UNSTABILIZED WEAKLY REDUCIBLE HEEGAARD SPLITTINGS

Kun DU

(Received May 29, 2017, revised September 20, 2017)

Abstract

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All surfaces in 3-manifolds are assumed to be properly embedded and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S=\partial_{+} W=\partial_{+} V$, then we say M has a Heegaard splitting, denoted by $M=V \cup_{S} W$; and S is called a Heegaard surface of M. Moreover, if the genus $g(S)$ of S is minimal among all Heegaard surfaces of M, then $g(S)$ is called the genus of M, denoted by $g(M)$. If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B=\partial D$ (resp. $\partial B \cap \partial D=\emptyset$), then $V \cup_{S} W$ is said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). If there are essential disks $B \subset V$ and $D \subset W$, such that $|B \cap D|=1$, then $M=V \cup_{S} W$ is said to be stabilized; otherwise, $M=V \cup_{S} W$ is said to be unstabilized. If a surface F in a 3-manifold M is incompressible and not parallel to ∂M, then F is said to be essential. If a separating surface F in M is compressible on both sides of F, then F is said to be bicompressible. If every compressing disk in one side of F intersects every compressing disk in the other side, then F is said to be strongly irreducible. If F is incompressible except for $[\partial F]$, then F is said to be almost incompressible; if F is bicompressible except for $[\partial F]$, then F is said to be almost bicompressible; if F is strongly irreducible except for $[\partial F]$, then F is said to be almost strongly irreducible, where $[\partial F]$ is the isotopy class of ∂F.

Let M be a 3-manifold, and S be a closed separating compressible surface in $M . S$ is said to be critical (see [1]), if the compressing disks for S can be partitioned into two sets C_{0} and C_{1}, and there is at least one pair of disks $V_{i}, W_{i} \in C_{i}(i=0,1)$ on opposite sides of S, such that $V_{i} \cap W_{i}=\emptyset$, and if $V \in C_{i}$ and $W \in C_{1-i}$ lie on opposite sides of S, then $V \cap W \neq \emptyset$. If S is not critical, then S is said to be uncritical. There are some examples, see [2]-[4], [8]-[10].

Let S be a closed surface with $g(S) \geq 2$. The curve complex of S (see [5]) is the complex whose vertices are the isotopy classes of essential simple closed curves on S, and $k+1$

[^0]vertices determine a k-simplex if they are represented by pairwise disjoint curves. If S is a torus, the curve complex of S (see [11], [12]) is the complex whose vertices are the isotopy classes of essential simple closed curves on S, and $k+1$ vertices determine a k-simplex if they can be represented by a collection of curves, any two of which intersect in only one point. We denote the curve complex of S by $\mathcal{C}(S)$. For any two vertices in $\mathcal{C}(S)$, one can define the distance $d_{C(S)}(x, y)$ to be the minimal number of 1 -simplices in a simplicial path jointing x to y over all such possible paths.

If S is a surface with $\partial S \neq \emptyset$, then we can define the curve complex $\mathcal{C}(S)$ of S and $d_{\mathcal{C}(S)}(x, y)$ for any two vertices x and y in $\mathcal{C}(S)$ by the same way, where the vertex of $\mathcal{C}(S)$ is the isotopy class of non- ∂-parallel essential simple closed curves on S. The distance of the Heegaard splitting $M=V \cup_{S} W$ with $g(S) \geq 2$ (see [6]) is $d(S)=\operatorname{Min}\left\{d_{\mathcal{C}(S)}(\alpha, \beta) \mid \alpha\right.$ bounds a disk in V and β bounds a disk in $W\}$. If S^{\prime} is an almost bicompressible subsurface of S, then $d\left(S^{\prime}\right)=\operatorname{Min}\left\{d_{\mathcal{C}\left(S^{\prime}\right)}(\alpha, \beta) \mid \alpha\right.$ bounds a disk in V and β bounds a disk in $\left.W\right\}$ is said to be local Heegaard distance of S^{\prime} respect to $d(S)$ (see [7], [13]).

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be critical as follows:

Theorem 1. Let M be a 3-manifold, $M=V \cup_{S} W$ be a Heegaard splitting of M, D be an essential disk in V such that ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S^{\prime}. If $d\left(S^{\prime}\right) \geq 5$, then $M=V \cup_{S} W$ is unstabilized and uncritical.

Corollary 2. Let M be a 3-manifold, $M=V \cup_{S} W$ be a Heegaard splitting of M, ψ be an essential simple closed curve on S which cuts S into an almost incompressible surface F and an almost strongly irreducible surface S^{\prime}. If $d\left(S^{\prime}\right) \geq 9$, then $M=V \cup_{S} W$ is unstabilized.

Theorem 3. Let M be an irreducible 3-manifold, $M=V \cup_{S} W$ be a Heegaard splitting of M, D be an essential disk in V such that ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S^{\prime}.
(1) If S is critical, then $d\left(S^{\prime}\right) \leq 4$.
(2) If there are two essential disks $D_{V} \subset V$ and $D_{W} \subset W$, such that D_{V} is not isotopic to $D, D_{W} \cap D \neq \emptyset$ and $D_{W} \cap D_{V}=\emptyset$, then S is critical.

2. The proof of Theorem 1

Firstly, we show that $M=V \cup_{S} W$ is unstabilized. Assume on the contrary that $M=$ $V \cup_{S} W$ is stabilized. Then, there are two essential disks $D_{V} \subset V$ and $D_{W} \subset W$, such that $\left|D_{V} \cap D_{W}\right|=1$. So, there is an essential simple closed curve γ on S which bounds an essential disk D_{V}^{γ} in V and an essential disk D_{W}^{γ} in W such that the 2 -sphere $S^{\gamma}=D_{V}^{\gamma} \cup D_{W}^{\gamma}$ bounds a once-punctured standard genus one Heegaard splitting of the 3 -sphere (i.e. a 3 -ball).

Proposition 4. $\gamma \cap \partial D \neq \emptyset$.
Proof. Assume on the contrary that $\gamma \cap \partial D=\emptyset$. If γ is parallel to ∂D, then F and S^{\prime} lie in opposite sides of S^{γ}. Since F is almost incompressible, S^{\prime} lies in the 3-ball bounded by S^{γ}. Then, S^{\prime} is a once-punctured torus. Hence, $d\left(S^{\prime}\right) \leq 1$, a contradiction. So, γ is a non- ∂-parallel essential simple closed curve on F or S^{\prime}. Since F is almost incompressible,
γ lies in S^{\prime} and $d\left(S^{\prime}\right)=0$, a contradiction.
By Proposition 4, we may assume that $\gamma \cap \partial D \neq \emptyset$ and $|\gamma \cap \partial D|$ is minimal. So, each component of $\gamma \cap S^{\prime}$ (resp. $\gamma \cap F$) is an essential arc on S^{\prime} (resp. F). Recall that γ bounds an essential disk D_{V}^{γ} in V and an essential disk D_{W}^{γ} in W. If $\left|\gamma \cap S^{\prime}\right|=|\gamma \cap F|=n$, then D_{V}^{γ} (resp. D_{W}^{γ}) is said to be an n-disk in V (resp. W).

Since $D_{V}^{\gamma} \cap D \neq \emptyset$, we may assume that each component of $D_{V}^{\gamma} \cap D$ is an arc on both D_{V}^{γ} and D. Let α be a component of $D_{V}^{\gamma} \cap D$. Then, α cuts a disk D_{α} from D_{V}^{γ}. If int $D_{\alpha} \cap D=\emptyset$, then D_{α} is said to be an outermost disk of D_{V}^{γ}, and α is said to be an outermost arc of $D_{V}^{\gamma} \cap D$ on D_{V}^{γ}. Since F is almost incompressible, all outermost disks of D_{V}^{γ} lie in the component of $c l(V-D)$ which contains S^{\prime}. Let D_{0} be an outermost disk of D_{V}^{γ}. Then, $\left|\partial D_{0} \cap S^{\prime}\right|=\left|\partial D_{0} \cap D\right|=1$, and $\partial D_{0} \cap S^{\prime}$ is an essential arc on S^{\prime}. Let $l_{1}=\partial D_{0} \cap S^{\prime}$ and $l_{1}^{\prime}=\partial D_{0} \cap D$. We push l_{1}^{\prime} into ∂D and denote it by $l_{1}^{\prime \prime}$. Let $l^{1}=l_{1} \cup l_{1}^{\prime \prime}$. After isotopy, we may assume that l^{1} lies in S^{\prime}. Since l_{1} is essential on S^{\prime}, l^{1} is non- ∂-parallel essential on S^{\prime} and bounds an essential disk D_{l} in V. So, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{1}, \partial D_{l}\right)=0$.

If there is an essential disk D_{h} in W with $\partial D_{h} \subset S^{\prime}$, such that ∂D_{h} is non- ∂-parallel on S^{\prime} and disjoint from a component h of $\gamma \cap S^{\prime}$, then h cuts ∂D into two arcs h_{1} and h_{1}^{\prime}. Let $h^{1}=$ $h \cup h_{1}$. After isotopy, we may assume that h^{1} lies in S^{\prime} and $h^{1} \cap \partial D_{h}=\emptyset$. Since h is essential on S^{\prime}, h^{1} is non- ∂-parallel on S^{\prime}. So, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(h^{1}, \partial D_{h}\right) \leq 1$. Since $h \cap l_{1}=\emptyset, d_{\mathcal{C}\left(S^{\prime}\right)}\left(h^{1}, l^{1}\right) \leq$ 2. So, $d\left(S^{\prime}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D_{l}, \partial D_{h}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D_{l}, l^{1}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{1}, h^{1}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(h^{1}, \partial D_{h}\right) \leq 3$, a contradiction.

By the argument as above, we may assume that for any essential disk D^{W} in W with $\partial D^{W} \subset S^{\prime}$ and any component η of $\gamma \cap S^{\prime}$, if ∂D^{W} is non- ∂-parallel on S^{\prime}, then $\partial D^{W} \cap \eta \neq \emptyset$. If D_{W}^{γ} (which is bounded by γ) is a 1-disk in W, then $\left|\gamma \cap S^{\prime}\right|=1$. Then, $\left|D_{V}^{\gamma} \cap D\right|=1$. Hence, there are two outermost disks of D_{V}^{γ} which lie in different components of $\operatorname{cl}(V-D)$, a contradiction. So, we may assume that D_{W}^{γ} is an n-disk with $n \geq 2$.

Proposition 5 ([2]). There are an essential disk D_{k} in W with $\partial D_{k} \subset S^{\prime}$ and a component l_{2} of $\gamma \cap S^{\prime}$, such that ∂D_{k} is non- ∂-parallel on S^{\prime} and $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D_{k}\right) \leq 3$, where l^{2} is obtained from l_{2} by attaching a component of $c l\left(\partial D-\partial l_{2}\right)$, after isotopy, l^{2} is non- ∂-parallel essential on S^{\prime}.

Proof. Recall that for any essential disk D^{W} in W with $\partial D^{W} \subset S^{\prime}$ and any component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, if ∂D^{W} is non- ∂-parallel on S^{\prime}, then $\partial D^{W} \cap \alpha \neq \emptyset$. We may assume that $\left|D^{W} \cap D_{W}^{\gamma}\right|$ is minimal among all essential disks in W, whose boundaries lie in S^{\prime} and are non- ∂-parallel. So, each component of $D^{W} \cap D_{W}^{\gamma}$ is an arc on both D^{W} and D_{W}^{γ}. Since $\left|D^{W} \cap D_{W}^{\gamma}\right|$ is minimal, and for each component α of $\partial D_{W}^{\gamma} \cap S^{\prime}, \alpha \cap \partial D^{W} \neq \emptyset$, both endpoints of each arc of $D_{W}^{\gamma} \cap D^{W}$ on D_{W}^{γ} lie in different components of $\partial D_{W}^{\gamma} \cap S^{\prime}$. For each subdisk D_{W}^{\prime} of D_{W}^{γ} which is cut by D^{W}, if ∂D_{W}^{\prime} contains m components or subcomponents of $\partial D_{W}^{\gamma} \cap S^{\prime}$, then D_{W}^{\prime} is said to be a pseudo m-disk. For each component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, there are two components α_{1} and α_{2} of $\partial D_{W}^{\gamma} \cap F$, which are adjacent to α. Let $L_{\alpha}=\left\{l \mid l\right.$ is an arc of $D_{W}^{\gamma} \cap D^{W}$ on D_{W}^{γ}, such that l $\cap \alpha \neq \emptyset\}$.

Suppose $\alpha \in \partial D_{W}^{\gamma} \cap S^{\prime}$ and l_{α} is a component of L_{α}. Then, l_{α} cuts D_{W}^{γ} into two disks D^{\prime} and $D^{\prime \prime}$. We may assume that D^{\prime} is a pseudo m_{1}-disk, and $D^{\prime \prime}$ is a pseudo m_{2}-disk. Then, $m_{2}=n-m_{1}+2$, see Figure 1. If $D^{\prime}\left(\right.$ resp. $\left.D^{\prime \prime}\right)$ is a pseudo 2-disk, then l_{α} is said to be ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. If all components of L_{α} are ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, then

Fig. 1. D^{\prime} and $D^{\prime \prime}$ cut by l_{α}
L_{α} is said to be ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}.
Lemma 6. There are at least two components α and β of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that both L_{α} and L_{β} are ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}.

Proof. If D_{W}^{γ} is an n-disk with $n=2,3$, then the Lemma holds, see Figure 2. So, we may assume that D_{W}^{γ} is an n-disk with $n \geq 4$. If all components of $D_{W}^{\gamma} \cap D^{W}$ on D_{W}^{γ} are ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, then the Lemma holds. So, we may assume that there is a component k_{1} of $D_{W}^{\gamma} \cap D^{W}$ on D_{W}^{γ}, such that k_{1} is not ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. Then, k_{1} cuts D_{W}^{γ} into two disks D_{k}^{1} and $D_{k}^{1^{\prime}}$. Suppose D_{k}^{1} is a pseudo n_{1}-disk and D_{k}^{1} is a pseudo n_{1}^{\prime}-disk. Since k_{1} is not ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in $D_{W}^{\gamma}, 3 \leq n_{1}, n_{1}^{\prime}<n$.

Fig. 2. n-disk with $n=2,3$
First, we consider D_{k}^{1}. Note that $D_{k}^{1} \cap D^{W} \subsetneq D_{W}^{\gamma} \cap D^{W}$. If D_{k}^{1} is a pseudo 3-disk, then there is only one component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$ on ∂D_{k}^{1}, such that $\alpha \cap k_{1}=\emptyset$. Hence, L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. So, we may assume that D_{k}^{1} is a pseudo n_{1}-disk with $4 \leq n_{1}<n$. If all components of $D_{k}^{1} \cap D^{W}$ on D_{k}^{1} are ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{1}$ in D_{k}^{1}, then there is a component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that $\alpha \cap k_{1}=\emptyset$ and L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. So, we may assume that there is a component k_{2} of $D_{k}^{1} \cap D^{W}$ on D_{k}^{1}, such that k_{2} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{1}$ in D_{k}^{1}. Then, k_{2} cuts a disk D_{k}^{2} from D_{k}^{1}, such that ∂D_{k}^{2} does not contain k_{1}. Hence, $D_{k}^{2} \cap D^{W} \subsetneq D_{k}^{1} \cap D^{W} \subsetneq D_{W}^{\gamma} \cap D^{W}$.

Since k_{2} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{1}$ in D_{k}^{1}, we may assume that D_{k}^{2} is a pseudo n_{2}-disk with $3 \leq n_{2}<n_{1}<n$. By the same argument as D_{k}^{1}, either there is a component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, which is disjoint from k_{2}, such that L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, or there is a component k_{3} of $D_{k}^{2} \cap D^{W}$ on D_{k}^{2}, such that k_{3} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{2}$ in
D_{k}^{2}. Then, k_{3} cuts a disk D_{k}^{3} from D_{k}^{2}, such that ∂D_{k}^{3} does not contain k_{2}. Then, $D_{k}^{3} \cap D^{W} \subsetneq$ $D_{k}^{2} \cap D^{W} \subsetneq D_{k}^{1} \cap D^{W} \subsetneq D_{W}^{\gamma} \cap D^{W}$. Since k_{3} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{2}$ in D_{k}^{2}, we may assume that D_{k}^{3} is a pseudo n_{3}-disk with $3 \leq n_{3}<n_{2}<n_{1}<n$.

We continue this procedure as above, either there is a component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, or there is a component k_{m} of $D_{k}^{m-1} \cap D^{W}$ on D_{k}^{m-1}, such that k_{m} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{m-1}$ in $D_{k}^{m-1}(m \geq 2)$. Then, k_{m} cuts a disk D_{k}^{m} from D_{k}^{m-1}, such that ∂D_{k}^{m} does not contain k_{m-1}. Hence, $D_{k}^{m} \cap D^{W} \subsetneq D_{k}^{m-1} \cap D^{W} \subsetneq \ldots \subsetneq$ $D_{k}^{1} \cap D^{W} \subsetneq D_{W}^{\gamma} \cap D^{W}$. Since k_{m} is not ∂-parallel to $\left(\partial D_{W}^{\gamma} \cap F\right) \cup k_{m-1}$ in D_{k}^{m-1}, we may assume that D_{k}^{m} is a pseudo n_{m}-disk with $3 \leq n_{m}<n_{m-1}<\cdots<n_{2}<n_{1}<n$. Since n is finite, either there is a component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, or $n_{m}=3$. If D_{k}^{m} is a pseudo n_{m}-disk with $n_{m}=3$, then there is only one component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, which is disjoint from k_{m}, such that L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. Finally, we obtain a component α of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that L_{α} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}.

Second, we consider $D_{k}^{1^{\prime}}$. By the same argument as D_{k}^{1}, there is a component $\beta(\neq \alpha)$ of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that L_{β} is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. So, the Lemma holds.

By Lemma 6, there is a component l_{2} of $\partial D_{W}^{\gamma} \cap S^{\prime}$, such that $L_{l_{2}}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. Let l_{2}^{\prime} and $l_{2}^{\prime \prime}$ be two components of $\partial D_{W}^{\gamma} \cap F$, such that l_{2}^{\prime} and $l_{2}^{\prime \prime}$ are adjacent to l_{2}. Since $|\gamma \cap \partial D|$ is minimal, both l_{2}^{\prime} and $l_{2}^{\prime \prime}$ are essential on F.

Lemma 7. There is a 1 -disk D^{1} in W, such that $\left(\partial D^{1} \cap S^{\prime}\right) \cap l_{2}=\emptyset$, and $\partial D^{1} \cap F$ is parallel to l_{2}^{\prime} or $l_{2}^{\prime \prime}$.

Proof. Let k be a component of $L_{l_{2}}$. Since $L_{l_{2}}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, k cuts a pseudo 2-disk D^{k} from D_{W}^{γ}. If int $D^{k} \cap L_{l_{2}}=\emptyset$, then D^{k} is said to be an outermost disk of D_{W}^{γ}, and k is said to be an outermost arc of $D^{W} \cap D_{W}^{\gamma}$ on D_{W}^{γ}. Let k_{1} be a component of $L_{l_{2}}$, such that k_{1} is an outermost arc of $D^{W} \cap D_{W}^{\gamma}$ on D_{W}^{γ}. Then, k_{1} cuts an outermost disk D_{1}^{k} from D_{W}^{γ}, such that $\operatorname{int} D_{1}^{k} \cap L_{l_{2}}=\emptyset$. So, D_{1}^{k} is a pseudo 2-disk. Since $L_{l_{2}}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, we may assume that k_{1} is parallel to l_{2}^{\prime}, where l_{2}^{\prime} is adjacent to l_{2} on ∂D_{W}^{γ}. Note that k_{1} also cuts D^{W} into two disks $D_{k}^{1^{\prime}}$ and $D_{k}^{1^{\prime \prime}}$. Let $D_{k_{1}}=D_{k}^{1^{\prime}} \cup D_{1}^{k}$ and $D_{k_{1}}^{\prime}=D_{k}^{1^{\prime \prime}} \cup D_{1}^{k}$. Since k_{1} is parallel to l_{2}^{\prime} in D_{W}^{γ}, after isotopy, both $\partial D_{k_{1}} \cap F$ and $\partial D_{k_{1}}^{\prime} \cap F$ are parallel to l_{2}^{\prime}. Since l_{2}^{\prime} is essential on F and F is almost incompressible, both $\partial D_{k_{1}} \cap S^{\prime}$ and $\partial D_{k_{1}}^{\prime} \cap S^{\prime}$ are essential on S^{\prime}. Hence, $D_{k_{1}}$ and $D_{k_{1}}^{\prime}$ are 1-disks in W. After isotopy, $\left|D_{k_{1}} \cap D_{W}^{\gamma}\right|<\left|D^{W} \cap D_{W}^{\gamma}\right|$, $\left|D_{k_{1}}^{\prime} \cap D_{W}^{\gamma}\right|<\left|D^{W} \cap D_{W}^{\gamma}\right|, D_{k_{1}} \cap D_{W}^{\gamma} \subsetneq D^{W} \cap D_{W}^{\gamma}$, and $D_{k_{1}}^{\prime} \cap D_{W}^{\gamma} \subsetneq D^{W} \cap D_{W}^{\gamma}$.

Suppose $\left|D_{k_{1}} \cap D_{W}^{\gamma}\right| \leq\left|D_{k_{1}}^{\prime} \cap D_{W}^{\gamma}\right|$, we only consider $D_{k_{1}}$. Let $L_{l_{2}}^{1}=\{k \mid k$ is a component of $D_{W}^{\gamma} \cap D_{k_{1}}$ on D_{W}^{γ}, such that $\left.k \cap l_{2} \neq \emptyset\right\}$. Then, $L_{l_{2}}^{1} \subsetneq L_{l_{2}}$. Hence, $L_{l_{2}}^{1}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. If $L_{l_{2}}^{1}=\emptyset$, let $D^{1}=D_{k_{1}}$, then $l_{2} \cap\left(\partial D^{1} \cap S^{\prime}\right)=\emptyset$ and $\partial D^{1} \cap F$ is parallel to l_{2}^{\prime}. Hence, the Lemma holds. If $L_{l_{2}}^{1} \neq \emptyset$, let k_{2} be a component of $L_{l_{2}}^{1}$, such that k_{2} is an outermost arc of $D_{k_{1}} \cap D_{W}^{\gamma}$ on D_{W}^{γ}. Then, k_{2} cuts an outermost disk D_{2}^{k} from D_{W}^{γ}, such that int $D_{2}^{k} \cap L_{l_{2}}^{1}=\emptyset$. So, D_{2}^{k} is a pseudo 2-disk. Since $L_{l_{2}}^{1}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}, we may assume that k_{2} is parallel to l_{2}^{\prime}, where l_{2}^{\prime} is adjacent to l_{2} in ∂D_{W}^{γ}. Let $D_{k}^{2^{\prime}}$ be a subdisk of $D_{k_{1}}$, which is cut by k_{2}, such that $\partial D_{k}^{2^{\prime}}$ does not contain $\partial D_{k_{1}} \cap F$, and $D_{k_{2}}=D_{2}^{k} \cup D_{k}^{2^{\prime}}$.

By the same argument as $D_{k_{1}}, D_{k_{2}}$ is a 1 -disks in W and $\partial D_{k_{2}} \cap F$ is parallel to l_{2}^{\prime}. After isotopy, $\left|D_{k_{2}} \cap D_{W}^{\gamma}\right|<\left|D_{k_{1}} \cap D_{W}^{\gamma}\right|<\left|D^{W} \cap D_{W}^{\gamma}\right|$ and $D_{k_{2}} \cap D_{W}^{\gamma} \subsetneq D_{k_{1}} \cap D_{W}^{\gamma} \subsetneq D^{W} \cap D_{W}^{\gamma}$. Let $L_{l_{2}}^{2}=\left\{k \mid k\right.$ is a component of $D_{W}^{\gamma} \cap D_{k_{2}}$ on D_{W}^{γ}, such that $\left.k \cap l_{2} \neq \emptyset\right\}$. Then, $L_{l_{2}}^{2} \subsetneq L_{l_{2}}^{1} \subsetneq L_{l_{2}}$.

Hence, $L_{l_{2}}^{2}$ is ∂-parallel to $\partial D_{W}^{\gamma} \cap F$ in D_{W}^{γ}. By the same proof as $D_{k_{1}}$, either $D^{1}=D_{k_{2}}$ such that $l_{2} \cap\left(D^{1} \cap S^{\prime}\right)=\emptyset$ and $D^{1} \cap F$ is parallel to l_{2}^{\prime}, or we obtain a 1-disk $D_{k_{3}}$ in W, such that $\partial D_{k_{3}} \cap F$ is parallel to l_{2}^{\prime}, where l_{2}^{\prime} is adjacent to l_{2} in $\partial D_{W}^{\gamma}, D_{k_{3}} \cap D_{W}^{\gamma} \subsetneq D_{k_{2}} \cap D_{W}^{\gamma} \subsetneq$ $D_{k_{1}} \cap D_{W}^{\gamma} \subsetneq D^{W} \cap D_{W}^{\gamma}$, and $\left\{k \mid k\right.$ is a component of $D_{W}^{\gamma} \cap D_{k_{3}}$ on D_{W}^{γ}, such that $k \cap l_{2} \neq$ $\emptyset\}=L_{l_{2}}^{3} \subsetneq L_{l_{2}}^{2} \subsetneq L_{l_{2}}^{1} \subsetneq L_{l_{2}}$. Continue this procedure as above, since $\left|D^{W} \cap D_{W}^{\gamma}\right|$ is finite, finally, we obtain a 1 -disk $D_{k_{m}}(m \geq 1)$ in W, such that $\partial D_{k_{m}} \cap F$ is parallel to l_{2}^{\prime}, where l_{2}^{\prime} is adjacent to l_{2} in $\partial D_{W}^{\gamma}, D_{k_{m}} \cap D_{W}^{\gamma} \subsetneq D_{k_{m-1}} \cap D_{W}^{\gamma} \subsetneq \ldots \subsetneq D_{k_{1}} \cap D_{W}^{\gamma} \subsetneq D^{W} \cap D_{W}^{\gamma}$, and $\emptyset=\left\{k \mid k\right.$ is a component of $D_{W}^{\gamma} \cap D_{k_{m}}$ on D_{W}^{γ}, such that $\left.k \cap l_{2} \neq \emptyset\right\}=L_{l_{2}}^{m} \subsetneq L_{l_{2}}^{m-1} \subsetneq \ldots \subsetneq$ $L_{l_{2}}^{1} \subsetneq L_{l_{2}}$. Let $D^{1}=D_{k_{m}}$. Then, $l_{2} \cap\left(D^{1} \cap S^{\prime}\right)=\emptyset$ and $D^{1} \cap F$ is parallel to l_{2}^{\prime}. Hence, the Lemma holds.

Lemma 8. If D^{1} is a 1 -disk in W, then there is an essential disk D_{k} in W with $\partial D_{k} \subset S^{\prime}$, such that $D_{k} \cap D^{1}=\emptyset$.

Proof. Assume on the contrary that for each essential disk D_{k} in W with $\partial D_{k} \subset S^{\prime}$, $D_{k} \cap D^{1} \neq \emptyset$. We may assume that $\left|D_{k} \cap D^{1}\right|$ is minimal among all essential disks in W with $\partial D_{k} \subset S^{\prime}$. If ∂D_{k} is parallel to ∂S^{\prime}, then $\left|D_{k} \cap D^{1}\right|=1$. Let $\delta=D_{k} \cap D^{1}$. Then, there is a subdisk D_{δ} of D^{1} which is cut by δ, such that D_{δ} contains $\partial D^{1} \cap F$. We can push δ into F. After isotopy, we denote D_{δ} by D_{δ}^{\prime}. So, D_{δ}^{\prime} is an essential disk in W with $\partial D_{\delta}^{\prime} \subset F$ and $\partial D_{\delta}^{\prime}$ is not parallel to ∂F. It is a contradiction to the fact that F is almost incompressible.

So, we may assume that ∂D_{k} is not parallel to ∂S^{\prime}. Since $\left|D_{k} \cap D^{1}\right|$ is minimal, each component of $D_{k} \cap D^{1}$ is an arc on both D_{k} and D^{1}. Let λ be an outermost arc of $D^{1} \cap D_{k}$ on D^{1}, such that λ cuts a subdisk D_{λ} from D^{1} with $\operatorname{int} D_{\lambda} \cap D_{k}=\emptyset$, and ∂D_{λ} does not contain $\partial D^{1} \cap F$. Also, λ cuts D_{k} into D_{k}^{1} and D_{k}^{2}. Let $D_{\lambda}^{1}=D_{\lambda} \cup D_{k}^{1}$ and $D_{\lambda}^{2}=D_{\lambda} \cup D_{k}^{2}$. Since D_{k} is essential in W with $\partial D_{k} \subset S^{\prime}$ and ∂D_{k} is not parallel to ∂S^{\prime}, at least one of D_{λ}^{1} and D_{λ}^{2} is essential in W whose boundary lies in S^{\prime} and is not parallel to ∂S^{\prime}. We may assume that D_{λ}^{1} is essential in W with $\partial D_{\lambda}^{1} \subset S^{\prime}$ and ∂D_{λ}^{1} is not parallel to ∂S^{\prime}. So, $\left|D_{\lambda}^{1} \cap D^{1}\right|<\left|D_{k} \cap D^{1}\right|$, a contradiction.

By Lemma 7, we may assume that D^{1} is a 1 -disk in W, such that $l_{2} \cap\left(\partial D^{1} \cap S^{\prime}\right)=\emptyset$, and $\partial D^{1} \cap F$ is parallel to l_{2}^{\prime}, where l_{2}^{\prime} is adjacent to l_{2} in ∂D_{W}^{γ} and l_{2}^{\prime} is essential on F. For convenience, let $\gamma_{1}=\partial D^{1} \cap S^{\prime}$ and $\gamma_{2}=\partial D^{1} \cap F$. So, $l_{2} \cap \gamma_{1}=\emptyset$, and γ_{2} is parallel to l_{2}^{\prime}. By Lemma 8 , there is an essential disk D_{k} in W with $\partial D_{k} \subset S^{\prime}$, such that $\partial D_{k} \cap \gamma_{1}=\emptyset$. Let l^{2} be a non- ∂-parallel essential simple closed curve on S^{\prime}, which is obtained from l_{2} by attaching a component of $c l\left(\partial D-\partial l_{2}\right), \gamma^{1}$ be a non- ∂-parallel essential simple closed curve on S^{\prime}, which is obtained from γ_{1} by attaching a component of $c l\left(\partial D-\partial \gamma_{1}\right)$. Since $l_{2} \cap \gamma_{1}=\emptyset,\left|l^{2} \cap \gamma^{1}\right| \leq 1$. So, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \gamma^{1}\right) \leq 2$. Since $\partial D_{k} \cap \gamma_{1}=\emptyset, \partial D_{k} \cap \gamma^{1}=\emptyset$. Then, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(\gamma^{1}, \partial D_{k}\right) \leq 1$. Hence, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D_{k}\right) \leq d_{\mathcal{C (S ^ { \prime })}}\left(l^{2}, \gamma^{1}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(\gamma^{1}, \partial D_{k}\right) \leq 3$. So, the Proposition holds.

By Proposition 5, there are an essential disk D_{k} in W with $\partial D_{k} \subset S^{\prime}$ and a component l_{2} of $\gamma \cap S^{\prime}$, such that ∂D_{k} is non- ∂-parallel on S^{\prime} and $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D_{k}\right) \leq 3$, where l^{2} is obtained from l_{2} by attaching a component of $\operatorname{cl}\left(\partial D-\partial l_{2}\right)$, after isotopy, l^{2} is non- ∂-parallel essential on S^{\prime}. Since both l_{1} and l_{2} are components of $\gamma \cap S^{\prime}, l_{1} \cap l_{2}=\emptyset$. Then, $\left|l^{1} \cap l^{2}\right| \leq 1$. Since l^{1} bounds an essential disk D_{l} in V with $\partial D_{l} \subset S^{\prime}$ and ∂D_{l} is not ∂-parallel, there is an essential disk D^{l} in V with $\partial D^{l} \subset S^{\prime}$, such that ∂D^{l} is non- ∂-parallel on S^{\prime} and $d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{l}, l^{2}\right) \leq 1$. So,
$d\left(S^{\prime}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{l}, \partial D_{k}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{l}, l^{2}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D_{k}\right) \leq 4$, a contradiction.
Secondly, we show that the Heegaard surface S is uncritical. Assume on the contrary that S is critical. Then, all compressing disks for S can be partitioned into two sets C_{0} and C_{1}, and there is at least one pair of disks $V_{i}, W_{i} \in C_{i}(i=0,1)$ on opposite sides of S, such that $V_{i} \cap W_{i}=\emptyset$, and if $V \in C_{i}$ and $W \in C_{1-i}$ lie on opposite sides of S, then $V \cap W \neq \emptyset$.

We may assume that D lies in C_{0}, D_{V} and D_{W} lie in C_{1} and $D_{V} \cap D_{W}=\emptyset$. By definition, $D \cap D_{W} \neq \emptyset$. Since ∂D cuts S into an almost incompressible surface F and an almost strongly irreducible surface S^{\prime}, by the argument as above, there are essential disks $D^{V} \subset V$, $D^{W} \subset W$ and a component $l_{2} \subset\left(\partial D_{W} \cap S^{\prime}\right)$, such that ∂D^{V} is non- ∂-parallel on $S^{\prime}, \partial D^{W}$ is non- ∂-parallel on $S^{\prime}, d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{2}\right) \leq 1$ and $d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{W}, l^{2}\right) \leq 3$, where l^{2} is obtained from l_{2} by attaching a component of $\operatorname{cl}\left(\partial D-\partial l_{2}\right)$, after isotopy, l^{2} is non- ∂-parallel essential on S^{\prime}. So, $d\left(S^{\prime}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, \partial D^{W}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{2}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D^{W}\right) \leq 4$, a contradiction.

3. The proof of Corollary 2

Assume on the contrary that $M=V \cup_{S} W$ is stabilized. Then, there are two essential disks $D_{V} \subset V$ and $D_{W} \subset W$, such that $\left|D_{V} \cap D_{W}\right|=1$. So, there is an essential simple closed curve γ on S which bounds an essential disk D_{V}^{γ} in V and an essential disk D_{W}^{γ} in W such that the 2-sphere $S^{\gamma}=D_{V}^{\gamma} \cup D_{W}^{\gamma}$ bounds a once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball). By arguments similar to those for Proposition 4, we may assume that $\gamma \cap \psi \neq \emptyset$ and $|\gamma \cap \psi|$ is minimal. So, each component of $\gamma \cap S^{\prime}$ (resp. $\gamma \cap F$) is an essential arc on S^{\prime} (resp. F).

If D_{V}^{γ} (resp. D_{W}^{γ}) is a 1-disk in V (resp. W), then $\left|\gamma \cap S^{\prime}\right|=1$. Let $l=\gamma \cap S^{\prime}$. By Lemma 10 in [2], there are essential disks $D^{V} \subset V$ and $D^{W} \subset W$, such that ∂D^{V} is non- ∂-parallel on $S^{\prime}, \partial D^{W}$ is non- ∂-parallel on $S^{\prime}, d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{1}\right) \leq 1$ and $d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{W}, l^{1}\right) \leq 1$, where l^{1} is obtained from l by attaching a component of $c l(\psi-\partial l)$, after isotopy, l^{1} is non- ∂-parallel essential on S^{\prime}. So, $d\left(S^{\prime}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, \partial D^{W}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{1}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{1}, \partial D^{W}\right) \leq 2$, a contradiction.

So, we may assume that D_{V}^{γ} (resp. D_{W}^{γ}) is an n-disk in V (resp. W) with $n \geq 2$. By arguments in the proof of Theorem 1, there are essential disks $D^{V} \subset V, D^{W} \subset W$, and components l_{1} and l_{2} of $\gamma \cap S^{\prime}$, such that ∂D^{V} is non- ∂-parallel on $S^{\prime}, \partial D^{W}$ is non- ∂-parallel on $S^{\prime}, d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{1}\right) \leq 3$ and $d_{\left.\mathcal{C (} S^{\prime}\right)}\left(\partial D^{W}, l^{2}\right) \leq 3$, where $l^{i}(i=1,2)$ is obtained from l_{i} by attaching a component of $c l\left(\psi-\partial l_{i}\right)$, after isotopy, l^{i} is non- ∂-parallel essential on S^{\prime}. Since both l_{1} and l_{2} are components of $\gamma \cap S^{\prime}, l_{1} \cap l_{2}=\emptyset$. Then, $\left|l^{1} \cap l^{2}\right| \leq 1$. Hence, $d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{1}, l^{2}\right) \leq$ 2. So, $d\left(S^{\prime}\right) \leq d_{\left.\mathcal{C (} S^{\prime}\right)}\left(\partial D^{V}, \partial D^{W}\right) \leq d_{\mathcal{C}\left(S^{\prime}\right)}\left(\partial D^{V}, l^{1}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{1}, l^{2}\right)+d_{\mathcal{C}\left(S^{\prime}\right)}\left(l^{2}, \partial D^{W}\right) \leq 8$, a contradiction.

4. The proof of Theorem 3

(1) By arguments in the proof of Theorem 1 , if S is critical, then $d\left(S^{\prime}\right) \leq 4$.
(2) For all compressing disks for S, we partition them into two sets C_{0} and C_{1}. Let $V \cap C_{0}=\{D\}, W \cap C_{0}=\left\{D_{W} \mid D_{W}\right.$ is an essential disk in W and $\left.D_{W} \cap D=\emptyset\right\}, V \cap C_{1}=\left\{D_{V} \mid D_{V}\right.$ is an essential disk in V and D_{V} is not isotopic to $\left.D\right\}$ and $W \cap C_{1}=\left\{D_{W} \mid D_{W}\right.$ is an essential disk in W and $\left.D_{W} \cap D \neq \emptyset\right\}$. Since S^{\prime} is almost strongly irreducible, $V \cap C_{1} \neq \emptyset$ and
$W \cap C_{0} \neq \emptyset$. Since there is an essential disk $D_{W} \subset W$ with $D_{W} \cap D \neq \emptyset, W \cap C_{1} \neq \emptyset$.
In C_{0}, for any disk D_{W}^{0} in $W \cap C_{0}, D_{W}^{0} \cap D=\emptyset$. In C_{1}, there are two essential disks $D_{V}^{1} \subset\left(V \cap C_{1}\right)$ and $D_{W}^{1} \subset\left(W \cap C_{1}\right)$, such that $D_{W}^{1} \cap D_{V}^{1}=\emptyset$. For any disk D_{W}^{1} in $W \cap C_{1}$, $D_{W}^{1} \cap D \neq \emptyset$. For any disks $D_{W}^{0} \subset\left(W \cap C_{0}\right)$ and $D_{V}^{1} \subset\left(V \cap C_{1}\right)$, since M is irreducible, F is almost incompressible and S^{\prime} is almost strongly irreducible, ∂D_{W}^{0} lies in S^{\prime} and ∂D_{W}^{0} is non- ∂-parallel on S^{\prime}. If $D_{V}^{1} \cap D=\emptyset$, since S^{\prime} is almost strongly irreducible, $D_{W}^{0} \cap D_{V}^{1} \neq \emptyset$. If $D_{V}^{1} \cap D \neq \emptyset$, we may assume that $\left|D_{V}^{1} \cap D\right|$ is minimal and each component of $D_{V}^{1} \cap D$ is an arc on both D_{V}^{1} and D. Assume on the contrary that $D_{W}^{0} \cap D_{V}^{1}=\emptyset$. By arguments in the proof of Theorem 1, all outermost disks of D_{V}^{1} lies in the component of $\operatorname{cl}(V-D)$ which contains S^{\prime}. Let D_{0} be an outermost disk of D_{V}^{1}. We can push ∂D_{0} into S^{\prime}. After isotopy, we still denote it by D_{0}. Since ∂D_{0} is non- ∂-parallel on S^{\prime} and $D_{W}^{0} \cap D_{0}=\emptyset$, it is a contradiction to the fact that S^{\prime} is almost strongly irreducible.

References

[1] D. Bachman: Topological index theory for surfaces in 3-manifolds, Geom. Topol. 14 (2010), 585-609.
[2] K. Du: Unstabilized and uncritical dual Heegaard splitting of product I-bundle, Topology Appl. 204 (2016), 266-277.
[3] Q. E and F. Lei: Critical Heegaard surfaces obtained by self-amalgamation, J. Knot Theory Ramifications 22 (2013), 1350015, 7pp.
[4] Q. E and F. Lei: Topologically minimal surfaces versus self-amalgamated Heegaard surfaces, Sci. China Math. 57 (2014), 2393-2398.
[5] W. Harvey: Boundary structure of the modular group; in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N. Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, N. J., 1981, 245-251.
[6] J. Hempel: 3-Manifolds as viewed from the curve complex, Topology 40 (2001), 631-657.
[7] A. Ido, Y. Jang and T. Kobayashi: Heegaard splittings of distance exactly n, Algebr. Geom. Topol. 14 (2014), 1395-1411.
[8] J. Kim: A topologically minimal, weakly reducible, unstabilized Heegaard splitting of genus three is critical, Algebr. Geom. Topol. 16 (2016), 1427-1451.
[9] J. Kim: On critical Heegaard splittings of tunnel number two composite knot exteriors, J. Knot Theory Ramifications 22 (2013), 1350065, 11pp.
[10] J. Lee: Critical Heegaard surfaces obtained by amalgamation, Topology Appl. 160 (2013), 111-116.
[11] H. Masur and Y. Minsky: Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), 103-149.
[12] H. Masur and Y. Minsky: Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), 902-974.
[13] R. Qiu, Y. Zou and Q. Guo: The Heegaard distances cover all nonnegative integers, Pacific J. Math. 275 (2015), 231-255.

School of Mathematics and Statistics
Lanzhou University
Lanzhou, 730000
P.R. China
e-mail: dukun@lzu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 57M27, 57M50, 57N10.
 The work is supported by the National Natural Science Foundation of China (No.11571110).

