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Abstract

We apply Forelli—-Rudin construction and Nakazawa’s hodpfgrtransformation
to prove a graph theoretic closed formula for invariant te&o coefficients in
the asymptotic expansion of the Szegd kernel on strictiyuggseonvex complete
Reinhardt domains. The formula provides a structural ayaletween the asymp-
totic expansion of the Bergman and Szeg6 kernels. It can kd ts effectively
compute the first terms of Fefferman’s asymptotic expangio@R invariants. Our
method also works for the asymptotic expansion of the Sebd@dergman kernel in-
troduced by Hirachi and Komatsu.

1. Introduction

Fefferman [14] proposed and initiated a program of expngs#iie asymptotic ex-
pansion of the boundary singularity of the Bergman keikél (the Szego kerneK S)
for smoothly bounded strictly pseudoconvex domatasc C" explicitly in terms of
boundary invariants. In his groundbreaking work @ff extensibility of biholomorphic
maps, Fefferman [12] proved that

I B _
W K@= (o v @ler@), ¢ v® e cx@,

wherer € C®(Q) is a defining function. See [1] and [20] for important refireits of
Fefferman’s program. Graham [18] and Hirachi—Komatsu-dtaka [24, 25] carried
out computations of the first few terms of Fefferman’s asygtiptexpansion in terms
of CR invariants. Fefferman’s program has also been extemoleeonformal geometry
(cf. [15, 16)).

There are many questions related to the asymptotic expawasithe Bergman ker-
nel. We only mention Ramadanov’s conjecture which asks kére® is biholomorphic
to the ball whenevet;(z) = 0 and Yau's question [41, p.679] to classify pseudoconvex
domains whose Bergman metrics are Kahler—Einstein.

In Question 3 of his book [36, p.20], Stein posed the problarat are the rela-
tions betweerk B and K S? In Problem 9 of [14, p. 259], Fefferman raised the question:
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how are the asymptotic expansion of the Bergman and Szeg&lkerelated? Inspired
by these questions, we develop a uniform method for studgfiegasymptotic expan-
sion of the Bergman and Szegd kernels on Hartogs domaing tisen Forelli-Rudin
construction. In particular, we prove closed formulas foeféicients in their asymp-
totic expansions as summations over graphs. Our work shovesiexplicit way the
analogy of the asymptotic expansion of the Bergman and Skegtels, at least for
strictly pseudoconvex complete Reinhardt domains.

Hirachi—Komatsu [23] (see also [22]) defined the SobolewgBmn kernelK s of
Q for eachs € R with the transformation law of weight + 1—s under biholomorphic
maps and the asymptotic expansion of singularities, anam®do the Bergman kernel
(= K% and the Szegd kernel(K?'). We can use the general mechanism developed
in 83 to find closed formulas for coefficients in the asymptakpansion ofKs. We
will discuss this in a separate paper.

Other recent works exploring the relations between the BBargand Szegd kernels
can be found in e.g. [6, 29, 42]. See [8] for the connectionh® heat kernel.

Our work crucially relies on the existence of complete asigtip expansion of
weighted Bergman kernel (appearing in the Forelli—-Rudinstauction), which was es-
tablished in [10] for bounded strictly pseudoconvex doreaim C" with real analytic
boundary, in the context of Berezin quantization.

The paper is organized as follows: In 82, we review the work&Gmham [18]
and Hirachi—-Komatsu—Nakazawa [24] on the asymptotic esipanof the Szeg6 ker-
nel. In 83, building on work of [9], we prove graph-theoretibsed formulas for the
asymptotic expansion of weighted Bergman kernels. In 84 pwese a graph-theoretic
closed formula for coefficients in the asymptotic expangibthe Szegd kernel on Har-
togs domains. In the case of complete Reinhardt domainsfooomula becomes quite
explicit using Nakazawa’'s hodograph transformation.

The main technical part of this paper is 83. L@tbe a strongly pseudoconvex
domain inC" equipped with a strictly-plurisubharmonic functigh(x). We study the
asymptotic expansion of the Bergman kernel with respechéoneasure *®g(x)¢ dx
asa — oo, whereC > 0 is a real number. By Forelli-Rudin construction, we will
show that the Szegd kernel correspondsCio= 1/(n + 1). We will prove a graph
theoretic formula for the asymptotic coefficients genema§j the results of [9, 38, 40],
whereC =0 andC = 1 were treated. For the proof, we will apply the asymptotie ex
pansion of Laplace integrals on Kéhler manifolds develojpef®] and the criterion of
Weyl invariant polynomials proved in [39]. Some of the argnts are straightforward
generalization of our previous work; for the sake of congtess, we include detailed
proofs taking care of the extra weighted sum over linear syits.

2. The asymptotic expansion of the Szegd kernel

Let @ be a bounded strictly pseudoconvex domainCh with smooth boundary.
Given a surface element on 9%, then the Sezgd kerndfS(z, ¢) is defined as the
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reproducing kernel associated with the Hardy spBi€<) consisting of holomorphic
functions inQ having L2 boundary values with respect to. Namely,
(1) KS(z,¢) € HX(R) for every ¢ € Q fixed,
(2) K3z, t) = K, 2),
) (@ = [q KS(z, ¢)f(¢)o(¢) for any f € H3(Q) andz € .

If r € C®(Q) is a defining function in the sense = {r > 0} with dr # 0 on 3%,
then by the pioneering work of Fefferman [12] (see also [8]g boundary singularity
of the Szeg0 kernel has the form

_ S
@ <2 =T (45 v ar(@).

As pointed out in [24], in order to make the Szegd kernel iiardr under bi-
holomorphic change of coordinates, the surface elemeshould satisfy

) o Andr = J[r]Y™Ydv(z) on 9%,

wheredV(z) = (1/(-2v/-1))"dz AdZ; - - -dz, AdZ, and J[r] is the complex Monge—
Ampere operator

e ar /2,
(4) Il =(=1) det(ar/az azr/aziazj)lsi,jsn.

Starting from an arbitrary smooth defining function @f Fefferman [13] devised a
recursive algorithm to explicitly construct another defgifunctionr F € C*(Q) which
is an approximate solution to the Dirichlet problem of Mongepére equation

(5) Jrfl=1+0"(r 7)), rF>0inQ, rflse=0,

where O"*1(rF) denotes a term of the formt{)"*1f with f € C*(Q).

Let us recall the definition of CR invariants for strictly pslwconvex hypersurfaces
using Moser’s normal form. Letz(,z,) = (z1,...,Z,) € C". A hypersurface & 92 C C"
with local equation

(6) u=ZP+ ) NG 2, 75, zo=u+iv
lee],181=2,k=0

is said to be in Moser’s normal form if the coeﬁicien@%B satisfy:

0 A = Al
(i) tr(Ap) =0, ie. Y " 1Ak o =0 forallk i, j;
(iii) tr( Ay3) =0, i.e. qu 1 pqpGI-_Ofor allk, j;

(iv) tr(Ag) =0, i.e. ot ) Ak oo = 0 for all k.
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A classical result of Chern and Moser [7] says that any realyinehypersurface
may be placed in Moser’'s normal form through a biholomorphapm

DEFINITION 2.1 ([14, 18, 24]). Denote by\I(A('iﬁ) a real hypersurface in normal
form (6). A polynomial P in variablesAEB is said to be a CR invariant of weight
w € Nxg if it satisfies the transformation Ia\P(A“;B) = |detd>’(0)|2w/(”+1)P(BgB) for
any biholomorphic mappingp: N(AEB) — N(BEB) preserving the origin.

Let I, denote the set of CR invariants of weight Then everyP € |, is a homo-
geneous polynomial of weight if we define the weight ofA';E to be («| + |B8])/2+
k —1. Graham [18] proved the following:

Theorem 2.2([18]). () Letn=2. Then | =1, = {0} anddimlz =diml; =1
Moreover I3 and |, are respectively spanned by>Aand |AD, |°.
(i) Let n> 3. Then | = {0} anddiml, = 1. Moreover |, is spanned by A22||2 =
Z|ASB|2, where the summation runs over| = || = 2.

Whenn = 2, a basis of the two dimension&d has been determined in [18, 24]
and a basis of the three dimensionalhas been determined by Hirachi [21].

Theorem 2.3([24]). () Letn=2andn = 4A221. Then there exist constants
k$ and kK independent of2 such that

7) 9 =1+0(32), ¥°=kmr +k5|A%r?+ O(r3).
(i) Let n> 3. There is a constantdepending only on n such that
) 0% =14 cyl| A |12 + O(rd).

Theorem 2.4([24]). The universal constants i) and (8) are given by E =
—2, k3 =8/15 and (n — 1)(n — 2)c5 = 2/3.

The above theorems were proved by Hirachi, Komatsu and Nakag24]. In
[25], they extended the expansion ¢ in (7) to weight 5. They gave two different
methods of identifying the universal constants. The firsthoé is by using microlocal
analysis of Kashiwara [27] and Boutet de Monvel [4]. Below wél wutline their
second method using explicit asymptotic expansion for Raidt domains.

Let © ¢ C" be a bounded strictly pseudoconvex complete Reinhardt iontis
logarithmic real representation domain is given by

—log|Q| = {(x,y) e R xR | (€7, ..., e eY) e Q}.



FORELLI-RUDIN CONSTRUCTION AND SZEGO KERNEL ASYMPTOTIC 909
First we assumen = 2. Let f(x) :=infly e R | (X, y) € —log|Q|}. Theni =y —
f(X)(> 0) is a defining function o N {z;z, # 0}. We make change of variables
(X, y) = (&, v) with v = f’(x) and setp(v) = f”(x), the hodograph transformation.

Theorem 2.5([24]). Let n=2. NeardQ N {zz, # 0}, we have
) KS(z) = izm]m(‘p( Y 4+ J(w, ) log ,\)
T
where Ji] = p/|4212°. Let & = p’, & = (pp?), & = (P?PY)’, e = ere3, en2 =

(pg;) and az = (pp*)2. Then

2

A ~ A
1 p=1+= =—— 1 — 13).
(10) ¢=1+c€, ¥ =——se+t o512+ ez —en) + O(1)
Lemma 2.6 ([24]). Under the notation of the above theoreme have|AJ,|* =
J[A]Y3e43/48%, rF = J[A] Y3(F + O(A%) and n1 = J[A](711 + O(1?)), where

22 28 e € A €41
P2 CE) = B (g, )
' 2% 36 (ez 2) "= a4 720(e42 >)

Theorem 2.5 and Lemma 2.6 impkf = —2, k3 = 8/15 in (7).

Next we consider the higher dimensional case. het 3 andQ C C" a bounded
strictly pseudoconvex complete Reinhardt domain satigfyi- log|Q2] = {A =y —
(fa(x1) + - -+ + fa_1(Xn-1)) > O} with hodograph variables; = f{(x;) and p;(v;) =
f'(xj). We introduce

n-1 —1 n-1
e=> Z pip}), ea=) (P es=) pipi
j=1 =1 =1 j#k
Theorem 2.7 ([24]). Under the above notatigrwe have
) J[ ]2/(n+1) ) 1 )
IA%)1? = m((n —2)(n — 1)exz + 2e3),
_ 22 —n(n + 1)ey; + (N? — 1)epo — €3
F o gpg-vo+n(, _ & B34 o04).
4] 2n(n + 1) 6 — On(n + 17 +009
The Szegt6 kernel has the expansion
A
11) KS(@2) = uJ[,\]“/“‘“)(‘p(” ) 4§ (v, 3)log ,\)
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where JA] = p/(4"|z1- - - z,|%) and

1 n n—1
62 —1) 2" 8+ 12(n—

12) ¢=1 e+ ,\2( 2)623) + O(13).

o+ )
Theorem 2.7 immediately impliesi ¢ 1)(n — 2)cS = 2/3 in (8).

(10) and (12) were obtained by computer-aided calculationR4]. We will use
our graph theoretic formulas to compute them in 84.

3. The asymptotic expansion of weighted Bergman kernels

Throughout this section, both the Bergman kerkig(x, y) and the Berezin trans-
form Z, depend on a nonnegative real numi@@> 0. For simplicity, we suppres€
in their notations. The following theorem was proved in [6f € = 0, 1; the proof for
generalC is the same.

Theorem 3.1 (Englis [9]). Let Q be a strongly pseudoconvex domainGf with
real analytic boundary ®(x) a strictly-plurisubharmonic function or2, gj(x) =
32®(x)/(0%0%;) the associated Kahler metric and g detg,; its volume element.
Let xe Q and assume £ C*() is supported in a small neighborhood of x. Then
there is an asymptotic expansion for the Laplace integrakias- oo,

X, 2-2C
/Q F (y) &0+ ()00 )~0(y.) |9(g(x3)’3|c a(y)C dy
~ 7"y o IR(F)(x),

i=0

where®(x,y) and x,y) are the almost analytic extensions of the Kéhler potenbiét)
and gx) respectivelyand R : C*(Q2) — C*(Q) are differential operators given by

3
(19) Ry 100 = Soie D ey TFOMa06 D Og(y)° St Y T,
k=i

where L is the(constant-coefficieptdifferential operator

Lf(y) = ¢ () a5 F ()
and the function §&, y) satisfies
S=04S=04pS= 0i)jy-inS= 05, ;,S=0 at y=x,
) Sly=x = —aalaz___amgi](x), m > 1.

i j_alotg---am

Here the Greek indicea, f may represent either i or
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Denote byK, (X, y) the reproducing kernel of the weighted Bergman space of all
holomorphic functions o2 square-integrable with respect to the measuf€ g(x)¢ dx.
It was shown in [10] thatC, (X, y) has an asymptotic expansion in a small neighborhood
of the diagonal agr — oo,

(14) Kal, ¥) = L0 g0x, 1) 3 Bi(x, y)am.
k=0

The proof used Fefferman’s expansion for the Bergman keimed certain Forelli—
Rudin type domain ovef2.
The Berezin transform is given by

(15) Liw= [ f()"C a(X, y))' & “*Wg(y)C dy,

which has an asymptotic expansion @as~> oo (cf. [10]),

(16) Tf() = Y Qf(xja™

k=0

The Berezin transform was first introduced by Berezin [3] e tontext of quantiza-
tion of Kahler manifolds. The existence of the asymptotipamsion (14) on compact
Kahler manifold was proved by Karabegov—Schlichenmai&i.[2

The following lemma is the key result we will use, which slighrefines the for-
mulae in [9].

Lemma 3.2. We haveQg =id andBp = 1. For k> 1,

k k—j
A7) Q) =D D Ri(Bi(% VB j-i (¥, X) F(Y)ly=x ZBm(x)Qk m f (%),
j=0i=0 m=1
18) Bux)=— > BB)— Y Ri(Bi(X ¥)B;(Y, X))ly=x-
|+J—k I+i+j=k
ij>1 1=l=k

Proof. By multiplying 1, (X, X) to both sides of (15) and using (14) and (16),
we get

D Bulx, y) Y Qi f()a™
m=0 i=0

(19) _1 / £ (y)e @00+ 20)-0(x)-2(7.)
7" Q

lg(x, y)[2-©)

g(x)1-C a(y)® Z Bi (X, Y)Bm(y, X)a2nfm7i dy.

i,m=0
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By applying Theorem 3.1 to the right-hand side of the aboveatqgn and equating
the coefficients oix" %, we get (17).

Since Qg = id and Qk(f) = 0 whenk > 1 and f is either holomorphic or anti-
holomorphic, by substituting = 1 in (17), we get (18). ]

Before proceeding we need to introduce parallel notionsgi@phs and pointed
graphs representing Weyl invariant polynomials in jets a@tmes and functions.

A digraph or simply a graphG = (V, E) is defined to be a finite directed multi-
graph which may have multi-edges and loops. A vertenf a digraphG is called
stableif deg (v) > 2, ded (v) > 2, i.e. both the inward and outward degreesvoére
no less than 2. A vertex is called semistablef we have

deg (v) > 1, ded(v)>1, deg(v)+ deg (v)> 3.

The weight of a digraptG is defined to be the integan(G) = |E| — |V|. A digraph
G is stable (semistable if each vertex ofG is stable (semistable). The set of semi-
stable and stable graphs of weightwill be denoted byG®S(k) and G(k) respectively.
A directed edgauv of a semistable digraph is callemntractibleif u # v and at least
one of the following two conditions holds:
(i) deg"(u) =1;
(i) deg (v) = 1.
A semistable graplG is called stabilizableif after contractions of a finite number of
contractible edges o8, the resulting graph becomes stable, which is calledstabil-
ization graphof G and denoted byGS.

A pointed graphl’ = (V U {e}, E) is defined to be a digraph with a distinguished
vertex labeled byf. G or I" is calledsemistablgstablg if each ordinary vertex € V
is semistable (stable). The weight of a pointed grapk- (V U {e}, E) is defined to
be w(l') = |E| — |V|. By abuse of notation, we deno¥(I") = V U {e}. The set of
semistable and stable pointed graphs of weightill be denoted byG3S(k) and Gi(K)
respectively. Denote by AUf) the set of all automorphisms of the pointed graph
fixing the distinguished vertex. A directed edge of a semistable pointed graph is
called contractibleif u # v and at least one of the following two conditions holds:
() ueV and deg(u) = 1;
(i) veV and deg(v) = 1.
A semistable pointed graph is calledstabilizableif after contractions of a finite num-
ber of contractible edges df, the resulting graph becomes stable, which is called the
stabilization graphof I' and denoted by's.

We can canonically associate a polynomial in the varial{)ggj%}wm or { fo}e1=0
to a semistable graph or pointed semistable graph, suchettwdt ordinary vertex rep-
resents a partial derivative of, the distinguished vertex represents a partial derivative
of f and each edge represents the contraction of a pair of indislessing notation,
we will denote this polynomial associated to a grdptalso byT.
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A linear digraphis a digraph in which deg(v) = deg (v) = 1 for each vertex.
We denote byZ(G) the set of linear subgraphs &. Note that we assume the empty
graph@ € Z(G).

A digraph G is calledstrongly connectedar strongif there is a directed path from
each vertex inG to every other vertex. We call a grapluasi-strongif all of its con-
nected components are strong. A strongly connected compafea digraphG is
called asource(sinK if it has only outward (inward) edges i&. A connected graph
is strong if and only it has no proper source or sink.

A Weyl invariant polynomials a polynomial of{g;,}«=1 OF {fo}«=0 invariant
under the transformation of coordinates. Recall the fdlawcriterion for Weyl in-
variant polynomials.

Theorem 3.3([39]). Given two functions as summations over stabilizable semi-
stable (pointed graphs

(20) Pl=Sta%"z:able—(_l)le)lc(G)G and Fi=Sta%able—(_l)lvwc(r)
cogvy  AULG)] vy JAULD)] ’

then R (or P,) is a Weyl invariant polynomial if and only if(&1) = ¢(G,) whenever
Gi, G, have the same stabilization graph.

DEFINITION 3.4. For convenience, a functiai{G) defined on the set of stabiliz-
able semistable graphs is calledMeyl functionif it satisfiesc(G;) = ¢(G,) whenever
Gi1, G, have the same stabilization graph.

The following lemma gives nontrivial examples of Weyl fuiocis.

Lemma 3.5([39]). For any constant C

(21) n(G)= Y C"™ and ()= )  c"®

HeZ(G) HeZ (')

are Weyl functions. Here(h) is the number of connected components of H &nd
is the subgraph of" obtained by removing the distinguished verseand its adjacent
edges froml". Note that when (H) = 0, we adopt the conventio@™) = 1.

Following [9], we may show thaBy, Rk, Ok all are Weyl invariant polynomials.
We now prove closed formulas for the coefficients in the esjmars

stabilizable stabilizable stabilizable

(22) Bc= ) BsG, Rf= Y Rel, &f= ) Ol

Gegss(k) regss(k) Tegss(k)
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We only need to deal with stable (pointed) graphs and use réhe®.3 to recover the
coefficients of stabilizable semistable (pointed) graphs.
We use the notation§ = (., G(k) and Gy = [y, G1(K).

Lemma 3.6. LetT = (V U{e}, E) € G; be a stable pointed graph. Then

( 1)|V(l")\+l

23 Rr = c)nH),
(23) P = AR HE;(F)( )

Proof. As noticed in [9, p.34], in a normal coordinate syst@roundx, the op-
eratorsR; in (13) simplify to

24 Ry 1) = Zkl(k LISy

To connect it to the graph-theoretic picture, we reghfdas k edges, S/ ask — j
vertices andk! (k — j)! the symmetry factor.

We define an equivalence relation on .Z(I'_) as follows: H; ~ H, if there is an
automorphismh € Aut(I") such thath(H;) = H,.

Given H € ¢, denote by Auf(’)y the isotropy subgroup of Auf() at H. Recall
the following equation (cf. [38, Lemma 5.5])

1
(25) S0t g= Y (FYMOVOLL
9 LeZ(aq,....,ar)
where Z(a1, ..., o) is the set of all decorated linear digraphs with externalsle

as, ..., (i.e. attaching indicegq,...,ar to vertices of linear digraphs) such that each
vertex is semistable. Two decorated linear digraphs arsidered the same whenever
they differ by a graph isomorphism preserving the labelifigexternal legs.

We have the natural action of Alitf on £ (I'_). Then the orbits are in one-to-one
correspondence with the equivalence clasgg$" )/~ and the isotropy group atl is
Aut(l")y. See [38, 40] for more detailed discussions. By the grapb+ttic interpret-
ations of (24) and (25), we have

Re= >

(Ve

HeZ(I-)/~ W '
—1)Iv(+1
= (|A)UW Z lorbit of H|(—C)"H),

HeZ(I.)/~

which gives (23). Ul
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Corollary 3.7. In any holomorphic coordinatesve have

stabilizable (_1)|V(r)|+l

26 Ref = -~ —C)"Mr,
) A= 2 a2 9
Tegss(k) Hez(T.)
Proof. This follows from Theorem 3.3 and Lemma 3.5. O

Theorem 3.8. Let Ge G andT € G;. Then
(—1)V(@)I+n(G)

(27) B IAUL(G)] > (-=CO)"™ if G is quasi-strong
G =

HeZ(G)
0 otherwise
_1)IVDI+1 . .
HALW Z (—C)"™) if I is strong
(28) Or = Hez(r)
0 otherwise.

Proof. First we assume th& is strong. Let us look at the right-hand side of
(18). The first term contributes disconnected graphs. Ins#wond term, the two fac-
tors Bi(x, y) and Bj(y, x) are sink and source respectively. Sir8es strong, we must
havei = j = 0. So it is not difficult to see from (18) and (23) that

_ B (_1)|V(G)I+l n(H)
(29) B = —Rajj(e) = “AWG) Z (-C)™™,

HeZ(G)

where G [ ] {e} is the disjoint union ofG and the distinguished vertex

If G is quasi-strong, we can prove (27) by induction on the weighthe graph
and using [38, Lemma 3.9]. See [40, Theorem 3.6] for detalils.

If some connected compone@®; of G = G; [[--- [] Gn is not strongly con-
nected, thenG; has a proper sinkS. In order to proveBs = 0, we note that in
R(Bi(x, ¥)Bj(y, X))ly=x, the sinkS may either belong tdB;(x, y) or R, actually the
contributions of these two cases @ exactly cancel out. We also need to note the fact
that if t(G) = ZHeg(G) C"M) and G has strongly connected componeis, . . ., Hy,

then z(G) = 1"[:;l t(H;). The detailed argument is similar to the proof of [38, Prop-
osition 3.3]. We omit the details. So we conclude the proothef formula (27).

The formula forQr follows from (17), (23) and (27) by using the same argument
as [38, Theorem 3.4]. ]
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Corollary 3.9. In any holomorphic coordinatesve have

quasi-strong (_1)‘\/ (G)|+n(G)

(30) Be= ) IAUL(G)|

Gegss(k)

Y. O,

HeZ(G)
strong (_1)\V(l“)|+1

(31) of= Y =2 3 oyt

IeGss(k) |Aut(I)] HeZ(r.)

Proof. In [39, Lemma 3.4 and Lemma 4.5], it was proved that dtabilization
graph of a semistable (pointed) graghis strong if and only ifG is strong. So the
corollary follows from Theorem 3.3 and Lemma 3.5. O

REMARK 3.10. Explicit computations of the first terms Bf whenC =0 or 1
have been carried out in [9, 40] and [9, 32, 33, 37] respdgtivim the next section,
we will see that the Szeg6 kernel correspond€te: 1/(n+ 1). There has been much
interest in the asymptotic expansion of the Szegd kernd ésg. [2, 19, 28, 30, 35]).

4. Forelli-Rudin construction

Let @ be a domain inC"! and w a positive continuous weight function .
Consider the domain

(32) Q= {(x,1) € 2x C™: |t|? < w(X)}.

Similar construction was first used by Forelli and Rudin [1%Ee also [10, 31]. For
simplicity we takem = 1. Then is a Hartogs domain it€". If do is the measure
on 92 defined by

2 - do
— i ae
(33) " fdo:= /sz/o f(x, €V w(X))=—p(x) dx

for some weight functiornp on 2, then the Szegd kernel of the Hardy subspace in
L2802, do) is given by (cf. [31, 11])

[e.¢]

(34) KS((x, 1), (¥, 9)) = D (t, $)*Ka 2ruip (X, Y),
k=0

whereKgq ,x,(X,Y) is the weighted Bergman kernel éhwith respect to the weighb*p,
i.e. the reproducing kernel of the subspace of holomorpimictions inL%(Q, wXp). The
formula (34) was generalized by Engli§ and Zhang [11] to theaton when the fiber
of the Hartogs domain is, instead of a ball, an arbitrarydineble bounded symmetric
domain.
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Lemma 4.1. The surface measure in (3) corresponds to the choice =
(1/2)3[w] YO+,

Proof. As shown in (3), in order for the Szegd kernel to be riavde under bi-
holomorphic change of coordinates, should be equal to

(35) o = J[r]VOD/|vr|ds

whered Sis the ordinary surface measure on the boundary (i.e. the {3-dimensional
Hausdorff measure) corresponding to the chaice- /w + ||dw||2. For the defining
function of 2 one can take (x,t) = w(x)—|t|?, leading to||Vr || = 2y/w + [[ow]]2 and

~ o r or /9%,
JIrl = J[w] = (1) det(ar/axi 0% /9% 0%, )1<ij<n1

on the boundary. Thus in (35) corresponds to the choige= (1/2)J[w]¥"D, [
The following theorem is an analogue of [9, Theorem 10].

Theorem 4.2. Let  be a strongly pseudoconvex domain @' with real-
analytic boundary ® a strictly plurisubharmonic real-analytic defining funati for
€2, gj the Kahler metric defined by the potentidl, and KS(x, t) the on-diagonal
Szegd kernel of the Hartogs domain

(36) Q={(x,t)eQxC:|t|2<e®¥}cc

Then
(i) as(x,t) approaches a point of$2\ {t = 0}, the reproducing kernel R(x,t) admits
an asymptotic expansion

(37) KS(x, t) = Z a(X) - Un_11(|t]2€®®),
1=0

in the sense that the partial sum of the first | terms of the trlggind side differs
from the left-hand side by a function which is(Q_1(|t|?€®™)) if | < n, and is in
C' "4\ {t =0}) if | > qn+ 1. Here the function w) is given by

@ uw- Y D

k=max(0-I) k!
I
_ @ =0
(—w)™ + w@ —w)™ = (w—-1)""log(1— w) <0

1 —1)
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(i) The coefficients|€x) in (37) are given by the formula
[

(39) 6() = g(x)““”*”e““““””*’Zan 1-54-1 B (),
j=0

where &, (m <€ Z, | > 0) are functions of n with g = 1, given below

m (ker—I)l
(k+n+l) Z

and Bj(x) are the scalar invariants of ;g from (14) with C = 1/(n + 1).

Proof. First note that

‘][ef¢(x)]
— (_1)n—1e—nd>(x)
1 —01P ‘e —Op_1®
—01P —0,P0;D — 0,0,P e —01P0_1D — 9101 D
x det . . . .
—Oh 1P = 1PHD — 101D -+ —3n 1P 1D — I 13y 1D

= e " Wg(x).

The determinant of the matrix can be computed by ad@i,rrg times the first column
to the (j + 1)-th column for each ¥ j <n-—1.
By (34) and Lemma 4.1, we have

(40) S(X t) = Z Kk(X)|t|2k Z e k(x) Kk(x)(|t|2e¢(x))k

k=0 k=0

where Ki(x) is the on-diagonal weighted Bergman kernel @nwith respect to the
weight we~k+n/(+1)®X)g(x)1/(+1) - The convergence is uniform on compact subsets
of Q (cf. [10]).

On the other hand, by (14), &— oo,

n—1-j
(41) Kk(X) ( — 1) e(k+n/(n+l))<l>(x)g(X)n/(n+l) Z B (X) (k + ?) ,
j=0

where Bj(x) are the scalar invariants @f; from the last section wittC = 1/(n + 1).
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As noted in [9, p.36],u; is unbounded on the unit disk for | > —1, and be-
longs toC™'=2(D) for | < —2. Let f(w) = Y5 fcw* be a holomorphic function on
D for which

K+ M)!
L_i__l.+_AM

feeMonr (K + m + 1)!
ki - ki

fk = Awm “o+ Ampa K + O(k™)

ask — oo, whereM, me Z, m < M. Then we have
M
(42) fw)= > Au(w)+ h(w),
l=m+1

whereh(w) = O(um(w)) if m> —1, andh(w) € C"™%(D) if m < —2.
Obviously ang = 0. Then the theorem follows from (40), (41) and (42). ]

Letn=2 and = {(z1,2) € 2xC: |2|? < e *@)} with ®(z) depending only on
|z1|. By applying Theorem 4.2 to the complete Reinhardt donfaia C2, we get (9)
in Theorem 2.5,

1 p \2(Lo L &
S k—2
(43) K== = (—2|le2|2) 2 +_A + E LkA " “log A |.
k=2

The following lemma is an analogue of [34, Proposition 0].fdilows from the
integral representation dfyx proved in [24, Proposition 3].

Lemma 4.3. Each coefficient | is a linear combination of
p) ... pd /pk with gy + -+ - + o = 2K
Namely L, is homogeneous of degree k and or@r.
Let kK > 0 andC be any constant. Define the functid¥c k(p) by
quasi-strong (—1)V(©@)+n@)

1
44)  Wer(p) = —
(44)  Wck(p) oK G;gss(k) AULG)]

3 (=cy™ T hdege) - 2),

He.Z(G) veV(G)

where G runs over all quasi-strong (i.e. all connected componergssé&ongly con-
nected) semistable graphs of weightand n(G) is the number of components &;
the functionh is defined recursively by

h(1)=p, hK =[p-hk-1)], k=2

We can now prove a closed formula fag by using (30).
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Theorem 4.4. The coefficients 0f43) are given by

(I-K)!'Wy3k(p), O0=k=1,
(45) Ly = (_1)k+1

Mwl/&k(p), k> 2.

Proof. In the notations of Theorem 2.5, far(z,) € C?, we have

1 _ 1
x=—logzs| = —5(logzy +l0gz), y=-—logz|, f(x) =3,
32® 1 9%f p

e72)~ — | Z | 2e<I>(Zl)

" 92,074 - 2|21|ZW 2|z1)%
By using these equations, (37) becomes
1 efz’\p 2/3 oo k -
(46) KS= ;(m) ar j kB, (z)ur (e ),

k=0 j=0

where By,3; denotesB; for C = 1/3.
By (38), the singular part ofi,_(e=%") is given by

(1-K)! 4+ O(»)
i N 0<k=<1,
(47) up«(e ™) = [(—1)f+12-2%2 + O )] log(1)
. k>2.
(k —2)!

Note that the derivatives op satisfy

d a
(48) % __pp dp__ PP
071 2z; 07y 27

By (30), we expres®3j(z1) as a summation of rational differential functions pf

quasi-strong V(G)|-+n(G) n(H)
(1) 1
Biys,j(z1) = Z TN TS T 2
HeZ(G)

) |Aut(G)|
G gss
(49) €G°%(j) i
_ p
x O _[ ] _
vel;([G) azfl!eg (v) 182269 ©-1{ 2|z1)? nlmpy2

Note thatBy/s; is of degree no more thap. The top degree is achieved only when
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all derivatives are taken on the numerafar It is not difficult to see from (49) that

quasi-strong(_1)|V(G)|+n(G) 1 n(H)
B = 2 e, 2 73
Gegsx(j) HeZ(G)
1 1 gdegt)-2
X — — — =+ Low
2Pl Sy PaZT e 0

quasi—strong(_1)|V(G)|+n(G) 1 n(H)
BRI RS (_é)

Gegss(j) HeZ(G)
1
X oy [] h(dege) - 2)+ Low
veV(G)
W .
= WasB) (o

whereLow denotes the terms of rational differential functionspfvith degree strictly
less thanj, which may be discarded according to Lemma 4.3. It also iespthat
in the summation (46), we can discard all terms except whea k, i.e. the term
ay—k,081/3k(21) = B1ax(z1). In view of (47), Equation (45) follows immediately. [

EXAMPLE 4.5. From

h(1)=p, h2)=(p)*+ pp’, h@E)=(p)*+4pp'p" + p°p®,

h(4) = (p)* + 11p(p)*p” + 7p°p' PP + 4p*(p")* + p°p®,

h(5) = (p)° + 26p(p)°p” + 32p*(p')?p" + 34p?p/(p") + 11p°p' p
+15p°p"p” + p*p®,

h(6) = (P)° + 57p(p')*p" + 122p*(p')°p” + 180p%(p)*(P")* + 76p%(p)?p™
+192p°p'p"p” + 16p*p'p® + 34p*(p")° + 26p*p"p™
+15p*(p")? + p°p®.

We get the following formulas folVg x, 0 < k < 3,
l /! l 1 /
Weo(p) =1, Wca(p) = (E - C) p’, We2(p) = (é - EC)(PP@) :

11 1.1 o
We 3(p) = (Z‘r - EC)(pzp(“))” + (EC - ECZ)(pp( pdy,
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1 1 (2 5 1
We 4(p) = (—2—4C + 1—20)(p(p2 p@)"y + (—§C2 + 2—4C + 2—40)(pp(4))2

1 1 1
——C2 —Cc— /7 (12 (4"
+(3 i 24o)p(pp)
1

1
+ (——03— =

1
2 = ENAY AN /7\2 1(4) YA
3 ° +12C)(p(p)p + p(P") P + 2pp’(p")?)

1 1 / /17 /(A /" /!
n (_Zc2 n l_Zc)(z(p)z(p )2 = p(p")?p"” — p(p")?pt
+ 4p2 p/// p(5) + 12pdp/// p(4))

The computation is routine. For example, there are two gstashg semistable graphs
of weight 1 in G5%(1),

So by (44), we haveWc 1(p) = (1/p)[(1/2)(1 — 2C)h(2) — (1/2)(1 — 2C)h(1)’] =
((1/2)-C)p".

The cardinality of|G33(k)| increases very rapidly with the growth & There are
19 quasi-strong graphs i%°5(2), among which 4 are stable. There are 300 quasi-strong
graphs inG®(3), among which 14 are stable. There are 8696 quasi-stroaghg in
G®%(4), among which 71 are stable.

The 19 quasi-strong graphs @#%(2) are depicted in Table 0. They are grouped
according to their stabilization graphs. Also listed are ttalues of

> o

HeZ(G)

(—1)V(@)I+n(@)
|Aut(G)|

for each graptG. Let 7(G) = Y 4(g)(—C)"™. By [39, Lemma 3.8], ifG, and G,
have the same stabilization graph, theiG:) = t(Gy).
We can now get g, 0 <k < 3 by using Theorem 4.4.

1
Lo = W]_/gyo(p) =1, L;= W1/3,l(p) = é p”,

1
Lo =—Wy32(p) =0, Lz=Wy33(p)= —7—2(p2 p@y”,

1

_ - _i 2 ~(d)yrry 1 (N2 _ (12 @)y
Lo = —5Wiaa = o=(P(O°P)") + 2 ((PF)? = (7P
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Table 0. The 19 quasi-strong semistable graphs of weight 2.

[e]
2 3 1
1
®@ | @20 | oz @20 /\
0—2)0
1c+1 3C 1 1C 1 3C 1 3c+1
2 6 2 2 2 6 2 2 2 2
[e] (e} o 0—1)0 0?1;0
1 1 1
/ﬂ X /Y % X ZI 1<>1 1V 1\11
o~_1 5o @—>0 0o —> o0 0«0 o—1so0
D ———l 1 1
1
3 1 3 1 3 1
—3c-1 —-C+ - ——C+ - —C— = -1
2+2 2+2 2 2
1 o o;o
1 1
@C@ /ﬂ'\ 1(\\)1 1()1
1
0—1>@ o—l>o
1, 3 1 2 1, 3 1
——Cc“+-c—-| c—-3c+1 |—zC"+-C—_
2 +2 2 * 2 +2 2
[e] o—)l (¢}

11 ol o1
2”8 4 2”8
2 2
@@ [0l 20 @0 2o | o 2o
1 1 1
1, 1 ) 1, 1
Z¢°—=c+=-| -Cc+c—= =c°—=c+ =
5 + + +3
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Now we consider the higher dimensional Reinhardt domainst n.> 2. Under
the notations of Theorem 2.7, denote

_ 1) n/n+l (-1 s
50 ko= 1)'( Pr Po ) <Z % + Y LAk Iogk).
k=0

" 4nizy -+ zp)2 —

Theorem 4.6. Let k> 0. Then the coefficients gf60) are given by

n-1

—k—1)!
(n(n — 1)!) Z H Wa/n1).m (P, 0<k=n-1,

k=my+-+mp_g =1
m; =0

(_1)n—k—1 n-1
(n—1)! (k—n)! Yo [TWyesnm(p), k=n,

k=mq+-+mp_1 j=1
m; =0

(51) Lk =

where W n+1)m (pi) is the function defined i44) with p=p and C= 1/(n + 1).

Proof. Under the notations of Theorem 2.7, (37) becomes

s 1 (e?pr--pn1 /D)
KS— — (- F""" Pt
n”(2”1|21---zn|2)

o~ k
X Z Z an 1 ik jBuyes) (@, - -y Zn1)Un k 1(67).
k=0 j=0

Note that we have the analogue of Lemma 4.3 for ary 2. So we can use the same
argument as Theorem 4.4. The singular parugfi_1(e %) is given by

(n—k—1)! + O()

2n—ky n—k ’
[(_l)nfkflzkfn)hkfn + O(}\kfnJrl)] |Og()\)
(k —n)! ’

0<k<n-1,

Unk1(e7?) =

k>n

Finally, (51) is clear since the Bergman kernel of a produmindin D; x D, is the
product of the Bergman kernels &f; and D,. O

ExAMPLE 4.7. Assumen > 3, we can easily compute,, L, by using (51) and
Example 4.5.

1 n-1

1t
L= —— W )= —— //
1= 01 ; 1/(n+1),1(P1) 20+ 1) ; P
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and

n-1

1
Lo = (n _ 1)(n — 2) s Wl/(”+1)12(pi) + 5 ; Wl/(n+1),1(pi)Wl/(n+1),l(pj)

B 1 n-2 & ey 1y ,
~h—Din—2 6(n+1);(p' )+2 4(n+1)zzp' Py

3)y/ 1
6(n2 Z(p' )+ 8(n+l)2(n ; by

which agrees with (12).
Assumen > 4, we can computé g by using (51) and Example 4.5.

1 n-1
he = (n—1)(n—2)(n—23) > TTWuesnm(m)

mp+mp+mz=3i=1
m; >0

_ 1 2 @)y 1 @)y
~2ap 00 D0-2 =Pt sar D3 = PPRD

3) (n — 1)2 U
T 120+ 1)2(n 3) ;m ypi+ 48(n + 13(n — 2)(n— 3) |§k PP} Pk
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