequence V, ¢, may be partitioned into
words S or S_;, defined by (6). Using this property, together with the uniform bounds on
traces given in Corollary 3.1, we obtain the following result, similar to Lemma 4.1 in [10],
for the Sturmian Dirac operators D, g ,(m, ¢) defined by (1)-(2).

Lemma 5.1. Fixm > 0. Let A, 6, p be arbitrary, E € X, and let Y be a solution of (7) with
N.L.C.. Then, for every k > 8, the following inequality holds

¥l = Bam)I[¥llg,

172
with B,(m) = (1 + , where Cy(m) € (2, ) is the uniform constant given in Corol-

lary 3.1.

cord)

Lemma 5.1 will be used in the proof of Theorem 5.1 below and also in Proposition 7.1 to
obtain power-law lower bounds on solutions of (7) for certain rotation numbers.

Theorem 5.1. Fix m > 0. For every A,0,p, the operator D, g,(m,c) has empty point
spectrum.

Proof. Fix m > 0. Let 4, 6, p be arbitrary, E € X, and let ¥ be a solution of (7) with N.I.C..
Then, by Lemma 5.1 we have

1Pllgy > Ba@m)Pllgy s > -+ > Bam) P, = Ba(m),
for all k > 1 and constant B,(m) > 1. This implies that

Z PP = Wl = DillPllgy = DiBa(m), Wk 2 1.
PEZL
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Thus ¥ ¢ ¢*(Z,C?). Therefore, D,g,(m, c) have no eigenvalues and its point spectrum is
empty. O

Now are ready to complete the proof of the first main result of this paper.

Proof of Theorem 1.1. It follows directly from Theorems 4.2 and 5.1.

6. m-Functions and Decomposition of Borel Measures

Consider Dirac operators D(m, ¢) = Dy(m, c) + VI, on £*(Z, C?) defined as in (22), asso-
ciated with arbitrary potentials V : Z — R. The study of spectral properties of an operator
D(m, c) is related to the study of the Weyl m-function. In this section we introduce the m-
functions for D(m, c) and we present its relation with spectral measures and a version of
Jitomirskaya-Last inequality for the Dirac operators D(m, ¢); we also define @-singular and
a-continuous Borel measure. These definitions and results will be used in Section 7.

LetZ* ={1,2,3,...}and Z~ ={...,—2,—1,0}. To each whole-line operator D(im, ¢) we
associate two half-line operators

D,y(m,c) = P; D(m,c)P, and D_(m,c) =P D(m,c)P-_,

where P, denote the inclusions P, : {*(Z*, C?) < (*(Z,C?).
For each z € C \ R, the equation

(23) D(m, c)¥ = z¥

has unique solutions ¥ = (lﬁi’z ) with ;biz(O) = 1 and Z}”‘I’j’(irk)”2 < oo, Let
2z k=0

ui vi
ut, = [ Lp } and v = ( i"a’z ] solutions of (23), defined on Z*, satisfying the ini-

$.2 + +
u2,¢,z UZ,so,z

tial conditions

ur (1) =cosy vi (1) =sing
(24) o | o . pe(a/2a).
uiw(O) = —sing vé—”w(O) = Cos ¢
Let W, be WI normalized by w;@z(O) cos g + 90?,90;(1) sing = 1. For z € C with
Im(z) > 0, the right and left Weyl m-functions, mg(z), are uniquely defined by

Vo, = vy, F my@Qu .
For ¢ = 0 we should use the notation m*(z) = mg(z). The functions m*(z) and mg(z) are
related of the following form:

~ mi;(z) cos ¢ F sin ¢

(25) m*(z)

© cosg+ mi(z)sing
Moreover, we have that (see [5])

m*(2) = (01,1, (D (m,c) =z~ 611y = —yi (1),

m™(2) = (620, (D_(m, c) — zI)"' 620) = Y. (D),
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where 01 ; and 0, denotes the vectors of the canonical basis of £(-,C% supported at k with

1 0
O1x(k) = ( 0 )and 02x(k) = ( 1
cyclic for D(m, c). For the whole-line problem, the m-function m(z) is defined, for z € C

with Im(z) > 0, as the trace of the Weyl matrix My, (z2):

). Note that the pair of vectors {51,020} C (*(Z,C?) is

la b ]M(z)[ Z ] = (ad20 + bo1.1,(D(m, ) — 21)" (ady + bd11)) -

Developing this relation, one finds

X W5 OWE.0) v Ot (1)
M@ = o D0 - 0w (D
102 0) =42 (O, L) (D)
! 1 —m*(2)
= _m+(Z) — m’(z) —m+(Z) —m_(Z)m+(Z)
and
26) me) = tr(M(g) = L m @ -1

m*(z) + m=(z)
Due to spectral theorem (see also [5]), the m-functions can be written as Borel transform of
spectral measures, that is,

@7) m*(2) = f dA_(Z’) . m@) = f A0

00 r— oot_Z

where A", A~ are the spectral measures for the pairs (D.(m,c),d;,1), (D_(m,c),d20),
respectively, and A is the sum of the spectral measures for the pairs (D(m,c),d;,;) and
(D(m, ¢), 620). Using (27) one shows that for z € C with Im(z) > 0 one has Im(m*(z)) > 0
and Im(m(z)) > 0.

ut UM
Letu! , = [ i’w’E and v} , = i’w’E solutions of the eigenvalue equation
M2,90,E UZ,tp,E
28) D(m, c)¥Y = EY

defined on Z*, satisfying initial conditions as in (24) with z = E € R. Given any € > 0, we

define lengths L;(€) € [1, o0) by requiring the equality

(29) I ellgeo - IV llzzco = 5- -

€

The following result is the version of Jitomirskaya-Last inequality (well known in the

context of Schrodinger operators [17]) for the discrete Dirac operators D, (m, c). This in-

equality was obtained in Theorem 4.3 in [5] for Dirichlet boundary condition (¢ = 0) and

one adapts to any ¢ € (‘7”, 7_2r]

Lemma 6.1. Let D, (m,c) be a Dirac operator on t>(Z*,C?) and let E € R, € > 0 be
given. Then the following inequality holds
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5-V24 lhug gllg o 5+24

Im3(E + ie)| Whm@<h@w+my

Now we recall some useful definitions and the decomposition of Borel measures with
respect to Hausdorft measure, which can be found in [17, 20, 26, 27]. Given a Borel set
S cRand a € [0, 1], consider the number

%A®=M{Zwﬁwm<&SCUm},
y=1 v=1

with the infimum taken over all covers by intervals b, of size at most §. The limit
h*(S) :=1li S
(§) = 1im Qa 5(5)

is called a-dimensional Hausdorff measure. Note that h° is the counting measure and A'
coincides with the Lebesgue measure. For every non-empty Borel set S, there is a unique
number ag € [0, 1], called the Hausdor{f dimension of S, such that h*(S) = 0 if @ > ag and
h(S) =0 if @ < ag.

We recall the notions of continuity and singularity of a measure with respect to Hausdorff
measure. Given a € [0, 1], a measure yu is called a-continuous if u(S) = 0 for every Borel
set S with h*(S) = 0; it is called a-singular if it is supported on some Borel set S with
h*(S) =0.

Given a finite Borel measure ¢ on R and @ € [0, 1], the upper a-derivative of u at E is
defined by

v 1 p(E-eE+ o)
G ST

Consider the sets
Ty ={E€R:Dj(E) <o}, Tg={E€R:Dj(E)= oo}
The measure u can be decomposed uniquely with respect to Hausdorff measure 4 as

M = Hac t Has »

being pq. (1) = ,u(T}’ N -) an a-continuous measure and p,(-) = w(T¢ N -) an a-singular
measure. Therefore, if Dj(E) < coae. then u is a-continuous and if Dj(E) = 0 ace. then u
is a-singular.

Now, for each Dirac operator D(m, c) and each ® € £*(Z, C?) we denote by Mg the spectral
measure for the pair (D(m, c), ®). The sets

(H(Z,Cye = (@ : ulp is @ — continuous} , £3(Z,C?),s = {® : i is @ — singular)
are closed subspaces of £>(Z, C?), mutually orthogonal, invariants by D(m, ¢) and
C(Z,C) = (H(Z,C)ac ® (H(Z,CP)sy -

The a-continuous spectrum o,.(D(m, ¢)) and a-singular spectrum o, ,(D(m, c)) of the op-
erator D(m, c) are defined as the spectrum of the restriction of D(m, c) to corresponding
subspaces. We have that oo(D(m, ¢)) = 0 4.(D(m, ¢)) U 04s(D(m, c)).
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7. a-Continuity of the Spectral Measures

In this section we extend to Dirac operators a criteria well known for discrete Schrodinger
operators (Theorem 1 in [10]), which allows us to obtain a-continuous spectrum for a Dirac
operator D(m, ¢) on £>(Z,C?). Such criterion (Theorem 7.1 below) establishes a-continuity
of the spectral measures of D(m, ¢) from power-law upper and lower bounds of the form

(30) CUE)L" <Yl < C(E)L”

for all solutions of (28) with N.I.C. and for L > 1 sufficiently large, where @ = 7121;2 . We will
show that the bounds (30) can be established for every Sturmian Dirac operators D, g ,(m, ¢)

with rotation numbers 6 of bounded density, proving so the Theorem 1.2.

Theorem 7.1. Let X be a bounded set. Suppose that there are constants yi,y, such
that for each E € X, every solution of (28) with N.I.C. obeys the estimate (30) for L >
1 sufficiently large and suitable constants C\(E),C,(E) > 0. Then for each m > 0, the
operator D(m, c) has purely a-continuous spectrum on X with a = ylzzlyz € (0, 1), that is, for
any ® € (*(Z,C?) the spectral measure Mg for the pair (D(m, c), @) is purely a-continuous

on .

Proof. The proof is based on ideas from [10] used in the context of discrete Schrodinger
operators. Let a = % Using (30) for the solutions u:;, ¢ and V;’ £ of (28), we have

el B CUE) e CiE)
”V;E”ZT" (Co(E)L72)2 Cr(E)™s (B

for all ¢ € (—/2,7/2] and L > 1 sufficiently large.
By (29) and Lemma 6.1 we obtain

TR 0 2 NC R P
Qo) m}(E + ie)| Qe)'lm}(E + ie)| |

V2 G177
It follows from the two estimates above that

limsup €'~*lm}(E + ie)| < 00, Vo € (—7/2,7/2].

e—0

Thus, there exists 0 < C3(E) < oo such that

31) sup [m(E + ie)] < C3(E)e.
"4

The next step is to transfer the estimate (31) for the m-function m(E + ie) given by (26).

Fix E € X and € > 0. Introducing variables & = ¢*# and v = ﬁi:ﬁ, we have
1 +vé v (e—isv + (ﬁ—gf)e“")
1 —vé ol (e—iw _ (ﬁ—@;) eiso)

(cos @ —ising)(m™ + i) + (m* — i)(cos ¢ + i sin )
(cosp —isin)(m* + i) — (m* — i)(cos ¢ + ising)
sing + cosp m*

= - T = —im
i(cosp —sinp m")

¢
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where in last step we use the relation (25). Thus, we may rewrite (31) as
1 +vé
1 —-v¢

Note that Im(m*) > 0 implies |v] < 1 and so izg defines an analytic function on unit

disk D{(0) = {¢ : |£| < 1}. The point & = ﬁ:;; € D;(0) since Im(m~) > 0. By maximum
modulus principle we have

< C3(E)e* .

sup
lgl=1

1+ vé 1 +vé 1
sup = sup < C3(E)e" .
gt 1T =vEl g 11 =%
Applying this inequality to the point &, and using the expression (26), we obtain
1+
Im(E + ie)| = ’ ; V? ’ < C3(E)e™™".
—vél

This estimate and the representation (27) implies that
A((E - €,E + €)) < 2eIm(m(E + i€)) < 2elm(E + ie)| < 2C3(E)e”
for all £ € ¥ and € > 0. Therefore,

e A(E-€E+6)
DA(E) = Tim sap (zi)w -

from which A is a-continuous on X. Given any ® € (*(Z, C?), the spectral measure Mg 18
absolutely continuous with respect to A and so must be a-continuous on Z. This completes
the proof of the theorem. O

< 2179C4(E) < o,

Now our goal is to apply Theorem 7.1 to Sturmian Dirac operators D, 4,(m, ¢). For this,
we will show the bounds (30) in Propositions 7.1 and 7.2 below. First, we establish a lower
bound for solutions of (7), similar to Proposition 5.1 in [10].

Proposition 7.1. Suppose that the sequence (gy) associated with rotation number 0 satis-
fies qi < C’(j, for some 1 < Cy < 0. For every A and m > 0, there exist y; = y1(m, A,6) > 0,
0 < C; < oo such that for every E € X, 9(m) and all p € [0, 1), every solution ¥ of (7) with
N.I.C. obeys

I¥ll, = ¢, L
for L sufficiently large.

Proof. By hypothesis we have C’g’] < qgr < Cz,z forall k > 1, where 1 < Cy; < Cyy < o0,
and by Lemma 5.1,

”lil”lm 2 B/l(m)k Vk > 1,

with a constant B,(m) > 1. Choosing y = y(m, A,6) > 0 such that Cz;z < B,(m), follows that
(R[N

InCyp —InC n
Take € € (agy,y) where a, = % and let y, :=y — € > 0. We have —= < 1.
nCg2 e

Choose k € N such that
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k
)

and let L sufficiently large such that ggx < L < gg+1). Thus, it follows that

7 i Y ky (k+1)y b
Il > IWllgg > g3 = Cly 2 Coy 7' 2 Gggp,y) 2 L7

Therefore there exist a constant C; = D; > 0 such that

¥l > CilIPllL > C, L

for every solution ¥ of (7) with N.I.C. and for L sufficiently large. O

The following result establishes a upper bound for solutions of (7), similar to Proposi-
tion 5.2 in [10].

Proposition 7.2. Let 6 be a bounded density number. For every A and m > 0, there exist
v2 = ya(m, 4,6) > 0, 0 < C; < oo such that for every E € X, 9(m) and all p € [0, 1), every
solution Y of (7) with N.I.C. obeys

¥l < CoL”
forall L > 1.

The main point of the proof of Proposition 7.2 is the Lemma 7.1 below. Since the up-
per boundedness of the transfer matrices M(m, E, V,90(1) - - - Va90(k)) depends only on the
structure of the Sturmian potentials, a direct adaptation of results of [16] in the Schrodinger
setting shows that

Lemma 7.1. Suppose that 0 is a bounded density number. For every A and m > 0, there
is a constant 0 < C < oo such that for all E € X o(m),

IM(m, E, Vyg0(1)- - Vagok)ll < Ck” VkeZ",

with v = Bd(6)log (2 + \/4 + Erga)(( )IE?)(E)) > 0, where B is some universal constant,
€L om

d@)isasin(5) and I(_If) is given by Proposition 2.1.

Proof of Proposition 7.2. If ¥ = ( Z; ) is solution of (7) with N.I.C., then follow from (9)
and Lemma 7.1 that

Ik + DIl < 1M, E, Vago(D) - Vago()Il < CK - Vk > 1.
Hence, forall L > 1,

LL]

1/2
1), = ZII‘P(k)II2+(L—LLJ)II‘P(LLHl)llz) < (142" e
k=1

Therefore there exist constants C; = (1 + C*)!/2D, > 0 and y, = y + § > 0 such that
Wl < C,L” VL > 1.

This shows the result for solutions of (7) corresponding to p = 0. Due to right continuity
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of the potential V, 4, in p, of the corresponding transfer matrices and the continuity of the
norm ||-||;, the result follows for all phase p € [0, 1).

We are now ready to prove the second main result of this paper.

Proof of Theorem 1.2. By hypothesis 6 is a number of bounded density, then by Lemma 2.3
in [6] there exists a constant 1 < Cy < oo such that g; < C’g. Thus, it follows from Propo-
sitions 7.1 and 7.2 that for 4 # 0 and m > 0, there exist y;,y2 > 0 (depending on m, 4, 6),
0 < Cy,C; < oo, such that for each E € X, 4(m) and p € [0, 1), every solution ¥ of (7) with
N.I.C. obeys

CiL" <Yl < C,L”

for L > 1 sufficiently large. Let @ = a(m, 4,6) := % € (0, 1). Therefore, by Theorem 7.1,
for all p € [0,1) and @ € ¢*(Z,C?), the spectral measure for the pair (D,,(m, c), @) is
purely a-continuous, that is, D, ¢ ,(m, ¢) has purely a-continuous spectrum. This completes

the proof.

8. Comparison of Invariants and of the Dimension Estimates

. Lo 29" .
The goal of this section is to compare the numbers o' = W, obtained for the Stur-
1 2

mian Dirac operators D, g ,(m, c) in Theorem 1.2, with the corresponding numbers a®) =
2919 . . . v .

ﬁy‘” obtained in Theorem 2 in [10] for the Schrodinger operators H,4, given by (3).
1 2

We consider the two models with same mass m > 0 and generated by the same Sturmian
potentials. We also compare lower bounds for exponents of transport associated with these
models.

To obtain a comparison between a® and o', the first step is to compare the Sturmian
Dirac invariants (obtained in Proposition 2.1(ii))

A2 223 By (/14 - 2m264/12) 2y 2m*ct A omPcet

~E* E - A4

D) =
I(E) = b b b b

6
+ (m‘tc2 + 4m2) 2 +4
with the Sturmian Schrédinger invariants (for mass m > 0):
IS(E) = [ (M)l + [ (M-)F + [tr (Mo Mo)T = tr (Mo) tr (M) tr (M- Mo)
Q2mE’ +2)* + 22 + @m(E' = 2) + 2)* —=2(2mE’ +2) 2m(E’ — 1) +2)

= 4m*A>+4
where M_; = ( (1) —2;11/1 ) and M, = ( szl - _01 ) for all energies E € £ and

E’ € ), where £ and = denote the spectra of the operators H,4, and D, g,(m, c),
respectively.

Since P is singular continuous of zero Lebesgue measure (Theorem 1.1), it is not pos-
sible to calculate I£D1>(E) directly for each E € = (analogous for ISSI)(E’)); we will work
on a larger set X, defined as follows. In [5, 15] it is shown that the spectrum of the free Dirac
operator is given by
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o(Dy(m, c)) = [— Vm2c* + 4c2, —mcz] U [ch, Vm2c* + 462] .
Thus, we have that

=P = o (Dygp(m, ) € o (Dolm, o)) +[= 141, |4l = X

where X := [-Vm?c* + 4 - ||, —=mc? + |A|| U [mc? = ||, Vim2c* + 4c? + ||| . For simplic-
ity, we will consider 4 > 0; a similar analysis can be made for 4 < 0. Note that if
0 < A < mc? then the two intervals of X are disjoint and so X has four boundary points;
if 1 > mc? then X has two boundary points. Fixed m > 0 and A, the invariant IE?)(E) isa
continuous (polynomial) function of the energy E, which assumes maximum and minimum
values on the compact sets =) and X.

Let us determine rggg( Ifl])) (E) and Igg{l Ifl])) (E). The critical points of I(_D), which satisfies

>

dI(D) 42 6,13 24— 2m2c* Q2 2223
2 B 5) Wl Ay B | e AT 7L
dE c® c®

c c

, {/l A+ V2 1 dmct
are given by £ € {—

2’ 2
A+ VA2 + dm2c*

point, we obtain

A 2
}. We have that 5 e Xif 4 > gmc2 and

€ X for all 4 > 0. Calculating the value of IELI))(E) for each critical

A 1 m2ct
(D) 6 4 4 252 2,92
171 (5) = @/l - 2C6/1 +m A" +4m A + 4
2 2 2 4\2 2,2 2,2
= 166(/1—4mc)+4m/l+4 > dm A+ 4
C

and

o

I(D) [A + V/lz + 4m2C4

2 4
]:—mc P4 am 2+ 4 < 4mPA + 4.

Now, calculating the value of I(_ll))(E) for each boundary point of the set X, we obtain for
1> 0,

ey 4 12Vm?c* + 4¢2 8m?ct +52¢7
I(_If)(— mzc4+4c2—/l) = —2%+ mc6 C/15+(mc C),l“

c® c c®
UNMEA 1A, (16
+ Mﬂ3+(—+4m2)ﬂz+4

ct c?

> 4m’A’ + 4,

4 8 24 4 2 16
C

and for 0 < A < mc2,

I (-m* +2) = 4m’A*+4
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and

4 12mc? 8m?c*

1P (m-2) = 20— T p ¢ T a2 4 4
C C C
4/14 2 2 242 2752
= —6(/l—mc YA =2mc”) +4m A +4 > 4m°A” + 4.
C

From the above calculations we conclude that for all 4 > 0,
A2+ 4m?ct
me ] < IS(E') = 4m> 2% + 4

A
: (D) _ 7D -
Iélel)r(l 1°(E)=12 (

and
max I7(E) = 19 (-Vm?c* + 42 - 1) > 1S)(E).

EeX
Moreover, we have the following informations about the function I(_lf) (E):

A, . . .
1. E = = is local maximum point because it satisfies

2

27(D)
4’1" (,1)_ N 4m264/12<0;

dE? \2) 7 6o

A+ VA2 +4m2ct .. ,
= are local (global) minimum points due to

2.E=
2
dzlf’? AN +4m2ct)  22* 8mPct ,
=—+ A>0;
dE? 2 c® o

70

3. Ifll)) (E) is an decreasing function of E (d—I_ZI(E) < 0] in the energy intervals

A2+ 4m2c4) g (/1 A+ VA2 + 4m2c4)

A—-
—Vm?c* +4c% - A, ,
2 2 2
(D)
and increasing d—};(E) > 0] in the energy intervals
A=NAZ +4m?>c* 2 A+ N + dm?c*
[ 3 me ’E]U( 3 me ,Vm2c4+4c2+/l];

4. IDN(E) = I8)(E") = 4m> A2 + 4 for energies E € {-mc?, —mc® + A, mc?, mc* + A).
Denoting for 4 > 0
(—mcz, —mc? + /l) U (mcz, me? + /l) if A<2mc?,
B { (—mcz, mcz) U (—mc2 + A, me? + /l) if  A>2mc?,

we obtain from the above calculations the following comparison of the invariants

(32) IE) > 1%((E) VEeX\HNZP), VE €x®

and
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(33) IE) <1%(E) VEeTnz?, VE e 59,
It follows from (32) that
K? .= max IY(E) > max IESI)(E') =4m’2* + 4.
Ee(X\J)NZ®) Eex®)

Now, for all E € (X \ J) N = we have the bounds:

244+ ID(E) < 2+ Va+ KD .= CP

Il <
D)
el < Cy s
Iellyel + Af2y2 + 4T(E)  (CP + \J(CP)* + 4K ®)
ol < 5 < 5 = D),

where x;, = tr M(m, E, Sy), yr = x3—1 and zx = tr M(m, E, S S x-1). This implies that

max{|xl, lyel, lzxl} < CP.

In an analogous way to the above bounds, it is possible to show, for all E” € £, that
max{| %, [l 12/} < C*

for some constant C®), where %, 7 and Z; are the corresponding traces in the Schrodinger
case. Since K'P > 4m? A% + 4, we have that C?) > C®) and

| 1/2 | 1/2
BD =1+ < B® =1+ .
(2c®)? (2C®)?

Analysing the proofs of Proposition 7.1 and Proposition 5.1 in [10] (in the Schrodinger
context) we have C’g’l < gs < C’g’z forall k > 1, where 1 < Cy; < Cyp < 0. Let Y >0
be such that Cg’(;) < B®). Take y® > 0 such that Cg’f) < B® and agy®® < y®P < ),
In Cg’z —1In C.g,l

In Cg,z
y(lD) := 9P — ¢ > 0. Thus, referring to the energy intervals (X \ J) N = and =) we obtain
that

where ay = . Now choose € € (agy(s),y(m) and let yﬁs) =95 —e >0,

(34) PP <),
Note that with the above choices follow the proofs of Proposition 7.1 (in the energy interval
(X \ J) NP and Proposition 5.1 in [10].

On the other hand, the proofs of Proposition 7.2 and of Proposition 5.2 in [10] (in the
Schrédinger context) are valid with

1
¥\ = Bd@)log|2+ [4+ max ID(E)|+ 3
Ee(X\J)NE®) 2

and

1
¥S) = Bd©)log(2+ 4+ max TS)(E))+ =,
E’ex®) 2

respectively. The estimate (32) implies that
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(35) Y 2y,

referring to the energy intervals (X \ J) N Z® and =),

By (34) and (35) we obtain, with respect to the energy intervals (X \ J) N = and
26), the following comparison between the dimension estimates for the models H, g, and
Dagp(m, c):

2)/(D) 2y(S )
(D) _ 1 1 ()
N0 (D) < NG I forall 4> 0.

YT, Yit7
Similarly, by reproducing the above calculations by now using the estimate (33) instead
of (32), we obtain with respect to the energy intervals J N ) and =), the following
comparison

(36) a

27,0 29
(37) o= Vs L2 forall 4> 0,

71 P + 7 Y+,

where 7, and 7, are constructed as above in a similar way to y(lD) and ygD).

Now we will apply (36) and (37) in the comparison of lower bounds for the exponents of
transport associated with Sturmian Dirac and Schrédinger models. The standard quantities
that are considered to measure the spreading of an initially localized wavepacket, under the
dynamics governed by a Schrodinger operator H, are the time-averaged moments of the
position operator

M(p,T,5)) = % fo "t NG |<e_”H61,6k>|2 dt
k

with p > 0, T > 0 and {6;} the canonical basis of £2(Z). The faster M(p, T,5;) grows, the
faster e="§, spreads out, at least averaged in time. It is also usual to consider the lower
transport exponents

log M(p’ T’ 6] )

) L
B (p,él).—h;n_}ogf log T

By Theorem 2 in [10] the spectral measure for the Sturmian Schrodinger model H, 4., asso-

(S)
ciated with ¢y, is @®)-continuous with o) = % It follows from Theorem 6.1 in [20]
1 2
that
(38) BVp.61) 2 pa® ¥p > 0.

Similarly, we define the lower transport exponents 8°)(p, 6, 1) associated with Sturmian
Dirac model D, g,(m, c), where 6y is the vector of the canonical basis of 2(Z,C?) sup-

1
ported at position k = 1 with ¢;;(1) = ( 0 ) Theorem 6.1 in [20] is valid for Dirac

operators D(m, c); using this result together with Theorem 1.2 we obtain

(39) BP(p,611) = pa®  Vp >0,

(D)

where a'P) = % is given by Theorem 1.2. By (36) and (37) we conclude, by method
1 2

above, that with respect to the energy intervals (X \ J) N ) and =) the lower bounds
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in (38) are greater than or equal to the corresponding lower bounds in (39), and with respect
to the energy intervals J N Z® and =) the lower bounds in (39) are greater than or equal to
the corresponding lower bounds in (38).

Finally, the papers [13, 22] have worked only on upper boundedness of transfer matrices,
as in Lemma 7.1, and derived the following lower bounds

(S) (D)
(s) p=3v"’ D) p-3y"
(40) e I A DS

for all p > 0, where ') = y is given by Lemma 7.1 and ) by corresponding result in [16].
For large values of p, the bounds in (40) are better than in (38)-(39); for p small, the bounds
in (38)-(39) are better.

Using (32) we obtain that with respect to the energy intervals (X \ J) N and £©),

C —39() _3,(D) . )
¥S) < 4P which implies & fyy(s) > % On the other hand, using (33) follows that with

p=3y® _ p-39®
s TH® = T5m

this other method, that for the energy intervals (X \ J) N ) and ) the lower bounds for
transport exponents 55)(p, §1) are greater than or equal to the corresponding lower bounds
for 8P)(p, 61.1), and for the energy intervals JNZ® and =) the lower bounds for 8P (p, 5, 1)
are greater than or equal to the corresponding lower bounds for 85)(p, 61).

respect to the energy intervals JNZ® and &) . We conclude again, now by
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