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Abstract
By a theorem of ACampo, the eigenvalues of certain Coxetarsformations are
positive real or lie on the unit circle. By optimally bounditthe signature of tree-
like positive Hopf plumbings from below by the genus, we grahat at least two
thirds of them lie on the unit circle. In contrast, we showttf@a divide links, the
signature cannot be linearly bounded from below by the genus

1. Introduction

1.1. Tree-like positive Hopf plumbings and Coxeter systems Let I" be a fi-
nite tree embedded in the plane. Ttree-like positive Hopf plumbing corresponding
to I' is obtained by taking positive Hopf bandd; with core curvesw; that are in
one-to-one correspondence with the vertioeof I' and, starting from the root of,
plumbing them together such thaf and «; intersect each other exactly once if the
verticesv; andv; are connected by an edge Bf Otherwise, they; do not intersect.
The planar graph structure @f provides a cyclic order on edges adjacent to a given
vertex, which has to be preserved by the intersection pahtthe «;. Here, plumb-
ing denotes the operation of glueing two surfaces sepatatea sphere together along
some square on the sphere, as defined by Stallings [26]. Anaitallings, this pro-
cedure yields a fiber surface whose monodromy is conjugatieet@roductT,, - - - Ty,
of right Dehn twists along the;. Starting with the one edge graph with two vertices,
this procedure vyields thpositive trefoil fibey the fiber surface of the left-handed trefoil
knot, see Fig. 1.

Let I' be a finite forest. TheCoxeter systenfW, S) corresponding tol" is the
group W with generating se6 = {s;, ..., &}, where thes are in one-to-one corres-
pondence with the vertices of T, relationss2 =1 for all i, the relation ﬁsj)3 =1
for all the v; and v; that are connected by an edge bfand the relationgs;)? = 1
for all the v; andv; that are not connected by an edgeIbf8]. Note that except for
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Fig. 1.

s* = 1, these are the relations in the mapping class group of tveitiy® Dehn twists
along curves that intersect exactly once or that do notsetdr respectively. Letr be
the real vectorspace generated by the generatasé W, equipped with the symmetric
bilinear form gr given byar(s, s) = —2 andar(s, s;) = 1 if and only if v; and v;
are connected by an edge bf To every generatos we associate the reflexioR,
on the hyperplane orthogonal ®, given by R (sj) = s; + ar(s, Sj)s.. The Coxeter
transformationcorresponding td" is the productR; - - - R, of all these reflections [9]
and does, up to conjugation, not depend on the order of nia#tpn [27].

Theorem ([2]). All eigenvalues of the Coxeter transformation correspogdio a
finite forest are either positive real or lie on the unit cicl

The constructions of the monodromy of the tree-like positivopf plumbing and
the Coxeter transformation corresponding toseem very similar. Indeed, ACampo
showed that for finite treeF, if one identifies the first homology of the positive Hopf
plumbing corresponding t& with the vector spacé/r, the homological action of the
monodromyT,, - - - T,, becomes conjugate teR; - - - R, [5].

1.2. Signature. For p andq coprime, one can show that the torus kidip, q)
has signature at least half the first Betti number of its finemfage with the help of
the recursive formulas proven by Gordon, Litherland and Mbuga [14]. Furthermore,
by Shinohara’s cabling relation, this can be extended talgkbraic knots [24]. More
recently, a linear lower bound that holds for all positiveaids was given by Feller
[11]. We provide such a linear lower bound for the signatuirér@e-like positive Hopf
plumbings.

Theorem 1. The signature of any tree-like positive Hopf plumbing isestst two
thirds of the first Betti number.

This result is optimal. Indeed, we construct tree-like tesiHopf plumbings of
arbitrarily high genus but signature equal to exactly twiodth of the first Betti number.
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It is well-known that for fiberd links, the Alexander polyn@hequals the charac-
teristic polynomial of the homological action of the monoiry. Thus, for a finite tree
', the Coxeter transformation correspondinglichas an eigenvalug if and only if
—A is a zero of the Alexander polynomial of the tree-like pesitHopf plumbing cor-
responding tol". Furthermore, the absolute value of the signature of a knk iower
bound on the number of zeroes of the Alexander polynomidl lthaon the unit circle.
If the Alexander polynomial has only simple zeroes on the aincle, this follows from
a result of Stoimenow [28]. In the Appendix, we give a genatgkbraic proof of this
fact. Thus, we obtain the following corollary of Theorem 1high applies exactly to
the setting of ACampo [2].

Corollary 2. At least two thirds of the eigenvalues of the Coxeter transébion
corresponding to a finite forest lie on the unit circle.

Since the signature is a lower bound for the topological-fmalt first Betti number
by a result of Kauffman and Taylor [18], we obtain yet anotresult as a corollary of
Theorem 1.

Corollary 3. The topological four-ball first Betti number of any treedibositive
Hopf plumbing is at least two thirds of the ordinary first Bettmber.

1.3. Divides. A divideis a finite collectionP of some generically immersed in-
tervals or circles in the closed unit di€a. There is a canonical way of lifting these
intervals and circles to a link (P) ¢ S?, where S® lies inside the tangent bundlgD,
which is identified withD x R2. Divides and their associated links were introduced
as a generalisation of algebraic links by ACampo [3]. Farthore, divide links of
connected divides were shown to be fiberd by ACampo [4] andrenprecisely, to be
plumbings of positive Hopf bands by Ishikawa [16]. While thignature of any non-
trivial divide knot is also strictly positive, we construdivide knots of arbitrarily high
genus but signature equal to two. This is in strong contrast the above examples
where the signature is known to be linearly bounded frombdly the genus.

In [5], ACampo introduced theslalom knots a certain class of knots which are
both divides and tree-like positive Hopf plumbings. As das, they are obtained in
the following way: Take a rooted treE inside the unit discD with the root on the
boundarydaD. Now, immerse an interval by the kind of slalom motion arouhe ver-
tices of I' depicted in Fig. 2. Equivalently, takg, insert a new vertex for every edge,
then remove the root and its adjacent edge and do the tregebikitive Hopf plumb-
ing that corresponds to this new planar graph. Note thaemifft planar embeddings
of the underlying abstract graph ©f yield different slalom knots which are related by
mutation [12]. For this class of knots, a stronger versiormb&orem 1 holds and thus
also a stronger version of the Corollaries 2 and 3.
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Fig. 2.

Theorem 4. The signature of any slalom knot is at least three quarterghef
first Betti number.

This lower bound is optimal in the same sense as Theorem te Sive proofs of
Theorem 4 and its optimality use exactly the same ideas aprthafs for the corres-
ponding statements for general tree-like positive Hopfrdings, we omit them.

The last two sections are more open in nature. We ask whethigle knots are
plumbings of positive trefoil fibers and what can be said albhmmological monodromies
that are, up to a sign, conjugate to some Coxeter transfmmatVe furthermore con-
jecture that any zero of the Alexander polynomial of a pesitiraid link has real part
smaller or equal to 1.

2. Signature of tree-like Hopf plumbings

Let I be a finite tree embedded in the plane. A matixf a Seifert form of the
corresponding positive Hopf plumbing with core curwgs can easily be calculated.
One obtainsS; =2 for alli and§; = 1 if and only if ¢ ande; intersect, otherwise
Sj = 0. In order to show that for any, the signature of this matrix is at least two
thirds of its dimension, we use Lemma 5, which, roughly spegkgives a way of
decomposing any tree into pieces on which the Seifert formoisitive definite. We
always identify the planar treE with its associated positive Hopf plumbing. When we
write o (I") or by(I"), we mean the signature or the first Betti number of the aatexti
Hopf plumbing. Actually,b,(T") is equal to the number of vertices Of.

Lemma 5. Any treeT” with at least six vertices has a subtrég C I with at
least six vertices such that(I") > o (" — T'g) + b1 (o) — 2.
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Fig. 3.

Proof of Theorem 1. Lerl" be a finite tree. Apply Lemma 5 first tD, then to
some tree of the foredt —I'g, etc. Apply Lemma 5 as often as possible, sames,
until the remaining forest does not have a tree with six orenartices. Lefy; be the
subtree we obtain by the i-th use of Lemma 5 and define thetfdrgs= I'1j_1 — o
recursively, wherdg1 =I'p andI"'; o =I'. By Lemma 5, we get

o(l) = 6(My) + (0y(To) —=2) = -+ = o(Ty,) + > _(by(Tos) — 2).
i=1

It is easily checked that for any trde with at most five vertices, either(I') = by(I")

or o(I') = 4. Sincel'1, is a forest consisting only of trees with at most five vertjces
we get thato (') > 2by(I'1,) = 2by(I'y,). Furthermore, sincéy (o ) > 6, we have
that by(I'g;) — 2 > 2by(I'g;). This yields

o(T1s) + Y _(02(Toj) —2) = g(bl(rl,r) +3 bl(FO,i)) = gbl(r)-

i=1 i=1

Piecing all the inequalities together, we get that the dignear (I") is at least two thirds
of the first Betti numbeib,(T"), as desired. ]

Proof of Lemma 5. Lefl" be a tree with at least six vertices. We choose a root
for T and orient all the edges away from the root. kebe a vertex that is outermost
among the vertices of degree at least three. Every edgeimmiatvay fromv defines a
subtree ofl" with only vertices of degree at most two: the maximal subtestaining
the edge and but no other edge adjacent to Let n = deg@p) — 1 denote the number
of such subtrees. Furthermore, letbe the number of vertices outside (further away
from the root) ofv, let v' be the vertex which is adjacent tobut closer to the root
and definev” and v’ analogously tov’, see Fig. 3.
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Case 1: k> 5. LetI'y be the union of then subtrees specified above. Since on
o — v, the Seifert form is positive definite, the statement holds.

CAsSeE 2: k=4,n < 3. LetIy be as in Case 1, but add the vertexand the
corresponding edge. Since dl3—v’, the Seifert form is positive definite, the statement
holds. Note that in this casé&, — I’y need not be connected.

Case 3: k=n=4. LetIo be as in Case 2. Since the Seifert form is not posi-
tive definite onI'y — v/, we cannot proceed as in Case 2. The Seifert forniab
given by the matrix

OO0 OO *%|*% ¥
OO 00O %[N % -
OO O OR N|I* % ---
PR R RPRNROO:--
OO ONRKkR OOO -
OONOROOO
ONOORr OOO
NOOORKROoOOoOo
¢
OO O OO %% % ---
OO O OO *¥IN % -
OO0 OR N|I* % ---
OO0OO0OO0O0ORrROO---
OO ONOOOO -
OONOOOOO
ONOOOOOoOo
NOOOOoOOoO oo T

where the bottom-right block corresponds to the restrictib the Seifert form tolg,
the top-left block to the restriction of the the Seifert fotmI" — I'y and ~ denotes a
change of base. By changing base again, we get that the tJeifier can be expressed
by the matrix

* *x|0 0 0 0 0O * *x|0 0 0 0 0 O
*x 2|0 0 00 0O *x 2|0 0 0 0 OO
0 0|2 1 00 0O 0 0|2 0 0 0 OO
0 0|1 0 00 OO ~ 0 0|0 —% 0 00O
0 0j]0 0 2 0 OO 0 0|0 0 2 0 0 O
0 0|0 0 O 2 0O 0 0|0 0 0 2 0 O
0 0|0 0 OO 2 O 0 0|0 0 0 0 2 O
0O 0j]0 0 0O O O 2 0 0|0 0O O O 0 2

Since the changes of base we applied never changed theftdgdek, we get that
o(') = o("' —Ig) + 4.

CAase 4: k=3,n=2, deg{’) = 2. LetIy be as in Case 2 but add the vertex
v” and the corresponding edge. Since [+ v”, the Seifert form is positive definite,
the statement holds. Agail, — I'o heed not be connected.

CAsSE 5: k=n = 3, deg{’) = 2. LetTIy be as in Case 4. This works very
similar to Case 3. Writing down a matrix for the Seifert forrh 0 with the Seifert
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form restricted tol'g in the bottom-right block and applying a change of base, we ge
thato(I') = o(I" — I'p) + 4.

CASE 6: k=n =2, deg{’) = degp”) = 2. LetIy be as in Case 4 but add the
vertex v and the corresponding edge. Since Ion— v”, the Seifert form is positive
definite, the statement holds. Agaii,— 'y need not be connected.

CAsSE 7: none of the other cases apply. If three or four verticesoliéside of
v/, then letI'y be as in Case 4. Since Case 6 does not apply, at least fiveegeligc
outside ofv”. Since none of the other cases apply, it is easily checkedoth&y—v”,
the Seifert form is positive definite and the statement holflat least five vertices lie
outside ofv’, then letl’y be as in Case 2. Again none of the other cases apply, the
Seifert form is positive definite olig— v’ and the statement holds. Once madre; I'y
need not be connected. O

REMARK 6. The optimality of Theorem 1 follows directly from Case 5 time
proof of Lemma 5. The signature of the link correspondinghe tree dealt with in
this case is 4, while its first Betti number is 6. By the reasgnin the proof, glueing
such a tree to another tree always adds 4 to the signature &mdhé first Betti num-
ber. Like this, one always obtains a tree with signature ketu&xactly two thirds of
the first Betti number. This constructions yields links obitrarily high genus. Inter-
estingly, one can show that these examples have topologigeball first Betti number
equal to the signature. This leads to the question whetherhibids for any tree-like
positive Hopf plumbing. This and similar questions will bebgect to future research.

QUESTION 7. Is the topological four-ball first Betti number of any tide posi-
tive Hopf plumbing equal to the signature?

3. Divides

A matrix S of a Seifert form of a given divide link can be calculated asatibed
in [6]. As a basis of the first homology of the fiber surface,etdke core curveg;
of the positive Hopf bands used in Ishikawa’s plumbing cargions [16]. Thus, the
basis consists of one curve for each inner face and one corveach double point
of the divide. Drawing pictures of the various situationseoobtainsS; = 2 for all
i and§; =n if o and; are n-fold adjacent, wheren-fold adjacencyis defined as
follows. Two curves corresponding to inner faces are catlddld adjacentif the inner
faces haven common edges. A curve corresponding to a double point andnze cu
corresponding to an inner face are calledold adjacentif the double point occurs
times in the boundary of the inner face. Two curves corredimanto different double
points are ©fold adjacent

It is a rather simple result that the signature of any noiaigivide knot is strictly
positive and we only give a sketch of the proof. Since two esarcorresponding to
different double points are O-fold adjacent, the Seifertrfds positive definite on the
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Fig. 4.

subspace of the first homology spanned by the curves comdsmgpto all the double
points. An Euler characteristic argument shows that theseumt for exactly half the
genus. This shows that the signature is greater or equalrto Z® show strict posi-
tivity, one again uses an Euler characteristic argumentnt &in inner faceF with at
most three double points on its boundary. Since the matrices

1

2 11
8, 120,(? ;) and (2)
5 1 0 2

are positive definite, the Seifert form is still positive aé# on the subspace spanned
by the curves corresponding to all the double points and timeeccorresponding té-.
Thus, the signature of any nontrivial divide knot is stgicdositive. In fact, one can
easily adapt this proof to show that the signature of any maal divide link is also
strictly positive.

However, we focus on the fact that this result is optimal. Bay numbern >
1, Proposition 8 provides an example of a divide witldouble points such that the
signature of the corresponding knot is equal to two. Sineenthmber of double points
of a divide is equal to the genus of the associated divide,ktio$ shows that the
signature of divide knots cannot be linearly bounded frortoweby the genus.

PR RN
oCoOoONBF
oON O R

Proposition 8. The signature of any divide knot of the family depicted-ig. 4
is equal to two.

Proof. Choose the following basis of the first homology of fiber surface. First
take the curves corresponding to the double points frondéneut, then take the curves
corresponding to the inner faces from inside out. For thisiazh of basis, the Seifert
form of the divide withn crossings is given by then2x 2n matrix

_ (A B
Szn_(Blt1 Dn)y
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where
1 2 1
2 .
A, = , Bn= 1 2 1)
2 1 2
1
2 1
1 2 2
D, = 2 2
.2
2 2

Since A, is invertible, the formula

S = Ar Byl (A O Id A 1B,
"B D,/ \B Id 0 D,—BLA.'B,
holds. Furthermore, sincA,, is a scalar matrix, it certainly commutes wiBy, and we
obtain
det(Spn) = det(A,) det(Dy — BLA,*By)
= (_1)“ det(Brt.' Bn - An Dn).

Calculating B B, — A, D, yields the matrix

-3 0 1

0 1 O

1 0 2 1}
. . 0
1 0 2

which is easily brought into upper triangular form. This apgriangular form then
shows that the determinant &' B, — A,D, is always negative. Thus, we have that
sign(det&y)) = (=1)"(-=1) = (-=1)"*1. Now we conclude the proof by induction over
n. A quick calculation shows tha®, has signature two. Now assume that the signa-
ture of &, is equal to two. The determinant &1 is of opposite sign than the
determinant ofSy;,. Additionally, Sn+1y containsS, as a minor. Thus, in addition to
the eigenvalues 0%, Sn+1) has exactly one positive and one negative eigenvalue. In
particular, the signatures @&n1) and Sy are equal. O
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4. Hopf vs. trefoil plumbing

It was shown by Giroux and Goodman that the fiber surface offdrgyd link is
obtained from the disc by consecutively plumbing and deplagn some Hopf bands
[13]. They include a remark suggesting that for fiberd knthtgjr plumbing and de-
plumbing operations can be made two by two, such that thengiate steps are al-
ways fiberd knots. Thus, the fiber surface of any fiberd knotldvdne a plumbing and
deplumbing of trefoil and figure eight fibers. We give an exbarpat shows that the
deplumbing operation is necessary even in the case wherbivesurface is actually
a plumbing of Hopf bands.

Since a plumbing of two surfaces is quasipositive if and dhlthe two surfaces
are quasipositive [23], any plumbing of positive Hopf bansigjuasipositive. Further-
more, the only way of obtaining such a surface as a plumbingrefbil and figure
eight fibers is as a plumbing of positive trefoil fibers. In Exde 10, we describe a
fiberd knot whose fiber surface is a plumbing of four positivepHbands but not a
plumbing of two positive trefoil fibers.

Lemma 9. Plumbing a Hopf band changes the signature by at most one and
plumbing a positive trefoil fiber never reduces the signatur

Proof. Note that by choosing bases correctly, the matrixhef $eifert form be-
fore the plumbing is a minor of the matrix of the Seifert forrfiea the plumbing.
Since plumbing a Hopf band changes the first Betti number g tre first statement
follows. Similarly, the second statement follows from tlaetfthat only one of the core
curves of the two positive Hopf bands forming the positivefdil fiber touches the sur-
face the positive trefoil fiber is plumbed onto. ]

ExampLE 10. Fig. 5 shows the fiber surface of the left-handed trefoibtkand
two embedded intervals with endpoints on the boundary ofsindace. Every such
embedded interval describes a Hopf plumbing. Now plumb atipesHopf band first
along the dashed interval and then another one along theddirtterval. By choosing
the suitably oriented core curves of the plumbed Hopf bargla &asis of the first
homology, the entries of the matrix for the Seifert form bmeojust the intersection
numbers of the core curves. Calculating these yields theixnat

N WE,DN
WMNN P
A NN
N B WN

which has signature equal to zero. Since a plumbing of pesitefoil fibers has strictly
positive signature by Lemma 9, the surface obtained aftenping positive Hopf bands
along the dashed and the dotted interval is not a plumbingositige trefoil fibers.
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Fig. 5.

For specific classes of fiberd knots, however, the deplumbpegation need not be
necessary. For example, it was shown by Baader and Dehohadythe fiber surface
of any positive braid knot is a plumbing of positive trefoibdirs [7]. Another example
of positive trefoil plumbings are slalom knots. In fact, Laak showed that a tree-like
positive Hopf plumbing has one boundary component if ands ohlit is actually a
plumbing of positive trefoil fibers [20].

One can show that the examples provided by Proposition 8 larebings of posi-
tive trefoil fibers. By Lemma 9, these examples actually mise the signature among
plumbings of positive trefoil fibers.

QUESTION 11. s the fiber surface of any divide knot a plumbing of pusitire-
foil fibers?

5. Coxeter systems and the location of zeroes of the Alexamdpolynomial

In 2002, Hoste conjectured the following result on the lmgatof zeroes of the
Alexander polynomial of alternating knots.

Conjecture (J. Hoste, 2002) The real part of any zero of the Alexander poly-
nomial of an alternating knot is strictly greater thanl.

In the restricted case of two-bridge knots, a first lower ibwas proven by Lyubich
and Murasugi [21]. Recently, this bound has been improved dseleff and Pecker [17]
and independently by Stoimenow [29]. Furthermore, Hirasamnd Murasugi constructed
many examples of alternating links with all zeroes of thexaleder polynomial real and
strictly positive [15]. Interestingly, we get a very similaut antipodal result for tree-like
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positive Hopf plumbings. Since all the zeroes of the Alexangolynomial are either
negative real or on the unit circle, we get that the real pheny zero of the Alexander
polynomial is smaller or equal to 1 with strict inequalityaihd only if the link in ques-
tion is actually a knot.

Actually, the homological monodromy of any plumbing of goa& Hopf bands whose
core curves intersect at most once is, up to a sign, conjugateme Coxeter transform-
ation. Since the corresponding Coxeter graph need not bglysiconnected, there are,
in general, several conjugacy classes of Coxeter transtions. If the Coxeter graph
is bipartite, there is still a distinguished Coxeter transfation, thebicolored Coxeter
transformation for which the eigenvalues are either positive real or ligt@nunit circle,
see e.g. [22]. The homological monodromy, however, has mticpkar reason to be in
the conjugacy class of this bicolored Coxeter transforomatit is indeed not difficult to
construct examples of positive braids such that the cooredipg Coxeter graph is bipart-
ite but the homological monodromy of the positive braid limks non-real eigenvalues
outside the unit circle.

QUESTION 12. What can be said about homological monodromies that ugre,
to sign, conjugate to some Coxeter transformation?

The distribution of zeroes of the Alexander polynomial ospiwe braids still seems
very particular. See for example Figure 25 appearing tosvéiné end of [10], which
shows the distributions of zeroes of the Alexander polyrabmof random positive braids.
Considering this figure leads to the following conjecturgaia antipodal to Hoste'’s
conjecture.

Conjecture 13. The real part of any zero of the Alexander polynomial of a posi
tive braid link L is smaller or equal tdl with strict inequality if and only if L is
a knot.

Appendix. Signature and the Alexander polynomial

In this appendix, we prove that the absolute value of theadige of a link is
a lower bound for the number of zeroes of the Alexander patyiabthat lie on the
unit circle. We believe that this result is known to a certakient. For example, if
the Alexander polynomial has only simple zeroes on the unile; it follows from a
result of Stoimenow [28]. However, we do not know of any refere providing the
general statement.

Theorem A. The Alexander polynomiah (t) of any link L is either identically
zero or has at leasfo(L)| zeroes(counted with multiplicity on the unit circle.

We start by recalling the definitions of the Alexander polynal, the signature and
its generalisations, the—signatures, as defined by Levine and Tristram [19, 30]. Let
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L be a link andA,«, be a Seifert matrix foiL.. The Alexander polynomial| of L
is defined, up to normalisation, as

A (t) = dettA— AT),

and forw on the unit circle inC, the w—signatures, (L) of L is defined as the sig-
nature of the hermitian matrix

M, = (1—w)A+ (1-a&)AT.

For w = —1, this equals the definition of the classical signatureriavdio (L), and for
w =1, it is equal to zero.

As w runs around the unit circle, the eigenvalugéw) € R of M,, depend contin-
uously onw. It may happen that one of the eigenvalugéw) passes through zero for
somewy. In this case, deM,, = 0 and thew—signatureo, (L) may have a disconti-
nuity at wp. We say that thev—signaturejumpsat wg and call

. 1
Joy = E(Uwo+s(L) - O—wofs(L)) eZ

the signature jump atwg.
It is well-known that the signature can only jump at zeroeshef Alexander poly-
nomial. Indeed, for any on the unit circle, it holds that

M, = —(1— &)(wA— AT),
and consequently, for any discontinuigy # 1,
AL (wo) = det@oA — AT)) = det((~(1 — @o) " M,,) = 0.

Lemma B. For any zerowg # 0 of the Alexander polynomiathe order is greater
or equal to the nullity ofwgA — AT,

Proof. Consider the matrikA— AT € Mat,.n(C[t]). There exist matrice®, Q €
GL(C[t]) such thatP(tA — AT)Q is in Smith normal form, i.eP(tA— AT)Q is a
diagonal matrix with entriesy, € C[t] and such thaiy;|«i;+1, see [25]. Settingc =
det(P) det(Q) € C, we obtain

c- Ak (t) = det(P) dett A — AT) det(Q)
= detP(tA— AT)Q)

=10

= (t — o)™ - p(t),
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where p(wo) # 0. The number of; that have a (perhaps multiple) zeroaat is exactly
equal to the nullity ofwgA — AT. Therefore, we get thamn is greater or equal to the
nullity of wpA — AT. However,m is exactly the order of the zero of the Alexander
polynomial atwg. O

REMARK C. The order of the zero of the Alexander polynomiakgtcan actu-
ally be strictly greater than the nullity afgpA — AT. As an example, takey = —1
for the link of the singularitiy at zero of the curve given by?(+ y3)(x® + y?), see
[1]. The monodromy matrix given towards the end has an eieewy = —1 with
algebraic multiplicity equal to two but geometric multigity equal to one.

Since forwy # 1, the jump|j,,| is less or equal to the nullity oM,, and the
nullity of M,,, equals the nullity ofwoA— AT, we get the following proposition relat-
ing the signature jumps to the order of the zeroes of the Alézna polynomial as a
consequence of Lemma B.

Proposition D. If the w—signatureo,(K) jumps atwg # 1, then the signature
jump j,, at wg is smaller or equal to the order of the zero of the Alexanddymamial
at wo.

Proof of Theorem A. So far we examined the case# 1. In order to make a
statement about the total number of zeroes of the Alexandignpmial that lie on the
unit circle, we also have to study the situationaat = 1. If w tends towards 1, the
eigenvaluesii (w) of M, tend, up to some normalisation constant, to the eigenvalues
of iA —iAT. Since A — AT is skew-symmetric, the signature oA —iAT is zero.
Therefore, forw close enough to 1, the modulys,(L)| = |o(M,)| is bounded from
above by the nullity ofA — AT, which in turn is bounded from above by the order of
the zero of the Alexander polynomial at 1 by Lemma B. Togethiéh Proposition D,
this yields the desired result. ]
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