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Abstract
When the cohomology ring of a generalized Bott manifold withQ-coefficient

is isomorphic to that of a product of complex projective spaces CPni , the gener-
alized Bott manifold is said to beQ-trivial. We find a necessary and sufficient con-
dition for a generalized Bott manifold to beQ-trivial. In particular, everyQ-trivial
generalized Bott manifold is diffeomorphic to a

Q

ni>1 CPni -bundle over aQ-trivial
Bott manifold.

1. Introduction

A generalized Bott tower of height his a sequence of complex projective space
bundles

(1.1) Bh
�h
�! Bh�1

�h�1
��! � � �

�2
�! B1

�1
�! B0 D {a point},

where Bi D P(C � �i ), C is a trivial complex line bundle,�i is a Whitney sum ofni

complex line bundles overBi�1, and P( � ) stands a projectivization. EachBi is called
an i -stage generalized Bott manifold. When allni ’s are 1 fori D 1,: : : ,h, the sequence
(1.1) is called aBott tower of height hand Bi is called ani -stage Bott manifold.

A (h-stage) generalized Bott manifold is said to beQ-trivial (respectively,Z-trivial )
if H�(BhIQ) � H�

�

Qh
iD1 CPni

IQ

�

(respectively,H�(BhI Z) � H�

�

Qh
iD1 CPni

I Z

�

). It
is shown in [4] that ifBh is Z-trivial, then every fiber bundle in the tower (1.1) is trivial
so that Bh is diffeomorphic to

Qh
iD1 CPni . Furthermore, Choi and Masuda show that

every ring isomorphism betweenZ-cohomology rings of twoQ-trivial Bott manifolds is
induced by some diffeomorphism between them (see Theorem 3.1 and [2]).

We find a necessary and sufficient condition for a generalizedBott manifold to be
Q-trivial. Namely, we have the following proposition.
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Proposition 1.1. An h-stage generalized Bott manifold Bh is Q-trivial if and only
if each vector bundle�i , i D 1, : : : , h, satisfies

(1.2) (ni C 1)kck(�i ) D

�

ni C 1

k

�

c1(�i )
k

for k D 1, : : : , ni C 1, where Bi D P(C � �i ).

Moreover, the following theorem says that aQ-trivial generalized Bott manifold
without CP1-fibration is weakly equivariantly diffeomorphic to a trivial generalized
Bott manifold.

Theorem 1.2. Let Bh be a generalized Bott manifold such that all ni ’s are greater
than 1. Then the following are equivalent
(1) Bh is Q-trivial ,
(2) total Chern class c(�i ) is trivial for each iD 1, : : : , h,
(3) Bh is Z-trivial , and
(4) Bh is diffeomorphic to the product of projective spaces

Qh
iD1 CPni .

In the light of Theorem 1.2, we have a natural question.

QUESTION 1.1. Let Bh and B0

h be generalized Bott manifolds withni > 1, i D
1, : : : , h. Is H�(BhI Z) isomorphic toH�(B0

hI Z) if H�(BhIQ) � H�(B0

hIQ)?

Unfortunately, Example 3.1 shows that the answer to the question is negative.
From the proposition, we can deduce the following theorem.

Theorem 1.3. Every Q-trivial generalized Bott manifold is diffeomorphic to a
Q

ni>1 CPni -bundle over aQ-trivial Bott manifold.

The remainder of this paper is organized as follows. In Section 2, we recall general
facts on a generalized Bott manifold and deal with its cohomology ring. In Section 3,
we prove Proposition 1.1, Theorems 1.2 and 1.3.

2. Cohomology ring of a generalized Bott manifold

Let B be a smooth manifold and letE be a complex vector bundle overB. Let
P(E) denote the projectivization ofE. Let y 2 H2(P(E)) be the negative of the first
Chern class of the tautological line bundle overP(E). Then H�(P(E)) can be viewed
as an algebra overH�(B) via �� W H�(B)! H�(P(E)), where� W P(E)! B denotes
the projection. WhenH�(B) is finitely generated and torsion free (this is the case when
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B is a toric manifold),�� is injective andH�(P(E)) as an algebra overH�(B) is
known to be described as

(2.1) H�(P(E)) D H�(B)[y]

,*

n
X

kD0

ck(E)yn�k

�

,

wheren denotes the complex dimension of the fiber ofE (see [1]).
For a generalized Bott manifoldBh in (1.1), since��j W H�(B j�1) ! H�(B j ) is

injective, we regardH�(B j�1) as a subring ofH�(B j ) for each j so that we have
a filtration

H�(Bh) � H�(Bh�1) � � � � � H�(B1).

Let x j 2 H2(B j ) denote minus the first Chern class of the tautological line bundle over
B j D P(C � � j ). We may think ofx j as an element ofH2(Bi ) for i � j . Then the
repeated use of (2.1) shows that the ring structure ofH�(Bh) can be described as

H�(Bh) D Z[x1, : : : , xh]=hxniC1
i C c1(�i )x

ni
i C � � � C cni (�i )xi j i D 1, : : : , hi.

Let �2,1 be the tautological line bundle overB1 D CPn1 and let�3,1D �
�

2 (�2,1) the pull-
back bundle of the tautological line bundle overB1 to B2 via the projection�2W B2! B1.
In general, let� j , j�1 be the tautological line bundle overB j�1 and we define inductively

� j , j�k D �
�

j�1 Æ � � � Æ �
�

j�kC1(� j�kC1, j�k)

for k D 2, : : : , j � 1. Then one can see that the Whitney sum of complex line bundles
�i over Bi�1 in the sequence (1.1) can be written as

�i WD

�

�

ai
11

i ,1 
 � � � 
 �
ai

1,i�1

i ,i�1

�

� � � � �

�

�

ai
ni ,1

i ,1 
 � � � 
 �
ai

ni ,i�1

i ,i�1

�

for some integersai
11, : : : , ai

ni ,i�1. Note that�1 D (C)n1. Hence, the total Chern class
of �i is

(2.2) c(�i ) D
ni
Y

jD1

 

1C
i�1
X

kD1

ai
jk xk

!

.

Therefore, the cohomology ring ofBh is

(2.3)

H�(BhI Z)

D Z[x1, : : : , xh]=hxniC1
i C c1(�i )x

ni
i C � � � C cni (�i )xi j i D 1, : : : , hi

D Z[x1, : : : , xh]

,*

xi

ni
Y

jD1

 

i�1
X

kD1

ai
jk xk C xi

!

i D 1, : : : , h

+

.



1084 S. PARK AND D.Y. SUH

REMARK 1. We can associate a generalized Bott manifoldBh with an h�h vec-
tor matrix A as follows:

(2.4) AT
D

0

B

B

B

�

1
a2

1 1
...

...
...

ah
1 ah

2 � � � 1

1

C

C

C

A

,

where

ai
k D

0

B

�

ai
1k
...

ai
ni k

1

C

A

and

1D

0

B

�

1
...

1

1

C

A

.

Moreover we can considerBh as a quasitoric manifold over the product of simplices
Qh

iD1 1
ni with the reduced characteristic matrix3

�

D �AT .

3. Q-trivial generalized Bott manifolds

As we mentioned in the introduction, Choi and Masuda classifyQ-trivial Bott mani-
folds as follows.

Theorem 3.1 ([2]). (1) A Bott manifold Bh is Q-trivial if and only if for each
i D 1, : : : , h, each line bundle�i satisfies c1(�i )2

D 0 in H�(BhI Z).
(2) Every ring isomorphism' between twoQ-trivial Bott manifolds Bh and B0h is in-
duced by some diffeomorphism Bh ! B0

h.

In this section we shall prove Proposition 1.1 and Theorem 1.2. To prove them,
we need the following lemmas.

Lemma 3.2. If a generalized Bott manifold Bh is Q-trivial , then there exist lin-
early independent primitive elements z1, : : : , zh in H2(BhIZ) such that zni

i is not zero

but zniC1
i is zero in H�(BhI Z) for i D 1, : : : , h.

Proof. Let H�(BhI Z) be generated byx1, : : : , xh as in (2.3) and let

H�

 

h
Y

iD1

BhIQ

!

D Q[y1, : : : , yh]=hyniC1
i j i D 1, : : : , hi.
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Since both{x1,:::,xh} and{y1,:::,yh} are sets of generators ofH2(BhIQ), we can write

yi D

h
X

jD1

ci j x j for i D 1, : : : , h and ci j 2 Q,

where the determinant of the matrixC D (ci j )h�h is non-zero. We may assume that
ci j ’s are irreducible fractions. Multiplying (ci ,1, : : : , ci ,h) by the least common denomi-

nator r i of a set{ci ,1, : : : ,ci ,h}, we can get a primitive elementzi D r i yi D r i
Ph

jD1 ci j x j

in H2(BhIZ) such thatzniC1
i D r niC1

i yniC1
i is zero in H�(BhIZ) for eachi D 1, : : : , h.

Since the elementsy1, : : : , yh are linearly independent, the elementsz1, : : : , zh are
also linearly independent. Sinceyni

i is not zero inH�(BhIQ), zni
i cannot be zero in

H�(BhI Z). This proves the lemma.

Lemma 3.3 ([4]). Let Bm be an m-stage generalized Bott manifold. Then the set

{bxmC w 2 H2(Bm) j 0¤ b 2 Z, w 2 H2(Bm�1), (bxmC w)nmC1
D 0}

lies in a one-dimensional subspace of H2(Bm) if it is non-empty.

Proof. To satisfy (bxmC w)nmC1
D 0, we needbc1(�m) D (nmC 1)w.

Lemma 3.4 ([4]). For an element zD
Ph

iD1bi xi 2 H2(Bh), if bi is non-zero, then
zni cannot be zero in H�(Bh).

Proof. If we expand
�

Ph
iD1 bi xi

�ni , there appears a non-zero scalar multiple of
xni

i becausebi ¤ 0. Then,zni cannot belong to the ideal generated by the polynomials

xi
Qni

jD1

�

Pi�1
kD1 ai

jk xk C xi
�

, hence it is not zero inH�(Bh).

Now we can prove Proposition 1.1.

Proof of Proposition 1.1. If each vector bundle�i satisfies the conditions (1.2),
then (xi C 1=(ni C 1)c1(�i ))niC1 is zero in H�(BhIQ). Since the set

�

xi C
1

ni C 1
c1(�i ) i D 1, : : : , h

�

generatesH�(BhIQ) as a graded ring, this shows thatBh is Q-trivial.
Conversely, if a generalized Bott manifold isQ-trivial, then there are linearly in-

dependent and primitive elementsz1, : : : , zh in H2(BhI Z) such thatzniC1
i is zero but

zni
i is not zero inH�(Bh) by Lemma 3.2. We can putzi D

Ph
jD1 bi j x j with bi j 2 Z

for eachi D 1, : : : , h.
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Now, consider a map� W {1, : : : , h} ! N given by j 7! n j . Further assume that
the image of� is the set{N1, : : : , Nm} with N1 < � � � < Nm. We will show inductively
that eachzi can be written asr i (xi C 1=(�(i )C 1)c1(�i )) for somer i 2 Z n {0}.

CASE 1: Assumei 2 ��1(N1). Let ��1(N1) WD {i1, : : : , i
�

} with i1 < � � � < i
�

.
We havezN1C1

i D 0. Then, by Lemma 3.4, we can see that

(3.1) zi D
X

j2��1(N1)

bi j x j ,

that is, bi j 0 D 0 for j 0 � ��1(N1). Note that for eachi 2 ��1(N1), one of bi j ’s is
nonzero for j 2 ��1(N1) because the set{zi j i 2 ��1(N1)} is linearly independent.
For somei p 2 �

�1(N1), if bi pi
�

is nonzero, thenzi p 2 H2(Bi
�

) and bi i
�

D 0 for all
i 2 ��1(N1) n {i p} by Lemma 3.3. Putwi

�

WD zi p . If biq i
��1 is nonzero for someiq 2

�

�1(N1)n{i p}, thenziq 2 H2(Bi
��1) andbi i

��1 D 0 for all i 2 ��1(N1)n{i p,iq}. Now, put

wi
��1 WD ziq . In this way, for eachi 2 ��1(N1), we can obtainwi 2 H2(Bi ) such that

wi � H2(Bi�1) andwN1C1
i D 0 in H�(Bh). Moreover, from the proof of Lemma 3.3,

we can write

(3.2) wi WD r i

�

xi C
1

N1C 1
c1(�i )

�

2 H2(Bi )

for each i 2 ��1(N1). In particular, if N1 D 1, thenwi is of the form either�xi or
�(2xi C c1(�i )) for i 2 ��1(N1). Furthermore, without loss of generality, we may as-
sume thatzi D wi for i 2 ��1(N1).

CASE 2: Assume thatzk D rk(xkC1=(�(k)C1)c1(�k)) for N1 � �(k) � Nn�1 and
let l 2 ��1(Nn). Then we havezNnC1

l D 0. Then by Lemma 3.4, we can easily see that

zl D
X

k2��1(N
<n)

blk xk C
X

j2��1(Nn)

bl j x j ,

where N
<n D {N1, : : : , Nn�1}. That is,bl j 0 D 0 for j 0 � ��1(N

�n). SincezNnC1
l is zero

in H�(Bh), we have

(3.3)

 

X

k2��1(N
<n)

blk xk C
X

j2��1(Nn)

bl j x j

!NnC1

D

X

k2��1(N
<n)

fk(x1, : : : , xh)(x�(k)C1
k C c1(�k)x�(k)

k C � � � C c
�(k)(�k)xk)

C

X

j2��1(Nn)

bNnC1
l j (xNnC1

j C c1(� j )x
Nn
j C � � � C cNn(� j )x j )

as polynomials, wherefk(x1, : : : , xh) is a homogeneous polynomial of degreeNn �

�(k) for eachk 2 ��1(N
<n). Note that for eachl 2 ��1(Nn), one of bl j ’s is non-zero
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for j 2 ��1(Nn) from the linearly independency of the set{zi j i 2 ��1(N
�n)}. Let

�

�1(Nn) WD {l1, : : : , l
�

} with l1 < � � � < l
�

. Assumebl pl
�

is nonzero for somel p 2

�

�1(Nn). Substitutingl D l p into (3.3) and comparing the monomials containingxNn
l
�

as a factor on both sides of (3.3), we have

(Nn C 1)

0

B

B

�

X

k2��1(N
<n)

bl pkxk C
X

j2��1(Nn)
j¤l

�

bl p j x j

1

C

C

A

D bl pl
�

c1(�l
�

).

Sincec1(�l
�

) belongs toH2(Bl
�

�1), we can see thatbl pk D 0 for k > l
�

. That is,

zl p D

X

k2��1(N
<n)

k<l
�

bl pkxk C
X

j2��1(Nn)

bl p j x j .

Thus, we can see thatzl p 2 H2(Bl
�

) andbll
�

D 0 for all l 2 ��1(Nn)n{l p} by Lemma 3.3.
Putwl

�

WD zl p . Now assume thatblq l
��1 is nonzero for somelq 2 ��1(Nn) n {l p}. Sub-

stituting l D lq into (3.3) and comparing the monomials containingxNn
l
��1

as a factor on
both sides of (3.3), we have

(Nn C 1)

0

B

B

�

X

k2��1(N
<n)

blqkxk C
X

j2��1(Nn)
j<l

��1

blq j x j

1

C

C

A

D blq l
��1c1(�l

��1).

Sincec1(�l
��1) belongs toH2(Bl

��1�1), we can see thatblqk D 0 for k > l
��1, and hence,

zlq D
X

k2��1(N
<n)

k<l
��1

bl pkxk C
X

j2��1(Nn)
j<l

�

bl p j x j .

Thus, we can see thatzlq 2 H2(Bl
��1) and bll

��1 D 0 for all l 2 ��1(Nn) n {l p, lq} by
Lemma 3.3. Now, putwl

��1 WD zlq . In this way, for eachl 2 ��1(Nn), we can ob-

tain wl 2 H2(Bl ) such thatwl � H2(Bl�1) andwNnC1
l D 0 in H2(Bh). Moreover, from

the proof of Lemma 3.3,wl can be written asr l (xl C 1=(Nn C 1)c1(�l )). Furthermore,
without loss of generality, we may assume thatzl D wl for l 2 ��1(Nn).

By Cases 1 and 2, we can see that, for eachi D 1, : : : , h, we can write

zi D r i

�

xi C
1

ni C 1
c1(�i )

�
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for somer i 2 Z n {0}. Therefore,{(ni C 1)xi C c1(�i )}niC1 is zero in H�(Bh). From
this, we can see

(ni C 1)kck(�i ) D

�

ni C 1

k

�

c1(�i )
k and c1(�i )

niC1
D 0

k D 1, : : : , ni .

By using Proposition 1.1, we can prove Theorem 1.2.

Proof of Theorem 1.2. We first prove the implication (1)) (2). By Propos-
ition 1.1, we have the relation

(3.4) (ni C 1)2c2(�i ) D
ni (ni C 1)

2
c1(�i )

2.

If ni D 2, from (2.2) and (3.4), we have

(3.5)
{(ai

11x1C � � � C ai
1,i�1xi�1)C (ai

21x1C � � � C ai
2,i�1xi�1)}2

D 3(ai
11x1C � � � C ai

1,i�1xi�1)(ai
21x1C � � � C ai

2,i�1xi�1).

For j D 1, : : : , i � 1, sincex2
j ¤ 0 in H�(Bi ), by comparing the coefficients ofx2

j

on both sides of (3.5), we have (ai
1 j C ai

2 j )
2
D 3ai

1 j a
i
2 j whose integer solution is only

ai
1 j D ai

2 j D 0. If ni D n > 2, then we have

(3.6)

n{(ai
11x1C � � � C ai

1,i�1xi�1)C � � � C (ai
21x1C � � � C ai

2,i�1xi�1)}2

D 2(nC 1){(ai
11x1C � � � C ai

1,i�1xi�1)(ai
21x1C � � � C ai

2,i�1xi�1)C � � �

C (ai
n�1,1x1C � � � C ai

n�1,i�1xi�1)(ai
n,1x1C � � � C ai

n,i�1xi�1)}.

Since x2
j ¤ 0 in H�(Bi ) for j D 1, : : : , i � 1, by comparing the coefficients ofx2

j on
both sides of (3.6) we have

(3.7) n(ai
1, j C � � � C ai

n j )
2
D 2(nC 1)

X

1�k<l�n

ai
k j a

i
l j .

The equation (3.7) is equivalent to

n
X

mD1

(ai
m, j )

2
C

X

1�k<l�n

(ai
k j � ai

l j )
2
D 0.

Therefore,ai
1 j D � � � D ai

n j D 0 for each j D 1, : : : , i � 1, and hence, in any case,c(�i )
is trivial for all i D 1, : : : , h.
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The implications (2)) (3) and (3)) (1) are clear.
The implication (3), (4) is proved by Choi-Masuda-Suh [4].
Therefore, all four conditions are equivalent.

From Theorem 1.2, we have the following corollary.

Corollary 3.5. Let M be a quasitoric manifold. If H�(MIQ) is isomorphic to
H�

�

Qh
iD1CPni

IQ

�

, then M is homeomorphic to
Qh

iD1CPni provided ni > 1 for all i .

Proof. By [3], if H�(MIQ) is isomorphic toH�

�

Qh
iD1CPni

IQ

�

, thenM is homeo-
morphic to a generalized Bott manifold. But aQ-trivial generalized Bott manifolds with
ni > 1 is diffeomorphic to

Qh
iD1 CPni . Hence,M is homeomorphic to

Qh
iD1 CPni .

The following is the counter-example of Question 1.1.

EXAMPLE 3.1. Let B be a fiber bundleP(C3
� � ) over CP2 and let B0 be a

fiber bundleP(C3
� �


2) overCP2, where� is the tautological line bundle overCP2.
Let y (respectively,Y) denote the negative of the first Chern class of the tautological
line bundle overB2 (respectively,B0

2). Then their cohomology rings are

H�(B) D Z[x, y]=hx3, y(y3
C xy2)i

and

H�(B0) D Z[X, Y]=hX3, Y(Y3
C 2XY2)i.

Then the map� defined by �(x) D 2X and �(y) D Y is an isomorphism from
H�(BIQ) ! H�(B0

IQ). But this � is not aZ-isomorphism. Suppose that is an
isomorphismH�(BI Z)! H�(B0

I Z). Then there exist�, �,  , Æ in Z such that

�

 (x)
 (y)

�

D

�

� �

 Æ

��

X
Y

�

and �Æ � � D �1. Since (x3) D 0 in H�(B0

I Z), we have

(�X C �Y)3
D �

3X3

as polynomials. So, we can see that� is zero and� D �1, and henceÆ D �1. Since
 (y(y3

C xy2)) is zero in H�(B0

I Z), we have

(3.8) ( X C ÆY)3((� C  )X C ÆY) D (aXC bY)X3
C cY(Y3

C 2XY2)

as polynomials inZ[X,Y]. By comparing the coefficients ofXY3 on both sides of (3.8),
we can see that

(3.9) 2cD 3 Æ3
C (� C  )Æ3

D Æ(� C 4 ).
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Since the right hand side of (3.9) is odd, there is no such an integer c. Hence, there
is no suchZ-isomorphism .

Now considerQ-trivial generalized Bott manifoldsBh which haveCP1-fibers, that
is, nk D 1 for somek 2 [h].

Lemma 3.6. Let Bh and B0h be two h-stage generalized Bott towers. If the asso-
ciated vector matrices to them are

AD

0

B

B

B

B

B

B

�

1

�

. ..

� � 1
a1 � � � ah�2 1
b1 � � � bh�2 0 1

1

C

C

C

C

C

C

A

and

A0

D

0

B

B

B

B

B

B

�

1

�

. ..

� � 1
b1 � � � bh�2 1
a1 � � � ah�2 0 1

1

C

C

C

C

C

C

A

,

respectively, then Bh and B0h are equivariantly diffeomorphic.

Proof. Note that this lemma can be seen by the fact thatBh and B0

h are equi-
variantly diffeomorphic if two associated vector matricesare conjugated by a permuta-
tion matrix, see the paper [3]. It is obvious that

A0

D E
�

AE�1
�

,

where� WD (1, : : : , h�2,h, h�1) is the permutation on [h] which permutes onlyh�1
and h.

Now, we can prove Theorem 1.3.

Proof of Theorem 1.3. LetBh be aQ-trivial generalized Bott manifold whose as-
sociated matrix is of the form (2.4).

Consider a map� W {1, : : : , h} ! N given by j 7! n j and assume that the image
of � is the set{N1, : : : , Nm} with 1D N1 < N2 < � � � < Nm.

For eachi 2 ��1(1), by Proposition 1.1, we havec1(�i )2
D 0 in H�(Bh). Since

x2
k ¤ 0 in H�(Bh) for k � ��1(1), we can see thatai

1k D 0 for k 2 [i � 1] with nk > 1.
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Now suppose thatn j > 1. Then by Proposition 1.1, we have the relation

(n j C 1)2c2(� j ) D
n j (n j C 1)

2
c1(� j )

2.

Since x2
k ¤ 0 in H�(Bh) for nk > 1, we can show thata j

k D 0 by using the same
argument to the proof of Theorem 1.2.

Since a j
k D 0 for all nk > 1, by Lemma 3.6,Bh is diffeomorphic to theQ-trivial

generalized Bott manifoldB0 whose associated matrix is of the form

(3.10) (A0)T
D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1
a2

11 1
...

...
.. .

ar
11 ar

1,2 � � � 1
arC1

1 arC1
2 � � � arC1

r 1
arC2

1 arC2
2 � � � arC2

r 0 1
...

... � � �

...
...

.. .

ah
1 ah

2 � � � ah
r 0 � � � 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where r is the cardinality of the set��1(1), that is, r D j��1(1)j. This proves the
theorem.

ACKNOWLEDGEMENT. The authors are thankful to the referee for kind comments
which improve the paper. They also thank Suyoung Choi for hisinvaluable comments.

References

[1] A. Borel and F. Hirzebruch:Characteristic classes and homogeneous spaces, I, Amer. J. Math.
80 (1958), 458–538.

[2] S. Choi and M. Masuda:Classification ofQ-trivial Bott manifolds, J. Symplectic Geom.10
(2012), 447–461.

[3] S. Choi, M. Masuda and D.Y. Suh:Quasitoric manifolds over a product of simplices, Osaka J.
Math. 47 (2010), 109–129.

[4] S. Choi, M. Masuda and D.Y. Suh:Topological classification of generalized Bott towers, Trans.
Amer. Math. Soc.362 (2010), 1097–1112.

[5] F.P. Peterson:Some remarks on Chern classes, Ann. of Math. (2)69 (1959), 414–420.



1092 S. PARK AND D.Y. SUH

Seonjeong Park
Division of Mathematical Models
National Institute for Mathematical Sciences
463-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-811
Korea
e-mail: seonjeong1124@nims.re.kr

Dong Youp Suh
Department of Mathematical Sciences
KAIST
291 Daehak-ro, Yuseong-gu, Daejeon 305-701
Korea
e-mail: dysuh@math.kaist.ac.kr


