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Abstract

We say a trajectory for a Sasakian magnetic field on a geodesic sphere in a complex projective
space to be extrinsic circular if it can be seen as a circle in the ambient space. We study how
the moduli space of extrinsic circular trajectories behaves in the moduli space of all circles in
the ambient complex projective space. As an application we characterize the geodesic sphere
of special radius which lies on the boundary position of the family of Berger spheres among
all geodesic spheres and that has a characteristic properties from the viewpoint of lengths of
circles.

1. Introduction

A smooth curve o parameterized by its arclength on a Riemannian manifold N is said to
be a circle if there is a nonnegative constant k£ and a field ¥ of unit tangent vectors along
o satisfying the system of differential equations V0 = kY, V;Y = —ko. This constant &
is said to be the geodesic curvature of o, and {7, Y} to be its Frenet frame. Since circles
of null geodesic curvature are geodesics, from the viewpoint of Frenet formula, there is no
doubt that circles are simplest curve next to geodesics. On a real space form, which is one
of a standard sphere, a Euclidean space and a real hyperbolic space, lengths of closed circles
depend smoothly on their geodesic curvatures. But the situation is different on a complex
projective space CP". When we consider lengths of closed circles on CP", circles whose
Frenet frame forms a complex line at each point have different properties from others ([2]
and see §2). In order to explain this, in [4] the second author took trajectories on geodesic
spheres in CP", which are curves closely related with almost contact metric structures on
these geodesic spheres. He considered them as curves in CP", and showed that every circles
on CP" is obtained from some trajectory on some geodesic sphere.

In this paper we refine the study on trajectories which can be seen as circles in CP" given
in [4]. We investigate how the moduli space, the set of all congruence classes, of these tra-
jectories on a given geodesic sphere is contained in the moduli space of circles in CP". We
find that circles of geodesic curvature V2c¢/4 in CP"(c) of constant holomorphic sectional
curvature ¢ have a singular property compared with other circles from the viewpoint of ex-
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trinsic shapes of trajectories. These circles are also obtained as images of geodesics through
a parallel isometric embedding (S ' x §"~!)/~ — CP" given by Naitoh [14], and are charac-
teristic circles from the viewpoint of length spectrum of circles (see §2 and [6]). As an ap-
plication of our study we characterize a geodesic sphere G(ry) of special radius ry satisfying
cot(\erg/2) =1/ V2 among real hypersurfaces in CP"(c). It contains all these characteristic
circles as trajectories. We note that geodesic spheres of radius satisfying cot(y/c r/2) < 1/V2
are so-called Berger spheres (see [17]). Sectional curvatures of the geodesic sphere G(ry)
lie in the interval [K/9, K] with K = 9¢/8, and the length of its shortest closed geodesic is
27/VK. This geodesic can be seen as a circle in CP"(c). Thus our result shows that not only
the shortest closed geodesics but also trajectories on this geodesic sphere which can be seen
as circles in CP" have characteristic properties.
The authors are grateful to the referee who read their manuscript very carefully.

2. Circles on a complex projective space

In order to explain the background of our study, we shall start by recalling the moduli
space of circles on a complex projective space CP". For a circle o on CP" which satisfies
Vo0 = kY, VY = —k,0, we set 7, = (7, JY) with the complex structure J on CP", and
call it the complex torsion of o. Since J is parallel, we see that 7, is constant along o
We say two smooth curves o1, 0> on a Riemannian manifold N which are parameterized by
their arclengths to be congruent to each other if there is an isometry ¢ of N and a constant
t. satisfying ¢ o 0| (¢) = 0»(t + 1) for all . It is known that circles on CP" are classified into
congruence classes by their geodesic curvatures and complex torsions (see [13]). Hence, the
moduli space M(CP") of circles of positive geodesic curvature on CP", which is the set of
all congruence classes of such circles, is set theoretically congruent to the band (0, c0)x [0, 1]
in R%.

A smooth curve o parameterized by its arclength is said to be closed if there is a positive
constant #y satisfying o (¢ + 7o) = o (¢) for all r. The minimum positive ¢y, with this property
is said to be the length of o. For an open curve, a curve which is not closed, we consider
that its length is infinity. Since two smooth curves which are congruent to each other have
the same length, we can define a function £ : M(CP"(c)) — (0, o] which shows lengths
of circles. On CP"(c), circles of geodesic curvature V2¢/4 have characteristic properties.
For k > 0 and 7 with 0 < 7 < 1, we denote by [o(k, T)] the congruence class of circles of
geodesic curvature k and of complex torsion 7 on CP"(c). We put M; = {[o(k,7)] | 0<
7 < 1} (€ M(CP"(c))) for a positive k. Then we have an injective map @ : My = M5,
given as [y(k, 7)] — [y(V2c¢/4,3V3ckt(4k* + ¢)~>?)]. This satisfies £ = Ci - L o &y on
M, with Cr = /3¢/{2(4k* + ¢)} (see [2]). Thus we have a lamination on M(CP"(c)) each
of whose leaf is maximal with respect to the smooth property of L (see Fig. 1). Every leaf
crosses to the set M5, of congruence classes of circles of geodesic curvature V2c/4.

3. Trajectories for Sasakian magnetic fields

Let M be a real hypersurface in a Kéhler manifold M. On this hypersurface we have an
almost contact metric structure induced by the complex structure J on M. If we denote by
N a (local) unit normal vector field on M in M, this structure is a quartet (17, &, ¢,¢{ , ))
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Fig.1. Lamination on the moduli space of circles on CP"(c)

of a vector field & defined by ¢ = —JAN, a 1-form 5 given by n(v) = (v, ), a (1, 1)-tensor ¢
defined by ¢(v) = Jv—n(v)N and the metric { , ) induced by the metric on M. These &and ¢
are called the characteristic vector field and the characteristic tensor of M, respectively. We
define a 2-form Fy associated with this structure by Fy(v, w) = (v, ¢(w)). One can easily find
that it is a closed form (see [7]). Generally, a closed 2-form on a Riemannian manifold is
said to be a magnetic field because it can be regarded as a generalization of a static magnetic
field on a Euclidean 3-space R3 (see [15], for example). We therefore say that a constant
multiple IF, = «Fy (x € R) of the form Fy, which is also closed, a Sasakian magnetic field on
M.

A smooth curve y on M which is parameterized by its arclength is said to be a trajectory
for F, if it satisfies the differential equation V;¥ = k¢(y). When « = 0, which is the case
that there is no influence of magnetic fields, trajectories are geodesics. Therefore, we may
say that trajectories are extended objects of geodesics. To study properties of trajectories,
we put p, = (¥, &,), and call this function along a trajectory y its structure torsion. We here
recall Gauss and Weingarten formulae. If we denote by V the Riemannian connection on M,
they are given as

VyY = ViV + (A X, YN and VyN = —AyuX

for vector fields X, Y tangent to M. Here Ay denotes the shape operator of M in M with
respect to N, By these formulae we have V& = ¢A /X, hence we get

1
py = k¥, &y) + (¥ dAMY) = 7 ($Au — And)y).

because Ay, is symmetric and ¢ is skew-symmetric. Therefore the structure torsion for each
trajectory is a constant function if Ay, and ¢ are simultaneously diagonalizable.

We denote by ¢ : M — M an isometric immersion. For a curve y on M we have a curve
toyon M. We call this the extrinsic shape of vy, and denote it also by y for the sake of
simplicity. In this paper we study extrinsic shapes of trajectories on a geodesic sphere G(r)
of radius r (0 < r < /+/c) in CP"(c). It is well known that the characteristic vector &y at
each point p € M = G(r) is a principal curvature vector associated with 6y, = v/c cot(+/cr),
and that each tangent vector orthogonal to &, is a principal curvature vector associated with
Ay = (\e/2) cot(y/cr/2). In particular, its shape operator and its characteristic tensor are
simultaneously diagonalizable, hence each trajectory has constant structure torsion. By ap-
plying Gauss and Weingarten formulae, for a trajectory y for F, on G(r) we have
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V7 = kpy+Au(l - p2) + Supt )N,
FVVV})’/ = KJ€77+{/1M(1 —pf,) + (5Mp§ - pr}FVvy./\/‘
= —{K*(1 = p3) + { Ay + Gur — WP3Y )y
+{ A = kpy + G = WP K + Om = Aoy oy T — &)

We shall call a curve on a real hypersurface extrinsic circular if its extrinsic shape is a circle
of positive geodesic curvature. In view of the above computation we get the following.

Lemma 1. A trajectory y for F, on a geodesic sphere G(r) in CP"(c) is extrinsic circular

if and only if it satisfies one of the following conditions:

1) Py = +1,

2) Ay — kpy + Gy — Aw)p; =0,

3) k+(6p — Am)py = 0.
Corresponding to each case, the geodesic curvature k, and the complex torsion T, of the
extrinsic shape are as follows:

1) ky =6um, 7, = F1,

2) ky = lkl, 7y = —sgn(x),

3) ky =\ = 2Auukpy + Ay, Ty = Q0% = k= )y

A geodesic sphere G(r) in CP"(c) of radius r > (2/4/c) sin"'(V6/3) is known as a Berger
sphere. Its sectional curvatures lie in the interval [eK, K| with some € € (0, 1/9), and it has
closed geodesics of length less than 27/VK. It is known that their structure torsions are
+1. Hence extrinsic shapes of these geodesics are circles by Lemma 1. We should note that
every trajectory y of structure torsion +1 for an arbitrary Sasakian magnetic field F, is a
geodesic because ¢(y) = 0.

4. Extrinsic circular trajectories in the moduli space of circles

In the first and the second cases in Lemma 1, the absolute values of complex torsions
of extrinsic shapes are 1. We hence study the third case. For a geodesic sphere M = G(r)
in CP", we denote by £(M) the moduli space of extrinsic circular trajectories of third type
in Lemma 1 for some Sasakian magnetic field on M (for congruency of trajectories for
Sasakian magnetic fields, see [3]). Since isometries of M is equivariant, that is for each
isometry ¢ of M there is an isometry ¢ of CP" satisfying ¢ o ¢ = ¢ o ¢ with an isometric
immersion ¢t : M — CP", we see that extrinsic shapes of two curves on M are congruent
to each other in CP" if they are congruent to each other in M. Therefore we have a map of
E(M) into the moduli space M(CP"(c)) of circles of positive geodesic curvature. From now
on we use £(M) together with its image through this map.

First we study how £(M) is included in M(CP"(c)). As we have 6y — Ay = —c/(4Ay), in
the case that 4xAy = cp,, we see by Lemma 1 that the geodesic curvature and the complex
torsion of the extrinsic shape of circular trajectory y are expressed as

P cp? . c2p3 . _py(2cp§—c—4/lfw)
TONTM 2 163, v 4k,

4.1
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When A, = \/2_c/4, we have by (4.1) that k, = Ay and 7, = 4p3 - 3p,. If we vary the
parameter of structure torsion p,, in the interval [—1, 1] we find 7, takes all the values in the
interval [—1, 1]. In this case, we find that the map of £(M) into M(CP"(c)) is three to one
on the image. When Ay, # \/2_c/ 4, the first equality of (4.1) shows that the map of £(M) into
M(CP"(c)) is one to one onto the image, hence we may consider that £(M) is the subset of
M(CP"(c)). In this case, by substituting the first equality of (4.1) to the second, we have

4.2) , (=323 k2 + 4ckl - c?)
. o |

Y c(c— 8/1%,[)31%2,

Here, as |p,| < 1, the first equality of (4.1) shows that

A < ky < /@A) — Ay (= =6u), when Ay < V2c/4,

/@A) = Ay < ky < Ay, when V2¢/4 < Ay < c/2,
Ay —c/(dAy) < ky < Ay, when A, > \/E/Z

We consider the right hand side of (4.2) as a function g(K) = g(K; Ay) on K = kﬁ. We then
have

dg _ 2,(8K — 0)(8K + ¢ — 423 )(323 K + 4¢3, — ¢?)
dK c(c — 8/112‘4)31(2

Hence we find the following.
1) When A, < V2¢/4, the function ¢ is monotone increasing with respect to K in the
intervals [43,,¢/8] U [(c(c — 443,)/(3243,), (=6))?], and is monotone decreasing in
the interval [c/8, (c(c — 443,)/(3243)]. We have

c(c— 4/1%/,

=0, g(3)=gl(=6m?) = 1.
77 ) g(3) = 9((=6))

g5 = o .

2) When @/4 < Ay < +Jc/2, the function g is monotone decreasing with respect to K
in the intervals [(—6y)?, c(c—443,)/(3243,)]U[c/8, A3,], and is monotone increasing
in the interval [c(c — 443,)/(3243)), ¢/8].

3) When vc/2 < Ay < V2¢/2, the function g is monotone decreasing with respect to
K in the intervals [6%,, (443, — ¢))/8] U [¢/8, A3,], and is monotone increasing in the
interval [(4/1%,1 —-¢))/8,c/8]. We have

B

(4/112w - c) _ (4/1%/, + c)3(4/lfw -0)
8 c(8/l§/1 -c)?

which satisfies 0 < g((4/l,2W —¢)/8) < 1 and is monotone increasing with respect to
/lM.
4) When Ay, > V2c¢/2, the function g is monotone decreasing with respect to K in the
interval [62 ,/lﬁl].
Thus for M = G(r), the moduli space £(M) in M(CP"(c)) is like the following figures (Figs.
2 - 5) corresponding to Ay, = (\c/2) cot(+y/c r/2).
Next we study the behavior of £(G(r)) when we vary the radius r. We consider the right
hand side of (4.2) as a function h(A) = h(A; k,) on A = /lﬁd. We then have
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When A > c/4, as 32k;A + 4cA — ¢* > 0, we have dh/dA > 0, and when A < c¢/4 we
see dh/dA changes its signature at A = ¢*/(32k; + 4c). That is, when Ay > +/c/2, the
function h(A; k,) is increasing with respect to A for each k,, and when Ay < yc/2 and
Ay # @/4, there is k. satisfying that h(A; k) is decreasing with respect to A if k, < k,
and is increasing with respect to A if k, > k.. As we have /l%,, = 2/(32k2 + 4c), we
see k, > V2c¢/4 when 1y < V2¢/4 and k, < V2¢/4 when V2¢/4 < Ay < +/c/2. Since
cot(y/c r/2) is monotone decreasing with respect to r, if we take two geodesic spheres M =
G(r1), M" = G(rp) (r; > ry) so that the difference r; — r, of their radii is sufficiently small,
their moduli curves £(M), E(M’) of extrinsic circular trajectories are as Figs. 6 — 9.

Fig.6. Ay < Ay < V2c/4 Fig.7. V2¢/4 < Ay < Ay < \e/2

We divide the moduli space M(CP"(c)) into three subsets M_(CP")UM 5, / AUML(CPY),
where M_(CP") is the moduli space of circles of geodesic curvature less than V2¢/4, and
M. (CP") is the moduli space of circles of geodesic curvature greater than V2¢/4. For each
k with k < V2c/4, if we vary A in the interval (0, k], we see T2(1, k) = (k% — A2)(32k2A% +
4c? — )2 /{c(c — 84%)k?}) varies monotone decreasingly in the interval [0, 1). Hence
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[E(M) N M(CP") | Ay < V2¢/4} is a foliation of M_(CP") \ {[y(k, D] | k < V2c/4}.
If we vary A in the interval [(—k + VK2 + ¢)/2, ¢/{2V8k? + c}], we see 72(4, k) varies mono-
tone decreasingly in the interval [0, 1]. Hence {E(M) N M_(CP") | @/4 <Ay < \/2_0/2}
covers M_(CP"). On the other hand, for each k with k > V2c/4, if we vary A in the
interval [k, (k + VK% + ¢)/2], we see 72(A, k) varies monotone increasingly in the interval
[0, 1]. Hence {E(M) N M, (CP") | Ay > V2¢/4} is a foliation of M, (CP"). If we vary
A in the interval (0,k], we see 72(A, k) takes all the values in the interval [0, 1]. Hence
{EM)N M, (CPY) | Ay < @/ 4} covers M (CP"). Summarizing up we get the following.

Theorem 1. (1) The family {E(G(r)) N M_(CP") | r > (2/+Jc)sin"'\2/3} forms a
foliation of M_(CP")\ {[y(k, D] | k < V2¢/4).
(2) The family {£(G(r)) N M, (CP") | r> (2//c)sin"'V2/3} covers M, (CP").
(3) E(G(2/Ve)sin™'V23)) = Mz 4
(4) The family {E(G(r)) N M, (CP") | r < (2/\c)sinT'\2/3 ) forms a foliation of
M, (CPY).
(5) The family {E(G() N M_(CP") | Zsin™ £ <r< 2 sin-l\/g } covers M_(CP").

5. A characterization of the geodesic sphere

In the previous section we see that in CP"(c) geodesic spheres of radius r =
(2/+/c) sin"'y/2/3 have a specific property on extrinsic circular trajectories. In this section
we give its characterizations among real hypersurfaces in CP" from this point of view.

We take a trajectory y for F, on a general real hypersurface M of a Kihler manifold M.
By use of Gauss and Weingarten formulae, its extrinsic shape satisfies

(5.1) Vi = kgy + (Aud, N = kI3 + (A7) = k)N,
SS. . . . d .
(52)  V3Vsi = =K = ((Aud: 7) = Ko)(Awy + Kk€) + —((Aw, 7y = ko) N
Thus, if the extrinsic shape of y is a circle of geodesic curvature k,, as we have —VVVVW =
—kzy, we obtain the following by (5.1) and by comparing (5.2) with this equality:
(5.3) ky = 121 = p3) + (Any. 1),
(5.4) (k5 — )y = (Auy.7) — kpy)Auy + K&).

A real hypersurface M is said to be Hopf if its characteristic vector field & is principal at
each point of M. It is known that the principal curvature associated with the characteristic
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vector field of a Hopf real hypersurface in CP" is locally constant ([10]). We here consider
the following condition at p € M:

(ET) The extrinsic shape of a trajectory y, for some Sasakian magnetic field F,, with
70(0) = &, is a circle of geodesic curvature k,, # |kol.

Theorem 2. A connected real hypersurface M in a complex projective space CP"(c) of
constant holomorphic sectional curvature c is locally congruent to the geodesic sphere of
radius r = (2/4/c) sin”™! 2/3 if and only if the following conditions hold:

i) At each point of p € M,

a) the condition (ET) holds,

b) there exist constants k,, p, with k, # 0, \/2_c/4 and |pp| < 1 and linearly in-
dependent unit tangent vectors vy, ..., € U,M with {(v;,&,) = p, which
satisfy that the extrinsic shapes of trajectories y; (i = 1,...,2n=2) for F, with
¥i(0) = v; are circles of geodesic curvature k; # |k,|;

ii) There is a trajectory whose extrinsic shape is a circle of geodesic curvature V2c/4
and of complex torsion T # £1.

Proof. We are enough to show the “if” part. By the first condition, we have from (5.3)
and (5.4) that

ky, = KAny,¥)| and kf/(,é‘:p = ((Amép, &p) — Ko)Amép + KolAMEp, Ep)Ep.

As ky, # |kol, we find that &, is principal. We denote by ¢,, the principal curvature associated
with &,, which is locally constant.

By the second condition we decompose the both sides of (5.4) to components parallel to
&, and orthogonal to it, and get the following:

(5.5) (k; = k)pp = (AmWi=ppép), i=ppép) + 6,05 = KpPp)PpOp + Kp),
(5.6) (k7 =k)Wi=ppép) = (A (=P pép)s VimPpép)+0p0 —Kppp) A (Vi=ppép)-

Since k; # |«pl, by (5.6) we find that v; — p,&, is principal. We denote by «; the principal
curvature of v; — p,€,. Then (5.5) and (5.6) turn to

(5.7) (k = )pp = (a1 = pp) + 36 = Kppp}Pp0) + ),
(5.8) ki = = {ai(1 = p) + p36, — Kppplati.

Hence we have p,a; = p,0, + «,. If p, = 0, we see k, = 0, which is a contradiction. Thus
we have p, # 0 and obtain a; = 6, + (k,/pp). We hence have a1 = -+ = a2,2 (= @)).
This shows that all tangent vectors at p which are orthogonal to &, are principal. Due to the
classification of homogeneous Hopf real hypersurfaces in CP" by Takagi [16], we find that
M is locally congruent to a geodesic sphere. Thus the third condition shows that the radius
is r = (2/+/c) sin”'V2/3. o

In order to study more about geodesic spheres of special radius, we need to recall prin-
cipal curvatures of homogeneous real hypersurfaces in CP"(c). Such real hypersurfaces are
classified by Takagi [16]. A homogeneous real hypersurface in CP"(c) is congruent to one
of the following:
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1) a geodesic sphere G(r) of raius r (0 < r < mt/~/c),
2) atube T(r) of radius r (0 < r < m/~/c) around totally geodesic CP’ (1 < £ < n-2),
3) atube Q(r) of radius r (0 < r < m/(24/c)) around complex hyperquadric CQ"~',
4) tubes of radius r (0 < r < m/(24/c)) around CP' x CP" D2 G,5(C) and
SO(10)/U(5).
The principal curvature §,; corresponding to & is 6y = Ve cotvcr. When M = T,(r), it has
two principal curvatures

) = (Vej2)cot(ver/2) and  A§) = —(Ve/2) tan(ve r/2)
for tangent vectors orthogonal to &. When M = Q(r), it also has two principal curvatures

(1)_\/5 Ve T (2)_‘/5 Ve T
M = TCOt(Tr_Z) and A, _TCOt(TH_Z)

for tangent vectors orthogonal to £. For other homogeneous real hypersurfaces, they have
four principal curvatures

A

@ _ \/E \/E T @ _ \/E \/E T
A = oot r=g) A= Feo(Treg)
(3)_‘/5 \/E” “ _ \/E \/Er

h = ot h =

for tangent vectors orthogonal to &. It is known that a Hopf real hypersurface all of whose
principal curvatures are constant in CP" is homogeneous.

Theorem 3. A connected real hypersurface M in a complex projective space CP"(c) of
constant holomorphic sectional curvature c is locally congruent to the geodesic sphere of
radius r = (2/~/c)sin"'\2/3 if and only if it satisfies the following conditions with some
constant k with |k| # \/2—6/4 at each point p € M :

1) The condition (ET) holds,

i) There exist linearly independent tangent vectors vy, . .., 02,2 € U,M satisfying that
the extrinsic shapes of trajectories y; (i = 1,...,2n — 2) for F, with y;(0) = v; are
circles of geodesic curvature \2c/4 and of complex torsion t; # +1.

Proof. We are enough to show the “if” part. By the first condition we see M is a Hopf
hypersurface. We denote by ), the principal curvature associated with £&. We put p; =
(i, &p). As || # @/ 4, we find along the same lines as of the proof of Theorem 2 that each
v; — pi€, is principal and that @;p; = dyp; + « with the principal curvature «; of v; — p;€,.
Moreover, (5.3) shows

(5.9) ¢/8 = KX(1-p?) + {ai + (6 — a)p?).
When p; = 0, we have x = 0. (5.9) shows that a; = +V2¢/4. When p; # 0, substituting
a; = 0y + (k/p;) into (5.9), we find that p; satisfies the following equation
2K5Mp? +{(c/8) + K- 5M}P,~2 — 2KOpp; — K =0.

Thus p; is one of the three solutions of this cubic equation. Therefore, by perturbation theory
([9]) we find that each a; is locally constant. This means that M is a Hopf real hypersurface
all of whose principal curvatures are constant.
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We shall check that homogeneous real hypersurfaces except geodesic spheres of radius
r = (2/4c) sin"'v/2/3 do not satisfy the second condition. We take vy,...,v2,-2 € U,M
as in the second condition. By the above argument, we see that v; — p;§, with p; = (v;,&))
is principal. We denote by A; the principal curvature of v; — p;§,. As vy — p1&p,. .., 0202 —
P2n—2&,, span the tangent space T;,)M orthogonal to £, these Ay, ..., A2, are all the principal
curvatures for TgM . Let y; denote the trajectory for F, with ¥;(0) = v;. Since the complex
torsion 7; of the extrinsic shape of y; is not 1, by (5.1), (5.3) and by the same computation
as for Lemma 1 we have

(5.10) K+ Oy —A)pi =0,
(5.11) /8 = K = 2kp; + A7,
(5.12) 7, = 4Q2up; — k= ipi)/V2e.

When M = G(r) with r # (2/4/c) sin"'v/2/3, we see in §4 that if the extrinsic shape of
an extrinsic circular trajectory has geodesic curvature V2¢/4 then its complex torsion is +1,
hence it does not satisfy the second condition.

When M = T,(r) we have 6, = /15‘14) + /l%), /lﬁ) =—c/ (4/15‘?), in particular one of /1;14), /lgé)
is not V2¢/4. For a circular trajectory y; corresponding to A; # V2c¢/4 we have Tf =1
by the same computation for (4.2). This is a contradiction. Hence T,(r) does not satisfies
the second condition. Similarly, when M is one of tubes around CP' x CP""D/2_ G, 5(C)
and SO(10)/U(5), then A%, A\ satisfy 6y = A5) + 25, A}) = —c/(42})). Hence we can
conclude that it does not satisfy the second condition neither.

When M = Q(r), we have

Ly = (Ve/2w, A5 = ~(Ve/2v ™! 6w = =2e/(v =77

with v = cot(vc r/2). When 4; = A, we have k = v/c(v? + 3)p;/{2(v — v)}. Substituting
this into (5.11) we find

K = c(2v* = D +3)/{8(0* - 5)}.
When A; = /15‘3) , we have k = c(3 + v 2)p;/{2(v —v!)}. Substituting this into (5.11) we find
K =c(VF = 2)3V* + /(8 (5 - D).
Comparing these we obtain
0 =v*(5v* = DV = DV +3) = (¥ =507 = 2)(3V* + 1) = 1007 + 1)*(* = 1).

Since 0 < r < /(2+/c), we have v > 1. Hence, the above is a contradiction. Thus Q(r) does
not satisfies the second condition. m|
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