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Abstract
We construct a quasi-sure version (in the sense of Malliavin)of geometric rough

paths associated with a Gaussian process with long-time memory. As an applica-
tion we establish a large deviation principle (LDP) for capacities for such Gaussian
rough paths. Together with Lyons’ universal limit theorem,our results yield immedi-
ately the corresponding results for pathwise solutions to stochastic differential equa-
tions driven by such Gaussian process in the sense of rough paths. Moreover, our
LDP result implies the result of Yoshida on the LDP for capacities over the abstract
Wiener space associated with such Gaussian process.

1. Introduction

The theory of rough paths, established by Lyons in his groundbreaking paper [13],
gives us a fundamental way of understanding path integrals along one forms and path-
wise solutions to differential equations driven by rough signals. After his work, the
study of the (geometric) rough path nature of stochastic processes (e.g. Brownian mo-
tion, Markov processes, martingales, Gaussian processes, etc.) becomes rather import-
ant, since it will then immediately lead to a pathwise theoryof stochastic differential
equations driven by such processes, which is one of the central problems in stochastic
analysis. The rough path regularity of Brownian motion was first studied in the un-
published Ph.D. thesis of Sipiläinen [22]. Later on Coutin and Qian [3] proved that
the sample paths of fractional Brownian motion with Hurst parameterH > 1=4 can be
lifted as geometric rough paths in a canonical way, and such canonical lifting does not
exist whenH 6 1=4. Of course their result covers the Brownian motion case. The sys-
tematic study of stochastic processes as rough paths then appeared in the monographs
on rough path theory by Lyons and Qian [15] and by Friz and Victoir [6].

The continuity of the solution map for rough differential equations, which was also
proved by Lyons [13] and usually known as the universal limittheorem, is a fundamental
result in rough path theory. To some extent it gives us a way ofunderstanding the right
topology under which differential equations are stable on rough path space. An easy but
important application of the universal limit theorem is large deviation principles (or simply
LDPs) for pathwise solutions to stochastic differential equations according to the contrac-
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tion principle, once the LDP for the law of the driving process as rough paths is established
under the rough path topology. This is also the main motivation of strengthening the clas-
sical LDPs for probability measures on path space under the uniform topology to the rough
path setting. Since the rough path topology is stronger thanthe uniform topology, a direct
corollary is the classical Freidlin–Wentzell theory on path space, which does not follow
immediately from the contraction principle and is in fact highly nontrivial as the solution
map is not continuous in this case. In the case of Brownian motion, Ledoux, Qian and
Zhang first established the LDP for the law of Brownian rough paths. Their result was
then extended to the case of fractional Brownian motion by Millet and Sanz-Solé [19].
The general study of LDPs for different stochastic processes in particular for Gaussian
processes as rough paths can be found in [6].

We first recall some basic notions from rough path theory which we use throughout
the rest of this article. We refer the readers to [6], [14], [15] for a detailed presentation.

For n > 1, let

T (n)(Rd) D
n
M

iD0

(Rd)
i

be the truncated tensor algebra overRd degreen, where (Rd)
0
WD 0. We use1 to

denote the standard 2-simplex{(s, t) W 06 s 6 t 6 1}.
We call anRd-valued continuous paths over [0, 1]smoothif it has bounded total

variation. Given a smooth pathw, for k 2 N define

(1.1) w

k
s,t D

Z

s<t1<���<tk<t
dwt1 
 � � � 
 dwtk , (s, t) 2 1.

From classical integration theory we know that (1.1) is well-defined as the limit of
Riemann–Stieltjes sums. Letw W 1! T (n)(Rd) be the functional given by

ws,t D (1,w1
s,t , : : : , w

n
s,t ), (s, t) 2 1.

This is usually called thelifting of w up to degreen. The additivity property of in-
tegration over disjoint intervals is then summarized as thefollowing so-calledChen’s
identity:

(1.2) ws,u 
 wu,t D ws,t , for all 06 s 6 u 6 t 6 1.

We use�1

n (Rd) to denote the space of all such functionals which are liftings of smooth
pathsw. In the definition of�1

n , the starting point of the path is irrelevant, and we
always assume that paths start at the origin.
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Let p > 1 be fixed and [p] denote the integer part ofp (not greater thanp). The
p-variation metric dp on �1

[ p] is defined by

dp(u, w) D max
16i6[ p]

sup
D

 

X

l

jui
tl�1,tl � w

i
tl�1,tl j

p=i

!i =p

,

where the supremum supD is taken over all possible finite partitions of [0, 1]. The
completion of�1

[ p] under dp is called the space ofgeometric p-rough pathsover Rd,

and it is denoted byG�p(Rd). If w D (1, w1, : : : , w[ p]) 2 G�p(Rd), then w also
satisfies Chen’s identity (1.2) inT [ p](Rd), and w has finite p-variation in the sense
that supD

P

l jwtl�1,tl j
p=i
<1 for all 16 i 6 [ p].

The fundamental result in rough path theory is the followingso-calledLyons’ uni-
versal limit theorem(see [13], and also [6], [15]) for differential equations driven by
geometric rough paths.

Theorem 1.1. Let {V1, : : : , Vd} be a family of
 -Lipschitz vector fields onRN

for some
 > p. For any given x0 2 RN , define the map

F(x0, � ) W �1

[ p](R
d)! G�p(RN)

in the following way. For anyw 2 �1

[ p](R
d) which is the lifting of some smooth path

w, let x be the unique smooth path which is the solution inRN of the ODE

dxt D

d
X

�D1

V
�

(xt ) dw�t , t 2 [0, 1],

with initial value x0. F(x0, w) is then defined to be the lifting of x in�1

p (RN). Then
the map F(x0, � ) is uniformly continuous on bounded sets with respect to the
p-variation metric.

REMARK 1.1. Theorem 1.1 is not the original version of Lyons’ resultin [13]
but an equivalent form. The original result of Lyons is formulated in terms of rough
path integrals and does not restrict to geometric rough paths only. Here we state the
result in a more elementary form to avoid the machinery of rough path integrals.

The theory of rough paths can be applied to quasi-sure analysis for Gaussian mea-
sures on path space. The notion of quasi-sure analysis was originally introduced by
Malliavin [16] (see also [17]) to the study of non-degenerateconditioning and disin-
tegration of Gaussian measures on abstract Wiener spaces. The fundamental concept
in quasi-sure analysis is capacity, which specifies more precise scales for “negligible”
subsets of an abstract Wiener space. In particular, a set of capacity zero is always a
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null set, while in general a null set may have positive capacity. According to Malliavin,
the theory of quasi-sure analysis can be regarded as an infinite dimensional version of
non-linear potential theory. It enables us to disintegratea Gaussian measure contin-
uously in the infinite dimensional setting, which for instance applies to the study of
bridge processes and pinned diffusions. Moreover, it also leads to sharper estimates
than classical methods.

The main goal of the present article is to initiate the study of Gaussian rough paths
in the setting of quasi-sure analysis. Due to powerful toolsin rough path theory, our
results lead to the verification of many classical results for the quasi-sure analysis on
Wiener space.

The first aim of this article is to study the quasi-sure existence of canonical lift-
ing for sample paths of Gaussian processes as geometric rough paths. The Brownian
motion case was studied by Inahama [10] under thep-variation metric, and Aida [1],
Higuchi [9], Inahama [11] and Watanabe [23] independently under the Besov norm,
by exploiting methods from the Malliavin calculus. More precisely, it was proved that
for quasi-surely, Brownian sample paths can be lifted as geometric p-rough paths for
2< p < 3. In the next section, we extend this result to a class of Gaussian processes
with long-time memory which includes fractional Brownian motion with Hurst param-
eter H > 1=4, by applying techniques both from rough path theory and theMalliavin
calculus. Combining our result with Lyons’ universal limittheorem, we obtain imme-
diately a quasi-sure limit theorem for pathwise solutions to stochastic differential equa-
tions driven by Gaussian processes, which improves the Wong–Zakai type limit theorem
and its quasi-sure version (see for example Ren [21], Malliavin–Nualart [18] and the
references therein).

The technique we use in the next section enables us to establish a large devia-
tion principle for capacities for Gaussian rough paths withlong-time memory, which
is the second aim of this article. LDPs for capacities for transformations on an abstract
Wiener space was first studied by Yoshida [24]. The general definition and the basic
properties of LDPs for induced capacities on a Polish space first appeared in Gao and
Ren [7], in which the case of stochastic flows driven by Brownian motion was also
investigated. Before establishing our LDP result, we first prove two fundamental re-
sults on transformations of LDPs for capacities: the contraction principle and exponen-
tial good approximations, which are both easy adaptations from the classical results for
probability measures. Our LDP result is then based on the result and method developed
in the next section and finite dimensional approximations. It turns out that the general
result of Yoshida in the case of Gaussian processes is a direct corollary of our result due
to the continuity of the projection map from a geometric rough path onto its first level
path. The original proof of Yoshida relies crucially on the infinite dimensional struc-
ture of abstract Wiener space, and in particular deep properties of capacity and analytic
properties of the Ornstein–Uhlenbeck semigroup. However,our technique here replies
only on basic properties of capacity and finite dimensional Gaussian spaces. Moreover,
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again from Lyons’ universal limit theorem, our LDP result immediately yields the LDPs
for capacities for pathwise solutions to stochastic differential equations driven by Gauss-
ian processes. In this respect our result is stronger than the result of Yoshida since we
are working in a stronger topology (thep-variation topology) instead of the uniform
topology, which is too weak to support the continuity of the solution map for differ-
ential equations. It is also interesting to note that Inahama [11] was already able to
applied techniques from quasi-sure analysis to establish LDPs for pinned diffusion mea-
sures.

2. Quasi-sure existence of Gaussian rough paths

In the present article, we consider the following class of Gaussian processes with
long-time memory in the sense of Coutin–Qian [3].

DEFINITION 2.1. A d-dimensional centered, continuous Gaussian process{Bt }t>0

starting at the origin with independent components is said to haveh-long-time memory
for some 0< h < 1 and if there is a constantCh such that

E[jBt � Bsj
2] 6 Chjt � sj2h

for s, t > 0 and

jE[(Bi
t � Bi

s)(B
i
tC� � Bi

sC� )]j 6 Ch�
2h

�

�

�

�

t � s

�

�

�

�

�

2

for 16 i 6 d, s, t > 0, � > 0 with (t � s)=� 6 1.

A fundamental example of Gaussian processes with long-timememory is fractional
Brownian motion withh being the Hurst parameter (see [15]).

From now on, we always assume that such Gaussian process is realized on the path
space over the finite time period [0,1]. This is of course equivalent to the consideration
of the process over any [0,T ]. Let W be the space of allRd-valued continuous paths
w over [0, 1] withw0 D 0, and equipW with the Borel� -algebraB(W). Let P be the
law on (W,B(W)) of some Gaussian process withh-long-time memory in the sense of
Definition 2.1.

It is a fundamental result of Coutin and Qian [3] that ifh > 1=4, 2< p < 4 with
hp> 1, then outside aP -null set each sample pathw 2 W can be lifted as geometric
p-rough paths in a canonical way. More precisely, form > 1, let tk

m D k=2m (k D
0, 1, : : : , 2m) be them-th dyadic partition of [0, 1]. Givenw 2 W, definew(m) to be
the dyadic piecewise linear interpolation ofw by

w

(m)
t D wtk�1

m
C 2m(t � tk�1

m )(wtk
m
� wtk�1

m
), t 2 [tk�1

m , tk
m],

and let

w

(m)
s,t D (1,w(m),1

s,t , w(m),2
s,t , w(m),3

s,t ), (s, t) 2 1,
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be the geometric rough path associated withw(m) up to level 3. LetAp be the totality
of all w 2 W such that{w(m)}m>1 is a Cauchy sequence under thep-variation metric
dp. ThenAc

p is a P -null set and hencew(m) converges to a unique geometricp-rough

pathw for P -almost-surely. The convergence holds inL1(W, P ) as well.

REMARK 2.1. Although a geometricp-rough path is defined up to level [p], by
Lyons’ extension theorem (see [13]) it does not make a difference if we always con-
sider up to level 3 underdp since 2< p < 4.

REMARK 2.2. Coutin and Qian [3] also showed that ifh 6 1=4, no subsequence
of w(m)

s,t converges in probability or inL1, and hence such canonical lifting of sample
paths as geometric rough paths does not exist.

The goal of this section is to strengthen the result of Coutin–Qian to the quasi-
sure setting in the sense of Malliavin. The main result and technique developed in this
section are essential to establish a large deviation principle for capacities as we will
see later on.

Throughout the rest of this article, we fixh 2 (1=4, 1=2], p 2 (2, 4) with hp> 1
(the case ofh > 1=2 is trivial from the rough path point of view), and consider a
d-dimensional Gaussian process withh-long-time memory.

We first recall some basic notions about the Malliavin calculus and quasi-sure ana-
lysis. We refer the readers to [17], [20] for a systematic discussion.

Let H be the Cameron–Martin space associated with the corresponding Gaussian
measureP on W. H is canonically defined to be the space of all paths inW of
the form

ht D E[Zwt ], t 2 [0, 1],

where Z is an element of theL2 space generated by the process (i.e. theL2-closure
of Span{wt W t 2 [0, 1]}), and the inner product is given byhh1, h2i D E[Z1Z2]. It fol-
lows that the identity map� defines a continuous and dense embedding fromH into
W which makes (W, H, P ) into an abstract Wiener space in the sense of Gross. Let
�

�

W W�

! H�

� H be the dual of�. Then the identity mapI W W�

,! L2(W, P )
uniquely extends to an isometric embedding fromH into L2(W, P ) via ��.

If f is a smooth Schwarz function onRn, and'1, : : : ,'n 2W�, then F D f ('1, : : : ,
'n) is called asmooth(Wiener) functional on W. The collection of all smooth func-
tionals on W is denoted byS. The Malliavin derivative of F is defined to be the
H-valued functional

DF D
n
X

iD1

� f

�xi
('1, : : : , 'n)��'i ,

Such definition can be generalized to smooth functionals taking values in a separable
Hilbert spaceE. Let S(E) be the space ofE-valued functionals of the formF D
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Pk
iD1 Fi ei , where Fi 2 S, ei 2 E. The Malliavin derivative ofF is defined to be the

H
 E-valued functionalDF D
Pk

iD1 DFi 
 ei . Such definition is independent of the
form of F , and by induction we can define higher order derivativesDN F for N 2 N,
which is then anH
N


 E-valued functional. Givenq > 1, N 2 N, the Sobolev norm
k � kq,NIE on S(E) is defined by

kFkq,NIE D

 

N
X

iD0

E[kDi Fkq
H
i


E]

!1=q

.

We usek � kqIE to denote the norm corresponding to the caseN D 0 (the Lq-norm).
The completion of (S(E), k � kq,NIE) is called the (q, N)-Sobolev spacefor E-valued
functionals overW, and it is denoted byDq

N(E).
For anyq > 1, N 2 N, the (q, N)-capacityCapq,N is a functional defined on the

collection of all subsets ofW. If O is an open subset ofW, then

Capq,N(O) WD inf{kukq,N W u 2 D
q
N , u > 1 on O, u > 0 on W, P -a.s.}

and for any arbitrary subsetA of W,

Capq,N(A) WD inf{Capq,N(O) W O open, A � O}.

A subsetA�W is calledslim if Capq,N(A) D 0 for all q > 1 and N 2 N. A property
for paths inW is said to hold forquasi-surely if it holds outside a slim set.

The (q, N)-capacity has the following basic properties:
(1) if A � B, then

06 Capq,N(A) 6 Capq,N(B)I

(2) Capq,N is increasing inN, and in q up to a constant depending onN;
(3) Capq,N is sub-additive, i.e.,

Capq,N

 

1

[

iD1

Ai

!

6

1

X

iD1

Capq,N(Ai ).

The following quasi-sure version of Tchebycheff’s inequality and Borel–Cantelli’s
lemma play an essential role in the study of quasi-sure convergence in our approach.
We refer the readers to [17] for the proof.

Proposition 2.1. (1) For any � > 0 and any u2 Dq
N which is lower semi-

continuous, we have

Capq,N{w 2 W W u(w) > �} 6
Cq,N

�

kukq,N ,
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where Cq,N is a constant depending only on q and N.
(2) For any sequence{An}

1

nD1 of subsets of W, if
P

1

nD1 Capq,N(An) <1, then

Capq,N

�

lim sup
n!1

An

�

D 0.

Now we are in a position to state our main result of this section.

Theorem 2.1. Suppose thatP is the Gaussian measure on(W, B(W)) associated
with a d-dimensional Gaussian process with h-long-time memory for some h2 (1=4,1=2],
p 2 (2,4)with hp> 1. ThenAc

p is a slim set. In particular, sample paths of the Gaussian
processes can be lifted as geometric p-rough paths in a canonical way quasi-surely, as
the limit of the lifting of dyadic piecewise linear interpolation under dp.

By applying Lyons’ universal limit theorem (Theorem 1.1) for rough differential
equations driven by geometric rough paths, an immediate consequence of Theorem 2.1 is
the quasi-sure existence and uniqueness for pathwise solutions to stochastic differential
equations driven by Gaussian processes withh-long-time memory in the sense of geo-
metric rough paths, under certain regularity conditions onthe generating vector fields.

The main idea of proving Theorem 2.1 is to use a crucial control on the p-variation
metric which is defined over dyadic partitions only, and to apply basic results for Gauss-
ian polynomials in the Malliavin calculus.

If w D (1,w1, w2, w3) and Qw D (1, Qw1, Qw2, Qw3) are two functionals on1 taking
values inT3(Rd), define

(2.1) �i (w, Qw) D

 

1

X

nD1

n

2n
X

kD1

jw

i
tk�1
n ,tk

n
� Qw

i
tk�1
n ,tk

n
j

p=i

!i =p

,

where i D 1, 2, 3 and
 > p� 1 is a fixed constant. We use� j (w) to denote� j (w, Qw)
with Qw D (1, 0, 0, 0). These functionals were originally introduced by Hambly and
Lyons [8] for constructing the stochastic area processes associated with Brownian mo-
tions on the Sierpinski gasket. They were then used by Ledoux, Qian and Zhang [12]
to establish a large deviation principle for Brownian roughpaths under thep-variation
topology. We also use these functionals to prove a large deviation principle for capacity
in the next section.

The following estimate is contained implicitly in [8] and made explicit in [15].
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Lemma 2.1. There exists a positive constant Cd, p,
 depending only on d, p, 
 ,
such that for anyw, Qw,

(2.2)

dp(w, Qw) 6 Cd, p,
 max{�1(w, Qw), �2(w, Qw), �1(w, Qw)(�1(w)C �1( Qw)),

�3(w, Qw), �2(w, Qw)(�1(w)C �1( Qw)),

�1(w, Qw)(�2(w)C �2( Qw)C (�1(w)C �1( Qw))2)}.

The main difficulty of proving Theorem 2.1 is that it is unknown if the p-variation
metric is differentiable in the sense of Malliavin. We get around this difficulty first
by controlling thep-variation metric using Lemma 2.1 and then by observing thatthe
capacity of{�i (w(mC1), w(m)) > �} is “evenly distributed” over the dyadic sub-intervals
(see (2.7) in the following). Our task is then reduced to the estimation of the Sobolev
norms of certain Gaussian polynomials, which is contained in the following basic result
in the Malliavin calculus (see [20]).

Lemma 2.2. Fix N 2 N. Let PN(E) be the space of E-valued polynomial func-
tionals of degree less than or equal to N. Then for any q> 2 and any F2 PN(E),
we have

(2.3) kFkqIE 6 (N C 1)(q � 1)N=2
kFk2IE.

Moreover, for any F 2 PN(E) and for any i6 N we have

(2.4) kDi Fk2IH
i

E 6 N(iC1)=2

kFk2IE.

The following L2-estimates for the dyadic piecewise linear interpolation,which are
contained in a series of calculations in [15], are crucial for us.

Lemma 2.3. Let m, n > 1 and kD 1, : : : , 2n.
1) For i D 1, 2, 3, we have










w

(m),i
tk�1
n ,tk

n










2I(Rd)
i
6

(

Cd,h2�inh, n 6 m,

Cd,h2im(1�h)�in, n > m.

2) We also have










w

(mC1),1
tk�1
n ,tk

n
� w

(m),1
tk�1
n ,tk

n










2IRd
6

(

0, n 6 m,

Cd,h2m(1�h)�n, n > mI










w

(mC1),2
tk�1
n ,tk

n
� w

(m),2
tk�1
n ,tk

n










2I(Rd)
2
6

(

Cd,h2(1�4h)=2�n=2, n 6 m,

Cd,h22m(1�h)�2n, n > mI










w

(mC1),3
tk�1
n ,tk

n
� w

(m),3
tk�1
n ,tk

n










2I(Rd)
3
6

(

Cd,h2(1�4h)m=2�(1C2h)n=2, n 6 m,

Cd,h23m(1�h)�3n, n > m.
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Here Cd,h is a constant depending only on d and h.

Now we can proceed to the proof of Theorem 2.1. The key step is to establish es-
timates for the capacities of the tail events{wW �i (w(mC1),w(m))> �} and{wW �i (w(m))>
�} (i D 1, 2, 3). This is contained in the following lemma.

Lemma 2.4. Let � 2 ((p(2hC1)=6�1)C,hp�1), QN > N=2_(2(h�(�C1)=p))�1.
Then we have
(1)

(2.5) Capq,N{w W �i (w
(mC1), w(m)) > �} 6 Ci�

�2 QN

�

1

2m

�2i QN(h�(�C1)=p)�1

,

(2)

(2.6) Capq,N{w W �i (w
(m)) > �} 6 Ci�

�2 QN .

Here Ci is a positive constant of the form Ci D C1C QN
2 g( QNI N) QN i QN , where C1 depends

only on q and N, C2 depends only on d, p, h, 
 , � , q and g( QNI N) is a polynomial
in QN with degree depending only on N and universal constant coefficients.

Proof. For i D 1, 2, 3, set

I i (mI �) D Capq,N{w W �i (w
(mC1), w(m)) > �}

D Capq,N{w W �i (w
(mC1), w(m))p=i

> �

p=i }.

By the definition of�i , for every � > 0 we have

{w W �i (w
(mC1), w(m))p=i

> �

p=i }

�

1

[

nD1

(

w W

2n
X

kD1

�

�

�

w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n

�

�

�

p=i
> C


 ,��
p=i

�

1

2n

�

�

)

,

whereC

 ,� D

�

P

1

nD1 n
2�n�
�

�1
. Therefore,

(2.7)

I i (mI �)

6

1

X

nD1

Capq,N

(

w W

2n
X

kD1

�

�

�

w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n

�

�

�

p=i
> �

p=i C

 ,�

�

1

2n

�

�

)

6

1

X

nD1

2n
X

kD1

Capq,N

�

w W

�

�

�

w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n

�

�

�

p=i
> �

p=i C

 ,�

�

1

2n

�

�C1�

.
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On the other hand, for anyQN > 0 we have

Capq,N

�

jw

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n
j

p=i
> �

p=i C

 ,�

�

1

2n

�

�C1�

D Capq,N

�

f i
m,n,k >

�

�Ci =p

 ,�

�

1

2n

�(i =p)(�C1)�2 QN�

,

where

f i
m,n,k(w) D

�

�

�

w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n

�

�

�

2 QN
, for w 2 W.

Since QN is a natural number,f i
m,n,k are polynomial functionals of degree 2i QN, and

hence they areN times differentiable in the sense of Malliavin providedQN > N=2.
Consequently, we can apply Tchebycheff’s inequality (the first part of Proposition 2.1)
to obtain

I i (mI �) 6 Cq,N

1

X

nD1

2n
X

kD1

�

Ci =p

 ,��

�

1

2n

�(i =p)(�C1)��2 QN

k f i
m,n,kkq,N .

If q > 2, by (2.3) of Lemma 2.2, we have

k f i
m,n,kkq,N 6

N
X

lD0

kDl f i
m,n,kkqIH
l

6 (2i QN C 1)(q � 1)i
QN

N
X

lD0

kDl f i
m,n,kk2IH
l .

By (2.4) of Lemma 2.2, we have

kDl f i
m,n,kk2IH
l

6 (2i QN)(NC1)=2
k f i

m,n,kk2.

Therefore,

k f i
m,n,kkq,N 6 (N C 1)(2i QN C 1)(q � 1)i

QN(2i QN)(NC1)=2
k f i

m,n,kk2.

Moreover, sincew(mC1),i
tk�1
n ,tk

n
�w

(m),i
tk�1
n ,tk

n
is an (Rd)
i -valued polynomial functional of degree

i , we know again from (2.3) that

k f i
m,n,kk2 D










w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n










2 QN

4 QNI(Rd)
i

6 (i C 1)2
QN(4 QN � 1)i

QN









w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n










2 QN

2I(Rd)
i
.
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Therefore,

(2.8)

k f i
m,n,kkq,N

6 (N C 1)((q � 1)i (i C 1)2)
QN(2i QN C 1)(2i QN)(NC1)=2

� (4 QN � 1)i
QN









w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n










2 QN

2I(Rd)
i

6 (N C 1)(1024(q � 1)3)
QN(6 QN C 1)(6 QN)N

QN i QN









w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n










2 QN

2I(Rd)
i
.

Let Ci be the constant beforekw(mC1),i
tk�1
n ,tk

n
�w

(m),i
tk�1
n ,tk

n
k

2 QN
2I(Rd)
i on the right hand side of (2.8).

By absorbing the constant in Tchebycheff’s inequality intoCi , we arrive at

(2.9)

I i (mI �)

6 Ci

1

X

nD1

2n
X

kD1

�

Ci =p
�

�

�

1

2n

�(i =p)(�C1)��2 QN









w

(mC1),i
tk�1
n ,tk

n
� w

(m),i
tk�1
n ,tk

n










2 QN

2I(Rd)
i
.

Exactly the same computation yields

Capq,N{w W �i (w
(m)) > �}

6 Ci

1

X

nD1

2n
X

kD1

�

Ci =p

 ,��

�

1

2n

�(i =p)(�C1)��2 QN









w

(m),i
tk�1
n ,tk

n










2 QN

2I(Rd)
i
.

(2.10)

We now substitute the estimates in Lemma 2.3 into (2.9) and (2.10). In what follows,
we assume that� 2 ((p(2hC 1)=6� 1)C, hp� 1), QN > (N=2)_ (2(h � (� C 1)=p))�1

for summability reason. We also absorb the constantCd,h in Lemma 2.3 andC

 ,� .

For i D 1, this gives

I1(mI �) 6 C1�
�2 QN22 QNm(1�h)

1

X

nDmC1

2n
X

kD1

2�2n QN(1�(�C1)=p)

6 C1�
�2 QN2�m(2 QN(h�(�C1)=p)�1).

For i D 2, this gives

I2(mI �) 6 C2�
�2 QN

 

m
X

nD1

2n
X

kD1

2�n QN(1�4(�C1)=p)�m QN(4h�1)

C

1

X

nDmC1

2n
X

kD1

2�4n QN(1�(�C1)=p)C4m QN(1�h)

!

6 C2�
�2 QN2�m(4 QN(h�(�C1)=p)�1).
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For i D 3, this gives

I3(mI �) 6 C3�
�2 QN

 

m
X

nD1

2n
X

kD1

2�n QN(1C2h�6(�C1)=p)�m QN(4h�1)

C

1

X

nDmC1

2n
X

kD1

2�6n QN(1�(�C1)=p)C6m QN(1�h)

!

6 C3�
�2 QN2�m(6 QN(h�(�C1)=p)�1).

Therefore, fori D 1, 2, 3, we have

I i (mI �) 6 Ci�
�2 QN2�m(2i QN(h�(�C1)=p)�1),

which gives (2.5). From the computation it is easy to see thatthe constantsCi here
are of the form stated in the lemma.

Similar computation yields that fori D 1, 2, 3,

Capq,N{w W �i (w
(m)) > �} 6 Ci

 

�

�2 QN
m
X

nD1

2n
X

kD1

2�2n QNi(h�(�C1)=p)

C �

�2 QN
1

X

nDmC1

2n
X

kD1

2�2 QNi(n(1�(�C1)=p)�m(1�h))

!

6 Ci�
�2 QN ,

with Ci of the form stated in the lemma. This gives (2.6).

REMARK 2.3. The explicit form of the constants in Lemma 2.4 is used inthe
next section when proving a large deviation principle for capacities.

Now we are in a position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. By rewriting (2.2) as

dp(w, Qw)

6 Cd, p,
 max{�i (w, Qw)(� j (w)C � j ( Qw))k
W (i , j , k) 2 N �N � Z

C

, i C jk 6 3},

(2.11)

we only need to show that there exists a positive constant�, such that for any (i , j ,k) 2
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N �N � Z

C

satisfying i C jk 6 3, we have

(2.12)

1

X

mD1

Capq,N

�

w W �i (w
(mC1), w(m))(� j (w

(m))C � j (w
(mC1)))k

>

1

2m�

�

<1.

Indeed, if the above result holds, then by Lemma 2.1, we have

1

X

mD1

Capq,N

�

w W dp(w(m), w(mC1)) > C0

d, p,

1

2m�

�

<1,

whereC0

d, p,
 is some constant depending only ond, p, 
 . It follows from the quasi-
sure version of Borel–Cantelli’s lemma (the second part of Proposition 2.1) that

Capq,N

�

lim sup
m!1

�

w W dp(w(m), w(mC1)) > C0

d, p,

1

2m�

��

D 0.

Since

Ac
p D {w W w(m) is not a Cauchy sequence in underdp}

�

(

w W

1

X

mD1

dp(w(m), w(mC1)) D1

)

� lim sup
m!1

�

w W dp(w(m), w(mC1)) > C0

d, p,

1

2m�

�

,

it follows that Capq,N(Ac
p) D 0 which completes the proof.

Now we prove (2.12).
First consider the casek > 0. For any�, � > 0, we have

Capq,N

�

w W �i (w
(mC1), w(m))(� j (w

(m))C � j (w
(mC1)))k

>

1

2m�

�

6 Capq,N

�

w W �i (w
(mC1), w(m)) >

1

2m(�C�)

�

C Capq,N{w W (� j (w
(m))C � j (w

(mC1)))k
> 2m�}

6 Capq,N

�

w W �i (w
(mC1), w(m)) >

1

2m(�C�)

�

C Capq,N{w W � j (w
(m)) > 2m�=k�1}

C Capq,N{w W � j (w
(mC1)) > 2m�=k�1}.

By Lemma 2.4, for� 2 ((p(2hC1)=6�1)C, hp�1), QN > (N=2)_ (2(h� (� C1)=p))�1
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and i D 1, 2, 3, we have

Capq,N

�

w W �i (w
(mC1), w(m)) >

1

2m(�C�)

�

6 Ci

�

1

2m

�2i QN(h�(�C1)=p)�1�2(�C�) QN

.

Let �, � > 0 be such that

(2.13)
2 QN(h � (� C 1)=p) � 1

2 QN
> � C � > 0.

It follows easily that

(2.14)
1

X

mD1

Capq,N

�

w W �i (w
(mC1), w(m)) >

1

2m(�C�)

�

<1.

Similarly,

Capq,N{w W � j (w
(m)) > 2m�=k�1} 6 C j 2

�m�=k�1,

and hence
1

X

mD1

Capq,N{w W � j (w
(m)) > 2m�=k�1} <1.

Combining with (2.14), we arrive at

1

X

mD1

Capq,N

�

w W �i (w
(mC1), w(m))(� j (w

(m))C � j (w
(mC1)))k

>

1

2m�

�

<1.

The case ofk D 0 follows directly from (2.14), since for all� > 0,

�

w W �i (w
(mC1), w(m)) >

1

2m�

�

�

�

w W �i (w
(mC1), w(m)) >

1

2m(�C�)

�

.

Now the proof is complete.

3. Large deviations for capacities

In this section, we apply the previous technique to prove a large deviation principle
for capacities for Gaussian rough paths with long-time memory.

Before stating our main result, we first recall the definitionof general LDPs for
induced capacities in Polish spaces (see [7], [24]).

Let (B, H, �) be an abstract Wiener space.
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DEFINITION 3.1. Let q > 1, N 2 N, and let{T"} be a family of Capq,N-quasi
surely defined maps fromB to some Polish space (X, d). We say that the family{T"}

satisfies the Capq,N-large deviation principle(or simply Capq,N-LDP) with good rate
function I W X ! [0,1] if
(1) I is a good rate function onX, i.e. I is lower semi-continuous and for every� 2
[0,1), the level set9I (�) D {y 2 X W I (y) 6 �} is compact inX;
(2) for every closed subsetC � X, we have

(3.1) lim sup
"!0

"

2 log Capq,N{w 2 B W T "(w) 2 C} 6 �
1

q
inf
x2C

I (x),

and for ever open subsetG � X, we have

(3.2) lim inf
"!0

"

2 log Capq,N{w 2 B W T"(w) 2 G} > �
1

q
inf
x2G

I (x).

REMARK 3.1. The appearance of the factor 1=q comes from the definition of
Capq,N , so

(3.3) Capq,N(A) > Capq,0(A) D P (A)1=q, forall A 2 B(B).

It is consistent with the classical large deviation principle for probability measures.

Due to the properties of (q, N)-capacity, many important results for LDPs can be
carried through in the capacity setting without much difficulty, and the proofs are sim-
ilar to the case of probability measures. Here we present twofundamental results on
transformations of LDPs for capacities that are crucial forus, which did not appear in
[7], [24] and related literatures.

The first result is the contraction principle.

Theorem 3.1. Let {T"} be a family ofCapq,N-quasi surely defined maps from B
to (X, d) satisfying theCapq,N-LDP with good rate function I . Let F be a continuous
map from X to another Polish space(Y, d0). Then the family{F Æ T"} of Capq,N-quasi
surely defined maps satisfies theCapq,N-LDP with good rate function

(3.4) J(y) D inf
x W F(x)Dy

I (x),

where we defineinf ; D 1.

Proof. SinceI is a good rate function, it is not hard to see thatJ is lower semi-
continuous and also by the continuity ofF , if J(y) <1 then the infimum in (3.4) is
attained at some pointx 2 F�1(y). Therefore, for any� > 0, we have

{y 2 Y W J(y) 6 �} D F({x 2 X W I (x) 6 �}),
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and henceJ is a good rate function. The Capq,N-LDP (the upper bound (3.1) and
lower bound (3.2)) for the family{F Æ T"} under the good rate functionJ follows
easily from the continuity ofF .

The second result is about exponentially good approximations.
We first need the following definition.

DEFINITION 3.2. Let {T",m} and {T"} be two families of Capq,N-quasi-surely
defined maps fromB to (X, d). We say that{T",m} are exponentially good approx-
imationsof {T"} under Capq,N , if for any � > 0,

(3.5) lim
m!1

lim sup
"!0

"

2 log Capq,N{w W d(T ",m(w), T "(w)) > �} D �1.

Now we have the following result.

Theorem 3.2. Suppose that for each m> 1, the family {T",m} of Capq,N-
quasi-surely defined maps satisfies theCapq,N-LDP with good rate function Im and
{T",m} are exponentially good approximations of some family{T"} of Capq,N-
quasi-surely defined maps. Suppose further that the function I defined by

(3.6) I (x) D sup
�>0

lim inf
m!1

inf
y2Bx,�

Im(y),

where Bx,� denotes the open ball{y 2 X W d(y, x) < �}, is a good rate function and
for every closed set C� X,

(3.7) inf
x2C

I (x) 6 lim sup
m!1

inf
x2C

Im(x).

Then{T"} satisfies theCapq,N-LDP with good rate function I .

Proof. Upper bound. Let C be a closed subset ofX. For any� > 0, let C
�

D

{x W d(x, C) 6 �}. Since

{w W T"(w) 2 C} � {w W T",m(w) 2 C
�

} [ {w W d(T",m(w), T"(w)) > �},

it follows from the Capq,N-LDP for {T",m} (the upper bound) that

lim sup
"!0

"

2 log Capq,N{w W T"(w) 2 C}

6 lim sup
"!0

"

2 log Capq,N{w W T",m(w) 2 C
�

}

_ lim sup
"!0

"

2 log Capq,N{w W d(T ",m(w), T "(w)) > �}

6

�

�

1

q
inf

x2C
�

Im(x)

�

_ lim sup
"!0

"

2 log Capq,N{w W d(T ",m(w), T "(w)) > �}.
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By letting m!1, we obtain from (3.5) and (3.7) that

lim sup
"!0

"

2 log Capq,N{w W T"(w) 2 C} 6 �
1

q
lim sup

m!1

inf
x2C

�

Im(x)

6 �

1

q
inf

x2C
�

I (x).

Now the upper bound (3.1) follows from a basic property for good rate functions (see
[4], Lemma 4.1.6) that

lim
�!0

inf
x2C

�

I (x) D inf
x2C

I (x).

To prove the lower bound (3.2), we first show that

(3.8)
�

1

q
I (x) D inf

�>0
lim sup
"!0

"

2 log Capq,N{w W T"(w) 2 Bx,�}

D inf
�>0

lim inf
"!0

"

2 log Capq,N{w W T"(w) 2 Bx,�}.

In fact, since

(3.9) {w W T ",m(w) 2 Bx,�} � {w W T "(w) 2 Bx,2�} [ {w W d(T ",m(w), T "(w)) > �},

we have

Capq,N{w W T ",m(w) 2 Bx,�}

6 Capq,N{w W T"(w) 2 Bx,2�} C {w W d(T",m(w), T"(w)) > �}.

It follows from the Capq,N-LDP (the lower bound) for{T",m} that

�

1

q
inf

y2Bx,�

Im(y) 6 lim inf
"!0

"

2 log Capq,N{w W T",m(w) 2 Bx,�}

6 lim inf
"!0

"

2(log Capq,N{w W T"(w) 2 Bx,2�}

_ log Capq,N{w W d(T ",m(w), T "(w)) > �})

6 lim inf
"!0

"

2 log Capq,N{w W T"(w) 2 Bx,2�}

_ lim sup
"!0

"

2 log Capq,N{w W d(T ",m(w), T"(w)) > �},

and (3.5) implies that

�

1

q
lim inf
m!1

inf
y2Bx,�

Im(y) 6 lim inf
"!0

"

2 log Capq,N{w W T "(w) 2 Bx,2�}.

By taking infimum over� > 0, we obtain

�

1

q
I (x) 6 inf

�>0
lim inf
"!0

"

2 log Capq,N{w W T"(w) 2 Bx,2�}.
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On the other hand, by exchangingT",m and T" in (3.9), the same argument yields that
(using the upper bound in the Capq,N-LDP)

inf
�>0

lim sup
"!0

"

2 log Capq,N{w W T "(w) 2 Bx,�} 6 �
1

q
I (x).

Therefore, (3.8) follows.
Lower bound. Let G be an open subset ofX. For any fixedx 2 G, take � > 0

such thatBx,� � G. It follows from (3.8) that

lim inf
"!0

"

2 log Capq,N{w W T"(w) 2 G}

> lim inf
"!0

"

2 log Capq,N{w W T"(w) 2 Bx,�}

> �

1

q
I (x).

Therefore, the lower bound (3.2) holds.

Consider the abstract Wiener space (W, H, P ) associated with a Gaussian process
satisfying the assumptions in Theorem 2.1. According to [6], the covariance function
of the process has finite (1=2h)-variation in the 2D sense, andH is continuously em-
bedded in the space of continuous paths with finite (1=2h)-variation. Therefore, every
h 2 H admits a natural liftingh in G�p(Rd) in the sense of iterated Young’s integrals
(see [25]).

Recall thatAp is the set of pathsw 2 W such that the liftingw(m) of the dyadic
piecewise linear interpolation ofw is a Cauchy sequence underdp, and the map

F W w 2 Ap 7! w D (1,w1, : : : , w[ p]) WD lim
m!1

w

(m)
2 G�p(Rd)

is well-defined. For" > 0, let T"

W Ap! G�p(Rd) be the map defined by

T"(w) D Æ
"

w WD (1, "w1, : : : , "[ p]
w

[ p]).

By Theorem 2.1,Ac
p is a slim set. Therefore,T" is quasi-surely well-defined.

Let

(3.10) 3(w) D

8

<

:

1

2
kwk

2
H, w 2 HI

1, otherwise,

and defineI W G�p(Rd)! [0,1] by

(3.11) I (w) D inf{3(w) W w 2 Ap, F(w) D w}.
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We will see later in Lemma 3.2 thatH � Ap and hence

I (w) D

8

<

:

1

2
k�1(w)0, � k

2
H, if �1(w)0, � 2 H and w D F(�1(w)0, � )I

1, otherwise,

where�1 is the projection onto the first level path.
Now we can state our main result of this section.

Theorem 3.3. For any q > 1, N 2 N, the family {T"} of Capq,N-quasi-surely

defined maps from W to G�p(Rd) satisfies theCapq,N-LDP with good rate function I .

In particular, since the projection map fromG�p(Rd) onto the first level path is
continuous, we immediately obtain the following result of Yoshida [24] in the case of
Gaussian processes with long-time memory.

Corollary 3.1. The family of maps{"w} satisfies theCapq,N-LDP with good rate
function3.

Moreover, according to the universal limit theorem (Theorem1.1) and the con-
traction principle (Theorem 3.1), a direct corollary of Theorem 3.3 is the LDPs for
capacities for solutions to differential equations drivenby Gaussian rough paths with
long-time memory. This generalizes the classical Freidlin–Wentzell theory for diffusion
measures to the quasi-sure and rough path setting and in particular recovers a result of
Gao and Ren [7]. Here we are again taking the advantage of working in the stronger
topology (thep-variation topology), under which we have nice stability for differential
equations.

It should be pointed out that the lifting mapF , which can be regarded as the path-
wise solution to a differential equation driven byw with a polynomial one form, isnot
continuous under the uniform topology (see [14], [15]). Therefore the contraction prin-
ciple cannot be applied directly in our context. A standard way of getting around this
difficulty, as in [12] for Brownian motion and [19] for fractional Brownian motion in
the case of LDPs for probability measures, is to construct exponentially good approx-
imations by using dyadic piecewise linear interpolation. Here we adopt the same idea
in the capacity setting.

Let T",m
W W ! G�p(Rd) be the map given byT ",m(w) D Æ

"

w

(m). The proof of
Theorem 3.3 essentially consists of two parts: show that thefamily {T",m} satisfies
a Capq,N-LDP and show that{T",m} are exponentially good approximations of{T"}

under Capq,N .
We first need to establish the Capq,N-LDP for {T",m}, and we begin with consid-

ering the standard finite dimensional abstract Wiener space.
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Let � be the standard Gaussian measure onR

n. In this case, the Cameron–Martin
space is justRn equipped with the standard Euclidean inner product. For clarity we use
the notation Cap(n)

q,N to emphasize that the capacity is defined onRn. Now we have the
following result.

Proposition 3.1. The family{"x} satisfies theCap(n)
q,N-LDP with good rate function

J(x) D
jxj2

2
, x 2 Rn.

Proof. The lower bound follows immediately from the simple relation in (3.3)
and the classical LDP for the family{�("�1 dx)} of probability measures. It suffices
to establish the upper bound.

We first prove the following inequality for the one dimensional case:

(3.12) lim sup
"!0

"

2 log Cap(1)
q,N{x W "x > b} 6 �

1

2q
b2,

for any b > 0. In fact, for any� > 0, define the non-negative function

f (x) D e�"x��b, x 2 R1.

Obviously f 2 Dq
N , and f > 1 on {xW "x > b}. Therefore, by the definition of capacity

we have

Cap(1)
q,N{x W "x > b} 6 k f kq,N

6

N
X

iD0

�

Z

R

1
j f (i )
j

q
�(dx)

�1=q

D

N
X

iD0

�

Z

R

1
(�")qi eq�"x�q�b 1

p

2�
e�x2

=2 dx

�1=q

D

N
X

iD0

(�")i e(q=2)(�")2
��b.

It follows that

"

2 log Cap(1)
q,N{x W "x > b} 6 "2 log N C max

06i6N
{i "2 log(�")} C

q

2
(�"2)2

� �"

2b.

Now take� D b=(q"2), then we have

"

2 log Cap(1)
q,N{x W "x > b} 6 "2 log N C max

06i6N

�

i "2 log

�

b

q"

��

�

b2

2q
,
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and therefore (3.12) holds. Apparently (3.12) still holds if {x W "x > b} is replaced by
{x W "x > b}, and a similar inequality holds for{x W "x 6 a} for a < 0.

Now we come back to then-dimensional case.
Firstly, consider an open ballB(a, r ) � Rn. For any� 2 Rn, consider the non-

negative function

f (x) D eh�,"xiCj�jr�h�,ai, x 2 Rn.

Then apparently we havef 2 Dq
N . Moreover, from the fact that

h�, ai � j�jr D inf
y2B(a,r )

h�, yi,

we have f > 1 on {x W "x 2 B(a, r )}. Therefore, similarly as before we have

Cap(n)
q,N{x W "x 2 B(a, r )} 6 k f kq,N

6

N
X

iD0

�

Z

R

n

jDi f jq�(dx)

�1=q

6

N
X

iD0

(nj�j")i e(q=2)(j�j")2
Cj�jr�h�,ai

and

"

2 log Cap(n)
q,N{x W "x 2 B(a, r )}

6 "

2 log N C max
06i6N

{i "2 log(nj�"j)} C
q

2
(j�j"2)2

C j�j"

2r � h"2
�, ai.

Note that the function (q=2)(j�j"2)2
C j�j"

2r � h"2
�, ai attains its minimum at

� D

(jaj � r )C

q"2
jaj

a,

By taking this� and letting"! 0, we arrive at

lim sup
"!0

"

2 log Cap(n)
q,N{x W "x 2 B(a, r )}

6 �

1

2q
((jaj � r )C)2

D �

1

q
inf

y2B(a,r )
J(y).
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Secondly, letK be a compact subset ofRn. Then for anyÆ > 0, we can find a
finite cover of K by open balls{B(ai , Æ)}16i6k(Æ) where eachai 2 K . It follows that

lim sup
"!0

"

2 log Capq,N{x W "x 2 K }

6 lim sup
"!0

"

2

�

log k(Æ)C max
16i6k(Æ)

log Cap(n)
q,N{x W "x 2 B(ai , Æ)}

�

6 max
16i6k(Æ)

�

�

1

q
inf

y2B(ai ,Æ)
J(y)

�

6 �

1

q
inf

y2B(K ,Æ)
J(y),

where B(K , Æ) WD {x W dist(x, K ) < Æ}. By letting Æ ! 0 we obtain the upper bound
result for the compact setK .

Finally, let C be an arbitrary closed subset ofRn. For � > 0, let

H
�

D {x W jxi
j 6 � for all i }.

Then we have

Cap(n)
q,N{x W "x 2 C} 6 Cap(n)

q,N{x W "x 2 C \ H
�

} C

n
X

iD1

Cap(n)
q,N{x W "jxi

j > �}.

On the other hand, from the definition of capacity, we have (see also the proof of the
following Corollary 3.2):

Cap(n)
q,N{x W "jxi

j > �} 6 Cap(1)
q,N{x 2 R1

W "jxj > �}.

Combining with the upper bound result for compact sets and (3.12), we arrive at

lim sup
"!0

"

2 log Cap(n)
q,N{x W "x 2 C} 6 max

�

�

1

q
inf

y2C\H
�

J(y), �
1

q
�

2

�

for all � > 0. The upper bound result forC follows from letting � !1.

Now consider the situation where� is a general non-degenerate Gaussian measure
on Rn with covariance matrix6. In this case the Cameron–Martin spaceH D Rn but
with inner product

hh1, h2i D hT
16

�1h2.

Moreover, the Cameron–Martin embedding�W H! R

n is just the identity map but the
dual embedding�� W Rn

! H�

� H is given by

�

�(�) D 6�, � 2 R

n.
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Therefore, if we write6 D QQT for some non-degenerate matrixQ, it follows from
the definition of Sobolev spaces and change of variables that

Cap�q,N(A) D Cap�q,N(Q�1A)

for all A � Rn, where the left hand side is the capacity for� and the right hand side
is the capacity for the standard Gaussian measure�. In other words, capacities for
non-degenerate Gaussian measures onR

n are all equivalent. As a consequence, we
conclude that the family{"x} satisfies the Cap�q,N-LDP with good rate function

J(y) D
1

2
kyk2H D

1

2
yT
6

�1y, y 2 Rn.

The case of degenerate Gaussian measures follows easily by restriction on the maximal
invariant subspace on which the covariance matrix is positive definite.

A direct consequence of the previous discussion is the following.

Corollary 3.2. For each m> 1, the family{T",m} satisfies theCapq,N-LDP with
good rate function

(3.13) Im(w) D inf{Jm(x) W x 2 (Rd)2m
W 8m(x) D w}, w 2 G�p(Rd),

where Jm(x) is the good rate function for the Gaussian measure�m on (Rd)2m
induced

by (wt1
m
, : : : , wt2m

m
), and 8m is the map sending each x2 (Rd)2m

to the lifting of the
dyadic piecewise linear interpolation associated with x.

Proof. Since8m is continuous under the Euclidean andp-variation topology re-
spectively, the result follows immediately from the contraction principle Theorem 3.1
once we have established the Capq,N-LDP for the family "�m W W! (Rd)2m

where�m

is defined by

�m(w) D (wt1
m
, : : : , wt2m

m
), w 2 W,

with good rate functionJm.
To see this, first notice again that the lower bound follows from the relation (3.3)

and the classical LDP for finite dimensional Gaussian measures. Moreover, letU be an
open subset of (Rd)2m

and let f 2 Dq
N(�m) be a function such that for�m-almost surely

f > 1 on U , f > 0 on (Rd)2m
,

D

q
N(�m) is the Sobolev space over (Rd)2m

associated with�m. Define

g(w) D f (wt1
m
, : : : , wt2m

m
), w 2 W.
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Apparently g 2 Dq
N , and forP -almost surely

g > 1 on ��1
m U , g > 0 on W.

Moreover, sincekgkq,N D k f kq,NI�m, we know that

Capq,N(��1
m U ) 6 k f kq,NI�m.

By taking infimum over all suchf , we obtain

Capq,N(��1
m U ) 6 Cap�m

q,N(U ).

Now the upper bound result follows from the Capq,N-LDP for the family {�m," WD

�m("�1 dx)} of probability measure and a simple limiting argument.

REMARK 3.2. There is an equivalent way of expressing the rate function Im,
which is very convenient for us to prove our main result of Theorem 3.3. In fact, from
classical LDP results for Gaussian measures (see for example [5]), we know that the
family {P

"

WD P ("�1 dw)} of probability measures onW satisfies the LDP with good
rate function3 given by (3.10). Moreover, the map9m W W ! G�p(Rd) defined by
9m(w) D w

(m) is continuous under the uniform andp-variation topology respectively.
Therefore, according to the classical contraction principle, the family {P

"

Æ 9

�1
m } of

probability measures onG�p(Rd) satisfies the LDP with good rate function

(3.14) I 0m(w) D inf{3(w) W w 2 W, 9m(w) D w}, w 2 G�p(Rd).

On the other hand, the same argument implies that the family{�m," Æ 8
�1
m } of prob-

ability measures onG�p(Rd) satisfies the LDP with good rate functionIm given by
(3.13). Observe thatP

"

Æ 9

�1
m D �m," Æ 8

�1
m . By the uniqueness of rate functions (see

[4], Chapter 4, Lemma 4.1.4), we conclude thatIm D I 0m.

REMARK 3.3. Of course we can apply Yoshida’s result directly with the contrac-
tion principle to obtain the Capq,N-LDP for the family {T",m} with good rate function
I 0m. Here we do not proceed in this way so that in the end our resultyields Yoshida’s
one as a corollary, and our proof relies only on basic properties of capacities and finite
dimensional Gaussian spaces.

The second main ingredient of proving Theorem 3.3 is the following.

Lemma 3.1. For any q> 1, N 2 N and � > 0, we have

lim
m!1

lim sup
"!0

"

2 log Capq,N{w W dp(Æ
"

w

(m), Æ
"

w) > �} D �1.

Therefore, {T",m} are exponentially good approximations of{T"} under Capq,N .
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Proof. For any� > 0, since

{w W dp(Æ
"

w

(m), Æ
"

w) > �} �

(

w W

1

X

lDm

dp(Æ
"

w

(l ), Æ
"

w

(lC1)) > �

)

�

1

[

lDm

�

w W dp(Æ
"

w

(l ), Æ
"

w

(lC1)) >
�

C
�

�

1

2(l�m)�

�

,

we have

Capq,N{w W dp(Æ
"

w

(m), Æ
"

w) > �}

6

1

X

lDm

Capq,N

�

w W dp(Æ
"

w

(l ), Æ
"

w

(lC1)) >
�

C
�

�

1

2(l�m)�

�

,

whereC
�

WD

P

1

kD0 2��k. It then follows from (2.11) that for any� > 0,

(3.15)

Capq,N{w W dp(Æ
"

w

(m), Æ
"

w) > �}

6

3
X

iD1

1

X

lDm

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

1

2(l�m)�

�

C

X

i , j ,k>1
iC jk63

1

X

lDm

�

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

2m�

2l (�C�)

�

C Capq,N{w W � j (Æ"w
(l )) > 2l�=k�1}

C Capq,N{w W � j (Æ"w
(lC1)) > 2l�=k�1}

�

,

whereCd, p,
 ,� is a constant depending only onp, d, 
 , �.
Similar to the proof of Theorem 2.1, we estimate each term on the right hand side

of (3.15). Here we choose�,� in exactly the same way as in the proof of Theorem 2.1,
namely, by (2.13). It should be pointed out that the choice of�, � can be made in-
dependent ofQN, since� 2 ((p(2hC 1)=6� 1)C, hp� 1).

Firstly, it follows from Lemma 2.4 that fori D 1, 2, 3,

(3.16)

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

1

2(l�m)�

�

D Capq,N

�

w W �i (w
(l ), w(lC1)) >

�

Cd, p,
 ,�

"

�i

2(l�m)�

�

6 C1C
QN

2 g( QNI N) QN i QN
�

�

�

Cd, p,
 ,�

"

�i

2(l�m)�

�

�2 QN

�

�

1

2l

�2i QN(h�(�C1)=p)�1

D C1C
QN

3 g( QNI N)( QN"2)i QN
�

1

22m QN�

�

1

2l

�2i QN(h�(�C1)=p)�1�2 QN�

,
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where C3 D C2(�=Cd, p,
 ,�)�2. Note that by the choice of�, the right hand side of
(3.16) is summable overl , and it follows that

1

X

lDm

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

1

2(l�m)�

�

6 C4C
QN

3 g( QNI N)( QN"2)i QN
�

�

1

2m

�2i QN(h�(�C1)=p)�1

,

whereC4D C1(1�2�(2i QN(h�(�C1)=p)�1�2 QN�))�1. By taking QN D ["�2] for " small enough,
it is easy to see that

lim sup
"!0

"

2 log

 

1

X

lDm

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

1

2(l�m)�

�

!

D log C3C 2i

�

h�
� C 1

p

�

log

�

1

2m

�

.

Therefore, we have

lim
m!1

lim sup
"!0

"

2 log

 

1

X

lDm

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

1

2(l�m)�

�

!

D �1.

Again by the choice of�,� and by taking QN D ["�2], the same computation based
on Lemma 2.4 yields that

lim
m!1

lim sup
"!0

"

2 log

 

1

X

lDm

Capq,N

�

w W �i (Æ"w
(l ), Æ

"

w

(lC1)) >
�

Cd, p,
 ,�

2m�

2l (�C�)

�

!

D lim
m!1

lim sup
"!0

"

2 log

 

1

X

lDm

Capq,N{w W � j (Æ"w
(l )) > 2l�=k�1}

!

D lim
m!1

lim sup
"!0

"

2 log

 

1

X

lDm

Capq,N{w W � j (Æ"w
(lC1)) > 2l�=k�1}

!

D �1,

for i , j , k > 1 with i C jk 6 3.
Now the desired result follows easily.

In order to apply Theorem 3.2, we need the following convergence result in [6]
for Cameron–Martin paths.
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Lemma 3.2. For any � > 0, we have

lim
m!1

sup
{h2H W khkH6�}

dp(h(m), h) D 0.

In particular, H is contained inAp.

Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3. It suffices to show that the functionI given by (3.11) co-
incides with the one given by (3.6), and it satisfies all conditions in Theorem 3.2. Here
we useI 0m given by (3.14) for the rate function of{T",m}.

Firstly, by Lemma 3.2 it is easy to see that the lifting mapF is continuous on
each level set{wW 3(w) 6 �} � H � Ap of 3. It follows from the definition ofI that

F({w W 3(w) 6 �}) D {w W I (w) 6 �},

which then implies thatI is a good rate function.
Now we show that for any closed subsetC � G�p(Rd), we have

(3.17) inf
w2C

I (w) 6 lim inf
m!1

inf
w2C

I 0m(w).

In fact, let 
m D inf
w2C I 0m(w)D inf

w29

�1
m (C)3(w). We only consider the nontrivial case

lim infm!1


m D � <1, and without loss of generality we assume that limm!1


m D

�. Since3 is a good rate function, we know that the infimum over the closed subset
9

�1
m (C) � W is attainable. Therefore, there existswm 2 W such that9m(wm) 2 C and


m D 3(wm). It follows from Lemma 3.2 that for any fixed� > 0, F(wm) 2 C
�

when
m is large, whereC

�

WD {w W dp(w, C) 6 �}. Consequently, whenm is large, we have

inf
w2C

�

I (w) 6 I (F(wm)) D 3(wm) D 
m,

and hence

inf
w2C

�

I (w) 6 �.

(3.17) then follows easily from [4], Chapter 4, Lemma 4.1.6.by taking �! 0.
A direct consequence of (3.17) is the condition (3.7) in Theorem 3.2. Moreover, if

we let C D B
w,� in (3.17), by taking�! 0 we easily obtain thatI (w) 6 I (w), where

I is the function given by (3.6).
It remains to show thatI (w) 6 I (w), and we only consider the nontrivial case

I (w) D � < 1. It follows that I (w) D 3(w), wherew 2 H � Ap with F(w) D w.
Let wm D 9m(w). By Lemma 3.2 we know thatwm ! w under dp. Therefore, for
any fixed� > 0,

inf
w

0

2B
w,�

I 0m(w0) 6 I 0m(wm) 6 3(w) D I (w)
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when m is large. By taking “lim infm!1

” and “sup
�>0”, we obtain thatI (w) 6 I (w).

Now the proof is complete.

REMARK 3.4. In some literature (in particular, in [24]), the Sobolev norms over
(W, H, P ) are defined in terms of the Ornstein–Uhlenbeck operator, which can be re-
garded as the infinite dimensional Laplacian under the Gaussian measureP . An advan-
tage of using such norms is that they can be easily extended tothe fractional case. Ac-
cording to the well known Meyer’s inequalities, such norms are equivalent to the ones
we have used here which are defined in terms of the Malliavin derivatives. Therefore,
the LDP for the corresponding capacities under these Sobolev norms holds in exactly
the same way.
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