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Abstract
In this paper, we describe the homotopy type of the homotomdfipoint sets
of SP-actions on rational spheres and complex projective spaues provide some
properties ofSt-actions on a general rational complex.

1. Introduction

An action of a groupG on a spaceM gives rise to two natural spaces, the fixed
point set M€ and the homotopy fixed point séi"®. It is crucially important that
there is an injection

k: MG — MNC,

Indeed, one version of thgeneralized Sullivan conjecturasserts that, whee is a
finite p-group, andM is a G-CW-complex, then thep-completion ofk is a homotopy
equivalence. This conjecture was proved in the case wWeis a finite complex by
Miller [7].

For a finite groupG, the rational homotopy theory dfi"® has been studied by
Goyo [5].

In [1, 2], the authors studied the homotopy typeMfC for a compact Lie group
G with particular emphasis whe@ is the circle.

From now on, and unless explicitly stated otherwiGewill denote a compact con-
nected Lie group and by a topologic@l-space we mean a nilpotef@-space with the
homotopy type of a CW-complex of finite type and® # @. Then the action ofz on
M induces an action o6 on Mg.

We then start by setting a sufficiently general context in thMQhG has the
homotopy type of a nilpotent CW-complex. ldentifying thenmtopy fixed point set
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with the space Segj of sections of the corresponding Borel fibration
&:M - My — BG,

we have that ifr.,(M) are torsion groups for a certam> 1, then MQ"G is a rational
nilpotent complex with the homotopy type of a CW-complex. [1]

In this paper, we explicitly describe the rational homotdpge of the homotopy
fixed point sets of certairs®-actions.

Theorem 1.1. Given an $-action on the rational n-spheregS

(1) When n is odd %“3 has the rational homotopy type of products of odd dimen-
sional spheresprecisely we have

§"F 2o S x S xx S,

where

a=

1, n=4k+1,
3, n=4k+3.

(2) If n = 4k, %hss is either path connectedand of the rational homotopy type of
S? x Ki, where K has the minimal Sullivan model

(A((Xs)1<s<ks (Yr)2<r <), d)

with [xs| = 4s, |yi| =4r —1,dx =0 (1=<s=Kk), dy = D ¢.1_; XX (2=r = 2K),
or else it has 2 componentseach of them has the rational homotopy type of

SAk+3 x S4k+7 N, SSk—l.

(3) If n=4k+2, %hsg is path connectedand of the rational homotopy type of 8
S’ x Ty, where T has the minimal Sullivan model

(A((Xs)1=s<ks (Yr)3<r<2k+1), d)

with [xs| =454+ 2, |y | =4 —1,dx =0 (1=<s=<K), dy = > ¢ i1 %X B3=r =
2k + 1).

Theorem 1.2. Given an $-action in the rational complex projective spaCehy.
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(1) If nis odd CP«ghS3 is path connectedand has the rational homotopy type of one
of the following spaces

CPlx & x Stx...x 1
SxCP3x Stx...x &+
SxS xCP°x...x 1

xS x...x P3P,

(2) If nis even (CP&hS3 is path connectedand has the rational homotopy type of one
of the following spaces

kX P xS x...x ML
StxCP2x S x...x L
Slx P xCP*x ... x 1

Slx Px...x 3P,

In [1, Corollary 2], they give a criterion of an ellipti§t-space. We first show that
the conditionM is a finite complex is necessary by the following examplerdtig a nil-
potentSt-complexM which is not an elliptic space, such that each componerh;tl@)?Sl
is elliptic. We also observe that &8t-finite nilpotent complexM is elliptic if and only
if one of the component oIR/IQhsl is elliptic, complementing the mentioned result.

Finally, we show that the injectiokis generally not a rational homotopy equivalence.

Theorem 1.3. For an S-complex M which is simply connected with

dimm,(M) ® Q < oo.
Then
Y. hst
k: MQ . MQ

is a rational homotopy equivalence if and only if M is ratibreomotopy equivalent
to a product ofC P,

In the next section we prove Theorems 1.1 and 1.2. In Sectiome3prove
Theorem 1.3.
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2. S-rational spheres and complex projective spaces

Our results heavily depend on known facts and techniquesngrifrom rational
homotopy theory. All of them can be found with all details #1.[ We simply remark
a few facts.

We recall that whenM is path connected, the Sullivan model bf is a quasi-
isomorphism

m: (AVM, d) — ApL(M),

where (AVy, d) is a Sullivan algebra.

We also recall that a spadd is elliptic if both H*(M; Q) and 7.(M) ® Q are
finite dimensional vector spaces ov@r

For a G-spaceM, we have the corresponding Borel fibration

&:M —> My — BG,
where My = (M x EG)/G. It is a classical fact that the homotopy fixed point set
M"® = map,(EG, M)

is homotopy equivalent to the section space Seof this fibration.
Each fixed point gives rise to a trivial section of the prodbahdle

M® — BG x M® — BG.

Composing with the injectioMg x BG — EG x M/G = My gives a section of the
Borel fibration. Thus we have a natural injection:

k: MG < MPC,

For any G-CW complex M, there is an equivariant rationalization: M — Mg,
that is, Mg is also aG-CW complex,m is an equivariant map, andip)® ~ (M®)q.
Moreover, we have

Proposition 2.1 ([1, Proposition 12]) If M is a Postnikov piece that is
w-n(M) = 0 for some N then
() M"G has the homotopy type of a nilpotent CW-complex of finite. type
(ii) (M"®)q = (Mg)"®.

Note that if Mg is a Postnikov piece, thenMg)"® makes sense and is a
rational space.

Now, we determine the homotopy type of the homotopy fixed tpséts of certain
S*-actions.
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Proof of Theorem 1.1. (1) A&SE 1: nis odd.

We only prove the case = 4k + 3, the casen = 4k + 1 is similar, so we omit it.

As in the proof of [1, Theorem 19], it is not hard to get the modiethe corres-
ponding Borel fibration

£: (A 0= (Ae) ® A, D) — (Ag, 0),
where (A, 0) = (Ax/xK, 0) and|x| = 4, |e| = n. This fibration is trivial, so Se€] ~
Map(H Pk, SM).

By [1, Theorem 9], the model 053“3 iS (A(X1, X2, . . ., Xnt1/4), 0). It is exactly
the model ofS* x & x --- x S. It follows that "% ~q S x S+ x - x S.
(2) Case 2: n = 4k.
As 7-2,(S") ® Q = 0, a model of the Borel fibration is
§2n5 (Al 0) — (A(er e,) ® Al D) g (A(el d)! d)l
where A = Ax/x%+t1 x, e, € are of degree 4n, 2n — 1 respectivelyDe = 0, D€' =

& + Ax"4e, de = €.
(i) If A =0, then&,, is trivial and

§" ~ Map®EP, S)q.
A straightforward computation shows that this mapping epla@s a model of the form
(Ay1, 0) ® (A((Xs)1zs=<ks (Yr)2=r<2k), d)
with [xs] =4s, |yi| =4 —1,dx =0 (1<s=<Kk), dy = ¢, XX (r > 1).
(i) If A # 0, then the fibratiort, has two non homotopic sections, t which
correspond to the only two possible retractions of its model
9o, 0 (A6, €)® A, D) > (A, 0), ¢,(6) =0, ¢(e)=Arx~
By the same way in [1], we have that the model of &%) is of the form
(A((Xe)1=s<k (Y )1<r<ak), d)
with |xs| = 4s, |y;| = 4r — 1. The linear part of is:
d(y) = Ax

for 1 <r <k, which shows that the minimal model of Sé&) is

(A(Yr Jks1<r <2k, 0).
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Replacer by —A, we have that the model of S€€,,) is the same.
(3) Case 2 n=4k + 2.
As 7-20(S") ® Q = 0, a model of the Borel fibration is

En: (A, 0)— (A(e, €) ® A, D) — (A(g, €), d),

where A = Ax/x**1 x, e, € are of degree 4n, 2n — 1 respectively,De = 0, D&’ =
€, de = €. It follows that the fibrationt,, is trivial, we have

"¢ = Map@E P, ).
The model of §}"° is

(A(y1, ¥2), 0) ® (A((Xs)1=s=k, (Yr)3<r <2k+1), d)
with [Xs| =4s+2, |y | =4 —1,dx =0 (1<s<Kk), dy =D ¢ i1 XX 3=r <

2k + 1).
The desired result follows. O

Proof of Theorem 1.2. First, we assume= 2k + 1. AS 7>4.4(C P&) =0, it
suffice to use the model dbn 2

(A, 0)— (A(e, €) ® A, D) — (A(g €), d),
where A = (AX)/xK*2, |x| = 4, |e| = 2, |€| = 4k + 3, and
k . .
De=0, D€ =e""+) 2ex" 2, 1eQ,j=1,...,n
j=1

The retraction of this model of fibration is jugt(e) = 0. So we have Se&f.4) is
connected, and the model of it is

(A(e (€)1<r<k+1s d)

with |e| = 2, || = 4r — 1, d(€}) = Ms1€* for 1<r <k andd(g],,) = e*+2.
If A1 # O this is a model of

P xS x...x S,
If 21 =---=2x_1 =0 andA; # 0, this is a model of

B x -1y o pAHl-2 BB k3
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Finally, if all A; = 0, then it is a model of
xS x---x ST cpHL,
For n even, the proof is similar, so we omit it. ]

3. The Inclusion k: MS" < MNS'

We begin with some interesting observations $ractions.
In [2, Example 12], there is aBt-action onM = K(Z,n) x K(Z,n+ 1), such that
the model of it's Borel fibration is

m: (AX, 0) = (AX ® A(z,Y), D) = (A(z, Y), d),

where|x| =2, |zl =n, |yl =n+1, D(2) =0, andD(y) = xz Forn = 2k, there is
only one retractiorr: o(z) = o(y) = 0. Thus Seocfy) is path connected.
By the same method used in [1], a model of $gg(is

(A((Z)1<i <k (Yj)1<j<k+1), d),

where |z| = 2i, |y;| = 2] —1 andd(y;) = z. Since the minimal model of Segk)
is (AYk1, 0), Secfx) ~o S**1 is an elliptic space. HoweveM is not an elliptic
space.

Next we complement [1, Corollary 2] with the following

Proposition 3.1. For an S-space M which is a nilpotent finite comp]éie follow-
ing conditions are equivalent
1) M is elliptic.
2) Each component of 'S is elliptic.
3) One of the components of gI° is elliptic.

Proof. 1)= 2): [1, Theorem 15].
2) = 3): Trivial.
3)= 1): By [2, Theorem 13], 2dim..(Se¢ (§)®Q) > dimz,.(M)® Q. By Se¢ (§)
is elliptic, dimn,(Se¢ (£))®Q is finite, so dinr,(M)®Q is finite. ThenM is elliptic.
O

REMARK 3.2. The theorem holds also f@ = S°. The proof is similar.

The rest of the section is devoted to showing Theorem 1.3.
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Let M be anS-space andM® # @. Then the inclusiorMS <> M induces a map
of Borel fibrations:

MS M
CP>® x MS v

Mhg
\ /
CP,

If there exists soméN such thatr>n(Mg) =0 andnzN(Mg) = 0. Thenk is identified
with the corresponding

(3.1)

MS < Map(CP®)™, MS) — Secfy) = M"Y,
which can be obtained by truncating in the diagram (3.1):

1

MS M
| |
Fn N En

(CP=)N),

Now let

(A® AV, D) —— (AV,d)

/

(3.2) (A, 0) v ¢

T~

(A,0)®(AZ,d) —— (AZ,d)
be a model of the above diagram, where @) = (Ax/(Ax)>N,0), (AV,d) and (AZ,d)
are minimal Sullivan models ok and MS', respectively.

Then we have the following

Theorem 3.3. [1, Theorem 21]The composition

(A(V @ A, d) % (A(Z @ A%), d) 5> (AZ, d)
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is a model of k Mg — Mgsl. The morphisms above are defined by

pvRa)=p YY) ®a], vQuaeV ® A

z a=1,
0 o#1,

V(Z®0t)={ ZQa e Z® A,

Then we give some information about. First, let AX ® AV, D) be a model of
the fibration&, we can decompose the differentidlin A® AV into

D=> Di, Di(V)CAX®A'V.

i<1

Proposition 3.4. [2, Lemmal4] The vector space V can be decomposed into a
direct sum W K @ S where
(1) W& K =KkerDy,
(2) K and S have the same dimension admitting bdsesc, {S}ici, and for any
i €1, there exists n> 1 such that Q(s) = x" ;.

Let K = Q(x), the field of fractions ofAx, we obtain a morphism of (ungraded)
differential vector spaces

lﬁ: (K®V, D]_)—)(K@Z,O):(Z]K,O)

If we assumeK concentrated in degree 0 and considerMnand Z the usualZ,-
grading given by the parity of the generators, then the Bdweblization theorem
claim that:

Theorem 3.5. [1, Theorem 22]The morphism

v: (K®V, D) — (Zk, 0)

is a quasi-isomorphism.
By Proposition 3.4, we have

Lemma 3.6. (1) dimW = dim Z.
(2) There are{wj}jes, {zj}jes Which are homogeneous basis of W and Z respectively
and non negative integersn;};c; such that

W(wj)ZXmJZj—‘er, Fj €R®AZZZ, ] e J,
and
U(s)e R®AZ?Z, y(w)eR®AZ?Z, seS veK,iel.
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Theorem 3.7. For an S--complex M which is simply connected with

dimmz,(M)® Q < oo.
Then the inclusion
k: MS < MmN

is a rational homotopy equivalence if and only if M is ratibeomotopy equivalent
to a product of CP*.

Proof. By Theorem 3.3, the model &fis
a: (A(V ® A%, d) > (A(Z ® A%, d) - (AZ, d).

By [1, Theorem 24],7.(K) ® Q is injective, so we only consider the surjective part.
By [1, Theorem 11], £(V ® A, d) is a model ofMgsl. Then we have

HY(V ® A%, dy) = Hom(z(M5%), Q),

wherek > 1.
By Proposition 3.4V = W@ K @& S. An easy computation shows thaw/(® A*) @
Sc H*(V ® A% d,). It is obvious that

a(wj) =04 m; #0,
a(w; ® (X)) =0em; #i,
Ol(Sj)ZO.

If there exists somg such thatjwj| > 2 or S# 9, then H(«, d,) is not injective,
so k is not a rational homotopy equivalence.

If lwj| =2, for eachj € J, and S= @, we have AW, d) is a model of a product
of CP*. It is easy to show thak is a rational homotopy equivalence. ]
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