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Abstract

We study an initial boundary value problem on a ball for thentsopic system
of compressible Navier—Stokes equations, in particulasri@rion of breakdown of
the classical solution. For smooth initial data away froncwan, it is proved that
the classical solution which is spherically symmetric ks regularity in a finite
time if and only if theconcentrationof massforms around the center ibagrangian
coordinate system In other words,in Euler coordinate systemeither thedensity
concentrater vanishesaround the center. For the latter case, one possible situati
is that a vacuum ball appears around the center and the ylenait concentrate on
the boundary of the vacuum ball simultaneously.

1. Introduction and main results

We are concerned with the isentropic system of compresslbaiger—Stokes equa-
tions which reads as

pt +div(pU) = 0,

(1.1) {(pU)t +div(pU ® U) + VP = nAU + (i + A)V(div U),

wheret >0, x e Q CRN (N =2,3), p = p(t,x) andU = U(t, x) are the density and
fluid velocity respectively, and® = P(p) is the pressure given by a state equation

(1.2) P(p) = ap”

with the adiabatic constant > 1 and a positive constamt The shear viscosity and
the bulk onei are constants satisfying the physical hypothesis

N
1.3) w >0, u—i—EAEO.
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The domain2 is a bounded ball with a radius R, namely,
(1.4) Q=Br={xeRN; x| <R < o0}
We study an initial boundary value problem for (1.1) with théial condition
(1.5) (0, U)(O, X) = (po, Uo)(X), X € £,
and the boundary condition
(1.6) U, x)=0, t>0, xedQ,

and we are looking for the smooth spherically symmetric taau(p,U) of the problem
(1.1), (1.5), (1.6) which enjoys the form

(1.7) p(t, X) = p(t, [x), U, x) = ut, |x|)%.

Then, for the initial data to be consistent with the form J1We assume the initial
data {pg, Up) also takes the form

X
x|’

In this paper, we further assume the initial density is umiflg positive, that is,

(1.8) po = po(|x),  Uo = uo(|x])

(1.9) po=po(X)zp>0, xe®

for a positive constanp. Then it is noted that as long as the classical solution df)(1.
(1.5), (1.6) exists the density is positive, that is, the vacuum never occurs. It is also
noted that since the assumption (1.7) implies

(1.10) U,x)+U({,—x) =0, xeQ,

we necessarily havl(t, 0) = 0 (alsoUq(0) = 0).

There are many results about the existence of local and lgitleng solutions in
time of the isentropic system of compressible Navier—Stadguations when the initial
density is uniformly positive (refer to [1,5, 6, 7,13, 14, 1B, 19] and their generalization
[10, 11, 12, 17] to the full system including the conservatlaw of energy). On the
other hand, for the initial density allowing vacuum, thedbuvell-posedness of strong
solutions of the isentropic system was established by KimH8r strong solutions with
spatial symmetries, the authors in [9] proved the globastexice of radially symmetric
strong solutions of the isentropic system in an annular diopeven allowing vacuum
initially. However, it still remains open whether there sbgjlobal strong solutions which



BREAKDOWN CRITERION OF CLASSICAL SOLUTION 273

are spherically symmetric in a ball. The main difficulties tin the lack of estimates of
the density and velocity near the center. In the case vacyppeaas, it is worth noting
that Xin [20] established a blow-up result which shows ttighe initial density has a
compact support, then any smooth solution to the Cauchylgmobf the full system of
compressible Navier—Stokes equations without heat cdimfublows up in a finite time.
The same blowup phenomenon occurs also for the isentrogiersy Indeed, Zhang—
Fang ([21], Theorem 1.8) showed that jf,J) € C1([0, T]; H¥) (k > 3) is a spherically
symmetric solution to the Cauchy problem with the compagipsuted initial density,
then the upper limit ofT must be finite. On the other hand, it's unclear whether the
strong (classical) solutions lose their regularity in atértime when the initial density
is uniformly away from vacuum. Therefore, it is importantgtudy the mechanism of
possible blowup of smooth solutions, which is a main issuthis paper.

In the spherical coordinates, the original system (1.1)eartie assumption (1.7)
takes the form

a1 ot + (pu) + (N — 1)'07u —0,
1.11 ,
(oU) + (pU? + P(p)), + (N — 1)% = e(u + (N~ 1)r9)r

wheree = 2u + A. Now, we consider the following Lagrangian transformation

r
(1.12) t=t, y:/ o(t, s)sN1ds.
0

Then, it follows from (1.10) that
(1.13) ye=—purNt re=u, ry=(prN Y)Y
and the system (1.11) can be further reduced to

{pt + p*(rN"tu)y =0,

1.14
(1.14) FNu + py = e(o(rN1u),)y

wheret > 0, y € [0, Mg] and Mg is defined by

R R
(1.15) Mo = / pot)rN"tdr = f o(t, r)rNtdr,
0 0
according to the conservation of mass. Note that
(1.16) r(t 0)=0, r(t, Mg)=R.

We denote byEg the initial energy

R/ w2 ao
(1.17) Eo = / (,00—O + 2P0 YNy,
0 2 y—1
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and define a cuboid); y, for t > 0 andy € [0, M¢], as
(1.18) Quy = [0, t] x [y, Mo].
Our main result is stated as follows.
Theorem 1.1. Assume that the initial datéog, Ug) satisfy(1.8), (1.9)and
(1.19) (00, Uo) € H¥(Q).
Let (o, U) be a classical spherically symmetric solution to the init@undary value

problem (1.1), (1.5), (1.6)in [0, T] x €, and T* be the upper limit of T that is
the maximal time of existence of the classical solution. nTlfeT* < oo, it holds

the following.

1. In Euler coordinate syster(iL.1), for any ry € (0, R),
. 1

(1.20) lim sup{ sup(p(t, X) + )} =00
t—T*=0 ||x|<ro p(t, X)

2. In Lagrangian coordinate systeifi.14), for any y € (0, Mp),

(1.21) lim sup{ sup pft, y)} = oo.
t—>T*—0 \y€[0,yo]

Moreover for system(1.14) in Lagrangian coordinatethere exists a constant C de-
pending only on ay, N such that for any givengye (0, Mp) it holds
(1.22)

1/(y—1)
p(t,y)sc(s“pp())( B ) expCe 1H)

inf po / \ Mo — Yo
suppo\” Eo y/(v=1) .
-expiCT{ - expCe "H),, (,y)e€ ,
p{ ('nfpo) (Mo—yo) Pe ") (LY € Qry
where
(1.23) H = ya(Nfl)y/(N(Vfl))Mé/ZE(()NV+N72)/(2N(Vfl)) + yay/(yfl)Eg/(Vfl)T_

REMARK 1.1. The local existence of smooth solution with initialalats in The-
orem 1.1 is classical and can be found, for example, in [8] rfierences therein. So
the maximal timeT* is well defined.

REMARK 1.2. There are several results on the blowup criterion fassital so-
lutions to the system (1.1) (refer to [2, 3, 4, 16] and refeemntherein). Especially, the
authors in [3] established the following Serrin-type blgacriterion:
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e WhenN =3,
(1.24) L Am (lollii=r: L=y + uller: o) = 00

for anyr € [2, oo] and s € (3, o] satisfying

2 3
(1.25) -4+ =<1
r s
e WhenN = 2,
(1.26) lim ||P||L°°(0T Lx) =

ToT

REMARK 1.3. Theorem 1.1 asserts that the formation of singulastprily due
to the concentrationof the massaround the center ithagrangian coordinate system
More precisely, the mass anywhere away from the center isdsalimp to the max-
imal time.

On the hand,n Euler coordinate systeneither thedensity concentratesr van-
ishesaround the center. For the latter case, one possible situai that a vacuum
ball appears around the center and the density may contzwtnathe boundary of the
vacuum ball simultaneously.

2. Proof of Theorem 1.1

We only prove the case whew = 3 since the casBl = 2 is even simpler. Through-
out of this section, we assume that, J) is a classical spherically symmetric solution
with the form (1.7) to the initial boundary value problemi({.(1.5), (1.6) in [OT] x €2,
and the maximal tim& *, the upper limit ofT, is finite, and we denote b§ generic
positive constants only depending on the initial data amdnfaximal timeT *.

We first have the following basic energy estimate. Since toefpis standard, we
omit it.

Lemma 2.1. It holds for any0 <t < T,

2 2 Y
(2.1) /( |U| )dx+s//|VU|2dxdr</(po&+aﬂ)dx,
Q 2 y—1

or equivalently

R U2 y
/( - 1)N1dr+s[/ (u+ )Nldrdr
o _

2

(2.2) . ’
< =04 70 )pN-1gr = E,.
_/o (,002 +7/—1) 0
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Next, using the basic energy estimate above, we can refinbltheup criterion (1.24)
in the present case of spherically symmetric solutions Hews.

Lemma 2.2.
(2.3) lim lloli~r: L~ = 0.

T—

Proof. Due to the Serrin type condition (1.24), it sufficesstow that

(2.4) sup [lo(t, - )llLe < oo
te[0,T*)

implies

(2.5) L im llullisor: Lz < oo

To do that, making use of the identity
. u\ x
(2.6) AU =VdivU = (ur + (N — 1)r_) -
;

we rewrite the equation of momentum as
(2.7) (U) +div(pU @ U) + VP = ¢ AU, & =2u+ A.

Multiplying the equation (2.7) by |[@/|?U and integrating it ovef2, we have

d
—f p|U|4dX+s/(V|U|2)2dX§C/ P|U|?|VU]| dx
2.8) dt Jo Q Q

gc/ ,o|U|4dx+C/|VU|2dx
Q Q

where we used the assumption (2.4). Then, it easily follosnfthe Gronwall’s in-
equality and Lemma 2.1 that

(2.9) /OtL(V|U|2)2dx dr <C, te[0, T,

which implies the desired estimate (2.5) by Sobolev’s erdved theoremH(Q2) C
L8(). Thus, the proof of Lemma 2.2 is completed. 0

Due to the refined criterion above, to prove Theorem 1.1, riaies to show that
the density away from the center stays bounded up to the nadwtime T*. To do
that, we prepare the next lemma which gives a relationshivdenr andy.
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Lemma 2.3. There exists a positive constant C depending only onya N
such that

(2.10) r(t, y) > Cy"/N-D)g 1/ NG-D)
and
211)  RV—r(t, y)N = C(Mo—y)/"MEFYY ™, (t,y) € [0, T] x [0, Mo].

Proof. By the energy inequality (2.2), we have

r r
y = / )OSN_l ds= / ps(N_l)/VsN—l—(N—l)/V ds
0 0

1 1-1,
(2.12) < (/r prsNt ds) " (/r N1 ds) "
0 0

< crN@-1/7) Eé/y,
which implies
(2.13) r(t, y) > Cy/(Nw=1) Eal/(N(V_l)),

Similarly, we have

R R
Mo—y = / psNtds = / psN=D/y gN-1-(N-D/y g
r

r

(2.14) - (/RpVSN_lds)l/y (/RSN_lds)ll/V
r r

< C(RN —r(t, YN g)”,
which implies
(2.15) RN —r(t, y)N = C(Mo— y)"/0 DE,Y¥ D),
Thus, the proof of Lemma 2.3 is completed. ]

We are now in a position to establish the pointwise estimafethe density away
from the center.

Lemma 2.4. For any given y € (0, M), there exists a constant C exactly as in
Theorem 1.1such that

(2.16) p(t,y) =C, (ty) €[0, T] x[yo, Mo].
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Proof. In view of (1.14), it holds

c(0g ply = 2(2) = ~eo™ ), = -rNu -,
2.17) Pry

T L
- t py rN'

Thus, fory > yp > 0, integrating (2.17) over (@) x (Yo, ), we deduce that

pt,y) PO(V) 1-N 1-N
¢ log oty ¢ log po(yo) ((r u)(0,2) — (r~u)(t, 2))dz
(2.18) . 2(3 )
+/ (P(s: Yo) — P(s, y»ds—/ (N5 g7 g5
0 0

which is equivalent to

p(t,y) _ pro(y)
p(t, Yo)  po(Yo)

(2.19) -exp(e-1 [ (065, Y0) - ps. ) ds)

.exp(—s /t yo(N 1) 2(5 2) dz ds).

We can rewrite (2.19) as

exp(s‘l y((r =Nu)(0, 2) — r ¥ Nu)(t, 2)) dz)
Yo

t
(2.20) p(t,y)ZP(t)U(t,y)eXp(—S‘lfo p(s, y)dS)
where
(2.21) P(t) = (t( y(;) exp( / p(s, yo)dS)
and

Ut y) = poly) exp(s_l y((r N0, 2) — (MUt 2) dZ)
Yo

(2.22)
.exp(—s f (N—1) 2(3 Z)d ds).
Yo
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Hence, it follows from the equation of mass, the energy iaéity (2.2) and

Lemma 2.3 that

Mo R R
[ (S Nudy= [ pluldr <CriNyo) [ plulr™tdr
Yo r(Yo) r(Yo)

R 12 ; R 1/2
(2.23) <crhoo( [ rar) ([T )
0 0

= CriN(yo) M °Ey

< Cyg (N-Dr/(NG-D) /2 E (Ny-+N-2) NG —-1)

T pMo 2 T pR 2
// rlfNﬁdydtsz CIC
o Jyo r o Jry) T
T pR
(2.24) §Cr’N(y0)/Of0 pluPrN-1dr dt

< Cr—N(yO) EoT < Cyay/(y_l)Eg/(y_l)T.

Consequently, we have

(2.25)

uft, y)

<C ((Suppo(x)) exp{cgflya(Nfl)V/(N(V*l)) Mé/z E(()Ny+N2)/(2N(y1))})
XeQ

U, y)™

-1
i -1, ~(N=1)y/(N(y=1)) \ 1 1/2 = (Ny +N—2)/(2N(y—1))
2.26) = C((ig}; ,oo(x)) exp{Ce 'y, My “Ey

+ Cg‘lygy/(y_l)Eg/(y_l)T}), (t,y) € Qr.y,.

If we set

(2.27) H = ya(Nfl)V/(N(yfl))Mé/ZE(()NVwLN*Z)/(ZN(Vfl)) + yay/(yfl)Eg/(Vfl)T,

the above estimates féf(t, y) can be simply written as

(2.28)

U, y) < C(SUDPO(X)) expCetH),
XeQ

-1
U, y) < C( inf Po(X)) expCe *H).
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On the other hand, it follows from (2.20) that
d v [ ay y v [
4; &P —/ p(s: y)ds) = —p(t, y)” exp —/ p(s, y) ds
& Jo & € Jo
(2.29) a
= L(POUC. Y)Y,
which implies

(2.30) exp(% /Ot p(s, y) ds) = (1 + a?y /Ot(P(s)Z/I(s, y))Y ds)l/y.

Next, we are in a position to estimafe(t). First, observe that

/M" dy :/R N RN —r (yo)"
(2.31) v PGY) Jrye N

> C(Mo — yo)/r=b Eo_l/(y_l)-

In view of (2.20) and (2.30), we have

PEUE, ) _
(1+ (ay/e) [o(POUCS, V) ds)*”

(2.32) pt,y) =

Then,P(t) can be estimated as

R0 [ 20
N 0= /y o, y)

_ /Mo (1+ @@y /e) [s(PEUCS, y))7 ds)*” dy
" U, y)

Mo
<C =
Yo Z/{(t, y)

1/y Mo 1/y
+c(a_”) (supL{(t, y))(supu—l(t, y))/ (/t P(s)” ds) dy
€ Qr.yo Qryo Yo 0

< C(Mo - YO)(SUpUl(t- y))

QT,yO

t 1/y
+ C(Mg — yo)(supu(t, y)) (supul(t, y)) (/ P(s)” ds) .
Qryp Q1.yo 0

dy
(2.33)
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Using (2.31) and taking/-th power on both sides of (2.33), we have
(2.34)

Mo — v/(r=1) Y
(—0 yo) P(t) < C(supU‘l(t, y))
EO QT,yo

14 Y t
+ C(supul(t, y)) (supL{(t, y)) (/ P(s)” ds).
Qryp Q.o 0

Therefore, by Gronwall's inequality, we deduce from (2.34at

Eo 1/(y-1) N
Pit)<C supU~(t,
® (Mo - yo) (Qw? ( y))

. exp{CT(supu‘l(t, y))y (supu(t, y))y}.

Qr.yp Qr.yo

(2.35)

Finally, recalling (2.32), we have

QT,yO

(2.36) pt,y) = P(t)<SUPU(t. y)),

and plugging the estimates (2.25), (2.26) and (2.35) int86)2 we can deduce the
desired pointwise estimate (2.16). Thus the proof of Lemmdai? completed. ]

3. Proof of Theorem 1.1

Note that (1.21) and (1.22) are direct consequences of Leththand Lemma 2.4.
Now we are in a position to prove (1.20).

We argue by contradiction. Suppose (1.20) fails to hold. ueEcoordinate sys-
tem (1.11), there exist positive constallse (< T*) andr; (< R) such that

(3.2) Cl<pt,ry<c, forall (t,r)e[T*—e T*) x][0,rq].

Then we claim that in Lagrangian coordinate system (1.1#xet exist a positive con-
stanty; (< Mp) such that

3.2) p(t,y) <C forall (t,y)e[T*—¢, T%) x]0, y1].
In fact, by virtue of (3.1), it holds
r i 1
(3.3)  y(t,ry) =/ p(t,r)r2dr z/ Cir2dr > §C‘1r13, te[T*—e TY
0 0
which immediately implies (3.2). Now, it follows from (3.28nd Lemma 2.4 that the

density is bounded on [0,*) x 2, which contradicts to the blowup criterion Lemma 2.2.
Thus the proof of Theorem 1.1 is completed.
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