ERRATUM TO THE ARTICLE "ZERO MEAN CURVATURE SURFACES IN LORENTZ-MINKOWKI 3-SPACE WHICH CHANGE TYPE ACROSS A LIGHT-LIKE LINE" OSAKA J. MATH. 52 (2015), 285-297

S. FUJIMORI, Y.W. KIM, S.-E. KOH, W. ROSSMAN, H. SHIN, M. UMEHARA, K. YAMADA and S.-D. YANG
(Received April 25, 2015, revised June 8, 2015)

In the paper [1] whose title is included in the above title, an error in one estimate was found, although the main results still remain valid. In fact, line 6 of p. 292 is incorrect, and the corrected line should read

$$
=c M^{k-3}|y|^{k^{*}} \frac{432 c^{2}}{M^{4}} \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{k|3 n-k+m-1|}{m n(m-1)(n-1)(k-m-n+1)^{2}} .
$$

As a consequence, we have that

$$
\begin{equation*}
\left|k Q_{k}\right| \leq c M^{k-3}|y|^{k^{*}} \frac{432 c^{2}}{M^{4}} \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{k|3 n-k+m-1|}{(m-1)^{2}(n-1)^{2}(k-m-n+1)^{2}} . \tag{1}
\end{equation*}
$$

Theorem 1.1 and Corollary 1.2 of [1] remain true under this correction. To confirm this, it is sufficient to show the inequality at the bottom of [1, p. 292]:

$$
\begin{equation*}
\left|k Q_{k}\right| \leq \frac{c}{18 \tau} M^{k-3}|y|^{k^{*}} \times 6 \tau \leq \frac{c}{3} M^{k-3}|y|^{k^{*}} . \tag{2}
\end{equation*}
$$

In fact, changing the original inequality in [1, line 6 of p.292] to (1) affects only the proof of (2).

From here on out, we prove (2) assuming (1).

Lemma 1. For $k \geq 7$, the following inequality holds:

$$
\max _{\substack{3 \leq m \leq k-4 \\ 3 \leq n \leq k-m-1}}(k|3 n-k+m-1|)<2(k-1)^{2} .
$$

Proof. In fact,

$$
\begin{aligned}
\max _{\substack{3 \leq m \leq k-4 \\
3 \leq n \leq k-m-1}}|3 n-k+m-1| & =\max _{(m, n)=(3,3),(3, k-4),(k-4,3)}|3 n-k+m-1| \\
& =\max \{|-k+11|, 4,|2 k-10|\} \leq 2(k-5) .
\end{aligned}
$$

In particular, we have

$$
\max _{\substack{3 \leq m \leq k-4 \\ 3 \leq n \leq k-m-1}}(k|3 n-k+m-1|) \leq 2 k(k-5)<2(k-1)^{2}
$$

proving the assertion.
We set $p:=m-1, q:=n-1$ and $l:=k-1$. Using (1), Lemma 1 and $432 c^{2} / M^{4} \leq$ $1 /(36 \tau)(c f .[1,(1.14)])$, we have that

$$
\begin{aligned}
\left|k Q_{k}\right| & \leq \frac{c}{36 \tau} M^{k-3}|y|^{k^{*}} \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{2(k-1)^{2}}{(m-1)^{2}(n-1)^{2}(k-m-n+1)^{2}} \\
& =\frac{c}{18 \tau} M^{k-3}|y|^{k^{*}} \sum_{p=2}^{l-4} \sum_{q=2}^{l-p-2} \frac{l^{2}}{p^{2} q^{2}(l-p-q)^{2}} \\
& \leq \frac{c}{18 \tau} M^{k-3}|y|^{k^{*}} \sum_{p=2}^{l-2} \sum_{q=2}^{l-p-2} \frac{l^{2}}{p^{2} q^{2}(l-p-q)^{2}}
\end{aligned}
$$

Thus, for $k \geq 7$, it holds that

$$
\begin{equation*}
\left|k Q_{k}\right| \leq \frac{c}{18 \tau} M^{k-3}|y|^{k^{*}} \sum_{p=2}^{l-2} \sum_{q=2}^{l-p-2} \frac{l^{2}}{p^{2} q^{2}(l-p-q)^{2}} \tag{3}
\end{equation*}
$$

To get (2), we need the following assertion, which is a refinement of [1, Lemma A.2]:
Lemma 2. For any integer $k \geq 4$, the following inequalities hold:

$$
\begin{equation*}
\sum_{p=2}^{k-2} \sum_{q=2}^{k-p-2} \frac{k^{2}}{p^{2} q^{2}(k-p-q)^{2}} \leq \frac{6}{k} \int_{1 / k}^{1-1 / k} \frac{d u}{u^{2}(1-u)^{2}} \leq 6 \tau \tag{4}
\end{equation*}
$$

where τ is a positive constant satisfying [1, (A.3)].

Proof. The proof of [1, Lemma A.2] becomes a proof of the inequality (4) simply by replacing the upper limit " $k-5$ " of the sum with " $k-2$ ".

By (3) and (4), we have the desired inequality (2).
Finally we note the following typographical errors:

- In line 6 of p.293, " $=$ " should be replaced by " $\leq "$.
- In the third line from the bottom of p.294,

$$
\int_{1 / k}^{a-1 / k} \frac{d u}{u^{2}(a-u)^{2}}
$$

should be

$$
\int_{1 / k}^{a-1 / k} \frac{a^{3} d u}{u^{2}(a-u)^{2}} .
$$

Acknowledgement. The authors are grateful to Shintaro Akamine for pointing out the error.

References

[1] S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada and S.-D. Yang: Zero mean curvature surfaces in Lorentz-Minkowski 3-space which change type across a light-like line, Osaka J. Math. 52 (2015), 285-297.

Shoichi Fujimori
Department of Mathematics, Faculty of Science
Okayama University
Okayama 700-8530
Japan
e-mail: fujimori@math.okayama-u.ac.jp
Young Wook Kim
Department of Mathematics
Korea University
Seoul 136-701
Korea
e-mail: ywkim@korea.ac.kr
Sung-Eun Koh
Department of Mathematics
Konkuk University
Seoul 143-701
Korea
e-mail: sekoh@konkuk.ac.kr
Wayne Rossman
Department of Mathematics, Faculty of Science Kobe University
Kobe 657-8501
Japan
e-mail: wayne@math.kobe-u.ac.jp
Heayong Shin
Department of Mathematics
Chung-Ang University
Seoul 156-756
Korea
e-mail: hshin@cau.ac.kr
Masaaki Umehara
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
Tokyo 152-8552
Japan
e-mail: umehara@is.titech.ac.jp
Kotaro Yamada
Department of Mathematics
Tokyo Institute of Technology
Tokyo 152-8551
Japan
e-mail: kotaro@math.titech.ac.jp
Seong-Deog Yang
Department of Mathematics
Korea University
Seoul 136-701
Korea
e-mail: sdyang@korea.ac.kr

