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Abstract
We consider the ill-posedness issue for the drift-diffasgystem of bipolar type
by showing that the continuous dependence on initial dates dwt hold gener-
ally in the scaling invariant Besov spaces. The scalingriavé Besov spaces are

Bo2""P(R") with 1 < p, o < oo and we show the optimality of the cage= 2n
to obtain the well-posedness and the ill-posedness for tliediffusion system of
bipolar type.

1. Introduction

We consider the ill-posedness issue for the initial valuebjams of a drift-diffusion
equation of bipolar type:

U — AU+ «V - (uUVy) =0, t>0,xeR",
v — Av—«V-(@WVy) =0, t>0,xeR",
—AYy = v —u, t>0, xeR",
u(0, x) = ug(x), v(0, X) = vo(x), x € R",

(1.1)

whereu andv are the particle density of negative and positive electhiarge,« is the
coupling constant and we assume= +1. ug andvg are given initial data. The system
(1.1) was originally considered for an initial boundary ualproblem with Dirichlet or
Neumann boundary condition as simplest model of a semiwind device simula-
tion and we refer to [1, 6, 8, 11, 19, 24] for the related resulAs the model of the
semiconductor device simulation, the mono-polar modellse aonsidered;

U— AU+ «kV-(UuUVy)=0, t>0xeR",
(1.2) —AY = u, t>0,xeR",
u(0, x) = ug(x), x € R

2010 Mathematics Subject Classification. Primary 35K55;08dary 35K08.



920 T. WABUCHI AND T. OGAWA

The well-posedness issue was considered in both modely ghd. (1.2) (see for in-
stance, [9], [14], [15], [17], [18], [22], [30]). We note thahe mono-polar model is
considered as the limiting model of the Keller—Segel systanthe chemotaxis and
there are large literatures for this direction [3], [5], ,[912], [14], [15], [20], [21],
[22], [28].

The both of the problems (1.1) and (1.2) share the commoringcadvariant prop-
erty. Namely under the scaling transform

ux(t, X) = 22u(rt, Ax),
(1.3) v (t, X) = A2v(A%t, AX),
¥ty X) = Y (A%, Ax)

with A > 0, the equations in (1.1) and (1.2) remain invariant. Thex ¢cbmmon in-
variant space by the scaling (1.3) in the Bochner spat@®..; LP(R")) is given by a
restriction on €, p) with

In particular for@ = oo, the solution is consistent and we reach the invariant fanct
spaces for (1.1) asu(v, ¥) € L"?(R") x L"?(R") x L*°(R"). Such a critical space
can be generalized by term of the homogeneous Besov spattesiegative regularity
indices such ag3,2""P(R").

According to the analytical and scaling structure of thelime@ar coupling term, the
most of basic feature for the solutions to both the bipolateay (1.1) and the mono-polar
system (1.2) are similar and common except the limiting claksthe well-posedness.
Namely, there appears a difference between (1.1) and @r.2hé invariant limiting func-
tion spaces with low regularity. To specify the critical spdor the well-posedness pre-
cisely, we necessarily introduce the scaling invariantcB@acesB'g, 2en/ P(RM) with 1 <
p < oco. It is shown by Ilwabuchi [9] that the initial value problem.Z}l of the mono-
polar type is well-posed for small initial data in the BesqasesB, 2" P(R") with
n/2 < p < oo and ill-posed inBO;?OO(R“). This shows that the cage= oo is threshold
for the wellposedness issue of the mono-polar type (1.2)th@mther hand for the equa-
tion (1.1), Zhang-Liu—Ciu [30] showed that the problem islyesed in B, 2" P(R")
with n/2 < p < 2n, however no ill-posed result can be found in the literatures

In this paper we show that the critical space for the wellgglmess and the ill-
posedness to the equation (1.1) is identifiedpas: 2n through the study of the ill-
posedness in the Besov spadés " P(R") (2n < p < o).

We define the homogeneous Sobolev spaces and the Besov spradtestate
our theorems.

We denote the function spaces of rapidly decreasing funstiy S(R"), tempered
distributions byS’(R"), and polynomials byP(R").
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DEFINITION (the homogeneous Sobolev spaces). ForaayR, 1 < p < oo, the
homogeneous Sobolev spaElcg(R”) is defined by

HS = HYR") := {f € S(R")/PR") | I llns == IFHIE1S T EILp@ny < oo},
where F~1 denotes the inverse Fourier transform.

DEFINITION (the homogeneous Besov spaces). det S(R") be satisfying the
following:

suppg C (€ eR" | 271 < |g| < 2}, Z&(%):l for &€ eR"\ {0},

jez
where ¢ is the Fourier transform of, and let{p;}jez be defined by
dj(x):=2"p(2!x) for jeZ xeR"

Then, for anys e R, 1 < p, o < o0, the homogeneous Besov spaBEG(R”) is de-
fined by

B (R") = {f € S®R"/PR" | I fllg; = {216; * fllLogn)iezli-@ < oo}.
REMARK. One can regard the above homogeneous spaces as a subsgg@ pf

for somes, p, q. Indeed, ifs and p satisfys < n/p, then the homogeneous Sobolev
spaceH$(R") is equivalent to

{u e S'(R")

lulls < 00, u= D ¢jxuin S’(]R”)}.

jez

If s<n/p with 1 <q <00, ors=n/p with g =1, the Besov spacéqu(R“) is also
equivalent to

{u e S'(R")

lullg;, <00, u= D ¢jxuin S’(]R”)}.

jez
These equivalence are due to the argument by Kozono-Yaim@#ik
Theorem 1.1. Let n> 2, x = 4+1 and let p o satisfy

(1.9) h<p<oo and 1<o0=<o00, or p=2n and 2<o < oo.
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Then there exist a sequence of timgky }n with Ty — 0 (N — o0) and a sequence of
smooth and rapidly decreasing initial dafao n}n, {von}n (N = 1,2,...) such that the
corresponding sequence of smooth solutipng}n, {vn}n to (1.1) with uy(0) = ug N
and v (0) = vo N satisfies

,\]iinoo||uo,N||g,;g+n/p =0, N'@Oollvo,Nllg,;yn/p =0,

,\!i_')T1W||UN(TN)||B‘;§+n/P = 00, '\l“_r)noo||UN(TN)||B;§+”/P = oo.

REMARK. We should make the function space clear where the solutiothe
above theorem belongs to. There is no result of well-possdie the system (1.1) in
Besov spaceﬁglg(]R”) under the condition (1.4). In the proof of theorem, we jysti
the solutions in the spadg([0, T], M, 1(R™)), where M, 1(R") is the modulation space
specified in Section 2. We note that these solutions are irspaeeC([0, T], Br;}(]R”)),
and it is known that the local well-posedness is obtainech@n stpaceB,{%(R”) by the
result [30]. Therefore initial data and corresponding 8ohs can be constructed with
enough smoothness to guarantee justification of solutions.

REMARK. We note that when = 2, p =4 ando = 2, the Besov spacé;‘;‘/z(]Rz)
is the critical space for the well-posedness and ill-posednindeed, one can show the
global well-posedness for small initial data BIS/Z(RZ). In general, forp = 2n with
1 <o <2 except for f, o) = (2, 2), one can show the ill-posedness in the analogous

way in Theorem 1.1.

The main reason why the limitation of the well-posedness<la different in two
problems (1.1) and (1.2) is because it depends on how mudr trd nonlinearity can
exhibit derivatives and hence it depends on the symmetryhefronlinear coupling.
For the equation (1.2) of mono-polar type, the nonlineamtaV(—A)~!u satisfies

Oy, U, (—A) Tu = %ax, (A=) Tu)(dx (—4) Tu))
(1.5) + 0 V- {((=8) Tu)(V (—2) 7))

+ 502 ((-a) M,

which was observed in [9] and hence we can treat the nonliear V- (uV(—A)~tu)
as a doubly divergence form such ¥&|%{(]V|~2u)u}. This enables us to treat the
equation in the weaker Besov space upBgi"® with 2 < p < co and B_%. On
the other hand for the bipolar type (1.1), the nonlinear t&mn(uV(—A)~1v) has lack
of symmetry in the nonlinear structure which prevents toehsuch a good expression

as (1.5).
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To be more precise, let be a characteristic function which support is1], 1] and
=(1,0,...,0), and we take initial data as

o = N*"PF (- —Ne)l, wo=N*"PFx(- + Ney].

We note that the Fourier transforms of and vy are supported locally at particular
frequencyN and —N, respectively, anq|u0||H;z+n/p, ”UOHHEZJrn/p are independent o,

where H;(R“) is the homogeneous Sobolev space. By the Duhamel formuaynite
the solution by the integral equations:

u(t) = e®ug —« f t e=IAY . (uV(-A) (v — u)) dr,

(1.6) °

u(t) = €y + « / =92y . (uV(=A)" (v — u)) dr.
0

Since both ofu and v are treated similarly, we consider the nonlinear terrmuainly.
Then, we approximate the nonlinear part in the right han@ 4y a linear solution
Uz eug, v ey, and it follows that

(1.7)

t
/ etIAV . (e 2upV(—A) e (vg — Up)) dT
0

1—2+n/p
HP

e

t
-/’ods—nX%M)—OMm%ﬁgl e“’“'e”éme”“drdﬂ
Rn

|n]
- —24n/pg | S e i . e—tlé\z(eZY(E—n)-n —1)
—Hf [@|+ e [ ule — )Cintn) — Buln) s T2 d

Lp

Lp

H]:_ |:|§| 2P . / Uo(§ — 77)U0('7)N22,t2 ]

= | FYHIE T2 PE x ()] Lo NZEVPINTIN 2
~ NI-2/p,

Lp

The last term diverges @8 — oo if p > 2n. On the other hand for the part with the con-
volution of 0y and 0y, we have from the structur® - (UV(—A)~tu) = |V|?{(|V|2u)u}
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by (1.5) and the support dfy * (g being in the neighborhood of the frequencit 2

and the last term is bounded for gl> 1 andN € N. Therefore, one can expect the
divergence of the nonlinear term in (1.6) when> 2n as N — oo by (1.7) and (1.8),
while the norms of the initial data are bounded by some constalependent oN.

For the precise proof, we introduce an asymptotic expansfosolutions in terms
of the order of the iterative succession by the initial dated we justify it in the mod-
ulation spaceM, 1(R") which is shown in Section 3. The usage of the modulation
space is useful whenever we consider the nonlinear terne $¥hic;(R") is a Banach
algebra. Then we show the term observed in (1.7) tendsotand the other terms in
the asymptotic expansion are small.

In Section 4, we give a sequence of initial data and solutgatsfying the state-
ment of our theorem by the use of the asymptotic expansiandaoted in Section 3.
We treat the system (1.1) witk = 1 only in the following sections since the case
x = —1 can be treated analogously. Finally in Section 5, we compa results on the
local well-posedness for the incompressible Navier—&takestem in three dimensions.

n e tlE (g2t _ 1) g ]
n2 26 —n)-n

= | FMIEMPx (& — 2N)]||lLeN?® VPN N2

~ N~VP

f_l[lél_“”/pé / Qo(§ — n)To(n)
Rn

Lp

(1.8)

2. Preliminary

We introduce the modulation spackk, ,(R") and show some facts for the bilinear
term of functions in the modulation spaces which will be usedhe proof of our
theorem. In what follows, we denote various constants sinbgl C > O.

DEFINITION (the modulation spaces). Lei is the Fourier window function that
satisfies

suppik C (€ €R" [k —1<g& <kj+1forj=1,2...,n}, > ) =1

kezn
Then, for any 1< p, o < oo, the modulation spac#,, = My, (R") is defined by
Mp’U(Rn) = {f € S,(Rn) | || f ||Mp,n = ”{”Xk % f|||_p(Rn)}k€Zn|||o(Zn) < OO}

Lemma 2.1 (7], [25], [27]). () Mp.o(R") C Mp,o,(R") if p; < p, and

o1 < 07.
(i) Letl<p, p <oo satisfyl/p+1/p’ = 1. Then it holds that

Mp,minp,p} (R") C LP(R") C Mp maxp,pj (R").
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(i) Let1l < p, o < oco. Then there exists C> 0 such that
2.1) [1V16 ., < CEV2 ..
(iv) Let1 < p < co. Then there exists C> 0 such that

(2.2) If9limes = Cll flimg 19w,

See for the proof, [7], [25], [27]. The following is the lemnfiar the estimate in
Besov spaces.

Lemma 2.2. (i) [13] Let  <s and1 < p < oco. Then there exists C> 0
such that

(2.3) €4 fllgn, < CUO2) f 5,

for all f € BY (R").
(i) [9] Let p, pa1, po satisfyl < p, p1, p2 < o0, 1/p = 1/p1 + 1/p2. Then there
exists C> 0 such that

(2.4) I fV(=A)"'g + gV(—A)*f g,z = Cllfllg s l19lg
for all f € B;%4(R") and ge BZY(R").

3. Asymptotic expansion

We introduce the asymptotic expansion of the solution t@)(by some small par-
ametere > 0 as

u=Ug+eU; +&?Up +&3Us +---,
v=Vo+eVy+ Vo + &3V 4o,

with the initial data
Uop=¢ =qo+epr+ e+,
vo=p =po+ep1+eiprt-c-.

For simplicity, let F be defined by

F(u,v) := =V - (uV(=A) Vo),
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and let us considex = 1 of the equation (1.1). If, v satisfy the equation (1.1), we
have the followings on the term of ordef with k =0, 1, 2,. ..

(0 — A)Ug = F(Uo, Vo — Uo),

€% 3 (3 — A)Vo = F(Vo, Ug — Vo),

U1(0) = ¢o, V1(0) = po,

(0 — A)Uy = F(Uo, V1 —Uy1) + F(Uyg, Vo — Ug),

et {1 (8 — AV; = F(Vo, Up — V1) + F(V1, Ug — Vo),

U1(0) = ¢1, V1(0) = p1,

(& — A)Uz = F(Ug, Vo —Uyp) + F(Uq, Vi —Uq) + F(Uz, Vo — Uyp),
2 4 (8 — A)Va = F(Vo, Uz — Vo) + F(Va, Uy — Vi) + F(Va, Ug — V),
U2(0) = @2, V2(0) = p2,

respectively. For our proof of the theorem, i&t= 0 andpx = 0 for k =0,2,3,4,5,..
without k = 1 and we consider the initial data = 1, vo = gp1. The term of order
¢k can be reduced as follows:

(3 — A)Ug = 0,
€% { (8 — A)Vo = 0,
U1(0) =0, V1(0)=0,

(8 — A)Up =0,
et (8 — A)VL =0,
U1(0) = g1, V1(0) = pu,

(0 — A)Uz = F(Uyg, Vi —Uy),
e2: 3 (8 — AV = F(Vi, Up — V),
U2(0) =0, V,(0)=0,

(Gr—A)U= > F(Uq, Vi, —Ug),
ki+ko=K, ki,k2>1
k.
€03 (0 — A)Vk = > F(Vi, Uk, — Vi), Tor k=2

ki+ko=k, ki,ko>1
Uk(0)= 0, Vi(0)=0,
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Then, we introducdJy = Uy[e1, p1] and Vk = VW[e1, p1] for k = 1,2, 3,... inductively

3.1)
Uiler, pa](t) := €%y, t
Udow == Y0 [ 00V U V8) RV — U o

ki+ko=kK, k1,ko>1
forany k=2,3,...,

Vil pa](t) == €%y,
t
G2 (Mopl®i= Y [ V(U V) (v - U e
Kat+ko=k, kikp>1 70
forany k=2,3,....

Therefore, we obtain a formal expansion
u(t) = U[Uo, vol(t) := Y “Uilg, pal,
k=1

u(t) = V[uo, vo)(t) := Y Vi1, pal,
k=1

as a solution to (1.1) with the initial datay = 1, vg = gp;. Once we obtain the
above expansion of the solution, the formal expansion cajudidied by the use of the
linear estimate of the propagatet® and the bilinear estimates in Section 2. Namely,
we show the following result.

Proposition 3.1. For any w, vo € My 1(R") with |V|"tuo, |V| tv € My 1(R"),
there exist a small T> 0 and a unique local solution w= u(t, x), v = v(t, X) in
C([0, T), Mn1(R") to the Cauchy problen(1.1) with |V|~tu, |[V|~'v € C([0, T),
Mn 1(R™). Moreover they satisfy the following expansions i(f0CT), My 1(R")): For
O0<e <1,

ut) = > e*Ugfuo, vol(t),  v(t) = > *Vifuo, vol(t),

k=1 k=1

where W[up, vo] and \[ug, vg] are defined by3.1) and (3.2).
Proof. LetUy := Ug[ug, vg] and Vi := V[up, vo] for simplicity. We consider the
cases = 1 since the other case is the corollary of this case. MeM > 0 be constants

satisfying

(3-3) IUolImys + llvollm,y < M, VI Uollm,, + 1V vollm,y < M.
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We claim that there exist€y > 0 such that forkk > 2 and« € {0, —1}

IVI* Ukl 4 NVIEViO T o

(3.4) Ck-1 - -
0 (tk-D/2-e2 k-1 4 tk-3/2-0/2)gk-1p]y

= k+ 17

In the case&k = 2, we have forx = 0 and—1 from the smoothing effect & and (2.2)

t
VU, < cH A R NTA N RTALS
0

Mn,l
t
<cC / (t — 1) 2 U V(= A) (V2 — Up)l, T
0
3.5 t
(3:5) < ¢ [ (=0 SRl 9] Vil + 1191 U, )

t
<C / (t — )" H+I)2drMM.
0
< Ct2MM.

The estimate oV, is obtained in the same way as that ld§ and we have (3.4) in
the casek = 2. For the constan€C; > 1 satisfying the last inequality, l&y of (3.4)
satisfy Co > 2'C;, and we show (3.4) in the case> 3 by induction. Letk > 3 and
we assume (3.4) for 2, 3,.,k—1. Then, we have on the estimate df from the
boundedness of the Riesz transformNi ;(R"), the smoothing effect of** and (2.2)

IVI*Uk®lIm,2
3.6 .,
¢o =Ci ). /(t ) 2| U [l (V1 Vi g + 11V Ui, 1) die
ki +ko=

In the case X kj <k—1 (j =1, 2), we have from the assumption of the induction

t
01/ (t — )2 U (V1 Vgl + 11V 17 Ui) [m,,) dT

]_—1

< C t — (I+a)/2_*~0
l/( T) (k + 1)2
Clet
" (ko + 172
CiCE2

= (ke + 1)2(kp + 1)

(¢ (k=22 Ml + Tklfs/szflM)

(rle-D/2+12\ N1y che=3/2+1/2\le=1p\) g

. 2t1/2—a/2(tk/2—1/2M2Mk—2 + tk/2+k2/2_3/2Mk2 Mkl

4 th2tk/2-32p gk ke 4 the5/2p k-2 2)

2C,Ck2
(kl + 17(kp + 1)?

(K222 K-2 . (/2 He/2-1ma/2 ke gk

+ tk/2+k1/2717(¥/2Mk1 ng + tku*Ol/ZMk*Z'\?lZ).
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We apply Young's inequalities to see that all 4 terms withM and M in the last
inequality is bounded by

pk=1y/2-a/2\g Nk=1 4 k=3/2-a/2)\ k=1
which is in the right hand side of (3.4). Therefore, we obtain

t
C1/0 (t = )2 Ukl (VI Vil + 11V Ui I, ) d

8C,C§ 2
<
T (ke + 1P(ke + 17

3.7)
(t(kfl)/Zfot/ZM M k—1 + tk73/27ot/2M k—1 M)

In the case K1, ko) = (1, k — 1), we can not use (3.4) fdy = 1 since the power of
tki-3/2 js negative. Then, we have from (3.3) faf = 1, (3.4) fork, = k — 1 and
Young'’s inequality

t
C1/0 (t — ) 20y (V] Vil + 1V k), ) de

t Ck*Z
<o [t —pyarazy . G0 T kazrizg k-2
= 1L( t) (k—l-i—l)z(r
+ TR T2RY2\ k2N iy
CiCE2 L 1/omajzpk/-1/2pg 2y k=2 o tke2pqkeipT
38) < ShR VR 2MN2 g (o2
k-2
< 2C1C220 (tk/zf"‘/zle\]k*Z +tk73/27ot/2Mk*l|\7|)
k=2
< 4C1k(;o (17202 VKL . he3/2-e/2 k-1

16C1C572

_ (k=1)/2—ct/2n g N k=1 | +k=3/2—a/2 \ k=1 pT
= (k1+1)2(k2+1)2(t MM*™* +1t M“*M).

Similarly, for the caselq, ko) = (k — 1, 1), we also have from (3.4) fdnp = k — 1,
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(3.3) for k, = 1 and Young’s inequality

t
Cl/O t — )" 2 U1 [l (Y Vallw, + 1VI7HUD)w,,) dT

k-2
C0

e (kD2 NK2 4 1320 K-200) . M d

t
< le (t _ T)f(l+a)/2
0

C,Cf 2 1221 k/2—1p g Nak=1 | 1k=5/2pgk—2 772
= T I 4 (<SP E?)
(3.9)
2CiC§ 2 K/2—1/2—c/2p g N K=1 | pk—2—c/2p\ gk=2 )2
< = MMKL 4t MK-2M2)
k=2
- 4ClkC230 (D22 kL ghe3/2-a/2p k1)
16C1C|872

(kD22 kel L ghed2-ar2y ke 1y,

" (ke o+ 12(ko + 172

We take the sum of the above 3 inequalities dwerk, with k; +k, = k andky, k, > 1.
It follows from the symmetry ok; andk, that

1 1
Y. i i S? X G-k TR
Kitko=k, kpko=1 * T 2 1<iq=<k/2 L 1

1 1 1 2
—2
2 {k+2(kl+1+k—kl+1)}

1<ky<k/2

2 2 \?
< —_- J—
i ()
k+27 &= \k+1
8 K21
< — — dx
_(k+2)2/1 x2
8
<—-
~ (k+ 2)?

By (3.7), (3.8), (3.9), the last inequality ar@h > 2'C;, we obtain

IV1* Ukl w2

- Z 1&:1(:'672 (t(k—l)/sz/zM Mkfl + tk—3/27zx/2Mkfl'\7|)
- (ka + 17(kz + 17

Ke+ho=k
(3.10) o
<_ -~ __.16C Ck72 t(kfl)/Zfa/ZM Mkfl tk73/27a/2Mk71|\7|
= krop 1% + )
k—1
< CO (t(kfl)/qut/ZM Mkfl + tk73/27a/2Mkfl|\7|).

T (k+ 1y
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It is possible to show the same estimate as (3.10)Merin the same way to ob-
tain (3.4).
Let T > O satisfy
(3.11) CoTY?M +CoTM <1 and T <1,

and we have on the serigs, ., Uy and ), .,

sup Y V[ Ukllw,, + sup S MIVI«Vidlw,,

te(0,T) k>1 te(0,T) k>1

Ckfl 5 5
< M + Z (k i 1)2 (T(kfl)/Zfa/ZM Mkfl + Tk73/27a/2Mk71M)

< Q.

Then, we conclude thatl :=} ., Uy andV := } ., Vi are well defined and note that
U=> U
k=1

00 t
—Ui=Y Y [ YU V-8) - U e
k=2 ky+ko=k V0
oo k-1 t
= /0 DY (U, V(=AY (Vi t, — Ur i) de
k=2 ky=1

|
o=

00 t
Ui—> > / eIAY - Uy, V(= A) ™ (Vick, — Ukig)) dt
0

1=1 k=kq+1

e f(E 0 )res Son-uola

k=1 ko=1

=

U, —

o\ﬁ

t
=U;— / =92y . (UV(=A)}(V —U)) dr,
0
and V also satisfies the integral equation:
t
V=V, + / =02y . (VV(=A)"}(V — U)) dx.
0

This shows thatl{, V) is subject to the problem (1.1) with the initial datay(vo) for
small time interval [O,T).
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We finally show the uniqueness of the solution in the cl@gf, T); M, 1). Let
(u,v) and i, v) be solutions iNC([0, T); M, 1) N L>°([0, T); I\'/In*&) with the same initial
data (lo, vo), Where I\'/Irjj ={f €& |V|7Lf € My 1(R")}. We defineR and w(t) by

R:= sup  ([[IVI*u(@)lim,, + IVI“v()]I My,
ae{0,~1},7€[0,T]

+ IVIFa@)Im,, + 1VIF0() [ m,,),

w(t):= sup  ([IVI*(u(z) — G )llwm,, + [IVI*((x) = 0(z))llm,,)-
ae{0,—1},7€[0,t]

By the equality

w000 = [ €OV (- )V8) R
O +UV(=A) "YU —v — (0 —1)) dr
and the analogous estimate to (3.5), we have
VI () — )y,
=C /Ot(t — o) V2 lu = T, VU = )l

+ 18l (V17U = @), + 1V = )llu,,)} dT
< Ct3=a2Ry(t),
V() = 5()[Im,, < CtE2Ru(t).

It follows from the above two estimates that
w(t) < C(tY% + t)Rw(t) for all t ][0, TI.

Combining w(0) = 0, we obtainw(t) = 0 if t € [0, T] satisfiesC(t/2 + t)R < 1/2.
Repeating this procedure, we obtain the uniqueness of i O

4. Proof of Theorem 1.1

Let ¢ € S(R™) be radial and satisfy

suppy C {§ e R" | |§] = n}
and

p§)=1 if [§[=1,

and let{¢;"} be defined by

97 () ==9E F2/(1,0,...,0) for £eR"
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Let initial data{ugn}R_;, {vonlN<; be defined by

uon :=N""2logN > 2821y,
N<j<(1+8)N

von :=N""2logN Y~ 282 F[pr],
N<j<(1+5)N

where§ > 0 satisfy 0< § < 1/7. On the estimate of)1[ug n, vo,n] and Vi[ug N, von],
we have forp > 2n and 1<o0 <

IUa[uo,n, von]llg zeve + IVaUon, von]llg;2eme

1/o

<CNY2|og N Z (22+0/P)i 9B3/2)iyo
(4.1) N<j<(1+5)N

<CNY2]og N

—0 as N — oo,
and we also have fop = 2n and 2< o < o0

IU1[uo,n, von]llgszeme + [ Va[Uon, von] llgs2eme

1/0

<CNY2Jog N Y @@y

(4.2) N<j<(1+8)N

< C(Sl/a Nfl/2+l/a |Og N

—-0 as N — oo.

On the estimate ofUy[ug N, von]tk=2 and {Vk[Uo N, von]}k=2, We use the following
propositions.

Proposition 4.1. Let« € {—1, 0}. Then there exists C~ 0 such that

11VI*Usluon, von]()lIm,, + I1VI*Va[uo,N, vo,N](E) (M,

(4.3) < C2@/2ta)LHINN-L/2 |og N,
11V [“Uiluon, von]®ll, + 11V Vidton, von](®) s,
(4.4) < CK(tk-Dr/2-e/2p0/2+1)(1+5)N

+ tk—3/2—a/22((3/2)k—1)(1+8)N)N—k/2(|og N)k for k> 2.
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Proof. To show (4.3), we apply the boundednes®'éfin M, 1(R") to obtain

[1VI*Usluon, von]lIm,, + IHVI“Uiuon, von]lim,.

<CN™logN Y~ 28ZN(F e T + 1F e )
N<j=<(1+5)N

< C2B/2+a)1+N N ~1/2 log N.

We prove (4.4) with (3.4). LeC; > 0 be a constant which satisfies the above last
inequality, and we takeM, M of (3.4) as

M := 2(;12(3/2)(1+8)N N2 log N,
M := 2C;2M/AWINN-2/2 |og N,

Then, we have (3.3) fougn and v instead ofuy and vg, and apply (3.4) to ob-
tain (4.4). O

Proposition 4.2. Let ¢ € S(R") \ {0} satisfy

¢ >0,

4.5 A
(*:9) suppp C {£ e R" [3/4<£ <1,0<¢& =<1/nfor j=2,3,...,n},

and let p o satisfy(1.4). Then there exist ¢C > 0 such that for t= 2-2N
(4.6) llé * Ua[uo,n, vo,n](E) ]l B,2i0p = c(log N)? — CN~}(log N)?,

4.7) l¢ * Va[uo N, von](D)]] B 2P > c(log N)2 —-C N—l(log N)Z.

Proof. For simplicity, letUy := Uy[ug n, vo,n] and Vi := Vi[uon, von]. We prove
(4.6) only since (4.7) is shown analogously. We have fromttlengle inequality

v

t
H¢* / =92y . (U V(-A) vy dr
0

* Up|| o=
”¢ 2” Bos P Bp2P

t
(48) _ Hd) % [ e(tfr)Av . (U1V(—A)71U1) dr
0

5—2+n,
Bp2 /p

4L

On the estimate of |, we have for= 272N and& with 3/4 <&, <1 and 0< &, < 1/n
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(m=23,...,n)
(4.9)
fo t el=IAY . (U V(-A) V) dt

t
g2 12 P
/ e (t—7)]€| s . e T|E—n] uO,N(S — n)—ze aul UO,N(U) d?’] dr
0 R"

Il
B ) (
————— —Uon(E —
RN Z(E—n) n |nf? Ho

1— e2tE—mn o
e[ 125 g (s — B2 (7)

_ ‘e-"“s Mo (n) dy de

> cN7}(log N)?

_ 2
N<J<(1+5)N 26 —n)-n Il
> cN~}(log N)? Z / 2329k (& —n)ej (n) dn
N<j<(L+8)N

> cs(log N)2.
Then, we have from (4.9)
(4.10) | > c8(log N)2.

On the estimate of I, we have from the embeddiBgi(R") — Boa PR, (2.3)
and (2.4)

t
< c/ 1AV - U V(=A)Us | g1 de
0 ,1
t
<C / 1€ 4UL V(= A)Ua|go, de
0 ,1

t
< C[ (t—t)*1/2||U1V(—A)U1||3;1 dr
A L

(4.11)
t
=c [ -0 U, de
0 n,1
t
=C / (t — 1) 272 ug N[5 2 dT
0 BZn,oo
< CNY(log N)2.
Therefore, we obtain (4.6) by (4.8), (4.10) and (4.11). ]

We consider the sequendéun, vn)}R_,; of the solutions which are expanded by

un(t) = Y Ukluon, vonI(t), on(t) = ) Viduon, von](t),

k=1 k=1
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with the initial dataun(0) = ugn and vn(0) = von. Let ¢ € S(R™) be a function
satisfying (4.5). We consider the solution at time= 272N and have from triangle
inequality, (4.6) andp « U; = 0,

lun ()l g,2eme
= ||uN(2—2N)|| B,;,:an/p
> ¢|l¢ * UN(272N)||BF;§+"/P
(4.12) = cll¢ * Uzluon, von](2™ )l g 2emo — Clld % Urluon, von](27")llgs2emro

—c ) _[l¢ * Udluon, voN](2 )l 2
k>3

= c(log N)? = CN7H(log N)* = C > |l * Ueluo, vonI(27") g zem-
k=3

Then, we have from sugpbeing compact and away from the origin, (4.4) and 2-2N

>~ Cllg * Udluon, von](®)llg;zems

k>3
< C Y VT Ukluon, von](t)llm,,
k>3
< Z Ck(t(kfl)/2+1/22(k/2+1)(1+8)N + tk73/2+1/22((3/2)k71)(1+8)N)ka/Z(log N)k
k>3

< Z CK(@ kN2 DNy o206 (@ Kk-DA+INY N ~H/2(og N)K.
k>3

(4.13)

Sinceé$ < 1/7, we have

2 kNk/2t AN | o 20-DN(@/2k-DA+N < 5 jf Kk > 3.
Then, it follows from (4.13) that

> Clig * UdlUon, vonl22M)g 20 — 0 as N — oo.
k>3

Therefore, we have from (4.12) and the last estimate on theico at timet = 272N

lu@ ) [g 200 — 00 @s N — co.

The divergence ob at timet = 272N is obtained in the same way and we complete
the proof of Theorem 1.1.
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5. Concluding remark on Navier—Stokes system

We should mention finally that similar structures to (1.5)€efor the incompressible
Navier—Stokes equations and the vorticity equations. Rerihcompressible Navier—
Stokes equations

dU—Au+(@U-VIu+Vp=0, t>0, xeR?
divu =0, t>0, x € R®,
u(0, x) = uo(x), x € R®,

the scaling invariant Besov spaces 8@*3/ P(R3) with 1 < p,q < co. One can regard
the casep = 3 (= n) for the Navier—Stokes equations as the case 3/2 (= n/2)
for the drift diffusion system (1.1) in the Besov spa@;ﬁ*“/p(ﬂk“) since the scaling
invariant Lebesgue space for the incompressible NaviekeStequations and the drift
diffusion equations id_3(R%) and L%?R?), respectively.

The well-posedness for the Navier—Stokes equationB,iki ¥ P(R3) (3 < p < o)
was considered in Kozono—-Yamazaki [16], Cannone—Planffioand the ill-posedness
in B;)}OO(R3) was shown by Bourgain—Pavl@vj2] and Yoneda [29]. Therefore, the case
p = o is optimal for the well-posedness and the ill-posednessestudy of the Navier—
Stokes equations, and the important structure of nonlitezar is divu = 0 and (- V)u =
V- (u®u), which corresponds to the structure (1.5) of the equatlo?)( For the vorticity
equations:

dho—Aw+U-Vo—(w-V)u=0, t>0, xeR5
divw =0, t>0, x € R®,

(0, X) = rot ug(x), x € R3,

scaling invariant Besov spaces for the vorticity are Bg, 2+3/ PR3 (1< p,o < o0)
sincew = rotu. Critical case should b@ = oo since the casg = oo for the Navier—
Stokes equation is optimal for the well-posedness and timodedness. In those sys-
tem, the nonlinear structure is again has a special symnagitlyone can find that the
nonlinearity can be expressed hy-¥)w—(w-V)u == |V|2{(|V|2w)w} similar to (1.5).
Indeed, the first component of the nonlinear term can be desn t

3
Z(ui Oy @1 — @] 0x; U1)
=1

Il
'M‘*’

8X1 (Uja)l — a)jul)

w
s

3i[{(=A) Hoxwr — By @)1 — wj(=A) H(Bx,w3 — dx@2)],

Il
-
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where we used din = divw = 0, the Bio—Savart law = (—A)~trotw, and (,k,1) €
{1, 2, 33 satisfy the property of cyclic change, namgly-2=k+1 =1 (mod 3). For
simplicity, let 1] := {(—A) }(dx,wx — Iy wk)}w1 — @) (—A) (0,03 — dx,w2). If | =1,
we have

1 = {(—A) (35,03 — Sk @2)} w1 — w1(—A) (.03 — dyyw2) = 0.
If j =2, we have from diw =0

I = {(—A) " (By,01 — dyw3)} w1 — wa(—A) By, w3 — dy,@2)
= w1(—A) Loy, w1 + wa(—A) g, wr + w3(—A) g,z — (@ - (—A) V)3
= w1(—A) My,01 + w(—A) L0z + w3(—A) Hoywz — V - (0(—A) Lwg).

The first, second and third terms of the last right hand side lba regarded as
|V|(w|V|2w) analogous way of (1.5) and we can regaggl, as |V|*(«|V| ?w). The
casej = 3 is also treated in the similar way to the cagse- 2. The other components
are also treated analogously, and therefore we obtain thetste (- V)w — (w-V)u =
IVI2((|V|?w)w} similarly to (1.5).
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