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Abstract
In the present paper, we study holomorphic maps induced from orthogonal direct sums of

holomorphic line bundles over a compact simply connected homogeneous Kähler manifold into
a complex Grassmannian. Then we show if such maps are equivariant, then they are unique up
to complex isometry.

1. Introduction

1. Introduction
Holomorphic maps into a complex projective space have been studied for a long time and

there are many results.
E. Calabi studied holomorphic isometric embeddings into a complex projective space in

[1]. He proved local and global rigidity theorems of them. M. Takeuchi notice that those
maps are also equivariant with respect to complex isometry group and constructed all holo-
morphic isometric embeddings of compact homogeneous Kähler manifolds into complex
projective spaces in [8].

Recently, some mathematicians study holomorphic or harmonic maps into a complex or
real oriented Grassmannian, which are a kind of generalization of complex projective spaces
or spheres. For example, in [3] J. Fei, X. Jiao, L. Xiao and X. Xu studied S U(2)-equivariant
harmonic maps of complex projective line into complex Grassmannians. In [4] L.He, Jiao
and X. Zhou studied a rigidity of holmorphic maps of complex projective line into Gr2(C5).
They used a method of moving frame and harmonic sequence, which are constructed by S.
S. Chern and J. G. Wolfson in [2].

In the present paper, we study holomorphic maps into a complex Grassmannian by using
another method. We focus on the relation of holomorphic maps into a complex Grassman-
nian and holomorphic vector bundles. This is a theory to study harmonic maps into a real
oriented or complex Grassmannian considered from Nagatomo in [7]. He proved the fol-
lowing theorem in the same paper.

Theorem 1 ([7], Theorem 5.20). Let M := G/K0 be a compact reductive Riemannian
homogeneous space with decomposition g = k ⊕ m. Fix a homogeneous vector bundle
V = G ×K0 V0 → G/K0 of rank q.

Let f : M → Grp(Kn), where K is R or C, be a full harmonic map satisfying following
two conditions:

2010 Mathematics Subject Classification. 53C30, 53C40, 53C24.



166 I. Koga

(i) The pull-back bundle f ∗Q → M with the pull-back metric and connection is gauge
equivalent to V → M with the invariant metric and the canonical connection.
(Hence, q = n − p.)

(ii) The mean curvature operator A ∈ Γ(EndV) of a map f is expressed as −μIdV for
some positive real number μ.

Then there exists an eigenspace W ⊂ Γ(V) of the Laplacian of an eigenvalue μ equipped
with L2-scalar product (·, ·)W and a semi-positive symmetric or Hermitian endomorphism
T ∈ End(W). Regard W as g-representation (ρ,W). The pair (W, T ) satisfies the following
conditions.

(I) The vector space Kn is a subspace of W with the inclusion ι : Kn → W and V → M
is globally generated by Kn.

(II) As a subspace, Kn = (KerT )⊥, and the restriction of T is positive endomorphism of
K

n.
(III) The endomorphism T satisfies

(1.1) (T 2 − IdW ,GH(V0,V0))H = 0, (T 2,GH(ρ(m)V0,V0))H = 0,

where V0 is regarded as a subspace of W.
(IV) The endomorphism T gives an embedding of Grp(Kn) into Grp′(W), where p′ =

n + dim KerT and also gives a bundle isomorphism φ : V → f ∗Q.

Then, f : M → Grp(Kn) can be expressed as

(1.2) f (x) = (ι∗T ι)−1
(

f0(x) ∩ (KerT )⊥
)
,

where ι∗ denotes the adjoint operator of ι under the induced scalar product onKn from (·, ·)W

on W and f0 the standard map induced by W.
The pairs ( f1, φ1) and ( f2, φ2) are gauge equivalent if and only if

(1.3) ι∗1T1ι1 = ι
∗
2T2ι2,

where (Ti, ιi) correspond to fi under the expression in (1.2) respectively.
Conversely, suppose that a vector space Kn, an eigenspace W ⊂ Γ(V) with eigenvalue

μ and a semi-positive symmetric or Hermitian endomorphism T ∈ End(W) satisfying con-
dition (I), (II) and (III) are given. Then there exists a unique embedding of Grp(Kn) into
Grp′(W) and the map f : M → Grp(Kn) defined in (1.2) is a full harmonic map into Grp(Kn)
satisfying condition (i) and (ii) with bundle isomorphism V � f ∗Q.

This theorem can be applied to holomorphic maps into a complex Grassmannian.
In [6] the author studied holomorphic isometric immersions of Hermitian symmetric

spaces of compact type into a complex Grassmannian. He defined a projectively flat map,
which is a holomorphic map whose pull-back of the universal quotient bundle Q→ Grp(Cn)
becomes projectively flat by pull-back connection. This is a kind of generalization of holo-
morphic maps into a complex projective space.

He also showed that holomorphic isometric projectively flat immersions of Hermitian
symmetric spaces of compact type have a certain rigidity. This result can be considered as a
partially extension of a theorem of Calabi in [1]. In order to show this results, he essentially
used the decomposability of the pull-back of the universal quotient bundle.

Inspiring this fact and results of Calabi and Takeuchi, we study holomorphic maps which
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are equivariant and the pull-back of the universal quotient bundle is decomposed to the
direct sum of holomorphic line bundles. Here we define G-equivariance of a holomorphic
map f : G/K → Grp(Cn) by the following:

Definition 2. Let M = G/K be a complex homogeneous space of a compact semi-simple
Lie group G. A holomorphic map f : M → Grp(Cn) is called G-equivariant if there exists a
Lie group homomorphism ρ : G → S U(n) such that

(1.4) f (gx) = ρ(g) f (x), for g ∈ G, x ∈ M.

When a holomorphic map f : G/K → Grp(Cn) is G-equivariant, it is not always uniquely
determined the Lie group homomorphism ρ : G → S U(n) which satisfies (1.4). This is
because there may exist more than one G-actions to a holomorphic Hermitian vector bundle
which preserve holomorphic structure and Hermitian metric.

In section 2 we provide facts of geometry of complex Grassmannian and in section 3
we study a holomorphic maps induced by a holomorphic vector bundle, especially having
homogeneous structure.

In section 4 we introduce and prove main theorem in the present paper (Theorem 9).
As an application, we study equivariant holomorphic maps into a complex projective

space in the last section.

The author would like to thank Professor Yasuyuki Nagatomo for his many advices and
continuous encouragement.

2. Preliminaries 1: vector bundles on a complex Grassmannian

2. Preliminaries 1: vector bundles on a complex Grassmannian
For a detail of the argument of this section, see [7]. Let Cn be an n-dimensional complex

vector space with a Hermitian inner product (·, ·)n and Grp(Cn) be the complex Grassman-
nian manifold of complex p-planes in Cn. We denote by S → Grp(Cn) the tautological
bundle and by Cn := Grp(Cn) × Cn → Grp(Cn) the trivial bundle of rank n. They are holo-
morphic vector bundles. The trivial bundle Cn → Grp(Cn) has the Hermitian fibre metric
induced by (·, ·)n, which is denoted by the same notation. Since S → Grp(Cn) is a subbundle
of Cn → Grp(Cn), the bundle S → Grp(Cn) has a Hermitian fibre metric hS induced from
(·, ·)n and we obtain a holomorphic vector bundle Q → Grp(Cn) satisfying the following
short exact sequence:

(2.1) 0 −→ S −→ Cn −→ Q −→ 0.

This is called the universal quotient bundle over Grp(Cn). When we denote by S ⊥ →
Grp(Cn) the orthogonal complement bundle of S → Grp(Cn) in Cn → Grp(Cn), Q →
Grp(Cn) is isomorphic to S ⊥ → Grp(Cn) as a C∞-complex vector bundle. Thus Q →
Grp(Cn) has the Hermitian fibre metric hQ induced by the Hermitian fibre metric of S ⊥ →
Grp(Cn).

These vector bundles are all homogeneous vector bundles. We set G̃ := S U(n) and K̃ :=
S (U(p)×U(q)). Then Grp(Cn) � G̃/K̃. Let Cp be a p-dimensional complex subspace of Cn

such that Cp is an irreducible representation space of K̃ and Cq the orthogonal complement
ofCp. Then S → Grp(Cn), S ⊥ → Grp(Cn) and Q→ Grp(Cn) are expressed as the following:
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S = G̃ ×K̃ C
p, S ⊥ = G̃ ×K̃ C

q, Q = G̃ ⊗K̃ (Cn/Cp).

For the exact sequence (2.1), the inclusion iS : S → Cn is expressed as

S = G̃ ×K̃ C
p � [g, v] −→ ([g], gv) ∈ G̃/K̃ × Cn = Cn,

for g ∈ G̃ and v ∈ Cp. Similarly we define a inclusion iQ : Q→ Cn:

Q � S ⊥ � [g, v] −→ ([g], gv) ∈ Cn,

for g ∈ G̃ and v ∈ Cq. When we regard Q → Grp(Cn) a subbundle of Cn → Grp(Cn) as
above, the G̃-action to Q→ Grp(Cn) is expressed as the following:

g · ([g̃], g̃v) = (g · [g̃], gg̃v), for g, g̃ ∈ G̃, v ∈ Cq.

Since the holomorphic tangent bundle T1,0Gr → Grp(Cn) is identified with S ∗ ⊗ Q →
Grp(Cn), where S ∗ → Gr is the dual bundle of S → Gr, complex manifold Grp(Cn) has
a homogeneous Hermitian metric hGr := hS ∗ ⊗ hQ. This is called the Hermitian metric of
Fubini-Study type of Grp(Cn) induced from (·, ·)n.

We denote by πp : Cn → Cp and πq : Cn → Cq the orthogonal projection. Then the ajoint
map πS : Cn → S and πQ : Cn → Q of iS and iQ is expressed as the following respectively:

πS : Cn � ([g], w) −→ [g, πp(g−1w)] ∈ S ,

πQ : Cn � ([g], w) −→ [g, πq(g−1w)] ∈ Q.

By using the bundle projection πS and πQ, for each vector w ∈ Cn we obtain a section of
S → Grp(Cn) and Q→ Grp(Cn) respectively:

πS : Cn −→ Γ(S ) : w −→ πS (·, w),

πQ : Cn −→ Γ(Q) : w −→ πQ(·, w).

It is well-known that πQ generates holomorphic sections. It follows from a Borel-Weil theory
that Cn is identified with the space H0(Q) of global holomorphic sections of Q → Grp(Cn)
by πQ. Since the bundle projection πQ is the third arrow in (2.1), Q → Grp(Cn) is globally
generated by Cn.

Remark 2.1. When we consider the case that p = n− 1 1, (Grn−1(Cn), hGr) is the complex
projective space with Fubini-Study metric of constant holomophic sectional curvature 2.
(See [6].)

3. Preliminaries 2: standard maps and gauge condition

3. Preliminaries 2: standard maps and gauge condition
In this section, we study relations between holomorphic maps into a complex Grassman-

nian and holomrophic vector bundles over a base manifold.
Let M be a compact Kähler manifold and V → M a holomorphic vector bundle of rank

q equipped with a Hermitian metric hV and the Hermitian connection ∇V . We denote by
W = H0(V) the space of holomorphic sections of V → M and by N the dimension of W.
Suppose that V → M is globally generated by W. This means that the following evaluation

1In this paper, the complex projective space means the complex Grassmannian manifold Grn−1(Cn), not
Gr1(Cn).
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homomorphism

ev : W := M ×W −→ V, (x, t) −→ evx(t) = t(x)

is surjective. For each x ∈ M, we have the kernel Ker evx of the linear map evx : W → Vx.
Dimensions of Ker evx is independent of x→ M. Therefore we obtain a map

f0 : M −→ Grp(W), x −→ Ker evx,

where p = N− p. Since V → M is holomorphic and W is the space of holomorphic sections,
f is a holomorphic map.

Definition 3 ([7]). Let M be a compact Kähler manifold, V → M a holomorphic Her-
mitian vector bundle and W = H0(V) the space of holomorphic sections of V → M. We
set (·, ·)W an L2-Hermitian inner product of W, which induces an invariant Kähler metric of
Grp(W). If V → M is globally generated by W, the holomorphic map

f0 : M −→ Grp(W), x −→ Ker evx

is called the standard map induced from V → M, where q = Rank V, N = dim W, p = N−q.

Conversely we construct a holomorphic vector bundle and a space of holomorphic sec-
tions induced from a holomorphic map.

Let (Cn, (·, ·)n) be an n-dimensional complex vector space with a Hermitian inner product
and f : M → Grp(Cn) a holomorphic map. Pulling the universal quotient bundle Q →
Grp(Cn) back, we obtain a holomorphic vector bundle f ∗Q→ Grp(Cn) with induced metric
hQ and connection ∇Q. Since Cn is identified with the space of holomorphic sections of
Q → Grp(Cn), we have a linear map i : Cn → H0( f ∗Q) by restricting holomorphic sections
of Q → Grp(Cn) to M, where H0( f ∗Q) is the space of holomorphic sections of f ∗Q → M.
By using i we have an evaluation homomorphism:

evC : Cn := M × Cn −→ f ∗Q, (x, v) −→ evCx(v) = i(v)(x).

By definition of Q→ Grp(Cn), we have f (x) = Ker evCx .
In the present paper, we study holomorphic maps which have a relation to a fixed holo-

morphic vector bundle, which is called gauge condition.

Definition 4 ([7]). Let M be a compact Kähler manifold. We fix a holomorphic vector
bundle V → M equipped with a Hermitian metric hV and Hermitian connection ∇V . A
holomorphic map f : M → Grp(Cn) is called satisfying the gauge condition with V → M if
there exists a holomorphic isomorphism φ : V → f ∗Q preserving metrics and connections.

We dentote by W the space of holomorphic sections of V → M. Suppose that a holomor-
phic map f : M → Grp(Cn) satisfies the gauge condition with W. Then we have a linear
map i : Cn → W � H0( f ∗Q).

Definition 5 ([7]). A holomoprhic map f : M → Grp(Cn) is called full if the correspond-
ing linear map i : Cn → H0( f ∗Q) is injective.
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Remark 3.1. When p = n − 1, Definition 5 is the same as the well-known definition.
Let f : M → Grn−1(Cn) be a holomorphic map. In submanifold theory f is called NOT

full if there exists a linear subspace U of Cn which is contained in f (x) ⊂ Cn for any x. Let
ι : Cn → H0( f ∗Q) be a linear map obtained by restricting each sections of Q → Grn−1(Cn)
to M, then Ker ι = U.

Suppose that f : M → Grp(Cn) is full. By definition Cn is regarded as a subspace of W
by i. We denote by ev : W → V the evaluation homomorphism. Restricting ev to M × Cn,
we obtain a bundle homomorphism

evC : M × Cn −→ V, (x, v) −→ evCx(v) = i(v)(x).

Then we have

f (x) = Ker evCx = Ker evx ∩ Cn ⊂ Cn.

We notice that the Hermitian inner product (·, ·)n is not always coincide with (·, ·)W . We
set T the positive Hermitian endomorphism of Cn satisfying that

(3.1) (Tu, Tv)n = (u, v)W , u, v ∈ Cn.

Then we have an complex isometry

(3.2) T−1 : (Grp(Cn), (·, ·)n) −→ (Grp(Cn), (·, ·)W), U −→ T−1U.

Let π : W → Cn be the orthogonal projection with respect to (·, ·)W and we denote by
T := T ◦ π an endomorphism of W, which is semi-positive Hermitian.

Consequently, a holomorphic map f : M → Grp(Cn) satisfying the gauge condition with
V → M is expressed as a semi-positive Hermitian endomorphism of W:

(3.3) f : M −→ (Grp(Ker T⊥), (·, ·)W), x −→ T |−1
Ker T⊥( f0(x) ∩ Ker T⊥).

In the remainder of this section we study holomorphic maps satisfying the gauge condi-
tion with holomorphic homogeneous Hermitian vecetor bundles.

Let M = G/K be a compact homogeneous Kähler manifold of a compact semi-simple Lie
group G and a closed subgroup K. Let V → M be a holomorphic Hermitian vector bundle.

Definition 6. Let V → M be a holomorphic vector bundle over a complex homogeneous
space. We denote by pr : V → M the bundle projection. We say that V → M has a G-action
when each g corresponds to a bundle holomorphic isomorphism g : V → V and satisfies that
pr ◦ g = g, where the right hand side is the natural action of G to M.

When V → M has a G-action, there exists a K-module V0 such that V = G ×K V0.
We assume that the G-action preserves Hermitian metric hV and Hermitian connection ∇V .
The invariant Hermitian metric hV is obtained by a Hermitian inner product of V0, which is
invariant by K.

For a section t of V → M and g ∈ G, we obtain a new section gt of V:

(gt)(x) = g
(
t(g−1x)

)
.

It is well known that the space W of holomorphic sections of V → M is G-module by the
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above action.

Proposition 7. The evaluation homomorphism ev : W → V is G-equivariant.

Proof. We define G-action to W → M by the following:

g · (x, t) := (gx, gt), g ∈ G, x ∈ M, t ∈ W.

For any g ∈ G, x ∈ M and t ∈ W, we have

ev(g · (x, t)) = ev(gx, gt) = (gt)(gx) = g(tg−1(gx)) = g(t(x)) = g · ev(t, x).

Therefore ev is G-equivariant. �

We set e ∈ G the identity element and o = [e] ∈ G/K. Suppose that V → M is globally
generated by W. Then the fibre Vo at o of V → M is identified with V0 as a K-module. It
follows from the hypothesis that the evaluation homomorphism induces a surjective linear
map:

evo : W −→ V0 : t −→ t(o).

We denote by U0 = Ker evo the kernel of evo, which is a K-submodule of W. Since ev is
G-equivariant, we have

(3.4) Ker ev[g] = gKer evo = gU0, g ∈ G.

It follows that the standard map from V → M is G-equivariant.
We identify V0 with U⊥0 and denote by

π0 := evo : W −→ V0.

Then for any g ∈ G and t ∈ W, we compute that

ev([g], t) =t([g]) = t(go) = gg−1 · t(go) = g
(
(g−1t)(o)

)

=g · ev(o, g−1t) = g[e, π0(g−1t)] = [g, π0(g−1t)].

And the adjoint homomorphism ev∗ : V → W of ev is expressed as

(3.5) ev∗([g, v]) = ([g], gv), g ∈ G, v ∈ V0.

4. Holomorphic maps satisfying the gauge condition with the orthogonal direct sum
of a holomorphic homogeneous line bundle

4. Holomorphic maps satisfying the gauge condition with the orthogonal direct sum
of a holomorphic homogeneous line bundle

Let M = G/K be a compact simply connected homogeneous Kähler manifold of a com-
pact semi-simple Lie group G and a closed subgroup K. We fix a holomorphic homogeneous
line bundle L = G ×K L0 → M with an invariant metric hL and the Hermitian connection
∇L. We denote by W = H0(L) the complex vector space of global holomorphic sections of
L → M with L2-Hermitian inner product (·, ·)W and by N the dimension of W. Let L̃ → M
be the orthogonal direct sum of q-copies of L→ M.

We assume that the Hermitian metric, connection and G-action of L̃ → M are induced
from each L→ M. Then L̃→ M has the following expression:
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L̃ =
q⊕

L =
⊕

(G ×K L0) = G ×K

⊕
L0.

Thus the space W̃ of global holomorphic sections of L̃ → M is regarded as a orthogonal
direct sum of q-copies of W as a G-module. We denote by (·, ·)W̃ the L2-Hermitian inner
product of W̃. We denote by ev0 : W → L and ev1 : W̃ → L̃ the evaluation maps respectively.
For x ∈ M and t1 ⊕ · · · ⊕ tq ∈ W̃, we have

ev1([g], t1 ⊕ · · · ⊕ tq) = t1(x) ⊕ · · · ⊕ tq(x)

= ev0([g], t1) ⊕ · · · ⊕ ev0([g], tq) ∈ L̃.

Then we have ev1 = ev0 ⊕ · · · ⊕ ev0. Consequently the standard map f1 induced from L̃→ M
is expressed as the following:

f1 :M −→ GrN−1(W) × · · · ×GrN−1(W) −→ Grq(N−1)(Cn),

x −→ ( f0(x), · · · , f0(x)) −→ f0(x) ⊕ · · · ⊕ f0(x),
(4.1)

where f0 is the standard map by L→ M. Since f0 is G-equivariant, f1 is also G-equivariant.

Proposition 8. Let M = G/K be a compact complex homogeneous Kähler manifold of a
compact semi-simple Lie group G and f : M → Grp(Cn) a full holomorphic G-equivariant
map. Then the pull-back bundle f ∗Q → M is homogeneous and Cn is regarded as a G-
submodule of H0( f ∗Q).

Proof. Since f is G-equivariant, there exists a Lie group homomorphism ρ : G → S U(n)
and G acts on Cn by ρ. The definition of the pull-back bundle f ∗Q→ M is that

f ∗Q = {([g], v) ∈ M × Q| f ([g]) = π(v)},
where π : Q→ Grp(Cn) is the natural projection. For any ([g̃], v) ∈ f ∗Q and g ∈ G, we have
the action of G to f ∗Q→ M by

g · ([g̃], v) = (g[g̃], ρ(g)v).

Since G acts on M transitively, f ∗Q→ M is homogeneous.
It follows that the space H0( f ∗Q) of global holomorphic sections has G-action defined by

the following:

(g · t)(x) := g
(
t(g−1x)

)
, g ∈ G, t ∈ H0( f ∗Q), x ∈ M.

For v ∈ Cn, we have a holomorphic section tv ∈ H0( f ∗Q) by

tv(x) := (x, πQ(v)( f (x))), x ∈ M.

Thus we compute that

(g · tv)(x) = g(g−1x, πQ(v)( f (g−1x))) = g(g−1x, πQ(v)(ρ(g−1) f (x)))

= g(g−1x, ρ(g−1πQ(ρ(g)v) f (x)) = (x, πQ(ρ(g)v)( f (x))) = tρ(g)v(x).

Therefore Cn is a G-submodule of H0( f ∗Q). �

In the present paper, our main purpose is to prove the following theorem.　
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Theorem 9. Let M = G/K be a compact simply connected homogeneous Kähler mani-
fold and we fix a holomorphic homogeneous line bundle L = G ×K L0 → M equipped with
an invariant Hermitian metric hL and the invariant Hermitian connection ∇L. We denote by
L̃ = L⊕· · ·⊕L the orthogonal direct sum of q-copies of L→ M. We consider that Hermitian
metric, connection and G-action of L̃ → M are induced from those of each L → M. We
also denote by W and W̃ the complex vector space of holomorphc sections of L → M and
L̃→ M respectively.

Let f : M → Grp(Cn) be a full holomorphic map satisfying the gauge condition with
L̃→ M. If f is G-equivariant and there exists a G-equivariant bundle isomorphism φ : L̃→
f ∗Q preserving Hermitian metrics, then f is congruent to the standard map induced from
L̃→ M.

Proof. Since f : M → Grp(Cn) is full, Cn is a subspace of W̃. It follows from the
previous section that there exists a semi-positive Hermitian endomorphism T : W̃ → W̃
such that the holomorphic map f : M → Grp(Cn) and the bundle isomorphism φ : L̃→ f ∗Q
are expressed as

f ([g]) = T−1
(

f̃0([g]) ∩ (KerT )⊥
)
,(4.2)

φ([g, v]) = ([g], Tgv),(4.3)

for g ∈ G and v ∈ L̃0. In order to prove this theorem, we show that the Hermitian endomor-
phism T is the identity map of W̃.

Since f is G-equivariant, there exists a Lie group homomorphism ρ : G → S U(n) which
satisfies the following equation:

f (g[g̃]) = ρ(g) f ([g̃]), g, g̃ ∈ G.

Thus Cn has G-action by ρ. It follows from Proposition 8 that Cn is a G-submodule of W̃.

Lemma 10. The semi-positive Hermitian endomorphism T : W̃ → W̃ is G-equivariant.

Proof. By definition T is a composed endomorphism of an orthogonal projection π :
W̃ → KerT⊥ and a positive Hermitian endomorphism T : KerT⊥ → KerT⊥.

Since Cn = KerT⊥ is a G-submodule of W̃ by the natural way, π is G-equivariant.
The positive Hermitian endomorphism T satisfies the equality

(Tu, Tv)n = (u, v)W , u, v ∈ KerT⊥.

Therefore for any g ∈ G and u, v ∈ KerT⊥, we obtain

(gT 2u, v)n = (T 2gu, v)n.

It follows from the positivity of T that T 2 (and also T ) is G-equivariant. Consequently
T = T ◦ π is G-equivariant. �

Lemma 11.

T (L̃0) ⊂ L̃0.

Proof. Since T is G-equivariant, this is also K-equivariant. Since the orthogonal projec-
tion π j : W̃ → W is K-equivariant for each j = 1, · · · , q, π j ◦ T : W̃ → W is a K-equivariant
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endomorphism. Thus π j ◦ T (L̃0) ⊂ W is a K-submodule of W. It follows from Schur’s
lemma and Borel-Weil theory and highest weight theory that π j ◦T (L̃0) ⊂ L0. Concequently
T (L̃0) ⊂ (L̃0). �

We denote by the same notation T : L̃0 → L̃0 the restriction of T : W̃ → W̃ to L̃0.

Lemma 12. The semi-positive Hermitian endomorphism T : W̃ → W̃ is the identity map.

Proof. Since the bundle isomorphism φ : L̃ → f ∗Q preserves fibre metrics and T is
Hermitian, we have

(v1, v2)L̃0
= ([e, v1], [e, v2])L̃ = ([e, Tv1], [e, Tv2])L̃ = (Tv1, Tv2)L̃0

= (T 2v1, v2)L̃0
,

for any v1, v2 ∈ L̃0. Therefore T 2 : L̃0 → L̃0 is the identity map.
Since W is G-irreducible and T is G-equivariant, T 2 : W̃ −→ W̃ is the identity map by

Schur’s lemma and so is T because T is semi-positive Hermitian. �

Consequently we finish the proof of Theorem 9 �

In Theorem 9, we can take some holomorphic homogeneous line bundles Li → M which
is not always isomorphic to each other.

Theorem 13. Let M = G/K be a compact simply connected homogeneous Kähler mani-
fold of semi-simple Lie group G. Let f : M → Grp(Cn) be a full holomorphic G-equivariant
map. Assume that f ∗Q → M is decomposed to orthogonal direct sum of holomorphic line
bundles f ∗Q = L1 ⊕ · · · ⊕ Lq as a holomorphic homogeneous Hermitian vector bundle. Then
f is the standard map induced from L1 ⊕ · · · ⊕ Lq.

Proof. Rearranging L1 ⊕ · · · ⊕ Lq we obtain

f ∗Q = L1,1 ⊕ · · · ⊕ L1,l1 ⊕ · · · ⊕ Ls,1 ⊕ · · · ⊕ Ls,ls ,

where Li, j � Lk,l if and only if i = k. Similarly we obtain the decomposition of the complex
vector space H0( f ∗Q):

H0( f ∗Q) = W1,1 ⊕ · · · ⊕W1,l1 ⊕ · · · ⊕Ws,1 ⊕ · · · ⊕Ws,ls ,

where Wi, j is the complex vector space of holomorphic sections of Li, j → M and Wi, j � Wk,l

if and only if i = k.
Then there exists a semi-positive Hermitian inner product

T :
⊕

i, j

Wi, j −→
⊕

i, j

Wi, j

which satisfies (4.2) and (4.3).
In the same manner as in the proof of Lemma 10 we can prove that T is G-equivariant. It

follows from Schur’s lemma that the image of T restricting to Wi,1 ⊕ · · · ⊕Wi,li is included
in Wi,1 ⊕ · · · ⊕ Wi,li . Since Wi, j and Wi,k are isomorphic as a G-module, by Lemma 11 and
Lemma 12 we conclude that the restriction of T to Wi,1 ⊕ · · · ⊕Wi,li is the identity map for
i = 1, · · · , s. Therefore T is the identity map. �
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5. Existence

5. Existence
In the previous section we show the uniqueness of holomorphic maps of compact simply

connected homogeneous Kähler manifold satisfying the gauge condition with the orthogonal
direct sum of holomorphic line bundles. In this section we show the existence of such maps.

Theorem 14. The standard map induced from a holomorphic homogeneous line bundle
equipped with an invariant Hermitian metric and invariant Hermitian connection over a
compact simply connected homogeneous Kähler manifold satisfies the gauge condition.

Proof. Let M be a compact simply connected homogeneous Kähler manifold and L→ M
a holomorphic homogeneous line bundle equipped with an invariant metric hL and invariant
Hermitian connection ∇L. Let f0 : M → Grn−1(W) be the standard map induced from
L→ M, where W is the space of holomorphic sections of L→ M and n = dimW. It is known
that the pull-back f ∗Q→ M of the universal quotient bundle is holomorphically isomorphic
to L → M. Since f0 is G-equivariant, f ∗Q has invariant metric hQ and invariant connection
∇Q which is compatible with the holomorphic structure of f ∗Q → M. Since the invariant
connection in a line bundle is Einstein-Hermitian and the Einstein-Hermitian connection is
unique up to gauge equivalence, (L→ M, hL,∇L) is gauge equivalent to ( f ∗Q, hQ,∇Q). �

6. Application

6. Application
In this section we consider equivariant holomorphic maps into a complex projective

space.

Theorem 15. Let M = G/K be a compact simply connected homogeneous Kähler man-
ifold of semi-simple Lie group G. We denote by Grn−1(Cn) a complex projective space of
dimension n− 1 equipped with Kähler metric having constant holomorphic sectional curva-
ture 2. If a full holomorphic map f : M → Grn−1(Cn) is G-equivariant, then there eixists a
holomorphic line bundle L → M with an invariant Hermitian metric and connection such
that f is congruent to the standard map induced by L→ M

Proof. In this case, the pull-back bundle f ∗Q → M is of rank 1. Thus f ∗Q → M is
expressed as a homogeneous line bundle L = G ×K L0 → M, where L0 is a 1-dimensional
K-module.

It follows from the G-equivariance of f that the pull-back metric and connection are
invariant. Therefore by Theorem 9 f is the standard map by L→ M. �

Remark 6.1. At a proof of Theorem 15 we do not require the positivity of L → M. This
means that if f is not immersed, this theorem holds.

For example, we set M = F1,2 = S U(3)/U(1) × U(1), which is a full flag manifold.
Then S U(3)-equivariant fibrations F1,2 → CP2 are determined by semi-positive line bundles
(1, 0)→ F1,2 or (0, 1)→ F1,2.
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