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Abstract
Results on stability of tautological sheaves on Hilbert schemes of points are ex-

tended to higher dimensions and to the restriction of tautological sheaves to general-
ised Kummer varieties. This provides a big class of new examples of stable sheaves
on higher dimensional irreducible symplectic manifolds. Some aspects of deforma-
tions of tautological sheaves are studied.
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0. Introduction

In the theory of compact Ricci flat manifolds one kind of basicbuilding blocks for
these manifolds are irreducible holomorphic symplectic (short: irreducible symplectic)
manifolds. These are compact kähler manifolds that are simply connected and admit
a—up to scalar—unique everywhere non-degenerate holomorphic two-form. One of
the fundamental aspects in the theory of irreducible symplectic manifolds is the fact
that only few examples have been constructed. Up to now, we are only aware of the
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existence of two infinite series of deformation classes due to Beauville ([1]) and two
more sporadic examples found by O’Grady ([15, 16]). Moduli spaces of sheaves on
symplectic surfaces play an important role in the construction of irreducible symplec-
tic manifolds. The fundamental result of Mukai ([14]) statesthat the moduli space of
stable sheaves on aK3 or abelian surface is a smooth symplectic variety. In fact,under
mild technical conditions these spaces turn out to be irreducible symplectic manifolds.

A natural question that arises is the following: Can we iterate this process? That
is, can we construct new examples of irreducible symplecticmanifolds using moduli
spaces of sheaves on known higher dimensional irreducible symplectic manifolds such
as Hilbert schemes of points onK3 surfaces or generalised Kummer varieties? Cer-
tainly it is difficult to answer this question in this generality. On the other hand almost
no examples of stable sheaves on higher dimensional irreducible symplectic manifolds
had been encountered. In [18] the first example of a rank two stable vector bundle on
the Hilbert scheme of two points on aK3 surface was found. In [19] this result was
drastically generalised continuing along the following concept: Start with a stable sheaf
on a K3 surface, transfer this sheaf to the Hilbert schemes of points using the universal
property of the latter and obtain what is called a tautological sheaf and, finally, prove
its stability.

This article is to be understood as a sequel to [19]. We further extend its results
and transfer them to the case of generalised Kummer varieties. The latter are closed
subvarieties of the Hilbert schemes of points on abelian surfaces. We study the re-
striction of tautological sheaves to Kummer varieties and obtain non-trivial examples
of stable sheaves on these manifolds.

Summary of the results. Let X be a regular (i.e.h1(X, OX) D 0) smooth pro-
jective surface. We study the stability of tautological sheaves with respect to an ample
class HN on the Hilbert scheme which is naturally associated with an ample classH
on the underlying surface and depending on an integerN � 0.

Proposition (Proposition 2.4). Let F be a torsion-free�H -stable sheaf on X. As-
sume that its reflexive hullF__

© OX. Then the tautological sheafF [n] on X[n] does
not contain�HN -destabilising subsheaves of rank one for all N� 0.

From this we can deduce:

Theorem (Theorem 2.5). Let F be a torsion-free rank one sheaf on X satisfying
detF © OX . Then for all sufficiently large N the associated rank three sheafF [3] on
X[3] is �HN -stable.

If X is abelian, then inside the Hilbert schemeX[n] there is the generalised Kummer
variety Kn(X). Let us denote the embedding byj . On X we have the natural involution
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� from the group structure. A sheafH is calledsymmetricif �?H � H. We have the
following results:

Theorem (Theorems 3.7, 3.9 and 3.12). Let F be a�H -stable sheaf on X such
that detF © OX . There is a polarisation on K3(X) such that ifF is of rank one,
j ?F [3] is �-stable of rank three. Furthermore, there is a polarisation on K2(X) (the
Kummer surface associated with X) such that ifdetF is not symmetric andF is of
rank one(rank two), the restriction j?F [2] is �-stable of rank two(rank four).

Furthermore, we have the following relation between modulispaces of sheaves on
K3 surfaces and moduli spaces of tautological sheaves:

Proposition (Proposition 4.4). Let F be a stable sheaf on a K3 surface X of
Mukai vectorv such thatF [2] is stable(of Mukai vectorv[2]). We have an embedding
of moduli spacesMs(v) ,!Ms(v[2]).

Structure of the paper. The paper is organised as follows: We begin in Section 1.1
by collecting known results on the geometry of Hilbert schemes of points on a surface
and prove a few technical lemmata which will be needed later.Next, in Section 1.2 we
introduce the main objects of this article, the tautological sheaves. In Section 1.3 we intro-
duce polarisations on the Hilbert schemes and compute the slopes of tautological sheaves
with respect to these polarisations. In Section 2 we analysedestabilising subsheaves of
tautological sheaves on Hilbert schemes of three or more points. The case of generalised
Kummer varieties is treated in Section 3. We prove the stability of the restriction of certain
tautological sheaves to the Kummer surface (Section 3.1) and the generalised Kummer va-
riety of dimension four (Section 3.2). We conclude the paperby studying deformations of
tautological sheaves in Section 4. We show that the moduli spaces of tautological sheaves
can be singular in Section 4.2 and investigate in which way wemay deform tautological
sheaves together with the underlying manifold in Section 4.3.

Notations and conventions.
• The base field of all varieties and schemes is the field of complex numbers.
• All functors such as pushforward, pullback, local and global homomorphisms and
tensor product are not derived unless mentioned otherwise.
• By Ms(v) we denote the moduli space of�-stable sheaves with numerical in-
variantsv. (We assume a polarisation has been fixed.)

1. Preliminaries

Throughout this chapter we consider a smooth projective surface X together with
a polarisationH 2 NS(X).
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1.1. Geometric considerations. For n D 2 the geometry of the Hilbert scheme
points on a surface is very well accessible: In fact,X[2] is the blowup of the symmetric
squareS2X along the diagonal. Ifn > 2, the situation is a little bit more complicated
but by [8, Proposition 2.6] the Hilbert scheme is still the blowup along the big diag-
onal. This is important, especially if we want to determine the Picard group of the
Hilbert scheme. Let us summarise the most important results.

Following [4, Section 1], we consider the following diagram:

X[n�1,n]
4n X

4n�1 � X � X[n�1] X[n] Xn

X[n�1] X Sn X.

 

!

�

 

!

w

 

!

 

 

!p

 

!q

 

! p

 

!

q

 

!

�

 

!

Here we denote by

4n WD {(x, � ) j x 2 �} � X � X[n]

the universal subscheme and by

X[n�1,n]
WD {(� 0, � ) j � 0 � �} � X[n�1]

� X[n]

the so-callednested Hilbert scheme.
We have the flat degreen covering p W 4n ! X[n] which is, in fact, the restric-

tion of the second projectionX � X[n]
! X[n] . Furthermore,X[n�1,n] is isomorphic to

the blowup of X � X[n�1] along the universal subscheme4n�1. Denote this blowup
morphism by� and the projections fromX � X[n�1] to X[n�1] and X by p and q,
respectively. By [5, Proposition 2.1] the second projection  W X[n�1,n]

! X[n] factors
through4n and from [9, Proposition 3.5.3] it follows thatw is an isomorphism outside
codimension four subschemes. Thus the morphism is flat outside codimension four.
Finally, we haveq Æ � D q Æ w andw?!p � !� .

We have

Pic0 X[n]
� Pic0 X

and embeddings

(�)X[n]
W NS X ,! NS X[n] , l 7! l X[n]

WD �

?(l�n)Sn

and

(�)X[n]
W Pic X ,! Pic X[n] .

Furthermore, there is a classÆ 2 NS X[n] , such that 2Æ is the class of the divisor con-
sisting of all non-reduced subschemes� � X.
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Now, using Section 2 of [4] and the proof of Theorem 4.2 of [13], we can deduce
the following formulas:

Lemma 1.1. Let D be the exceptional divisor of� and let l be a class inNSX.
We have

 

?

Æ D [D] C � ?p?Æ

and

 

?l X[n]
D �

?(p?l X[n�1]
C q?l ).

If X is regular (i.e.h1(X, OX) D 0), we have

NS X[n]
� NS X � ZÆ

by a result of Fogarty (cf. [6]).
Finally, let us briefly introduce the generalised Kummer varieties. If one mimics

the construction of Hilbert schemes to the case of abelian surfaces, one again obtains
Ricci flat manifolds. But they are not simply connected and contain an additional factor
in the Beauville–Bogomolov decomposition. To get rid of this factor we consider (for
an abelian surfaceA) the fibre

Kn(A) WD m�1(0)

and call it generalised Kummer variety. It is a (2n � 2)-dimensional irreducible sym-
plectic manifold (cf. [1]). In the casenD 2 this just gives the Kummer surface KmA.

Let us denote the inclusionKn(A) ,! A[n] by j . It is a well known fact (again
cf. [6]) that we have:

NS(Kn(A)) � j ? NS(A)� Z j ?Æ,

where we embedded, as before, NS(A) into NS(A[n]).

1.2. Tautological sheaves. Let us give the definition of tautological sheaves, the
objects of main interest in this article. Fix a sheafF on X and recall that there is the
universal subscheme4n � X � X[n] . Furthermore we have the two projectionspW X �
X[n]
! X[n] and q W X � X[n]

! X.

DEFINITION 1.2. Thetautological sheaf associated withF is defined as

F [n]
WD p

?

(q?F 
O
4n).

REMARK 1.3. Very important for the study of tautological sheaves isthe follow-
ing observation: The universal subscheme4n and the nested Hilbert schemeX[n�1,n]
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are isomorphic outside codimension four subschemes (cf. Section 1.1). LetU denote
the open subset where they are actually isomorphic. The restrictions of q?F and� ?q?F
to U are naturally isomorphic. Thus the restriction ofF [n] to the imagep(U ) in X[n] is

isomorphic toeF [n]
WD  

?

�

?q?F (restricted to (U ) D p(U )). Hence we can useeF [n]

instead ofF [n] as long as we want to study properties that are not sensible with respect

to modifications in codimension four. In the casen D 2 we, in fact, haveeF [2]
� F [2] .

The restriction ofp to 4n is a flat covering of degreen. Hence the tautological
sheafF [n] is locally free wheneverF is. For the tautological sheaf associated with the
dual sheafF_ we have the following formulas which will be important later.

Lemma 1.4.

(1) (F_)[n]
� p

?

Hom(q?F , O
4

)

and

(2) (F [n])_ � p
?

Hom(q?F , !p).

Again, from [13] we deduce:

Lemma 1.5. We have the following formula for the first Chern class ofF [n] :

c1(F [n]) D c1(F )X[n]
� rk(F )Æ.

Next, we want to summarise the results of Scala and Krug aboutglobal sections
and extensions of tautological sheaves. These formulas turn out to be a powerful tool
to analyse stability and deformations of these sheaves.

Theorem 1.6. For every sheafF and every line bundleL on X we have

H�(X[n] , F [n]

 LX[n] ) � H�(X, F 
 L)
 Sn�1H�(X, L).

Proof. [17, Corollary 4.5], [12, Theorem 6.17].

We continue by stating Krug’s formula for the extension groups of tautological
sheaves:

Theorem 1.7. Let F and E be sheaves andL and M be line bundles on X.
We have

(3)

Ext�X[n] (E [n]

 LX[n] , F [n]


MX[n] )

� Ext�X(E 
 L, F 
M)
 Sn�1 Ext�X(L, M)

� Ext�X(E 
 L, M)
 Ext�X(L, F 
M)
 Sn�2 Ext�X(L, M).
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Proof. [12, Theorem 6.17].

Krug also gave a description how to compute Yoneda products on these extension
groups (cf. [12, Section 7]). The general formulas are extremely long. We will give a
more detailed account on them as needed.

Let us finish this section by deriving a special case of formula (3).

Corollary 1.8. Let X be a K3 surface and letF be a sheaf on X satisfying
h2(F ) D 0. Then we have

HomX[n] (F [2] , F [2]) � HomX(F , F ),

Ext1X[n] (F [2] , F [2]) � Ext1X(F , F )� H0(X, F )
 H1(X, F )_.(4)

REMARK 1.9. From these equations we can deduce that tautological sheavesF [2]

associated with stable sheavesF © OX are always simple: By Serre duality a stable
sheafF ©OX on a K3 surface satisfies eitherh2(F )D 0 or h0(F )D 0 and by twisting
with a suitable line bundle we may assume thath2(F ) D 0. This is a first indication
that tautological sheaves might be stable.

1.3. Polarisations and slopes. In this section we shall talk about polarisations
on the Hilbert scheme of points on a surface. In general the ample cone of these vari-
eties is not completely known. Nevertheless, if we fix a polarisation H on our surface
X, we will define polarisationsHN on X[n] , depending onH and an integerN. Fur-
thermore, we shall derive and discuss the slopes of tautological sheaves with respect
to these polarisations. This will be important when we want to study the stability of
these sheaves in Sections 2 and 3.

Fix a smooth projective surfaceX and an ample classH 2 NS X. For any integer
N we consider the class

HN WD N HX[n]
� Æ 2 NS X[n] .

Using induction one easily shows thatHN is ample for largeN. Thus we have a nat-
ural candidate for a polarisation of the Hilbert scheme and,as it turns out, in many
cases tautological sheaves are stable with respect to thesepolarisations (cf. [19]) for
n D 2.

Next, we want to compute slopes of tautological sheaves alsoin the casen > 2.
Hence we need to compute intersection numbers. We have the following general result:

Lemma 1.10. Let l be a class inNS X. We have

(5) l X[n]
� H2n�1

X[n] D

(2n� 1)!

(n� 1)! 2n�1
(l � H )(H2)n�1



896 M. WANDEL

and

(6) Æ � H2n�1
X[n] D 0,

where on the right hand side of(5) we consider the intersection inNS X.

We will abbreviate the factor (2n� 1)!=((n� 1)! 2n�1) by cn.

Proof of Lemma 1.10. Note that (6) holds trivially sinceHX[n] is a pullback along
the Hilbert–Chow morphism. Let us prove (5). We pull backl X[n] and HX[n] along the
n!-fold covering Xn

! Sn X and obtain the classesl�n and H�n, respectively. We have

l X[n]
� H2n�1

X[n] D

1

n!
(l�n)(H�n)2n�1

D

1

n!

�

2n� 1

1, 2, : : : , 2

�

n(l � H )(H2)n�1

D

(2n� 1)!

(n� 1)! 2n�1
(l � H )(H2)n�1.

Corollary 1.11. Let L be a line bundle on X with first Chern class l andF a
sheaf of rank r and first Chern class f . We have the following expansions for the
slopes ofF [n] and L with respect to HN :

�HN (LX[n] ) D N2n�1cn(l � H )(H2)n�1
C O(N2n�2)

and

�HN (F [n]) D N2n�1cn
1

nr
( f � H )(H2)n�1

C O(N2n�2).

2. Higher n

In this chapter we try to generalise the results on destabilising line subbundles in
[19, Section 3] to highern. From this generalisation we will be able to prove the
stability of rank three tautological sheaves onX[3] . In this chapter we fix a polarised
regular surface (X, H ).

Let F be a torsion-free�H -stable sheaf onX. Denote its rank byr and its first
Chern class byf . We want to show that the associated tautological sheafF [n] on X[n]

has no destabilising subsheaves of rank one. We will first assume thatF is reflexive,
i.e. locally free. Thus we may assume that a destabilising rank one subsheaf ofF [n]

is also reflexive, that is, a line bundle.

Proposition 2.1. For sufficiently large N, there are no�HN -destabilising line sub-
bundles inF [n] of the formLX[n] , (L 2 PicX), except the case rD 1 andL � F � OX .

Proof. Denote the first Chern class ofL by l . Using Scala’s calculations of co-
homology groups of tautological sheaves with twists as stated in Theorem 1.6 we can
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immediately deduce the following formula for homomorphisms from line bundles of
the formLX[n] to tautological sheavesF [n] :

HomX[n] (LX[n] , F [n]) � HomX(L, F )
 Sn�1 HomX(L, OX).

Let us first assumer > 1. SinceF is �H -stable, we have necessary conditions for the
existence of a line subbundle ofF [n] :

(7) l � H <

f � H

r
and l � H � 0.

The first inequality is due to the stability ofF and the second comes from the fact that
if a line bundle has a section, its first Chern class has non-negative intersection with
any ample classH . If LX[n]

� F [n] is destabilising, by Corollary 1.11 we must have

l � H >
f � H

nr
.

But this is certainly a contradiction to (7).
If r D 1, we can proceed as above but additionally have to consider the special

caseL � F , i.e. l � H D f � H . The destabilising condition together withl � H � 0
immediately yieldsl �H D 0. But now HomX(L,OX) can only be nontrivial ifL�OX .

We will need the analogue of Proposition 3.1 in [19] which allows to reduce the
general case to Proposition 2.1 above. We therefore first look at the following more
general set-up which will be useful later, too. The proof is astraightforward induction.

Lemma 2.2. Let � W Y ! Z be a blow-up morphism of a smooth variety in a
smooth codimension two center. Then

R0
�

?

(!
a
�

) � OZ

for all a 2 Z.

Applying this to our situation, we easily find:

Lemma 2.3. Let LX[n]

O(aÆ) be a line bundle on X[n] (a 2 Z arbitrary), then

for any locally free sheafF on X we have

HomX[n] (LX[n]

O(aÆ), F [n]) � HomX[n] (LX[n] , F [n]).

We can thus deduce the first main result of this section.
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Proposition 2.4. Let F be a torsion-free�H -stable sheaf on X. Assume that its
reflexive hullF__

© OX. ThenF [n] does not contain�HN -destabilising subsheaves of
rank one for all N� 0.

Proof. We can easily reduce to the case whereF is locally free and then apply
Proposition 2.1 and Lemma 2.3 above.

Since the tautological sheaf onX[3] associated with a rank one sheaf has rank
three, the above proposition is enough to show that these sheaves are stable (except
O

[3]
X , of course).

Theorem 2.5. Let F be a torsion-free rank one sheaf on X satisfyingdetF ©
OX. Then for all sufficiently large N the associated rank three sheaf F [3] on X[3] is
�HN -stable.

Proof. As usual we can reduce to the case thatF is locally free. We have seen
that F [3] cannot contain destabilising subsheaves of rank one. But any destabilising
subsheaf of rank two yields a rank one destabilising subsheaf of the dual sheaf. It is
now enough to prove that for any line bundleL on X[3] we have

Hom(L, (F [3])_) � Hom(L, (F_)[3]).

To show this formula we use equations (1) and (2), then adjunction p? a p
?

and finally
we use Lemma 2.2, keeping in mind thatw is an automorphism outside codimension
four andw?!p � !� .

3. Restriction to generalised Kummer varieties

In this section we study the stability the restrictions of tautological sheaves to the
associated generalised Kummer varieties.

3.1. Restriction to the Kummer surface. In this section we shall prove the sta-
bility of the restriction of certain tautological sheaves from the Hilbert scheme of two
points on an abelian surface to the associated Kummer surface. Throughout this section
we fix a polarised abelian surface (A, H ).

Let bW QA! A denote the simultaneous blowup of all fixed points of the involution
� on A and denote byE1,:::,E16 the exceptional divisors. OnQA we still have an involu-
tion which fixes theEl pointwise. We consider the quotient� W QA! Km A which is a
degree two covering onto the associated Kummer surface. By [2, VIII Proposition 5.1]
we have a monomorphism

� D �!b
?

W H2(A, Z)! H2(Km A, Z)
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satisfying

�(x)�(y) D 2xy for all x, y 2 H2(A, Z).

We set Nl D � (El ). It is well known that E2
l D �1 and N2

l D �2. Furthermore, the
class

P

l Nl is 2-divisible and we have� ?
�

(1=2)
P

l Nl
�

D

P

l El and � ?Nl D 2El .
Finally, we have

(8) NS QA� b? NS A�
16
M

lD1

ZEl and Pic0 QA� b? Pic0 A.

We define the class

HN WD N�(H ) �
1

2

X

l

Nl

on Km A, which is ample for sufficiently largeN. (This is the restriction to KmA of
the classHN defined onA[2] in Section 1.1.)

DEFINITION 3.1. LetF be a sheaf onA. We set

FKm
WD �

?

b?F .

One easily shows:

Lemma 3.2. The sheafFKm is the restriction of the tautological sheafF [2] along
the inclusion jW Km A ,! A[2] :

j ?F [2]
' FKm.

Now we want to prove the stability ofFKm in the case thatF is of rank one or
two. As in the previous cases we begin with the analysis of line subbundles in the
pullback b?F :

Proposition 3.3. Let F be a �H -stable sheaf on A of rank r and first Chern
class f 2 NS A. Then b?F does not contain any line bundleL0

D b?G 
O
�

P

l al El
�

with G 2 Pic(A), c1(G) D g satisfying

H � g >
1

r
H � f

but in the case rD 1, G ' F .

Proof. As usual we may assume thatF is locally free. We want to show that

Hom
QA

 

b?G 
O

 

X

l

al El

!

, b?F

!
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vanishes. Using adjunction (b? a b
?

) and a similar induction argument as in the proof
of [19, Proposition 3.1], we see that it is enough to prove that

HomA(G, F ) D 0.

This easily follows from the stability ofF if F § G.

Next, we will show that Proposition 3.3 implies that there are no destabilising line
subbundles inFKm. We only need to calculate slopes.

Lemma 3.4. Let F be a sheaf on A of rank r and first Chern class f . We have

c1(�
?

b?F ) D �( f ) �
r

2

X

l

Nl .

Proof. We havec1(!
QA) D

P

l El . Thus the Grothendieck–Riemann–Roch the-
orem reads

ch(�
?

b?F ) D �
?

(ch(b?F ) td
�

) D �
?

 

(r, b? f, : : : )

 

1,�
1

2

X

l

El , : : :

!!

D �

?

 

r, b? f �
r

2

X

l

El , : : :

!

.

Let L be a line bundle on KmA. By equation (8) there is a line bundleG on A
and integersal such that

�

?L ' b?G 
O

 

X

l

al El

!

.

Set g WD c1(G). Note that sinceL comes from KmA, the line bundleG has to be
symmetric, i.e.�?G ' G.

Corollary 3.5. Let L be a line bundle onKm A as above. We have

�HN (FKm) D
1

r
N H. f � 4

and

�HN (L) D N H � gC
1

2

X

l

al .

Proof. We pullback all classes toQA: Note that � ?
�

(1=2)
P

l Nl
�

D

P

l El and
�

?

�( f )D 2b? f for all f 2 NSA. Thus we have�( f ) ��(H )D 2 f �H . Furthermore, we
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have
�

P

l El
�2
D 16 � (�1)D �16 and

�

P

l El
��

P

l al El
�

D �

P

l al . Finally, we have
to divide everything by two because we pulled back along a degree two covering.

Corollary 3.6. Let F be a non-symmetric(i.e. �?F § F ) �H -stable sheaf on A.
ThenFKm does not contain�HKm

N
-destabilising line subbundles for all N� 0.

Proof. Let L be a destabilising line subbundle ofFKm. Again, we can write
�

?L ' b?G 
 O
�

P

l al El
�

for a symmetric line bundleG 2 Pic A. The destabilising
condition yields

H � g >
1

r
H . f .

As usual we use adjunction� ? a �
?

to obtain a homomorphism� ?L! b?F . This gives
a contradiction to Proposition 3.3 but in the caser D 1, G ' F . But this cannot be
sinceF was chosen not to be symmetric.

We immediately deduce:

Theorem 3.7. Let F be a non-symmetric rank one torsion-free sheaf on A. Then
for all N sufficiently large, FKm

D �

?

b?F is a rank two�HKm
N

-stable sheaf.

EXAMPLE 3.8. We apply the theorem to the casec1(F ) D 0. Denote by OA the
dual abelian variety and byOA[2] its two-torsion points. The assignment Pic0 A 3 F 7!

FKm gives a map

OA n OA[2] !M,

whereM WDMHKm
N

(v) is the moduli space ofHKm
N -stable sheaves with

v D

 

2,�
1

2

X

l

Nl , �2

!

.

Note that v2
D 0 and the first Chern class�(1=2)

P

l Nl is primitive. HenceM is
smooth of dimension two. SinceFKm

' (�?F )[Km] , this map is two-to-one. Further-
more, let us consider the case thatF is symmetric, i.e.F 2 OA[2]. We concentrate on
the caseF D OA. We have extensions

0! O

 

�

1

2

X

l

Nl

!

! E ! O! 0.

The sheafOKm
X is isomorphic to the trivial extensionO

�

�(1=2)
P

l Nl
�

� O (cf. [2,
Lemma 17.2]), which is not stable. On the other hand one can show that every non-
trivial extension is�H -stable. The vector space of extensionsE is two-dimensional and
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thus we have aP1
�M parametrising theE . Altogether we see thatM is isomorphic

to the Kummer surface KmOA of the dual abelian surfaceOA.
If F has nontrivial first Chern classf 2 NS A, we may choose a symmetric line

bundleL satisfyingc1(L) D � f . ThenF 
 L is in Pic0(A) and

(F 
 L)[Km]
' FKm


O(�(� f )).

Thus the moduli space containingFKm is isomorphic to KmOA, too. Note that by [7,
Theorem 1.5] the Kummer surfaces KmA andM � Km OA are isomorphic.

We finish the section by proving the analogue of Theorem 4.4 of[19].

Theorem 3.9. Let F be a�H -stable rank two sheaf on A such thatdetF is not
symmetric. ThenFKm is a �HN -stable rank four sheaf onKm A.

Proof. We exactly imitate the proof of [19, Theorem 4.4]. Assume thatF is lo-
cally free and let f WD c1(F ). Let E be a reflexive semistable rank two subsheaf of
FKm and writec1(E) D �(e)C

P

l al Nl . The destabilising condition thus implies

2H � e> H � f .

We have a homomorphism� W � ?E ! b?F . Again, the only difficult case is when
ker� D 0: If the first Chern class of theQ WD coker� is trivial, we see that the homo-
logical dimension ofQ is 2. Sinceb?F is locally free, this would contradict the fact
that � ?E is reflexive. ThusQ D 0 and� has to be an isomorphism. But since� ?E is
symmetric andF is not, we are done.

If there is an effective divisor with first Chern classc1(Q), the line bundle

b? detF 
 � ? detE_
 

�

X

l

al Nl

!

must have a section. Hence eitheral < 0 8l and detF ' OA (which we excluded) or
al � 0 8l and

H � f > 2H � e

which contradicts the stability condition.

3.2. Generalised Kummer varieties of dimension four. Let (A, H ) be a po-
larised abelian surface. In this section we prove some results concerning the stability
of the restriction of tautological sheaves from the Hilbertscheme of three points onA
to the four dimensional generalised Kummer varietyj W K3(A) ,! A[3] .
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We have an isomorphism

NS(K3(A) � j ? NS(A)� Z j ?Æ

and we define a polarisation onK3(A)

HN WD j ?HN D N j?HA[3]
� j ?Æ.

Lemma 3.10. We have

(HN)3
� j ?Æ D 0C O(N4).

Proof. By definition ofHN we have (HN)3
� j ?Æ D j ?((HN)3

Æ). Now the lemma
follows from equation (6) in Lemma 1.10.

Proposition 3.11. Let F be a �H -stable sheaf on A of rank r and first Chern
class f . IfF__

© OA, then for N sufficiently largeF K3
WD j ?F [3] does not contain

any �HN -destabilising subsheaves of rank one.

Proof. We may assume thatF is locally free. Since all line bundles onK3(A)
come from A[3] , we may assume that a destabilising line bundle is of the formj ?M0

with c1(M0) 2 NS(A) � ZÆ. By a similar reasoning as in [19, Proposition 3.1] we
can reduce to the case where we have no contribution of theÆ-summand neither. Thus
there is, in fact, a line bundleM on A such thatM0

�MA[3] . Let m WD c1(M).
We denote the projectionsA3

! A by �i . Furthermore let us denote the inclusion
of the zero fibres�1(0) � A3 of the group law byi . Using adjunctions, flatness and
faithfulness of the pullback along finite coverings, it is straightforward to prove

Hom(j ?M, j ?F [3]) � Hom(i ?M�3, i ?� ?1F )

� H0(i ?(M_�3

 �

?

1F )).

In order to proceed, we choose an isomorphisms�1(0) � A2 by sending (x, y, z) to
(x, z) and denote the projectionsA2

! A by O�i . In this picture we have the identifi-
cations:�1 Æ i D O�1, �2 Æ i OD � Æ s and �3 Æ i OD O�2. (Recall that� denotes�1 on A.)
Thus pushing forward along�1 (�2 in the second line), we have

H0(i ?(M_�3

 �

?

1F )) � H0(F 
M_


 O�1?( O�
?

2M
_


 s?�?M_))(9)

� H0(M_


 O�2?( O�
?

1(F 
M_)
 s?�?M_)).(10)

By Lemma 3.10 the destabilising condition ofj ?M in j ?F [3] implies

m � H >
f � H

3r
.
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If m � H > 0, we see that the right hand side of (9) vanishes but in the case M �

OA � F .
If m � H < 0, the destabilising condition implies

2m � H >

f � H

r
.

In this case the right hand side of (10) has to vanish.

As usual, from Proposition 3.11 we can deduce the stability of rank three restricted
tautological sheaves associated with rank one sheaves:

Theorem 3.12. Let F be a torsion-free rank one sheaf on A. AssumedetF ©
OA. Then for all sufficiently large N the sheaf j?F [3] is �K

N -stable.

4. Deformations and moduli spaces of tautological sheaves

This chapter collects a few results on different aspects of the behaviour of tauto-
logical sheaves under deformations.

4.1. Deformations of tautological sheaves. In this section we will make the
following general assumption:

ASSUMPTION. X is a K3 surface andF a stable sheaf onX with invariantsv
such that for every (�-stable sheafG 2Ms(v) the associated tautological sheafG [n] is
also stable.

Note that in the cases where the stability of tautological sheaves has been explicitly
proven the tautological sheaf associated with a sheafF is stable if and only if it is
true for every other (�-stable)G in the same moduli space. (We are only considering
sheaves onK3 surfaces.)

Denote byv[n]
2 H�(X[n] , Q) the Mukai vector ofF [n] . The assignment

F 7! F [n]

yields a morphism

[�][n]
WMs(v)!Ms(v[n]).

We shall mainly discuss the casen D 2. Let us prove the following lemma which
shows that [�][2] is injective on closed points.

Lemma 4.1. For every sheafF on X we have

F � Tor1
OX�X

(O
1

, �
?

 

?F [2]).
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Thus we can reconstruct the original sheafF from the tautological sheafF [2] .

Proof. Recall that we have an exact sequence onX � X:

(11) 0! �

?

 

?F [2]
! F�2

! 1

?

F ! 0.

We tensor this sequence with the structure sheaf of the diagonal 1 � X�X. Of course
we have

�

?

1F j1 � 1
?

�

?

1F � F

and the higher TorsTor i
OX�X

(O
1

, � ?1F ) vanish. Therefore we have an isomorphism

Tor1
OX�X

(O
1

, �
?

 

?F [2]) � Tor2
OX�X

(O
1

, 1
?

F ).

By Proposition 11.8 in [11] we find

Tor i
OX�X

(O
1

, 1
?

F ) D

(

F i D 0, 2 and

F 
�X i D 1.

REMARK 4.2. If we tensor (11) withO
1

as above, the first terms of the resulting
long exact Tor-sequence yield a short exact sequence

0! F 
�X ! �

?

 

?F [2]
j

1

! F ! 0.

It is not clear if this exact sequence is split or if it is equivalent to the natural extension
corresponding to the Atiyah class ofF .

Let us consider a stable sheafF on a K3 surfaceX. The stability implies that
either h0(X, F ) or h2(X, F ) D h0(X, F_) vanishes. Let us assume the former is the
case. (The caseh2(X, F ) D 0 can be treated in exactly the same way.) Corollary 1.8
shows that we have a natural monomorphism

[�][2]
W Ext1(F , F ) ,! Ext1(F [2] , F [2]),

which maps an infinitesimal deformation ofF to its induced deformation ofF [2] .

DEFINITION 4.3. We call an infinitesimal deformation ofF [2] , the class of which
lies in the image of [�][2] above, asurface deformation. Deformations lying in the other
summand of equation (4) in Corollary 1.8 are referred to asadditional deformations.

We conclude:
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Proposition 4.4. We have an embedding of moduli spaces

Ms(v) ,!Ms(v[2]).

The additional deformations are isomorphic to H0(X, F )
 H1(X, F )_.

Corollary 4.5. Let F be such that h1(X, F ) D 0. Then we have a local iso-
morphism of the corresponding moduli spaces.

Corollary 4.6. Let F be such thatMs(v) is compact and h1(X, G) D 0 for all
G 2Ms(v). Then we have an isomorphism ofMs(v) with a connected component of
Ms(v[2]).

4.2. The additional deformations and singular moduli spaces. In the last sec-
tion we have seen that the surface deformations of tautological sheaves are unobstructed.
This is not true for all deformations. Indeed, in this section we will give an explicit con-
struction of an example of a sheafF on an elliptically fibredK3 surface such thatF [2]

is stable and the corresponding point in the moduli space is singular.
To prove this statement let us recall the most basic properties of the Kuranishi

map: The general idea of the deformation theory of a stable sheaf F is that infinitesi-
mal deformations are parametrised by Ext1(F ,F ) and the obstructions lie in Ext2(F ,F ).
This is formalised by the so-called Kuranishi map. More precisely it can be shown that
there is a map� W Ext1(F , F )! Ext2(F , F ) such that the completion of the local ring
of the point of the moduli space corresponding toF is isomorphic to the local ring
of ��1(0) in 0. In general there is no direct geometric descriptionof the Kuranishi
map but it is known that the constant and linear terms of the power series expansion
of � vanish and that its quadratic part is given by�2 W Ext1(F , F )! Ext2(F , F ), e 7!
(1=2)(eÆ e).

For a K3 surface this quadratic term always vanishes since it is exactly the Serre
duality pairing which is known to be alternating. But if we consider a tautological
sheafF [2] the quadratic part of the Kuranishi map may be non-trivial. This would cor-
respond to the existence of a quadratic part in the equation of the tangent cone of the
point in the moduli space corresponding toF [2] . Consequently, the tangent cone would
be strictly smaller than the tangent space and we would end upwith a singularity.

EXAMPLE 4.7. Let X be an elliptically fibredK3 surface with fibre classE and
sectionC. Consider the line bundleG WD O(kF), k > 2. We haveh0(G) D kC 1 and
h1(G) D k � 1. CertainlyG is stable and the moduli space is a reduced point. The
rank two tautological sheafG [2] is also stable and the tangent space of its moduli space
at the point corresponding toG [2] is isomorphic to H0(X, G) 
 H1(X, G)_, which has
dimensionk2

� 1. The quadratic term of the Kuranishi map vanishes identically but it
is not clear if we can deformG [2] along any of these infinitesimal directions.
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EXAMPLE 4.8. We continue with the same ellipticK3 as above. From [3] we
learn that the linear system of the line bundleL with first Chern classC C kE has
C as a base component fork > 2. We haveh0(G) D k C 1 and h1(G) D 0. Now let
p be a point on the curveC and denote byIp the corresponding ideal sheaf. We set
F WD L 
 Ip. Certainly F is a torsion-free rank one sheaf with nonvanishing first
Chern class. HenceF [2] is stable by Theorem [19, Theorem 4.2].

Theorem 4.9. The point in the moduli space corresponding toF [2] is singular.

By the above considerations we have to prove the following lemma:

Lemma 4.10. For the exampleF [2]
D (L
Ip)[2] the quadratic part of the Kura-

nishi map does not vanish.

Proof. We have to analyse the Yoneda square

Ext1(F [2] , F [2])! Ext2(F [2] , F [2]),

x 7! x Æ x.

Therefore let us use Krug’s formula (4) in Corollary 1.8 to write down the extension
groups explicitly. Note thath2(F ) D 0.

Ext1(F [2] , F [2]) � Ext1(F , F )� H1(F )_ 
 H0(F ),

Ext2(F [2] , F [2]) � Ext2(F , F )� H0(F )_ 
 H0(F )� H1(F )_ 
 H1(F ).

According to this decomposition we can decompose the Yonedasquare as well follow-
ing the detailed formulas in [12, Section 7]:

Ext1(F , F )�H1(F )_
H0(F )!Ext2(F , F )�H0(F )_
H0(F )�H1(F )_
H1(F ),

e C a
 b 7! eÆ e
����

D0

C (a Æ e)
 b C a
 (eÆ b).

Hence we need to show that the map

Ext1(F , F ) � H0(F )! H1(F )

is not the zero map. The geometric interpretation of this mapis the following: Let
e2 Ext1(F ,F ) be an infinitesimal deformation ofF and' 2 H0(F ) be a global section.
Then ' Æ e is zero if and only if we can deform the section' along e.

It is time to return to the geometry of our example. Sincep is on the base curve
C, we have H0(F )� H0(L). The deformations ofF are those ofIp, which correspond
to deforming the pointp in X. Now if we deform p into a direction normal toC, the
space of global sections will shrink since the point will fail to be a base point ofL
and thus we can find a section' 2 H0(F ) that does not deform withe.
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The Zariski tangent space is (kC 3)-dimensional and we can explicitly derive the
quadratic equation of the tangent cone. It is equivalent to the intersection of a plane
(corresponding to the surface deformations) and a hyperplane (the additional deforma-
tions and the curveC) in a line (the curveC).

4.3. Deformations of the manifoldX[n] . A question which has not been touched
so far, is the following: The manifoldX[n] has an unobstructed deformation theory. Does
the tautological sheafF [n] deform with X[n]?

The technique to answer this question is presented in [10]. We can summarise
as follows:

Theorem 4.11(Huybrechts–Thomas). Let Y be a projective manifold andE a
sheaf on Y . Let� 2 H1(Y, TY) � Ext1(�Y, OY) be the Kodaira–Spencer class of an
infinitesimal deformation of Y and denote byAt(E) 2 Ext1(E , E 
�Y) the Atiyah class
of E . The sheafE can be deformed along� if and only if

0D ob(�, E) WD (� 
 idE ) Æ At(E) 2 Ext2(E , E).

For every sheafE on Y there are natural trace maps

tr W Ext1(E , E 
�Y)! H1(Y, �Y)

and

tr W Ext2(E , E)! H2(Y, OY),

which—up to a sign—commute with the Yoneda product. Furthermore, it is well
known that

tr(At(E)) D c1(E)

and

tr(ob(�, E)) D ob(�, detE).

Applying this theorem to our situation, we get the followingpicture: The tangent
space of the Kuranishi space at the point corresponding toX[n] is isomorphic to

H1(X[n] , TX[n] ) � H1(X[n] , �X[n] ) � H1(X, �X)� CÆn.

We write a class in H1(X[n] , �X[n] ) as (�, a) with � 2 H1(X, �X) the class of an
infinitesimal deformation of the surfaceX and a 2 C. Unfortunately there is no de-
composition of the Atiyah class At(F [n]) at hand. But we can at least study its trace
tr(At(F [n])) D c1(F [n]) D c1(F )X[n]

� r Æn, where we setr WD rk F . We have:

tr(ob((�, a), F [n])) D ob(�, detF ) � raÆ2
n 2 H2(X[n] , OX[n] ).



TAUTOLOGICAL SHEAVES: STABILITY AND MODULI SPACES 909

But we have ob(�,detF )D � �c1(F ) andÆ2
n D 2(1�n), where we consider the Beauville–

Bogomolov pairing. Thus we see:
• If F deforms along�, then surely the tautological sheafF [n] deforms along (�, 0).
• If the determinant line bundle detF does not deform along�, thenF [n] does not
deform along (�, 0).
• If � � c1(F ) ¤ 2(1� n)ra, the tautological sheafF [n] does not deform along (�, a).

Thus there is an interesting hyperplane inside the space of infinitesimal deforma-
tions of X[n] consisting of all pairs (�, a) such that� � c1(F ) D 2(1� n)ra: It is an
open question if the tautological sheaf deforms along thesedirections.
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