Du, K. Osaka J. Math. **56** (2019), 165–172

UNSTABILIZED WEAKLY REDUCIBLE HEEGAARD SPLITTINGS

Kun DU

(Received May 29, 2017, revised September 20, 2017)

Abstract

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All surfaces in 3-manifolds are assumed to be properly embedded and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S = \partial_+ W = \partial_+ V$, then we say M has a Heegaard splitting, denoted by $M = V \cup_S W$; and S is called a Heegaard surface of M. Moreover, if the genus q(S) of S is minimal among all Heegaard surfaces of M, then q(S) is called the genus of M, denoted by q(M). If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B = \partial D$ (resp. $\partial B \cap \partial D = \emptyset$), then $V \cup_S W$ is said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). If there are essential disks $B \subset V$ and $D \subset W$, such that $|B \cap D| = 1$, then $M = V \cup_S W$ is said to be stabilized; otherwise, $M = V \cup_S W$ is said to be unstabilized. If a surface F in a 3-manifold M is incompressible and not parallel to ∂M , then F is said to be essential. If a separating surface F in M is compressible on both sides of F, then F is said to be bicompressible. If every compressing disk in one side of F intersects every compressing disk in the other side, then F is said to be strongly irreducible. If F is incompressible except for $[\partial F]$, then F is said to be almost incompressible; if F is bicompressible except for $[\partial F]$, then F is said to be almost bicompressible; if F is strongly irreducible except for $[\partial F]$, then F is said to be almost strongly irreducible, where $[\partial F]$ is the isotopy class of ∂F .

Let *M* be a 3-manifold, and *S* be a closed separating compressible surface in *M*. *S* is said to be critical (see [1]), if the compressing disks for *S* can be partitioned into two sets C_0 and C_1 , and there is at least one pair of disks V_i , $W_i \in C_i$ (i = 0, 1) on opposite sides of *S*, such that $V_i \cap W_i = \emptyset$, and if $V \in C_i$ and $W \in C_{1-i}$ lie on opposite sides of *S*, then $V \cap W \neq \emptyset$. If *S* is not critical, then *S* is said to be uncritical. There are some examples, see [2]–[4], [8]–[10].

Let S be a closed surface with $g(S) \ge 2$. The curve complex of S (see [5]) is the complex whose vertices are the isotopy classes of essential simple closed curves on S, and k + 1

²⁰¹⁰ Mathematics Subject Classification. 57M27, 57M50, 57N10.

The work is supported by the National Natural Science Foundation of China (No.11571110).

vertices determine a *k*-simplex if they are represented by pairwise disjoint curves. If *S* is a torus, the curve complex of *S* (see [11], [12]) is the complex whose vertices are the isotopy classes of essential simple closed curves on *S*, and k + 1 vertices determine a *k*-simplex if they can be represented by a collection of curves, any two of which intersect in only one point. We denote the curve complex of *S* by *C*(*S*). For any two vertices in *C*(*S*), one can define the distance $d_{C(S)}(x, y)$ to be the minimal number of 1-simplices in a simplicial path jointing *x* to *y* over all such possible paths.

If *S* is a surface with $\partial S \neq \emptyset$, then we can define the curve complex C(S) of *S* and $d_{C(S)}(x, y)$ for any two vertices *x* and *y* in C(S) by the same way, where the vertex of C(S) is the isotopy class of non- ∂ -parallel essential simple closed curves on *S*. The distance of the Heegaard splitting $M = V \cup_S W$ with $g(S) \ge 2$ (see [6]) is $d(S) = \text{Min}\{d_{C(S)}(\alpha, \beta) \mid \alpha \text{ bounds}$ a disk in *V* and β bounds a disk in *W*}. If *S'* is an almost bicompressible subsurface of *S*, then $d(S') = \text{Min}\{d_{C(S')}(\alpha, \beta) \mid \alpha \text{ bounds} \text{ a disk in } V \text{ and } \beta \text{ bounds a disk in } W\}$ is said to be local Heegaard distance of *S'* respect to d(S) (see [7], [13]).

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical as follows:

Theorem 1. Let M be a 3-manifold, $M = V \cup_S W$ be a Heegaard splitting of M, D be an essential disk in V such that ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S'. If $d(S') \ge 5$, then $M = V \cup_S W$ is unstabilized and uncritical.

Corollary 2. Let M be a 3-manifold, $M = V \cup_S W$ be a Heegaard splitting of M, ψ be an essential simple closed curve on S which cuts S into an almost incompressible surface F and an almost strongly irreducible surface S'. If $d(S') \ge 9$, then $M = V \cup_S W$ is unstabilized.

Theorem 3. Let M be an irreducible 3-manifold, $M = V \cup_S W$ be a Heegaard splitting of M, D be an essential disk in V such that ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S'.

(1) If S is critical, then $d(S') \leq 4$.

(2) If there are two essential disks $D_V \subset V$ and $D_W \subset W$, such that D_V is not isotopic to $D, D_W \cap D \neq \emptyset$ and $D_W \cap D_V = \emptyset$, then S is critical.

2. The proof of Theorem 1

Firstly, we show that $M = V \cup_S W$ is unstabilized. Assume on the contrary that $M = V \cup_S W$ is stabilized. Then, there are two essential disks $D_V \subset V$ and $D_W \subset W$, such that $|D_V \cap D_W| = 1$. So, there is an essential simple closed curve γ on S which bounds an essential disk D_V^{γ} in V and an essential disk D_W^{γ} in W such that the 2-sphere $S^{\gamma} = D_V^{\gamma} \cup D_W^{\gamma}$ bounds a once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball).

Proposition 4. $\gamma \cap \partial D \neq \emptyset$.

Proof. Assume on the contrary that $\gamma \cap \partial D = \emptyset$. If γ is parallel to ∂D , then F and S' lie in opposite sides of S^{γ} . Since F is almost incompressible, S' lies in the 3-ball bounded by S^{γ} . Then, S' is a once-punctured torus. Hence, $d(S') \leq 1$, a contradiction. So, γ is a non- ∂ -parallel essential simple closed curve on F or S'. Since F is almost incompressible,

 γ lies in *S*' and d(S') = 0, a contradiction.

By Proposition 4, we may assume that $\gamma \cap \partial D \neq \emptyset$ and $|\gamma \cap \partial D|$ is minimal. So, each component of $\gamma \cap S'$ (resp. $\gamma \cap F$) is an essential arc on S' (resp. F). Recall that γ bounds an essential disk D_V^{γ} in V and an essential disk D_W^{γ} in W. If $|\gamma \cap S'| = |\gamma \cap F| = n$, then D_V^{γ} (resp. D_W^{γ}) is said to be an *n*-disk in V (resp. W).

Since $D_V^{\gamma} \cap D \neq \emptyset$, we may assume that each component of $D_V^{\gamma} \cap D$ is an arc on both D_V^{γ} and D. Let α be a component of $D_V^{\gamma} \cap D$. Then, α cuts a disk D_α from D_V^{γ} . If $int D_\alpha \cap D = \emptyset$, then D_α is said to be an outermost disk of D_V^{γ} , and α is said to be an outermost arc of $D_V^{\gamma} \cap D$ on D_V^{γ} . Since F is almost incompressible, all outermost disks of D_V^{γ} lie in the component of cl(V - D) which contains S'. Let D_0 be an outermost disk of D_V^{γ} . Then, $|\partial D_0 \cap S'| = |\partial D_0 \cap D| = 1$, and $\partial D_0 \cap S'$ is an essential arc on S'. Let $l_1 = \partial D_0 \cap S'$ and $l'_1 = \partial D_0 \cap D$. We push l'_1 into ∂D and denote it by l''_1 . Let $l^1 = l_1 \cup l''_1$. After isotopy, we may assume that l^1 lies in S'. Since l_1 is essential on S', l^1 is non- ∂ -parallel essential on S'and bounds an essential disk D_l in V. So, $d_{C(S')}(l^1, \partial D_l) = 0$.

If there is an essential disk D_h in W with $\partial D_h \subset S'$, such that ∂D_h is non- ∂ -parallel on S'and disjoint from a component h of $\gamma \cap S'$, then h cuts ∂D into two arcs h_1 and h'_1 . Let $h^1 = h \cup h_1$. After isotopy, we may assume that h^1 lies in S' and $h^1 \cap \partial D_h = \emptyset$. Since h is essential on S', h^1 is non- ∂ -parallel on S'. So, $d_{C(S')}(h^1, \partial D_h) \leq 1$. Since $h \cap l_1 = \emptyset$, $d_{C(S')}(h^1, l^1) \leq$ 2. So, $d(S') \leq d_{C(S')}(\partial D_l, \partial D_h) \leq d_{C(S')}(\partial D_l, l^1) + d_{C(S')}(l^1, h^1) + d_{C(S')}(h^1, \partial D_h) \leq 3$, a contradiction.

By the argument as above, we may assume that for any essential disk D^W in W with $\partial D^W \subset S'$ and any component η of $\gamma \cap S'$, if ∂D^W is non- ∂ -parallel on S', then $\partial D^W \cap \eta \neq \emptyset$. If D^{γ}_W (which is bounded by γ) is a 1-disk in W, then $|\gamma \cap S'| = 1$. Then, $|D^{\gamma}_V \cap D| = 1$. Hence, there are two outermost disks of D^{γ}_V which lie in different components of cl(V - D), a contradiction. So, we may assume that D^{γ}_W is an *n*-disk with $n \ge 2$.

Proposition 5 ([2]). There are an essential disk D_k in W with $\partial D_k \subset S'$ and a component l_2 of $\gamma \cap S'$, such that ∂D_k is non- ∂ -parallel on S' and $d_{C(S')}(l^2, \partial D_k) \leq 3$, where l^2 is obtained from l_2 by attaching a component of $cl(\partial D - \partial l_2)$, after isotopy, l^2 is non- ∂ -parallel essential on S'.

Proof. Recall that for any essential disk D^W in W with $\partial D^W \subset S'$ and any component α of $\partial D_W^{\gamma} \cap S'$, if ∂D^W is non- ∂ -parallel on S', then $\partial D^W \cap \alpha \neq \emptyset$. We may assume that $|D^W \cap D_W^{\gamma}|$ is minimal among all essential disks in W, whose boundaries lie in S' and are non- ∂ -parallel. So, each component of $D^W \cap D_W^{\gamma}$ is an arc on both D^W and D_W^{γ} . Since $|D^W \cap D_W^{\gamma}|$ is minimal, and for each component α of $\partial D_W^{\gamma} \cap S'$, $\alpha \cap \partial D^W \neq \emptyset$, both endpoints of each arc of $D_W^{\gamma} \cap D^W$ on D_W^{γ} lie in different components of $\partial D_W^{\gamma} \cap S'$. For each subdisk D_W' of D_W^{γ} which is cut by D^W , if $\partial D_W'$ contains m components or subcomponents of $\partial D_W^{\gamma} \cap S'$, there are two components α_1 and α_2 of $\partial D_W^{\gamma} \cap F$, which are adjacent to α . Let $L_{\alpha} = \{l \mid l \text{ is an arc of } D_W^{\gamma} \cap D^W$ on D_W^{γ} , such that $l \cap \alpha \neq \emptyset\}$.

Suppose $\alpha \in \partial D_W^{\gamma} \cap S'$ and l_{α} is a component of L_{α} . Then, $l_{\alpha} \operatorname{cuts} D_W^{\gamma}$ into two disks D'and D''. We may assume that D' is a pseudo m_1 -disk, and D'' is a pseudo m_2 -disk. Then, $m_2 = n - m_1 + 2$, see Figure 1. If D' (resp. D'') is a pseudo 2-disk, then l_{α} is said to be ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . If all components of L_{α} are ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , then

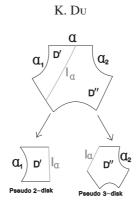


Fig. 1. D' and D'' cut by l_{α}

 L_{α} is said to be ∂ -parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ} .

Lemma 6. There are at least two components α and β of $\partial D_W^{\gamma} \cap S'$, such that both L_{α} and L_{β} are ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} .

Proof. If D_W^{γ} is an *n*-disk with n = 2, 3, then the Lemma holds, see Figure 2. So, we may assume that D_W^{γ} is an *n*-disk with $n \ge 4$. If all components of $D_W^{\gamma} \cap D^W$ on D_W^{γ} are ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , then the Lemma holds. So, we may assume that there is a component k_1 of $D_W^{\gamma} \cap D^W$ on D_W^{γ} , such that k_1 is not ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . Then, k_1 cuts D_W^{γ} into two disks D_k^1 and $D_k^{1'}$. Suppose D_k^1 is a pseudo n_1 -disk and $D_k^{1'}$ is a pseudo n_1' -disk. Since k_1 is not ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , $3 \le n_1, n_1' < n$.

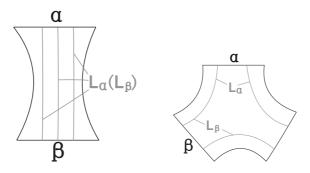


Fig. 2. *n*-disk with n = 2, 3

First, we consider D_k^1 . Note that $D_k^1 \cap D^W \subsetneq D_W^\gamma \cap D^W$. If D_k^1 is a pseudo 3-disk, then there is only one component α of $\partial D_W^\gamma \cap S'$ on ∂D_k^1 , such that $\alpha \cap k_1 = \emptyset$. Hence, L_α is ∂ -parallel to $\partial D_W^\gamma \cap F$ in D_W^γ . So, we may assume that D_k^1 is a pseudo n_1 -disk with $4 \le n_1 < n$. If all components of $D_k^1 \cap D^W$ on D_k^1 are ∂ -parallel to $(\partial D_W^\gamma \cap F) \cup k_1$ in D_k^1 , then there is a component α of $\partial D_W^\gamma \cap S'$, such that $\alpha \cap k_1 = \emptyset$ and L_α is ∂ -parallel to $\partial D_W^\gamma \cap F$ in D_W^γ . So, we may assume that there is a component k_2 of $D_k^1 \cap D^W$ on D_k^1 , such that k_2 is not ∂ -parallel to $(\partial D_W^\gamma \cap F) \cup k_1$ in D_k^1 . Then, k_2 cuts a disk D_k^2 from D_k^1 , such that ∂D_k^2 does not contain k_1 . Hence, $D_k^2 \cap D^W \subsetneq D_k^1 \cap D^W \subsetneq D_W^\gamma \cap D^W$.

Since k_2 is not ∂ -parallel to $(\partial D_W^{\gamma} \cap F) \cup k_1$ in D_k^1 , we may assume that D_k^2 is a pseudo n_2 -disk with $3 \le n_2 < n_1 < n$. By the same argument as D_k^1 , either there is a component α of $\partial D_W^{\gamma} \cap S'$, which is disjoint from k_2 , such that L_{α} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , or there is a component k_3 of $D_k^2 \cap D^W$ on D_k^2 , such that k_3 is not ∂ -parallel to $(\partial D_W^{\gamma} \cap F) \cup k_2$ in

 D_k^2 . Then, k_3 cuts a disk D_k^3 from D_k^2 , such that ∂D_k^3 does not contain k_2 . Then, $D_k^3 \cap D^W \subsetneq D_k^2 \cap D^W \subsetneq D_k^1 \cap D^W \subsetneq D_W^\gamma \cap D^W$. Since k_3 is not ∂ -parallel to $(\partial D_W^\gamma \cap F) \cup k_2$ in D_k^2 , we may assume that D_k^3 is a pseudo n_3 -disk with $3 \le n_3 < n_2 < n_1 < n$.

We continue this procedure as above, either there is a component α of $\partial D_W^{\gamma} \cap S'$, such that L_{α} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , or there is a component k_m of $D_k^{m-1} \cap D^W$ on D_k^{m-1} , such that k_m is not ∂ -parallel to $(\partial D_W^{\gamma} \cap F) \cup k_{m-1}$ in D_k^{m-1} ($m \ge 2$). Then, k_m cuts a disk D_k^m from D_k^{m-1} , such that ∂D_k^m does not contain k_{m-1} . Hence, $D_k^m \cap D^W \subsetneq D_k^{m-1} \cap D^W \subsetneq \dots \subsetneq D_k^{m-1} \cap D^W \subsetneq D_k^{m-1} \cap D^W \subsetneq \dots \subsetneq D_k^m \cap D^W \subseteq D_W^{\gamma} \cap D^W$. Since k_m is not ∂ -parallel to $(\partial D_W^{\gamma} \cap F) \cup k_{m-1}$ in D_k^{m-1} , we may assume that D_k^m is a pseudo n_m -disk with $3 \le n_m < n_{m-1} < \dots < n_2 < n_1 < n$. Since n is finite, either there is a component α of $\partial D_W^{\gamma} \cap S'$, such that L_{α} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . Finally, we obtain a component α of $\partial D_W^{\gamma} \cap S'$, such that L_{α} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} .

Second, we consider $D_k^{1'}$. By the same argument as D_k^1 , there is a component $\beta \ (\neq \alpha)$ of $\partial D_W^{\gamma} \cap S'$, such that L_{β} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . So, the Lemma holds.

By Lemma 6, there is a component l_2 of $\partial D_W^{\gamma} \cap S'$, such that L_{l_2} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . Let l'_2 and l''_2 be two components of $\partial D_W^{\gamma} \cap F$, such that l'_2 and l''_2 are adjacent to l_2 . Since $|\gamma \cap \partial D|$ is minimal, both l'_2 and l''_2 are essential on F.

Lemma 7. There is a 1-disk D^1 in W, such that $(\partial D^1 \cap S') \cap l_2 = \emptyset$, and $\partial D^1 \cap F$ is parallel to l'_2 or l''_2 .

Proof. Let k be a component of L_{l_2} . Since L_{l_2} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , k cuts a pseudo 2-disk D^k from D_W^{γ} . If $intD^k \cap L_{l_2} = \emptyset$, then D^k is said to be an outermost disk of D_W^{γ} , and k is said to be an outermost arc of $D^W \cap D_W^{\gamma}$ on D_W^{γ} . Let k_1 be a component of L_{l_2} , such that k_1 is an outermost arc of $D^W \cap D_W^{\gamma}$ on D_W^{γ} . Then, k_1 cuts an outermost disk D_1^k from D_W^{γ} , such that $intD_1^k \cap L_{l_2} = \emptyset$. So, D_1^k is a pseudo 2-disk. Since L_{l_2} is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , we may assume that k_1 is parallel to l_2' , where l_2' is adjacent to l_2 on ∂D_W^{γ} . Note that k_1 also cuts D^W into two disks $D_k^{1'}$ and $D_k^{1'''}$. Let $D_{k_1} = D_k^{1'} \cup D_1^k$ and $D_{k_1}' = D_k^{1''} \cup D_1^k$. Since k_1 is parallel to l_2' in D_W^{γ} , after isotopy, both $\partial D_{k_1} \cap F$ and $\partial D_{k_1}' \cap F$ are parallel to l_2' . Since l_2' is essential on F and F is almost incompressible, both $\partial D_{k_1} \cap D_W^{\gamma} | < |D^W \cap D_W^{\gamma}|$, $|D_{k_1}' \cap D_W^{\gamma}| < |D^W \cap D_W^{\gamma}|$, $D_{k_1} \cap D_W^{\gamma} \subseteq D^W \cap D_W^{\gamma}$, and $D_{k_1}' \cap D_W^{\gamma} \subseteq D^W \cap D_W^{\gamma}$.

Suppose $|D_{k_1} \cap D_W^{\gamma}| \le |D'_{k_1} \cap D_W^{\gamma}|$, we only consider D_{k_1} . Let $L_{l_2}^1 = \{k \mid k \text{ is a component}$ of $D_W^{\gamma} \cap D_{k_1}$ on D_W^{γ} , such that $k \cap l_2 \ne \emptyset\}$. Then, $L_{l_2}^1 \subsetneq L_{l_2}$. Hence, $L_{l_2}^1$ is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . If $L_{l_2}^1 = \emptyset$, let $D^1 = D_{k_1}$, then $l_2 \cap (\partial D^1 \cap S') = \emptyset$ and $\partial D^1 \cap F$ is parallel to l'_2 . Hence, the Lemma holds. If $L_{l_2}^1 \ne \emptyset$, let k_2 be a component of $L_{l_2}^1$, such that k_2 is an outermost arc of $D_{k_1} \cap D_W^{\gamma}$ on D_W^{γ} . Then, k_2 cuts an outermost disk D_2^k from D_W^{γ} , such that $int D_2^k \cap L_{l_2}^1 = \emptyset$. So, D_2^k is a pseudo 2-disk. Since $L_{l_2}^1$ is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} , we may assume that k_2 is parallel to l'_2 , where l'_2 is adjacent to l_2 in ∂D_W^{γ} . Let $D_k^{2'}$ be a subdisk of D_{k_1} , which is cut by k_2 , such that $\partial D_k^{2'}$ does not contain $\partial D_{k_1} \cap F$, and $D_{k_2} = D_2^k \cup D_k^{2'}$.

By the same argument as D_{k_1} , D_{k_2} is a 1-disks in W and $\partial D_{k_2} \cap F$ is parallel to l'_2 . After isotopy, $|D_{k_2} \cap D_W^{\gamma}| < |D_{k_1} \cap D_W^{\gamma}| < |D^W \cap D_W^{\gamma}|$ and $D_{k_2} \cap D_W^{\gamma} \subsetneq D_{k_1} \cap D_W^{\gamma} \subsetneq D^W \cap D_W^{\gamma}$. Let $L^2_{l_2} = \{k \mid k \text{ is a component of } D^{\gamma}_W \cap D_{k_2} \text{ on } D^{\gamma}_W$, such that $k \cap l_2 \neq \emptyset$ }. Then, $L^2_{l_2} \subsetneq L^1_{l_2} \subsetneq L^1_{l_2}$.

K. Du

Hence, $L_{l_2}^2$ is ∂ -parallel to $\partial D_W^{\gamma} \cap F$ in D_W^{γ} . By the same proof as D_{k_1} , either $D^1 = D_{k_2}$ such that $l_2 \cap (D^1 \cap S') = \emptyset$ and $D^1 \cap F$ is parallel to l'_2 , or we obtain a 1-disk D_{k_3} in W, such that $\partial D_{k_3} \cap F$ is parallel to l'_2 , where l'_2 is adjacent to l_2 in ∂D_W^{γ} , $D_{k_3} \cap D_W^{\gamma} \subseteq D_{k_2} \cap D_W^{\gamma} \subseteq D_{k_1} \cap D_W^{\gamma} \subseteq D^W \cap D_W^{\gamma}$, and $\{k \mid k \text{ is a component of } D_W^{\gamma} \cap D_{k_3} \text{ on } D_W^{\gamma} \text{ such that } k \cap l_2 \neq \emptyset\} = L_{l_2}^3 \subseteq L_{l_2}^2 \subseteq L_{l_2}^1 \subseteq L_{l_2}$. Continue this procedure as above, since $|D^W \cap D_W^{\gamma}|$ is finite, finally, we obtain a 1-disk D_{k_m} ($m \ge 1$) in W, such that $\partial D_{k_m} \cap F$ is parallel to l'_2 , where l'_2 is adjacent to l_2 in ∂D_W^{γ} , $D_{k_m} \cap D_W^{\gamma} \subseteq D_{k_{m-1}} \cap D_W^{\gamma} \subseteq ... \subseteq D_{k_1} \cap D_W^{\gamma} \subseteq D^W \cap D_W^{\gamma}$, and $\emptyset = \{k \mid k \text{ is a component of } D_W^{\gamma} \cap D_{k_m} \text{ on } D_W^{\gamma}$, such that $k \cap l_2 \neq \emptyset\} = L_{l_2}^m \subseteq L_{l_2}^{m-1} \subseteq ... \subseteq L_{l_2}^1 \subseteq L_{l_2}$. Let $D^1 = D_{k_m}$. Then, $l_2 \cap (D^1 \cap S') = \emptyset$ and $D^1 \cap F$ is parallel to l'_2 . Hence, the Lemma holds.

Lemma 8. If D^1 is a 1-disk in W, then there is an essential disk D_k in W with $\partial D_k \subset S'$, such that $D_k \cap D^1 = \emptyset$.

Proof. Assume on the contrary that for each essential disk D_k in W with $\partial D_k \subset S'$, $D_k \cap D^1 \neq \emptyset$. We may assume that $|D_k \cap D^1|$ is minimal among all essential disks in W with $\partial D_k \subset S'$. If ∂D_k is parallel to $\partial S'$, then $|D_k \cap D^1| = 1$. Let $\delta = D_k \cap D^1$. Then, there is a subdisk D_δ of D^1 which is cut by δ , such that D_δ contains $\partial D^1 \cap F$. We can push δ into F. After isotopy, we denote D_δ by D'_{δ} . So, D'_{δ} is an essential disk in W with $\partial D'_{\delta} \subset F$ and $\partial D'_{\delta}$ is not parallel to ∂F . It is a contradiction to the fact that F is almost incompressible.

So, we may assume that ∂D_k is not parallel to $\partial S'$. Since $|D_k \cap D^1|$ is minimal, each component of $D_k \cap D^1$ is an arc on both D_k and D^1 . Let λ be an outermost arc of $D^1 \cap D_k$ on D^1 , such that λ cuts a subdisk D_{λ} from D^1 with $int D_{\lambda} \cap D_k = \emptyset$, and ∂D_{λ} does not contain $\partial D^1 \cap F$. Also, λ cuts D_k into D_k^1 and D_k^2 . Let $D_{\lambda}^1 = D_{\lambda} \cup D_k^1$ and $D_{\lambda}^2 = D_{\lambda} \cup D_k^2$. Since D_k is essential in W with $\partial D_k \subset S'$ and ∂D_k is not parallel to $\partial S'$, at least one of D_{λ}^1 and D_{λ}^2 is essential in W with $\partial D_{\lambda}^1 \subset S'$ and ∂D_{λ}^1 is not parallel to $\partial S'$. So, $|D_{\lambda}^1 \cap D^1| < |D_k \cap D^1|$, a contradiction.

By Lemma 7, we may assume that D^1 is a 1-disk in W, such that $l_2 \cap (\partial D^1 \cap S') = \emptyset$, and $\partial D^1 \cap F$ is parallel to l'_2 , where l'_2 is adjacent to l_2 in ∂D^{γ}_W and l'_2 is essential on F. For convenience, let $\gamma_1 = \partial D^1 \cap S'$ and $\gamma_2 = \partial D^1 \cap F$. So, $l_2 \cap \gamma_1 = \emptyset$, and γ_2 is parallel to l'_2 . By Lemma 8, there is an essential disk D_k in W with $\partial D_k \subset S'$, such that $\partial D_k \cap \gamma_1 = \emptyset$. Let l^2 be a non- ∂ -parallel essential simple closed curve on S', which is obtained from l_2 by attaching a component of $cl(\partial D - \partial l_2)$, γ^1 be a non- ∂ -parallel essential simple closed curve on S', which is obtained from γ_1 by attaching a component of $cl(\partial D - \partial \gamma_1)$. Since $l_2 \cap \gamma_1 = \emptyset$, $|l^2 \cap \gamma^1| \leq 1$. So, $d_{C(S')}(l^2, \gamma^1) \leq 2$. Since $\partial D_k \cap \gamma_1 = \emptyset$, $\partial D_k \cap \gamma^1 = \emptyset$. Then, $d_{C(S')}(\gamma^1, \partial D_k) \leq 1$. Hence, $d_{C(S')}(l^2, \partial D_k) \leq d_{C(S')}(l^2, \gamma^1) + d_{C(S')}(\gamma^1, \partial D_k) \leq 3$. So, the Proposition holds.

By Proposition 5, there are an essential disk D_k in W with $\partial D_k \subset S'$ and a component l_2 of $\gamma \cap S'$, such that ∂D_k is non- ∂ -parallel on S' and $d_{C(S')}(l^2, \partial D_k) \leq 3$, where l^2 is obtained from l_2 by attaching a component of $cl(\partial D - \partial l_2)$, after isotopy, l^2 is non- ∂ -parallel essential on S'. Since both l_1 and l_2 are components of $\gamma \cap S'$, $l_1 \cap l_2 = \emptyset$. Then, $|l^1 \cap l^2| \leq 1$. Since l^1 bounds an essential disk D_l in V with $\partial D_l \subset S'$ and ∂D_l is not ∂ -parallel, there is an essential disk D^l in V with $\partial D^l \subset S'$, such that ∂D^l is non- ∂ -parallel on S' and $d_{C(S')}(\partial D^l, l^2) \leq 1$. So, $d(S') \le d_{\mathcal{C}(S')}(\partial D^l, \partial D_k) \le d_{\mathcal{C}(S')}(\partial D^l, l^2) + d_{\mathcal{C}(S')}(l^2, \partial D_k) \le 4$, a contradiction.

Secondly, we show that the Heegaard surface *S* is uncritical. Assume on the contrary that *S* is critical. Then, all compressing disks for *S* can be partitioned into two sets C_0 and C_1 , and there is at least one pair of disks V_i , $W_i \in C_i$ (i = 0, 1) on opposite sides of *S*, such that $V_i \cap W_i = \emptyset$, and if $V \in C_i$ and $W \in C_{1-i}$ lie on opposite sides of *S*, then $V \cap W \neq \emptyset$.

We may assume that D lies in C_0 , D_V and D_W lie in C_1 and $D_V \cap D_W = \emptyset$. By definition, $D \cap D_W \neq \emptyset$. Since ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S', by the argument as above, there are essential disks $D^V \subset V$, $D^W \subset W$ and a component $l_2 \subset (\partial D_W \cap S')$, such that ∂D^V is non- ∂ -parallel on S', ∂D^W is non- ∂ -parallel on S', $d_{C(S')}(\partial D^V, l^2) \leq 1$ and $d_{C(S')}(\partial D^W, l^2) \leq 3$, where l^2 is obtained from l_2 by attaching a component of $cl(\partial D - \partial l_2)$, after isotopy, l^2 is non- ∂ -parallel essential on S'. So, $d(S') \leq d_{C(S')}(\partial D^V, \partial D^W) \leq d_{C(S')}(\partial D^V, l^2) + d_{C(S')}(l^2, \partial D^W) \leq 4$, a contradiction.

3. The proof of Corollary 2

Assume on the contrary that $M = V \cup_S W$ is stabilized. Then, there are two essential disks $D_V \subset V$ and $D_W \subset W$, such that $|D_V \cap D_W| = 1$. So, there is an essential simple closed curve γ on S which bounds an essential disk D_V^{γ} in V and an essential disk D_W^{γ} in W such that the 2-sphere $S^{\gamma} = D_V^{\gamma} \cup D_W^{\gamma}$ bounds a once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball). By arguments similar to those for Proposition 4, we may assume that $\gamma \cap \psi \neq \emptyset$ and $|\gamma \cap \psi|$ is minimal. So, each component of $\gamma \cap S'$ (resp. $\gamma \cap F$) is an essential arc on S' (resp. F).

If D_V^{γ} (resp. D_W^{γ}) is a 1-disk in V (resp. W), then $|\gamma \cap S'| = 1$. Let $l = \gamma \cap S'$. By Lemma 10 in [2], there are essential disks $D^V \subset V$ and $D^W \subset W$, such that ∂D^V is non- ∂ -parallel on S', ∂D^W is non- ∂ -parallel on S', $d_{C(S')}(\partial D^V, l^1) \leq 1$ and $d_{C(S')}(\partial D^W, l^1) \leq 1$, where l^1 is obtained from l by attaching a component of $cl(\psi - \partial l)$, after isotopy, l^1 is non- ∂ -parallel essential on S'. So, $d(S') \leq d_{C(S')}(\partial D^V, \partial D^W) \leq d_{C(S')}(\partial D^V, l^1) + d_{C(S')}(l^1, \partial D^W) \leq 2$, a contradiction.

So, we may assume that D_V^{γ} (resp. D_W^{γ}) is an *n*-disk in *V* (resp. *W*) with $n \ge 2$. By arguments in the proof of Theorem 1, there are essential disks $D^V \subset V$, $D^W \subset W$, and components l_1 and l_2 of $\gamma \cap S'$, such that ∂D^V is non- ∂ -parallel on S', ∂D^W is non- ∂ -parallel on S', $d_{C(S')}(\partial D^V, l^1) \le 3$ and $d_{C(S')}(\partial D^W, l^2) \le 3$, where l^i (i = 1, 2) is obtained from l_i by attaching a component of $cl(\psi - \partial l_i)$, after isotopy, l^i is non- ∂ -parallel essential on S'. Since both l_1 and l_2 are components of $\gamma \cap S'$, $l_1 \cap l_2 = \emptyset$. Then, $|l^1 \cap l^2| \le 1$. Hence, $d_{C(S')}(l^1, l^2) \le 2$. So, $d(S') \le d_{C(S')}(\partial D^V, \partial D^W) \le d_{C(S')}(\partial D^V, l^1) + d_{C(S')}(l^1, l^2) + d_{C(S')}(l^2, \partial D^W) \le 8$, a contradiction.

4. The proof of Theorem 3

(1) By arguments in the proof of Theorem 1, if *S* is critical, then $d(S') \le 4$.

(2) For all compressing disks for *S*, we partition them into two sets C_0 and C_1 . Let $V \cap C_0 = \{D\}, W \cap C_0 = \{D_W | D_W \text{ is an essential disk in } W \text{ and } D_W \cap D = \emptyset\}, V \cap C_1 = \{D_V | D_V \text{ is an essential disk in } V \text{ and } D_V \text{ is not isotopic to } D\}$ and $W \cap C_1 = \{D_W | D_W \text{ is an essential disk in } W \text{ and } D_W \cap D \neq \emptyset\}$. Since *S'* is almost strongly irreducible, $V \cap C_1 \neq \emptyset$ and

 $W \cap C_0 \neq \emptyset$. Since there is an essential disk $D_W \subset W$ with $D_W \cap D \neq \emptyset$, $W \cap C_1 \neq \emptyset$.

In C_0 , for any disk D_W^0 in $W \cap C_0$, $D_W^0 \cap D = \emptyset$. In C_1 , there are two essential disks $D_V^1 \subset (V \cap C_1)$ and $D_W^1 \subset (W \cap C_1)$, such that $D_W^1 \cap D_V^1 = \emptyset$. For any disk D_W^1 in $W \cap C_1$, $D_W^1 \cap D \neq \emptyset$. For any disks $D_W^0 \subset (W \cap C_0)$ and $D_V^1 \subset (V \cap C_1)$, since M is irreducible, F is almost incompressible and S' is almost strongly irreducible, ∂D_W^0 lies in S' and ∂D_W^0 is non- ∂ -parallel on S'. If $D_V^1 \cap D = \emptyset$, since S' is almost strongly irreducible, $D_W^0 \cap D_V^1 \neq \emptyset$. If $D_V^1 \cap D \neq \emptyset$, we may assume that $|D_V^1 \cap D|$ is minimal and each component of $D_V^1 \cap D$ is an arc on both D_V^1 and D. Assume on the contrary that $D_W^0 \cap D_V^1 = \emptyset$. By arguments in the proof of Theorem 1, all outermost disks of D_V^1 . We can push ∂D_0 into S'. After isotopy, we still denote it by D_0 . Since ∂D_0 is non- ∂ -parallel on S' and $D_W^0 \cap D_0 = \emptyset$, it is a contradiction to the fact that S' is almost strongly irreducible.

References

- [1] D. Bachman: Topological index theory for surfaces in 3-manifolds, Geom. Topol. 14 (2010), 585–609.
- [2] K. Du: Unstabilized and uncritical dual Heegaard splitting of product I-bundle, Topology Appl. 204 (2016), 266–277.
- [3] Q. E and F. Lei: Critical Heegaard surfaces obtained by self-amalgamation, J. Knot Theory Ramifications 22 (2013), 1350015, 7pp.
- [4] Q. E and F. Lei: Topologically minimal surfaces versus self-amalgamated Heegaard surfaces, Sci. China Math. 57 (2014), 2393–2398.
- [5] W. Harvey: *Boundary structure of the modular group*; in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N. Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, N. J., 1981, 245–251.
- [6] J. Hempel: 3-Manifolds as viewed from the curve complex, Topology 40 (2001), 631-657.
- [7] A. Ido, Y. Jang and T. Kobayashi: *Heegaard splittings of distance exactly n*, Algebr. Geom. Topol. 14 (2014), 1395–1411.
- [8] J. Kim: A topologically minimal, weakly reducible, unstabilized Heegaard splitting of genus three is critical, Algebr. Geom. Topol. 16 (2016), 1427–1451.
- [9] J. Kim: On critical Heegaard splittings of tunnel number two composite knot exteriors, J. Knot Theory Ramifications 22 (2013), 1350065, 11pp.
- [10] J. Lee: Critical Heegaard surfaces obtained by amalgamation, Topology Appl. 160 (2013), 111-116.
- [11] H. Masur and Y. Minsky: Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), 103–149.
- [12] H. Masur and Y. Minsky: Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), 902–974.
- [13] R. Qiu, Y. Zou and Q. Guo: The Heegaard distances cover all nonnegative integers, Pacific J. Math. 275 (2015), 231–255.

School of Mathematics and Statistics Lanzhou University Lanzhou, 730000 P.R. China e-mail: dukun@lzu.edu.cn