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Abstract

We construct a quasi-sure version (in the sense of Malliawirgeometric rough
paths associated with a Gaussian process with long-timeamenAs an applica-
tion we establish a large deviation principle (LDP) for ceifias for such Gaussian
rough paths. Together with Lyons’ universal limit theorewny results yield immedi-
ately the corresponding results for pathwise solutionstactestic differential equa-
tions driven by such Gaussian process in the sense of routs.pkloreover, our
LDP result implies the result of Yoshida on the LDP for cafiasiover the abstract
Wiener space associated with such Gaussian process.

1. Introduction

The theory of rough paths, established by Lyons in his grbreaking paper [13],
gives us a fundamental way of understanding path integtatsgyeone forms and path-
wise solutions to differential equations driven by rougbnsils. After his work, the
study of the (geometric) rough path nature of stochasticesses (e.g. Brownian mo-
tion, Markov processes, martingales, Gaussian procesgey,becomes rather import-
ant, since it will then immediately lead to a pathwise theofystochastic differential
equations driven by such processes, which is one of theatgmioblems in stochastic
analysis. The rough path regularity of Brownian motion wast fstudied in the un-
published Ph.D. thesis of Sipildainen [22]. Later on Coutitd &ian [3] proved that
the sample paths of fractional Brownian motion with HurstgpaeterH > 1/4 can be
lifted as geometric rough paths in a canonical way, and sactorcal lifting does not
exist whenH < 1/4. Of course their result covers the Brownian motion casee Jys-
tematic study of stochastic processes as rough paths thmamgal in the monographs
on rough path theory by Lyons and Qian [15] and by Friz and diidi6].

The continuity of the solution map for rough differentialuagions, which was also
proved by Lyons [13] and usually known as the universal litnéorem, is a fundamental
result in rough path theory. To some extent it gives us a waynolerstanding the right
topology under which differential equations are stable aungh path space. An easy but
important application of the universal limit theorem iggardeviation principles (or simply
LDPs) for pathwise solutions to stochastic differentialatipns according to the contrac-
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tion principle, once the LDP for the law of the driving proses rough paths is established
under the rough path topology. This is also the main motivatif strengthening the clas-
sical LDPs for probability measures on path space underritierm topology to the rough
path setting. Since the rough path topology is stronger thamniform topology, a direct
corollary is the classical Freidlin—Wentzell theory ontpapace, which does not follow
immediately from the contraction principle and is in faggltly nontrivial as the solution
map is not continuous in this case. In the case of Browniariamot.edoux, Qian and
Zhang first established the LDP for the law of Brownian rougithp. Their result was
then extended to the case of fractional Brownian motion byiélidnd Sanz-Solé [19].
The general study of LDPs for different stochastic processeparticular for Gaussian
processes as rough paths can be found in [6].

We first recall some basic notions from rough path theory tvlwe use throughout
the rest of this article. We refer the readers to [6], [14B][for a detailed presentation.

Forn=>1, let

T(n)(Rd) — @(Rd)ébi
i=0

be the truncated tensor algebra oRft degreen, where R9)%° := 0. We useA to
denote the standard 2-simpléfs, t): 0 <s<t < 1}.

We call anR%valued continuous paths over [0, $inoothif it has bounded total
variation. Given a smooth path, for k € N define

(1.2) wk, =f dw, ® -~ ®duy, (St)€A.
' S<ty<-<tg<t

From classical integration theory we know that (1.1) is vaefined as the limit of
Riemann—Stielties sums. Lat: A — T™M(RY) be the functional given by

wst = (1, wét, e, wgt), (s, t) € A.

This is usually called thdifting of w up to degreen. The additivity property of in-
tegration over disjoint intervals is then summarized as fdllewing so-calledCheris
identity:

(1.2) wS’u ® wU't = vat, for a." 0 S S $ u $ t S 1.
We useQ(RY) to denote the space of all such functionals which are gtinf smooth

pathsw. In the definition of27°, the starting point of the path is irrelevant, and we
always assume that paths start at the origin.
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Let p> 1 be fixed and p] denote the integer part gb (not greater tharp). The
p-variation metric ¢ on QFy is defined by

i/p
p(u w) = 121?)( SuP(Z“‘n A wh 1t||p/l) ’

where the supremum sygpis taken over all possible finite partitions of [0, 1]. The
completion of2fy; underd, is called the space ajeometric p-rough pathsver RY,
and it is denoted byGQp(RY). If w = (1, wl, ..., wlP) € GRLRY), then w also
satisfies Chen’s identity (1.2) i[P/(RY), and w has finite p-variation in the sense
that sup, > |wy_,4|P" < oo for all 1 <i < [p].

The fundamental result in rough path theory is the followsagcalledLyons uni-
versal limit theorem(see [13], and also [6], [15]) for differential equationsven by
geometric rough paths.

Theorem 1.1. Let {V4,..., Vy} be a family ofy-Lipschitz vector fields oRN
for somey > p. For any given x€ RN, define the map

F(xo, -): @ (RY) — GQpRY)

in the following way. For anyw € Q[p](]R{d) which is the lifting of some smooth path
w, let x be the unique smooth path which is the solutioiRM of the ODE

d

dx =) Va(x)duwf, telo,1],
a=1

with initial value X%. F(Xp, w) is then defined to be the lifting of x 'ﬂ%"(]R{N). Then
the map KXp, - ) is uniformly continuous on bounded sets with respect to the
p-variation metric.

REMARK 1.1. Theorem 1.1 is not the original version of Lyons’ redult[13]
but an equivalent form. The original result of Lyons is fotatad in terms of rough
path integrals and does not restrict to geometric roughspatily. Here we state the
result in a more elementary form to avoid the machinery ofglopath integrals.

The theory of rough paths can be applied to quasi-sure daadtysGaussian mea-
sures on path space. The notion of quasi-sure analysis vigisadly introduced by
Malliavin [16] (see also [17]) to the study of non-degenerataditioning and disin-
tegration of Gaussian measures on abstract Wiener spades.fuhdamental concept
in quasi-sure analysis is capacity, which specifies moreiggescales for “negligible”
subsets of an abstract Wiener space. In particular, a seamdcity zero is always a
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null set, while in general a null set may have positive cayaéiccording to Malliavin,
the theory of quasi-sure analysis can be regarded as anténélimhensional version of
non-linear potential theory. It enables us to disintegm@t&aussian measure contin-
uously in the infinite dimensional setting, which for instanapplies to the study of
bridge processes and pinned diffusions. Moreover, it alsoldeto sharper estimates
than classical methods.

The main goal of the present article is to initiate the stufifsaussian rough paths
in the setting of quasi-sure analysis. Due to powerful tanlsough path theory, our
results lead to the verification of many classical resultstfe quasi-sure analysis on
Wiener space.

The first aim of this article is to study the quasi-sure exisgeof canonical lift-
ing for sample paths of Gaussian processes as geometrit qpatfps. The Brownian
motion case was studied by Inahama [10] under pheariation metric, and Aida [1],
Higuchi [9], Inahama [11] and Watanabe [23] independentiglar the Besov norm,
by exploiting methods from the Malliavin calculus. More pesdy, it was proved that
for quasi-surely, Brownian sample paths can be lifted asygdac p-rough paths for
2 < p < 3. In the next section, we extend this result to a class of Sangrocesses
with long-time memory which includes fractional Browniarotion with Hurst param-
eter H > 1/4, by applying techniques both from rough path theory andMadiavin
calculus. Combining our result with Lyons’ universal lintieorem, we obtain imme-
diately a quasi-sure limit theorem for pathwise solutiomstochastic differential equa-
tions driven by Gaussian processes, which improves the YAbakgi type limit theorem
and its quasi-sure version (see for example Ren [21], MatliaMualart [18] and the
references therein).

The technique we use in the next section enables us to ettabliarge devia-
tion principle for capacities for Gaussian rough paths withg-time memory, which
is the second aim of this article. LDPs for capacities fonsfarmations on an abstract
Wiener space was first studied by Yoshida [24]. The generfihilen and the basic
properties of LDPs for induced capacities on a Polish spast dppeared in Gao and
Ren [7], in which the case of stochastic flows driven by Bramnimotion was also
investigated. Before establishing our LDP result, we firsivp two fundamental re-
sults on transformations of LDPs for capacities: the catitba principle and exponen-
tial good approximations, which are both easy adaptatiom® the classical results for
probability measures. Our LDP result is then based on thdtrard method developed
in the next section and finite dimensional approximationguins out that the general
result of Yoshida in the case of Gaussian processes is a dwealary of our result due
to the continuity of the projection map from a geometric foygath onto its first level
path. The original proof of Yoshida relies crucially on thdinite dimensional struc-
ture of abstract Wiener space, and in particular deep ptiepesf capacity and analytic
properties of the Ornstein—Uhlenbeck semigroup. Howewer,technique here replies
only on basic properties of capacity and finite dimensionali$gian spaces. Moreover,
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again from Lyons’ universal limit theorem, our LDP resultnmadiately yields the LDPs
for capacities for pathwise solutions to stochastic diffeial equations driven by Gauss-
ian processes. In this respect our result is stronger thametbult of Yoshida since we
are working in a stronger topology (the-variation topology) instead of the uniform
topology, which is too weak to support the continuity of th@usion map for differ-
ential equations. It is also interesting to note that Inahddl] was already able to
applied techniques from quasi-sure analysis to establ@RAd_ for pinned diffusion mea-
sures.

2. Quasi-sure existence of Gaussian rough paths

In the present article, we consider the following class oli§san processes with
long-time memory in the sense of Coutin—Qian [3].

DEFINITION 2.1. Ad-dimensional centered, continuous Gaussian progBgs-o
starting at the origin with independent components is saitlaveh-long-time memory
for some O< h < 1 and if there is a consta@, such that

E[|B; — Bs[’] < Cplt —s*"
fors,t >0 and
t—s|?

[E[(B{ — B)(B{,, — By, )]l < Cphr™

for1<i<d,s,t=0,7 >0 with t—s)/t <1.

A fundamental example of Gaussian processes with long-tiremory is fractional
Brownian motion withh being the Hurst parameter (see [15]).

From now on, we always assume that such Gaussian procesdiredeon the path
space over the finite time period [0, 1]. This is of course egjent to the consideration
of the process over any [0;]. Let W be the space of alR%-valued continuous paths
w over [0, 1] withwy = 0, and equipW with the Borelo-algebra3(W). Let P be the
law on (W, B(W)) of some Gaussian process witHong-time memory in the sense of
Definition 2.1.

It is a fundamental result of Coutin and Qian [3] thathift> 1/4, 2 < p < 4 with
hp > 1, then outside @&-null set each sample path € W can be lifted as geometric
p-rough paths in a canonical way. More precisely, for> 1, let t§ = k/2™ (k =
0,1,...,2"M) be them-th dyadic partition of [0, 1]. Giverw € W, definew™ to be
the dyadic piecewise linear interpolation of by

w™ = wyer + 27t — Y (wy — wyer),  t e [157 K],
and let

w = (@, wiP w2 w3, (st) €A,
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be the geometric rough path associated wiff) up to level 3. LetA, be the totality
of all w € W such that{w™} -1 is a Cauchy sequence under tpevariation metric
dp. Then A7 is aP-null set and hencen™ converges to a unique geometgierough

path w for P-almost-surely. The convergence holdsLif(W, P) as well.

REMARK 2.1. Although a geometrip-rough path is defined up to levep], by
Lyons’ extension theorem (see [13]) it does not make a diffee if we always con-
sider up to level 3 unded, since 2< p < 4.

REMARK 2.2. Coutin and Qian [3] also showed thathif< 1/4, no subsequence
of w(sT) converges in probability or it, and hence such canonical lifting of sample
paths as geometric rough paths does not exist.

The goal of this section is to strengthen the result of Cetffiian to the quasi-
sure setting in the sense of Malliavin. The main result andrtiepue developed in this
section are essential to establish a large deviation jplindor capacities as we will
see later on.

Throughout the rest of this article, we ftxe (1/4, 1/2], p € (2, 4) withhp > 1
(the case ofh > 1/2 is trivial from the rough path point of view), and consider a
d-dimensional Gaussian process witHong-time memory.

We first recall some basic notions about the Malliavin calswdnd quasi-sure ana-
lysis. We refer the readers to [17], [20] for a systematicassion.

Let H be the Cameron—Martin space associated with the correspprigaussian
measureP on W. H is canonically defined to be the space of all pathsWnof
the form

ht = E[Zwt], te [0, 1],

where Z is an element of the.? space generated by the process (i.e. ltReclosure
of Spafwy: t € [0, 1]}), and the inner product is given by, hy) = E[Z;Z;]. It fol-
lows that the identity map defines a continuous and dense embedding ffénmto
W which makes YV, H, P) into an abstract Wiener space in the sense of Gross. Let
F: W* — H* =~ H be the dual of.. Then the identity magZ: W* — LW, P)
uniquely extends to an isometric embedding fréminto L?(W, P) via (*.

If f is a smooth Schwarz function @&", and¢y,...,¢n € W*, thenF = f(¢y,...,
¢n) is called asmooth(Wienel) functionalon W. The collection of all smooth func-
tionals onW is denoted byS. The Malliavin derivative of F is defined to be the

H-valued functional
n

of .
DF =;W(¢L---,<ﬂn)l @i
Such definition can be generalized to smooth functionalswgakalues in a separable
Hilbert spaceE. Let S(E) be the space oE-valued functionals of the fornF =
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Zik:l Fie, whereF € S, § € E. The Malliavin derivative ofF is defined to be the
H ® E-valued functionalDF = Zikzl DF ® g. Such definition is independent of the
form of F, and by induction we can define higher order derivatiZ@$F for N € N,
which is then ar{®N ® E-valued functional. Giverg > 1, N € N, the Sobolev norm
[ - llg,n:E ON S(E) is defined by

N 1/q
[Fllgne = <ZE[IID' Flll@@E]) :

i=0

We use| - |lq:e to denote the norm corresponding to the cate= 0 (the L9-norm).
The completion of §(E), | - llq,n:e) is called the ¢, N)-Sobolev spacdor E-valued
functionals overW, and it is denoted by, (E).

For anyq > 1, N € N, the @, N)-capacity Cap, \ is a functional defined on the
collection of all subsets ofV. If O is an open subset A, then

Cap, n(0) := inf{|[ullgn: U €Dy, u=10n0, u=0onW, P-as}
and for any arbitrary subseA of W,
Cap, n(A) := inf{Cap, y(O): O open, A C O}.

A subsetA C W is calledslim if Cap, y(A) =0 for all g > 1 andN € N. A property
for paths inW is said to hold forquasi-surely ifit holds outside a slim set.

The @, N)-capacity has the following basic properties:
(1) if AC B, then

0 < Cap, y(A) < Cap, y(B):

(2) Cap,y is increasing inN, and inq up to a constant depending dx;
(3) Cap,y is sub-additive, i.e.,

Cap, y (U Ai) <) Capn(A).
i=1 i=1

The following quasi-sure version of Tchebycheff's inediyahnd Borel-Cantelli's
lemma play an essential role in the study of quasi-sure egemee in our approach.
We refer the readers to [17] for the proof.

Proposition 2.1. (1) For any A > 0 and any ue ]D)ﬂ, which is lower semi-
continuous we have

Cq'N

Cap n{w € Wi u(w) > A} < -

[[ullg,n,
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where G, N is a constant depending only on g and N.
(2) For any sequenc¢A,}52, of subsets of Wif > 7, Cap, n(An) < oo, then

Capyn (Iim sup An) =0.

n—oo

Now we are in a position to state our main result of this sectio

Theorem 2.1. Suppose thaP is the Gaussian measure ¢W, B(W)) associated
with a d-dimensional Gaussian process with h-long-time orgrfor some he (1/4,1/2],
p € (2,4)with hp> 1. ThenA?J is a slim set. In particularsample paths of the Gaussian
processes can be lifted as geometric p-rough paths in a deabway quasi-surelyas
the limit of the lifting of dyadic piecewise linear interptibn under g.

By applying Lyons’ universal limit theorem (Theorem 1.1) fmugh differential
equations driven by geometric rough paths, an immediateezprence of Theorem 2.1 is
the quasi-sure existence and uniqueness for pathwiseé@@ub stochastic differential
equations driven by Gaussian processes Wibng-time memory in the sense of geo-
metric rough paths, under certain regularity conditionglm generating vector fields.

The main idea of proving Theorem 2.1 is to use a crucial cbwinahe p-variation
metric which is defined over dyadic partitions only, and tplggasic results for Gauss-
ian polynomials in the Malliavin calculus.

If w= (1, w! w? wd and® = (1, w?!, @? @°) are two functionals om taking
values inT3(RY), define

%) n i/p
(2.1) pi(w, ) = (Z Y gy — @{xl,tﬂpﬂ) '
k=1

n=1 =

wherei =1,2,3 andy > p—1 is a fixed constant. We usg(w) to denotep;(w, W)
with w = (1, 0, 0, 0). These functionals were originally introduced Hambly and
Lyons [8] for constructing the stochastic area processsscéed with Brownian mo-
tions on the Sierpinski gasket. They were then used by LedQian and Zhang [12]
to establish a large deviation principle for Brownian royggths under thep-variation
topology. We also use these functionals to prove a largeatieni principle for capacity
in the next section.
The following estimate is contained implicitly in [8] and d® explicit in [15].
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Lemma 2.1. There exists a positive constant,g;, depending only on dp, y,
such that for anyw, w,

dp(w, W) < Cq,p,, max p1(w, w), p2(w, W), p1(w, W)(p1(w) + p1(W)),
(2.2) p3(w, W), p2(w, W)(p1(w) + pa()),
pr(w, ®)(p2(w) + p2(@) + (p2(w) + p1())%)}-

The main difficulty of proving Theorem 2.1 is that it is unknow the p-variation
metric is differentiable in the sense of Malliavin. We get ward this difficulty first
by controlling the p-variation metric using Lemma 2.1 and then by observing that
capacity of{p (w™D, w™) > 1} is “evenly distributed” over the dyadic sub-intervals
(see (2.7) in the following). Our task is then reduced to then@ation of the Sobolev

norms of certain Gaussian polynomials, which is contaimethé following basic result
in the Malliavin calculus (see [20]).

Lemma 2.2. Fix N € N. Let PN(E) be the space of E-valued polynomial func-
tionals of degree less than or equal to N. Then for any @ and any Fe PN(E),
we have

(2.3) IFllge < (N + 1)@ — DV?[IF 2.
Moreovey for any F e PN(E) and for any i< N we have
(2.4) ID'F 20 0e < N2 F|2e.

The following L2-estimates for the dyadic piecewise linear interpolatishich are
contained in a series of calculations in [15], are crucial ds.

Lemma 2.3. Letmn=>=1and k=1,..., 2"
1) Fori =12, 3,we have

(i _ JCanz™, n<m,
H th1,tk 2:(R9)® Cd h2im(17h)7ir'|7 n>m.
2) We also have
(m+1),1 . (m)1 - 0, n<m,
R = m(1-h)-n
n n Z]Rd Cd,h2 , n>m’

1-4h)/2—n/2
m+1).2 - (m),2 - Cgn2/20/2 - n < m,
th1,tk th1,tk 2:;(RY)®2 Cd‘h22m(1—h)—2n, n>m;

1—4h)m/2—(1+2h)n/2
(i3 (m)3 Cd’hz( )m/2—(1+2h)n/ ., n<m,
th=1,tk G | 2, (rayes Cd’h23m(1fh)73n’ n>m.
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Here Gy is a constant depending only on d and h.
Now we can proceed to the proof of Theorem 2.1. The key step establish es-

timates for the capacities of the tail evefits: p; (w™ Y, w™M) > A} and {w: p; (w™) >
A} (i =1, 2,3). This is contained in the following lemma.

Lemma 2.4. Let6 € ((p(2h+1)/6—1)",hp—1), N > N/2v(2(h—(6 +1)/p)) .
Then we have

@

1\ 2@N(h-0+1)/p)-1
(2.5) CaH,N{w: pi (w(m+1) (m)) > ) <CiA™ 2N (zm) '
)
(26) Cap y{w: o (w™) > 1} < G2V,

Here G is a positive constant of the form; & C1C§g(I§I; N)N‘N, where G depends
only on q and N C, depends only on dp, h, y, 6, g and gN: N) is a polynomial
in N with degree depending only on N and universal constantficisefts.

Proof. Fori =1, 2, 3, set

li(m; 1) = Cap, y{w: o (™, w™) > 2}
= Cap, n{w: p (™D MyPA o 5P/

By the definition ofp;, for every6 > 0 we have

(: oy (™D, ™Y/ = Py
. 0
M+DI (i p/i i 1
{ Z‘ tk 1 tk - tk 11trl1( C )" 2!'1 ]

whereC, s = (> o, nV2*”")71. Therefore,
li (m; &)

o0 .
<3 canfus 3 [ -l

n

o0
. m+-1),i m),i
<303 Camu{w: oy - wifty

n=1 k=1

p/i " 1\’
-3¢0 }

p/i _ 1 0+1
-C(5) |

2.7)
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On the other hand, for anj} > 0 we have

_ o+1
can iyt (2) )

, o 1) /POD72N
e {thos= [re2(2)" "),

2N

| =

where

(m+1),i (m),i

mnk(w) = ‘ Wier g’ — Woerpe| for weW.

Since N is a natural numberf! ., are polynomial functionals of degres K2, and

hence they areN times differentiable in the sense of Malliavin providéd > N/2.
Consequently, we can apply Tchebycheff's inequality (tihgt fpart of Proposition 2.1)
to obtain

|/ 1 (i/p)O+1)\ 2N
li(m; 4) < Cq,n Z Z( pl( ) ) o kllan-
n=1 k=1

If g> 2, by (2.3) of Lemma 2.2, we have
mnk“q N Z”D fmnk||q:7-t®'

N
<@N+1)@-D)N D ID il
1=0

By (2.4) of Lemma 2.2, we have

ID" frnicllzze < @N)YNFDZE0 o,

Therefore,

It nllon < (N + 1)@ N + 1)@ — 1) N@ R)ND2) 1L .
Moreover, sincaufﬁff@' - wt(L“)l'tk is an RY)®'-valued polynomial functional of degree
i, we know again from (2. 3) that

2N

||f' ” _ (m+1),i (m),i
nillz = [ wgcsy” —wyciy

4N;(RY)®I
< (i - 1NN = 1N [ m+Di (m),i N
S @A DTEN =D e o = Wik poyer




952 H. BOEDIHARDJO, X. GENG AND Z. QIAN

Therefore,

I i niclla.n
S(N+1)(@- 1 +DHN@IN + 1)@ N)N+D72

2.8 - | &
Rl AT
_ . 2N
< (N + 1)(10246 — DIV EN + 1)) N |y D - wli, Py

Let C; be the constant befoﬂ{aut([[‘f’tl}'i I(E“)l'tkuz(kd)@, on the right hand side of (2.8).
By absorbing the constant in Tchebycheff’s inequality iig we arrive at

li (m; A.)
: /P (m+1),i (m),i
cayd(em(z) ) e e
Exactly the same computation yields
Cap, {w: pi(w™) > 1)
(2.10) c (i/p)(O+1)y 2N EIN
/p (m).i
<G ZZ( k( ) ) Hw‘"k’l'tnk 2@

n=1 k=1

We now substitute the estimates in Lemma 2.3 into (2.9) antD}2 In what follows,
we assume that € ((p(2h + 1)/6 — 1)*, hp—1), N > (N/2) v 2h — (6 + 1)/p)) !
for summability reason. We also absorb the cons@y) in Lemma 2.3 andC,, .
Fori = 1, this gives
~ ~ o0 2n ~
Ij_(m, )\‘) < C1A72N22Nm(lfh) Z Z 272nN(17(9+1)/p)
n=m+1 k=1
< Cl)FZN zfm(ZN(hf(HJrl)/p)fl)_

Fori = 2, this gives

m 20
Io(m; 1) < szzﬂ <Z 2—nN(l—4(9+1)/p)—mN(4h—l)
n=1 k=1

00 2"
—4nN(1-(8+1)/ p)+4mN(1—h)
DI )

n=m+1 k=1
<C, 32N o-m@N (h—(6-+1)/p)-1)
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Fori = 3, this gives
m 20

la(m; 2) < Ca)fZN <Z 2—nN(1+2h—6(0+1)/p)—mN(4h—1)
n=1 k=

[

00 2"
—6nN(1—(6+1)/ p)+6mN(1-h)
SIPIE )

n=m+1 k=1
< Cg)»*zN 2—m(6N(h7(9+1)/P)*1)_

Therefore, fori = 1, 2, 3, we have

l(m; ) < CM‘ZN 2—m(2iN(h—(9+1)/p)—1),

which gives (2.5). From the computation it is easy to see thatconstants; here
are of the form stated in the lemma.
Similar computation yields that far= 1, 2, 3,

m 2"
CagLN{w: o (w(m)) > A} < C (AZN Z Z 2—2nNi(h7(9+1)/p)
n=1 k=1

) 2"
+ Afzﬂ Z ZZZNi(n(1(0+1)/p)m(lh)))

n=m+1 k=1

<Cia N,
with C; of the form stated in the lemma. This gives (2.6). ]

REMARK 2.3. The explicit form of the constants in Lemma 2.4 is usedhia
next section when proving a large deviation principle fopaxities.

Now we are in a position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. By rewriting (2.2) as

(2.11)
dp(w, i)

< Ca.p, maxX(pi (w, ©)(p; (w) + p; (@) : (i, jK) € Nx N x Z, i + jk <3},

we only need to show that there exists a positive congtaisuch that for anyi(j,k) €
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N x N x Z, satisfyingi + jk < 3, we have

S 1
Ca {w: L (w(m“), w(m))(p(w(m)) + p_(w(m+l)))k - _}
(2.12) mg S G j j o

< Q.

Indeed, if the above result holds, then by Lemma 2.1, we have

o0
1
Z CapLN{w: dp(w™, w™) > C(/‘:P’VzTﬂ} < 00,

m=1

whereCy ,  is some constant depending only dn p, y. It follows from the quasi-
sure version of Borel-Cantelli's lemma (the second part mipBsition 2.1) that

. 1
Cap, n (hm sup{w: dp(w™, w™+D) > Cé,p,szﬁ}) =0.

m—o00

Since

A = {w: w™ is not a Cauchy sequence in undsky}

C {w: Z dp(w™, w™) = oo}
m=1

1
i . (M) oy (M+1) __
C |Imﬁsoljp{w. dp(w'™, w™) > Cy i }
it follows that Cap y(Aj) = 0 which completes the proof.
Now we prove (2.12).
First consider the case> 0. For anya, 8 > 0, we have

1
Cana,N{w: (™D, ™) (o (w™) + p; (™)< > 275}

1
- o (pM+L) 4, (M)
< CagLN{w. oi (w , w™) > 2m(ﬁ+a)}

+ Cap n{w: (oj (™) + pj (™) > 2™}
1
< Cap]’N{w: Pi (w(mﬂ), w(m)) > W}

+ Cap, n{w: pj (w™) > 2me/k=1y
+ Cap, y{w: pj (wM+D) > gma/k=1y

By Lemma 2.4, ford € ((p(2h+1)/6 —1)*,hp—1), N > (N/2)v (2(h— (6 + 1)/p))*
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andi =1, 2, 3, we have

1 1\2 N(h—(0+1)/ p)—1—2(B+a)N
CaR]‘N {w: Pi (w(erl), w(m)) > m} § Ci (Z_m) .

Let @, B > 0 be such that

2N(h— (6 +1)/p)—1

2.13 Chia-o
o 2N p
It follows easily that

3 1
e 2 Cam’N{w: pi™ D, w™) > 2m(ﬁ+a)} < 00.

m=1
Similarly,

Cap,y(w: pj(w™) > 2™/K 1) < ¢ Mk,

and hence

Z Cap n{w: pj (w™M) > 2m/k-1y < oo,

m=1
Combining with (2.14), we arrive at
- 1
Z Cth,N{w: 0i (w(m+1)’ w(m))(pj (w(m)) + pj (w(m+1)))k - ZT/S} < .
m=1

The case ok = 0 follows directly from (2.14), since for atk > 0,

1 1
o (g (M+1) (m) o (ML) (m)
{w.pl(w , W )>—2mﬁ}c{w.p.(w , W )>2m(ﬁ+a)}.

Now the proof is complete. ]

3. Large deviations for capacities

In this section, we apply the previous technique to provergelaeviation principle
for capacities for Gaussian rough paths with long-time mgmo

Before stating our main result, we first recall the definitimhgeneral LDPs for
induced capacities in Polish spaces (see [7], [24]).

Let (B, H, 1) be an abstract Wiener space.
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DEFINITION 3.1. Letq > 1,N € N, and let{T*} be a family of Cap\-quasi
surely defined maps frorB to some Polish spaceX(d). We say that the familyfT*}
satisfies the Capy-large deviation principle(or simply Cag y-LDP) with good rate
function I : X — [0, oo] if
(1) I is a good rate function otX, i.e. | is lower semi-continuous and for evetye
[0, o), the level set¥, () = {y € X: I(y) < a} is compact inX;

(2) for every closed subs&@ C X, we have

1
(3.1) lim supe? log Cap, y{w € B: T*(w) € C} < —= inf 1(x),
e—0 ' g xeC
and for ever open subs& C X, we have
(3.2) liminfe? log Cap, y{w € B: T*(w) € G} = 1 inf 1(x).
e—>0 N g xeG

REMARK 3.1. The appearance of the factorqlcomes from the definition of
Cap n, sO

(3.3) Capg n(A) = Cap,o(A) = P(A)Y9, forall A e B(B).
It is consistent with the classical large deviation priteifor probability measures.

Due to the properties ofg( N)-capacity, many important results for LDPs can be
carried through in the capacity setting without much ditiguand the proofs are sim-
ilar to the case of probability measures. Here we presentfamdamental results on
transformations of LDPs for capacities that are crucialdsr which did not appear in
[7], [24] and related literatures.

The first result is the contraction principle.

Theorem 3.1. Let {T¢} be a family ofCap, y-quasi surely defined maps from B
to (X, d) satisfying theCap, \-LDP with good rate function I. Let F be a continuous
map from X to another Polish spa¢¥,d’). Then the family{F o T*} of Cap, y-quasi
surely defined maps satisfies t6ap, \-LDP with good rate function

(3.4) Jiy) = inf 1(x),
x: F(x)=y
where we definenf @ = co.

Proof. Sincel is a good rate function, it is not hard to see tlais lower semi-
continuous and also by the continuity &f, if J(y) < co then the infimum in (3.4) is
attained at some point € F~1(y). Therefore, for anyx > 0, we have

{yeY:Jly)<a}=F({xe X: I (X) <a}),
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and hencel is a good rate function. The Cap-LDP (the upper bound (3.1) and
lower bound (3.2)) for the famil{F o T*} under the good rate functiod follows
easily from the continuity of~. O

The second result is about exponentially good approximatio
We first need the following definition.

DEFINITION 3.2. Let{T®™} and {T*} be two families of Capy-quasi-surely
defined maps fronB to (X, d). We say that{T®™} are exponentially good approx-
imationsof {T¢} under Cagy, if for any A > 0,

(3.5) lim lim supe? log Cap, n{w: d(T*M(w), T*(w)) > 1} = —o0.
m—o00 =0

Now we have the following result.

Theorem 3.2. Suppose that for each mz 1, the family {T*™} of Cap, \-
quasi-surely defined maps satisfies @ep, y-LDP with good rate function 5| and
{T*M} are exponentially good approximations of some famflj*} of Cap, \-
quasi-surely defined maps. Suppose further that the fundtidefined by

(3.6) I (x) = supliminf inf In(y),
A>0 M—oo yeBy;

where B denotes the open bally € X: d(y, X) < 1}, is a good rate function and
for every closed set € X,

3.7) inf I (x) < limsupinf 1L(x).
xeC m—oo XeC
Then{T¢} satisfies theCap, y-LDP with good rate function 1.

Proof. Upper bound Let C be a closed subset of. For anyx > 0, letC;, =
{x: d(x, C) < A}. Since

{w: T(w) € C} C {w: T*™(w) € C,} U {w: d(T*™(w), T*(w)) > A},
it follows from the Cap \-LDP for {T*™} (the upper bound) that

lim sups® log Cag, y{w: T¢(w) € C}

e—>0

< lim supe? log Cag, y{w: T*™(w) € C;}

e—0
v lim supe® log Cap, y{w: d(T*™(w), T*(w)) > A}

e—0

< (—é incf Im(x)) v lim supe? log Cap, n{w: d(T*M(w), T*(w)) > A}.
Xela e—0
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By letting m — oo, we obtain from (3.5) and (3.7) that

1
lim supe? log Cag, y{w: T(w) € C} < 3 lim sup inf I;n(x)

=0 m—oo X€Cy
1
< —— inf 1(x).
q xeC;,

Now the upper bound (3.1) follows from a basic property foodjagate functions (see
[4], Lemma 4.1.6) that

fm o 160 = Jnf 169

To prove the lower bound (3.2), we first show that
1 -
—a| (x) = inf ||n250up82 log Cap y{w: T*(w) € By}

(3.8)
= inf liminf &% log Cag, y{w: T*(w) € By.}.

A>0 -0

In fact, since
(3.9  {w:T*"M(w) € Beu} C {w: T7(w) € By} U {w: d(T*M(w), T*(w)) > 1},
we have

Cap, n{w: T*M(w) € By}

< Capy n{w: T*(w) € Byai} + {w: d(T*M(w), T*(w)) > A}.

It follows from the Cap y-LDP (the lower bound) fo{T*™} that

1 . . e
r yleréiA m(y) < lim inf e?log Cap y{w: T*™(w) € By}
< lim inf e?(log Cap, n{w: T¢(w) € By 2}
Vv log Cap n{w: d(T*™(w), T*(w)) > 1})
< lim inf £? log Cap n{w: T*(w) € By}

v lim supe® log Cap, y{w: d(T*™(w), T*(w)) > A},
e—0
and (3.5) implies that
1. o, .
3 ||n|:n_)|orgf yérél; Im(y) < |IT_J(I)’]f e“log Cap, y{w: T¢(w) € By}

By taking infimum overi > 0, we obtain

1 L
—a| (x) < inf lim inf &?log Cag n{w: T¥(w) € By2}.



GAUSSIAN ROUGH PATHS AND LARGE DEVIATION 959

On the other hand, by exchangidg-™ and T¢ in (3.9), the same argument yields that
(using the upper bound in the Gap-LDP)

inf lim sups® log Cap, y{w: T¥(w) € By} < —g 1 (x).
e—0

A>0

Therefore, (3.8) follows.
Lower bound Let G be an open subset of. For any fixedx € G, takeA > 0
such thatBy; C G. It follows from (3.8) that
lim in &”log Cap, n{w: T*(w) € G}

> lim i(r)n‘ ¢?log Cap n{w: T¢(w) € By}
1

= ——1(x).
q (x)

Therefore, the lower bound (3.2) holds. O

Consider the abstract Wiener spa¥, (H, P) associated with a Gaussian process
satisfying the assumptions in Theorem 2.1. According tq {6¢ covariance function
of the process has finite (2h)-variation in the 2D sense, arl is continuously em-
bedded in the space of continuous paths with finitg2ii}-variation. Therefore, every
h € H admits a natural liftingh in GQp(Rd) in the sense of iterated Young'’s integrals
(see [25]).

Recall thatA, is the set of pathss € W such that the liftingw™ of the dyadic
piecewise linear interpolation ab is a Cauchy sequence undgy, and the map

FrweAdprw= (1w .. ., wlP):= lim w™ e GQyRY)

m—o00

is well-defined. Fore > 0, let T*: A, — GQp(RY) be the map defined by
Té(w) = 8w := (1, sw?, . .., elPlwlPl),

By Theorem 2.1,47 is a slim set. ThereforeT* is quasi-surely well-defined.
Let

lwll3,, weH;

00, otherwise,

(3.10) Alw) = {E'

and definel : GQp(RY) — [0, oo] by

(3.11) | (w) = inf{Aw): w € Ap, F(w) = w}.
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We will see later in Lemma 3.2 th& C A, and hence

) = | 31T @D T T mwdo. € and w = Flmy(w). )

00, otherwise,

where; is the projection onto the first level path.
Now we can state our main result of this section.

Theorem 3.3. For any g> 1, N € N, the family {T¢} of Cap, y-quasi-surely
defined maps from W to S(Z.p(Rd) satisfies theCap, \-LDP with good rate function I.

In particular, since the projection map froGQp(]Rd) onto the first level path is
continuous, we immediately obtain the following result aisWiida [24] in the case of
Gaussian processes with long-time memory.

Corollary 3.1. The family of mapgsw} satisfies theCap, \-LDP with good rate
function A.

Moreover, according to the universal limit theorem (Theor&rh) and the con-
traction principle (Theorem 3.1), a direct corollary of Dhem 3.3 is the LDPs for
capacities for solutions to differential equations driveyn Gaussian rough paths with
long-time memory. This generalizes the classical Freidientzell theory for diffusion
measures to the quasi-sure and rough path setting and iocypartrecovers a result of
Gao and Ren [7]. Here we are again taking the advantage ofingpik the stronger
topology (the p-variation topology), under which we have nice stability tbfferential
equations.

It should be pointed out that the lifting mdp, which can be regarded as the path-
wise solution to a differential equation driven hy with a polynomial one form, isot
continuous under the uniform topology (see [14], [15]). Hfere the contraction prin-
ciple cannot be applied directly in our context. A standamywef getting around this
difficulty, as in [12] for Brownian motion and [19] for fracthal Brownian motion in
the case of LDPs for probability measures, is to construpbegntially good approx-
imations by using dyadic piecewise linear interpolatiorerédwe adopt the same idea
in the capacity setting.

Let T#M: W — GQp(RY) be the map given by *™(w) = §,w™. The proof of
Theorem 3.3 essentially consists of two parts: show thatfanaly {T*™} satisfies
a Cap n-LDP and show thafT*™} are exponentially good approximations {f ¢}
under Cap .-

We first need to establish the Ggp-LDP for {T*™}, and we begin with consid-
ering the standard finite dimensional abstract Wiener space
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Let u be the standard Gaussian measureRdn In this case, the Cameron—Martin
space is jusR" equipped with the standard Euclidean inner product. Faitglae use
the notation Ca@)N to emphasize that the capacity is definedRih Now we have the
following result.

Proposition 3.1. The family{ex} satisfies thé:apg”])N—LDP with good rate function

2
J(X) = % x € R".

Proof. The lower bound follows immediately from the simpkdation in (3.3)
and the classical LDP for the familju(s~* dx)} of probability measures. It suffices
to establish the upper bound.

We first prove the following inequality for the one dimensbrase:

1
(3.12) lim %upe2 log Cag') {x: ex > b} < —Ebz,

for any b > 0. In fact, for anyAx > 0, define the non-negative function
f(x) = X  xeRL

Obviously f e DY, and f =1 on {x: ex > b}. Therefore, by the definition of capacity
we have

Cagf\ {x: ex > b} < || fllg.n
N ] 1/q
<X ( [ 1t0reu@n)
(L

A . 1 e 1a
— (Ag)ql quaqu)Lb e X /2 dX)
;( 21

R1
N
— Z()“e)i e(q/Z)(As)z—Ab.

i—0

It follows that
&2 log Cadll)N{x: ex > b} <e’logN + 0m.soh(l{ias2 log(re)} + %(Asz)z — 1&2Db.
’ <I<

Now take i = b/(ge?), then we have

b b
2 D (y. 2 ie? Pl I v
e IogCaQLN{x.ex>b}ss IogN+0rg§>'§{I8 |09(q8)} 29’
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and therefore (3.12) holds. Apparently (3.12) still holfigx: ex > b} is replaced by
{x: ex = b}, and a similar inequality holds fojx: ex < a} for a < 0.

Now we come back to the-dimensional case.

Firstly, consider an open baB(a,r) C R". For anyA € R", consider the non-
negative function

f(X) — e(k,sx)+\x\r—(x,a), X € R",
Then apparently we havé € Dy,. Moreover, from the fact that

(na) = 1Al = inf (3,y),

we havef > 1 on {x: ex € B(a, r)}. Therefore, similarly as before we have

Cagfl\ {x: ex € B(a, 1)} < || fllqn

N ) 1/q
< 1§19
\g(/wm f u(dX))

N
< 3 (nlfe) e i —(h2)
i=0

and
£?log Caé:)N{x: ex € B(a, r)}
<e?logN + Oma>h<l{ia2 log(n|ael)} + g(|)»|82)2
<I<

+ |Ale?r — (%A, a).
Note that the functiond/2)(|A|e2)? + |r|e?r — (£2A, @) attains its minimum at

(lal =r)*
qe?|al

By taking thisA and lettinge — 0, we arrive at

lim supe? log Capg'j),\‘{x: ex € B(a, r)}

e—0

1 2o 1o
<= 5g(@I=NP =~ it ().
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Secondly, letK be a compact subset ®". Then for anys > 0, we can find a
finite cover of K by open balls{B(&;, 6)}1<i<ks) Where eachy; € K. It follows that

lim supe? log Cag, y{X: ex € K}

e—0

< lim supez(log k(8) +  max, log Ca;g”)N{x: ex € B(a, 8)})
<I< ’

£—0
1 .
< max (== inf J(y)
1<i <k(8) q yeB(a.8)

1
<—— inf J(y),
g veB(K.9)

where B(K, 8) := {x: dist(x, K) < §}. By letting § — 0 we obtain the upper bound
result for the compact sef.
Finally, let C be an arbitrary closed subset Bf'. For p > 0, let

H, = {x: [x'| < p for all i}.
Then we have

n
Cag’\ {x: ex € C} < Caffl){x: ex € CN H,} + > Cag'\ {x: e[x'| > p}.
i=1
On the other hand, from the definition of capacity, we have @so the proof of the
following Corollary 3.2):
Capg?)N{x: elx'| > p} < Capgly)N{x e RY: ¢|x| > p}.

Combining with the upper bound result for compact sets anti2j3 we arrive at

e—0

1 1
; 2 Ny _Z — 52
lim supe© log CapglN{x. exeC} < max{ q ye!:nerﬂ J(y), qp }

for all p > 0. The upper bound result f& follows from letting p — co. O

Now consider the situation wheneis a general non-degenerate Gaussian measure
on R" with covariance matrixz. In this case the Cameron—Martin spake= R" but
with inner product

(hy, hy) = hI =7 1h,.

Moreover, the Cameron—Martin embeddingH — R" is just the identity map but the
dual embedding*: R" — H* =~ H is given by

F(0) = TA, A eRM
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Therefore, if we writeX = QQ' for some non-degenerate mati@y, it follows from
the definition of Sobolev spaces and change of variables that

Cari(A) = Carf \(Q *A)

for all A C R", where the left hand side is the capacity forand the right hand side
is the capacity for the standard Gaussian meagurdn other words, capacities for
non-degenerate Gaussian measuresR8nare all equivalent. As a consequence, we
conclude that the familyfex} satisfies the Cq-LDP with good rate function

1 1
) = Ellylli = EyTEfly, y €R".

The case of degenerate Gaussian measures follows easigstriction on the maximal
invariant subspace on which the covariance matrix is pesitiefinite.
A direct consequence of the previous discussion is the viirig.

Corollary 3.2. For each m= 1, the family{T*™} satisfies theCap, y-LDP with
good rate function

(3.13) Im(w) = INf{In(x): x € (RY?": dm(x) = w}, w e GRHRY),

where J,(x) is the good rate function for the Gaussian measugeon (R9)?" induced
by (wyy, ..., wen), and @, is the map sending each & (R?)*" to the lifting of the
dyadic piecewise linear interpolation associated with Xx.

Proof. Since®,, is continuous under the Euclidean apevariation topology re-
spectively, the result follows immediately from the cowtran principle Theorem 3.1
once we have established the GapLDP for the family exry,: W — (RY?" wheren™
is defined by

Tm(w) = (Wi, - -, wer), weW,
with good rate functionJy,.
To see this, first notice again that the lower bound follovesrfrthe relation (3.3)

and the classical LDP for finite dimensional Gaussian meassuvloreover, let) be an
open subset ofR%)?" and let f ]D)ﬂ,(vm) be a function such that for,-almost surely

f>1onU, f=0o0n®RY?,
D} (vm) is the Sobolev space oveR{)?" associated withy,. Define

g(w) = f(wg, ..., wem), wewW.
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Apparentlyg € DY, and for P-almost surely
g=lonx,'U, g=0onW.
Moreover, sincel|g|lgn = I| f llg,N;v.r We know that
Capyn (7 V) < [ llaNivn-
By taking infimum over all suchf, we obtain
Cap, y (7,"U) < Cag"y (U).

Now the upper bound result follows from the GapLDP for the family {vm. :=
vm(e~1 dx)} of probability measure and a simple limiting argument. ]

REMARK 3.2. There is an equivalent way of expressing the rate fonctj,,
which is very convenient for us to prove our main result of dileen 3.3. In fact, from
classical LDP results for Gaussian measures (see for eraffpl we know that the
family {P. := P(¢ ! dw)} of probability measures okV satisfies the LDP with good
rate functionA given by (3.10). Moreover, the may,,: W — GQp(]Rd) defined by
Un(w) = w™ is continuous under the uniform angkvariation topology respectively.
Therefore, according to the classical contraction priegighe family {P. o W1} of
probability measures oGQp(]Rd) satisfies the LDP with good rate function

(3.14) I (w) = inf{A(w): w € W, Up(w) = w}, we GRLRY).

On the other hand, the same argument implies that the fapily. o @} of prob-
ability measures orGQp(Rd) satisfies the LDP with good rate functidg, given by
(3.13). Observe thaP, o ¥;,! = vy, o @, 1. By the uniqueness of rate functions (see
[4], Chapter 4, Lemma 4.1.4), we conclude that= 1I,.

REMARK 3.3. Of course we can apply Yoshida’s result directly with tontrac-
tion principle to obtain the Cap,-LDP for the family {T=™} with good rate function
l;,- Here we do not proceed in this way so that in the end our reseils Yoshida’'s
one as a corollary, and our proof relies only on basic praggexf capacities and finite
dimensional Gaussian spaces.

The second main ingredient of proving Theorem 3.3 is theofalg.

Lemma 3.1. For any g> 1, N € N and » > 0, we have

lim lim sups? log Cag, y{w: dp(8:w™, .w) > A} = —cc.
m—oo . .o ’

Therefore {T*™} are exponentially good approximations {f¢} under Cap, -
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Proof. For any > 0, since

{wwgaw@ﬁw»>kﬂz{“ dM&MW&www>x}
I=m
o0
A 1
. 0} (+1y o * .
- U{w dp(8.w", s,w" ) > c, SI=mE },
l=m
we have
Cap, n{w: dp(8:w™, 5,w) > 1}
<3 cap s dos.w®, 8wt = 2L
\I QI,N w: Uplosw™’, 0, W > Cf; 20-mB [
=m
whereCg := Y 22 27k, It then follows from (2.11) that for any > 0,
Capniw: dp(égw(m), S.w) > A}
3 o
A 1
< Ca N{w: pi (8ew?, 5w 1Y) > —}
i=1l=m RI' ‘ ‘ Cd,p,y,ﬁ 2(| m)ﬁ
. Ao om
(3.15) + Z (CaQI,N{w: 0i . w®, s,wl*+Y) > T }
ij,k=11=m Ca,py.p 20+
i+jks<3

+ Cap n{w: pj Gew®) > 2erk-1y

+ CapLN{w: Pj (88w('+1)) > 2'“/k_1}),

whereCy s is @ constant depending only qn d, y, 8.

Similar to the proof of Theorem 2.1, we estimate each termhenright hand side
of (3.15). Here we choose, s in exactly the same way as in the proof of Theorem 2.1,
namely, by (2.13). It should be pointed out that the choicexpB can be made in-
dependent olN, sinced € ((p(2h + 1)/6 — 1)*, hp—1).

Firstly, it follows from Lemma 2.4 that for = 1, 2, 3,

A 1
- o 0} (+1)
CaRLN {w Pi (Sgw y 85w ) > Cd'p’%ﬁ 2(I—m)ﬁ}

A g
— o (@) (D) -
= Cam s alel 00> )

- - A P —2N 1 2iN(h—(6+1)/p)-1
< CCNg(N: N)NIN. (_Cd'p‘yﬂ _Z(I_m)ﬁ) . (E)
( 1 )Zi N(h—(0+1)/ p)—1-2Ng

(3.16)

= CiCYg(R: YN ™ - (5 ,
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where C3 = C,(1/Cq,p,.4)"2. Note that by the choice op, the right hand side of
(3.16) is summable ovdr, and it follows that

> A 1
Z Cap, v {w: 0i (3 w®, s,wl+Y) > }

s Ca.pyp 20 P

o o 2iN(h—(6+1)/p)-1
< C4CY'g(N: N)(Ne?)'™ - (Z—m)

whereCy = Cy(1—2-@N(O-@+1/p)-1-2N8))-1 By taking N = [¢~2] for ¢ small enough,
it is easy to see that

lim supe? Iog(Z CaQLN{w: pi (8w, s.w ) > * L })

e—>0 l=m Cd, p.v.B 20-m#p

) 0+1 1
=| 2ifh— —— )1 — ).
0ogCs + |( o ) og(zm)

Therefore, we have

£—>

ad A 1
lim lim sups?lo Ca {w: 0i (6, w", s,wl ) > —}
M 00 0 p g(;ﬂ F&,N I( € 3 ) Cd,p,y,ﬂ 2(I7m)ﬂ

= —0OQ.

Again by the choice ofr, 8 and by takingN = [¢ 2], the same computation based
on Lemma 2.4 yields that

> A2
lim lim supe? Iog(Z Capw{w: o1 (8ew®, 5wl Yy > })

m—oo . o = Cd,p,y,ﬂ l(a+p)

e

m—o0 e—0

= lim lim supe? Iog( Cap n{w: i (8w > 2Ia/k1}>

Il
3

Nk

= lim lim supe? Iog(

m—o0 £—0

Cap, y{w: pj(Sgw('H)) > 2'“/k_1})
[

Il
3

= _OO,

fori, j,k=1 withi + jk <3.
Now the desired result follows easily. ]

In order to apply Theorem 3.2, we need the following convecgeresult in [6]
for Cameron—Martin paths.
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Lemma 3.2. For any « > 0, we have

lim sup  dp(h™, h) = 0.

M=00 (he : |Ih|ly <o}

In particular, H is contained inA,.
Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3. It suffices to show that the functlogiven by (3.11) co-
incides with the one given by (3.6), and it satisfies all ctods in Theorem 3.2. Here
we usel/, given by (3.14) for the rate function dfT*™}.

Firstly, by Lemma 3.2 it is easy to see that the lifting mBpis continuous on
each level sefw: A(w) < o} CH C Ap of A. It follows from the definition ofl that

Flw: A(w) < a}) = {w: | (w) < o},

which then implies thal is a good rate function.
Now we show that for any closed subgetc GQ,(RY), we have

(3.17) wlgcf I (w) < IlrE]nJOrlf J]Q]:: [ (w).

In fact, letym = infyec 15 (w) = infy,cy-1c) A(w). We only consider the nontrivial case
liminfy .o Ym = @ < oo, and without loss of generality we assume thatim, ym =

a. Since A is a good rate function, we know that the infimum over the aosebset
v, 1(C) C W is attainable. Therefore, there exists, € W such that¥y,(wm) € C and
Ym = A(wm). It follows from Lemma 3.2 that for any fixed > 0, F(wny) € C;, when
m is large, whereC,, := {w: dy(w, C) < A}. Consequently, whem is large, we have

wigé I (w) < I (F(wm) = Alwm) = Y,
and hence

wlg(l; I (w) < a.

(3.17) then follows easily from [4], Chapter 4, Lemma 4.1b§. taking > — 0.

A direct consequence of (3.17) is the condition (3.7) in Then 3.2. Moreover, if
we letC = B, in (3.17), by takingh — 0 we easily obtain that(w) < I (w), where
1 is the function given by (3.6).

It remains to show that (w) < I(w), and we only consider the nontrivial case
| (w) = a < oo. It follows that | (w) = A(w), wherew € H C A, with F(w) = w.
Let wyn = Wy(w). By Lemma 3.2 we know thatv,, — w underd,. Therefore, for
any fixedx > 0,

inf I < Iy(wm) < Aw) = 1 (w)
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whenm is large. By taking “liminf,_.,” and “sup_,", we obtain thatl (w) < I (w).
Now the proof is complete. O

REMARK 3.4. In some literature (in particular, in [24]), the Soboleorms over
(W, H, P) are defined in terms of the Ornstein—Uhlenbeck operatoictwban be re-
garded as the infinite dimensional Laplacian under the Gausseasuré®. An advan-
tage of using such norms is that they can be easily extend#dtetéractional case. Ac-
cording to the well known Meyer’s inequalities, such norms aquivalent to the ones
we have used here which are defined in terms of the Malliaviivatares. Therefore,
the LDP for the corresponding capacities under these Sebrmems holds in exactly
the same way.
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