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Abstract
In this paper, for a compact special Legendrian submanifoldwith smooth bound-

ary of contact Calabi–Yau manifolds we study the deformation of it with boundary
confined in an appropriately chosen contact submanifold of codimension two which
we also call a scafford (Definition 2.3) by analogy with Butsher [1]. Our first result
shows that it cannot be deformed, and the second claims that deformations of such
a special Legendrian submanifold forms a one-dimensional smooth manifold under
suitably weaker boundary confinement conditions. They may be viewed as supple-
ments of the closed case considered by Tomassini and Vezzoni[17].

1. Introduction and main results

The calibrated geometry was invented by Harvey and Lawson intheir seminal paper
[5]. A class of important calibrated submanifolds is special Lagrangian submanifolds in
Calabi–Yau manifolds. Let (M, J, !,�) be a real 2n-dimensional Calabi–Yau manifold.
A special Lagrangian submanifold of it is a submanifoldL with !jL D 0 and Im(�)jL D
0. In 1996 McLean [10] developed the deformation theory of special Lagrangian sub-
manifolds (and other special calibrated submanifolds) andshowed:

McLean theorem ([10]). A normal vector field V to a compact special Lagrang-
ian submanifold L without boundary in(M, J,!,�) is the deformation vector field to a
normal deformation through special Lagrangian submanifolds if and only if the corres-
ponding1-form (J V)[ on L is harmonic. There are no obstructions to extending a first
order deformation to an actual deformation and the tangent space to such deformations
can be identified through the cohomology class of the harmonic form with H1(LI R).

Since then the theory is generalized to various situations.See [6, 7, 13] and refer-
ences therein. For example, S. Salur [14] generalized McLeantheorem to symplectic
manifolds. We here only list those closely related to ours. The first one is the case
of compact special Lagrangian submanifolds with nonempty boundary considered by
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Butsher [1]. He called a submanifoldL in the Calabi–Yau manifold (M, J, !,�) min-
imal Lagrangianif !jL D 0 and Im(ei �

�)jL D 0 for some� 2 R. If L is a Lagrangian
submanifold of (M, !) with nonempty boundary�L and N 2 0(T

�L L) is the inward
unit normal vector field of�L in L, he defined ascaffold for L to be a submanifoldW
of M such that�L � W, the bundle (T W)! is trivial, and thatN is a smooth section
of the bundle (T

�L W)!.

Butsher theorem ([1]). Let L be a special Lagrangian submanifold of a com-
pact Calabi–Yau manifold M with non-empty boundary�L and let W be a symplectic,
codimension two scaffold for L. Then the space of minimal Lagrangian submanifolds
sufficiently near L(in a suitable C1,� sense) but with boundary on W is finite dimen-
sional and is parametrized over the harmonic1-forms of L satisfying Neumann bound-
ary conditions.

The work inspired Kovalev and Lotay [8] to study the analogous deformation problem
of a compact coassociative 4-fold with boundary inside a particular fixed 6-dimensional
submanifold with a compatible Hermitian symplectic structure in a 7-manifold with closed
G2-structures. Recently Gayet and Witt [3] also investigatedthe deformation of a compact
associative submanifold with boundary in a coassociative submanifold in a topological
G2-manifold.

As a natural generalization of the Calabi–Yau manifolds in the context of contact
geometry Tomassini and Vezzoni [17, Definition 3.1] introduced the notion of a con-
tact Calabi–Yau manifold, cf. Definition 2.1. Let (M, �, J, �) be a (2nC1)-dimensional
contact Calabi–Yau manifold, andj W L ,! M be a compact special Legendrian sub-
manifold without boundary (cf. Definition 2.2). Two specialLegendrian submanifolds
j0W L ,! M and j1W L ,! M are calleddeformation equivalentif there exists a smooth
map F W L � [0, 1]! M such that
• F( � , t) W L � {t}! M is a special Legendrian embedding for anyt 2 [0, 1];
• F( � , 0)D j0, F( � , 1)D j1.
(cf. [17, Definition 4.4]). If there exists a diffeomorphism� 2 Diff( L) such that j1 D
j0 Æ � we say j0 and j1 to be equivalent. This yields an equivalent relation� among
all embeddings fromL to M. Let QM(L) be the set of special Legendrian submanifolds
of (M,�, J,�) which are deformation equivalent toj W L ,! M. Call M(L) WD QM(L)=�
the moduli space of special Legendrian submanifoldswhich are deformation equivalent
to j W L ,! M. Tomassini and Vezzoni [17, Theorem 4.5] proved:

Tomassini–Vezzoni theorem([17, Theorem 4.5]). Let (M, �, J, �) be a contact
Calabi–Yau manifold of dimension 2nC 1, andL � M be a compact special Legendr-
ian submanifold without boundary. Then the moduli spaceM(L) is a smooth one-
dimensional manifold.
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Motivated by the above works, we study in this paper the local deformations of
compact special Legendrian submanifolds with (nonempty) boundary. (The boundary is
always assumed to be smooth throughout this paper.) Different from the case�L D ;
considered by Tomassini and Vezzoni [17], it is showed in Remark 5.1 that the moduli
spaceM(L) is infinite dimensional.

In order to get interesting results it is necessary to add some boundary condi-
tions. Inspired by [1, Definition 1] we introduce a notion ofscaffold for L in Def-
inition 2.3, which is a suitable contact submanifoldW. Two special Legendrian sub-
manifolds j0 W L ,! M and j1 W L ,! M with j0(�L) � W and j1(�L) � W are called
deformation equivalentif there exists a smooth mapF W L � [0, 1]! M such that
• F( � , t) W L � {t} ! M is a special Legendrian embedding withF(�L , t) � W for
any t 2 [0, 1];
• F( � , 0)D j0, F( � , 1)D j1.

Themoduli space of special Legendrian submanifoldswhich are deformation equiva-
lent to j W L ,! M with j (�L) � W is defined as

M(L , W) WD {special Legendrian submanifolds of (M, �, J, �)
which are deformation equivalent toj W L ,! M
with j (�L) � W and are nearj }=�.

Our first result is

Theorem 1.1. Let (M,J,�,�) be a contact Calabi–Yau manifold, and L be a com-
pact special Legendrian submanifold with nonempty boundary �L inside a scaffold W
of codimension two. Then L cannot be deformed as a special Legendrian submanifold
with boundary confined in W. In other wordsM(L , W) only consists of the class of j .

This is in contrast with the case of compact special Legendrian submanifolds without
boundary considered in Tomassini–Vezzoni theorem. Such a local rigidity is similar to the
case of a compact simply connected special Lagrangian submanifold without boundary in
McLean theorem, and Simons’ rigidity result of stable minimal submanifolds with fixed
boundary in [16].

Now we turn to consider weaker boundary conditions. Let (M,�, J,�) be a (2nC1)-
dimensional contact Calabi–Yau manifold, andL � M be a compact special Legendrian
submanifold with (non-empty) boundary. A normal vector field V to L is calledbound-
ary �-constantif �(V)j

�L is constant. The following result, which is stated in a similar
way to McLean theorem above, is similar to that of Tomassini and Vezzoni [17].

Theorem 1.2. Let (M,�,J,�) be a (2nC1)-dimensional contact Calabi–Yau mani-
fold, and and L� M be a compact special Legendrian submanifold with(non-empty)
boundary. A boundary�-constant normal vector field V to L is the deformation vector
field to a normal deformation through special Legendrian submanifolds if and only if
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�(V) is constant. Moreover the tangent space to such deformations is given byRR
�

,
where R

�

is the Reeb vector field of�.

Similar to the caseL being compact and without boundary considered in The-
orem 4.5 of [17] the deformation in Theorem 1.2 is also given by the isometries gen-
erated by the Reeb vector field, which is completely different from the deformation
without boundary constraints as proved in Remark 5.1.

The key points in the proofs of Theorems 1.1 and 1.2 are to find asuitable def-
inition of scaffold for a special Legendrian submanifold with boundary and to prove
a corresponding result with Lemma 5 of [1], Lemma 3.1. For theformer we propose
and study it in Section 2. The proof of the latter will be givenin Section 3 and is
more troublesome because we need to use not only contact neighborhood theorem but
also symplectic neighborhood theorem. In Sections 4 and 5, we complete the proofs
of Theorems 1.1 and 1.2 respectively.

2. Preliminaries

2.1. Contact Calabi–Yau manifolds and special Legendrian submanifolds. Let
(M, �) be a contact manifold with contact distribution� D ker� and Reeb vector field
R
�

. Then � WD d�=2 restricts to a symplectic vector bundle structure on� ! M, �j
�

,
and every compatible complex structureJ 2 J (� , �j

�

) gives a Riemannian metricgJ

on the bundle� ! M, gJ(u, v) D �(u, Jv) for u, v 2 � . By setting J(R
�

) D 0 we can
extend J to an endomorphism ofT M, also denoted by Jwithout special statements.
Clearly

(2.1) J2
D �I C � 
 R

�

, and g WD gJ C � 
 �

is a Riemannian metricg on M, whereI is the identity endomorphism onT M. Define
a Nijenhuis tensor ofJ by

NJ(X, Y) D [ J X, JY] � J[X, JY] � J[ J X, Y] C J2[X, Y]

for all X, Y 2 T M. If NJ D �d� 
 R
�

then the pair (�, J) is a Sasakian structure
on M, and the triple (M, �, J) is called aSasakian manifold. On such a manifold it
holds thatd3r

B(M) � 3r
B(M) and J(3r

B(M)) D 3

r
B(M), where3r

B(M) is the set of
all differential r -form 
 on M with �R

�


 D 0 andLR
�


 D 0. So we have a split

3

r
B(M)
 C D

M

pCqDr

3

p,q
J (� )

and � D (1=2) d� 2 31,1
J (� ).
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DEFINITION 2.1 ([17, Definition 2.1]). A contact Calabi–Yau manifoldis a
quadruple (M,�, J,�) consisting of a (2nC1)-dimensional Sasakian manifold (M,�, J)
and a nowhere vanishing basic form� 2 3n,0

J (� ) such that

� ^ N� D cn
�

n

n!
and

d� D 0,

wherecn D (�1)n(nC1)=2(2i )n and � D (1=2) d�.

DEFINITION 2.2 ([17, Definition 4.2]). Let (M2nC1,�, J, �) be a contact Calabi–
Yau manifold. An embeddingpW L ! M is called aspecial Legendrian submanifoldif
dim L D n, p�� D 0 and p� Im � D 0.

Clearly, p�� D p�(Re�) is a volume form onL. Thus every special Legendrian
submanifold has a natural orientation. By [10, p. 722] or [2,Proposition 2.6] we have

(2.2) p�(�Y Im �) D � ? (p�(�Y�)) D �
1

2
? (p�(�Yd�))

for any sectionY W L ! p�� , where the star operator? is computed with respect to
p�(gJ) D p�(� Æ (id � J)) and the volume form Vol(L) WD p�� D p�(Re�).

For any n-dimensional manifoldN, the cotangent bundleT�N has a canonical
1-form �can. The 1-jet bundleJ1N D R � T�N is a contact manifold with contact
form � D �

�

1 (dt) � ��2 (�can) and Reeb vector field�=�t , where t 2 R is the real par-
ameter and�i is the projection fromR � T�N onto the i -th factor, i D 1, 2. (See [9,
Example 3.44]).

2.2. Boundary conditions. Corresponding to [1, Definition 1] we introduce:

DEFINITION 2.3. Let L be a submanifold of the contact manifold (M,� D ker�)
with boundary�L and let N 2 0(T

�L L) be the inward unit normal vector field of�L
in L. A contact submanifold (W, � 0) of (M, � ) is called ascaffold for L if
(i) �L � W,
(ii) N 2 0(� 0?j

�L ), and
(iii) the bundle � 0? is trivial, where � 0? is the symplectically orthogonal complement
of � 0 in (� jW, �j

� jW ).

Given a contact manifold (M,�) let J and g be as in (2.1). If (W, � 0) is a contact
submanifold of (M, � D ker�), that is, TxW \ �x D �

0

x for all x 2 W, the following
claim shows that the condition (iii) of Definition 2.3 is equivalent to one that (T W)?g

is trivial, where (T W)?g denotes the orthogonal complementary bundle ofT W in TW M
with respect to the metricg.
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Claim 2.4. (T W)?g
D (J� 0)? D J(� 0?).

Proof. For x 2 W, since� 0?x � �x and Jx restricts to a complex structure on�x

we have

�

0?

x D {v 2 �x j �(v, u) D 0 8u 2 � 0x}

D {v 2 �x j �(Jv, Ju) D 0 8u 2 � 0x}

D {v 2 �x j gJ(Jv, u) D 0 8u 2 � 0x}

D {v 2 �x j g(Jv, bR
�

C u) D 0 8bR
�

C u 2 R
�

RC �

0

x}

D {v 2 �x j g(Jv, Y) D 0 8Y 2 TxW}.

This implies J� 0? D (T W)?g or � 0? D J(T W)?g . Moreover, bothJ� 0? and � 0? are
contained in� jW, and � is J-invariant. It is easy to check thatJ� 0? D (J� 0)?.

Proposition 2.5. Let L be a Legendrian submanifold of the contact manifold
(M, � D ker�) with (nonempty) boundary�L and let W be a scaffold for L. Then
�L is a Legendrian submanifold of(W, � 0).

Proof. SinceL is the Legendrian submanifold of (M,� ), T L � � jL . Moreover the
definition of the scaffold implies thatT�L � T

�L W and thusT�L � T
�L W \ � j

�L D

�

0

j

�L . This shows that the boundary�L is a Legendrian submanifold of (W, � 0).

Under the assumptions of Proposition 2.5, letft W L ! M be a deformation ofL
satisfying ft (�L) � W for all t , and let V D (d=dt) ft jtD0 be the corresponding de-
formation vector field. Clearly,V(x) 2 TxW for any x 2 �L. Since L is a Legendrian
submanifold, we haveT L � � jL . Note that N(x) 2 Tx L for any x 2 �L. Then the
condition (ii) of Definition 2.3 implies thatN(x) 2 � 0?x , and soN(x) 2 Tx L \ � 0?x and

Jx N(x) 2 Jx(Tx L \ � 0?x ) � Jx�
0?

x � Jx�x D �x.

Since W is a contact submanifold, we may writeV(x) D Y C aR
�

(x), whereY 2 � 0x.
By Claim 2.4, Jx N(x) 2 Jx�

0?

x D (TxW)?g and thus

0D g(Jx N(x), V(x)) D gJ(Jx N(x), Y) D �(Jx N(x), JxY) D �(N(x), Y).

Note thatY D V(x) � �(V(x))R
�

(x) and that�R
�

d� D 0. We get

Claim 2.6. If f t W L ! M be a deformation of L satisfying ft (�L) � W for all
t , then the corresponding deformation vector field V satisfiesNeumann boundary con-
dition: d�(N(x), V(x)) D 0 8x 2 �L.

The Neumann boundary condition implies�(V j
�L ) D 0, see Remark 3.5.
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EXAMPLE 2.7. It is not hard to construct an example satisfying the boundary
conditions of Theorems 1.1 and 1.2. Let (x1, : : : , xn, y1, : : : , yn, z) denote the standard
Euclidean coordinate inR2nC1. The standard contact Calabi–Yau structure (�, J, �) on
R

2nC1 is given by

� D 2 dz� 2
n
X

jD1

y j dxj , � D (dx1C i dy1) ^ � � � ^ (dxn C i dyn)

and

J W � D Ker(�) D Span({y1�zC �x1, : : : , yn�zC �xn , �y1, : : : , �yn})! �

where J is given by J Xr D Yr D �yr and JYr D �Xr D �yr �z � �xr , r D 1, : : : , n.
(See [17, Example 3.2]). Observe that this structure is invariant under the action of the
subgroupZn

� {0}nC1 of Z2nC1. It descends to such a structure onM D R2nC1
=(Zn

�

{0}nC1) D Rn
=Z

n
� R

nC1, also denoted by (�, J, �) without occurs of confusions. As
usual we write the point ofM as ([x1], : : : , [xn], y1, : : : , yn, z). Let n � 2. Consider
the contact submanifold of (M, �), W D W0 [W1,

Wk D

�

([x1], : : : , [xn], y1, : : : , yn�1, 0, z) 2 M xn D
kC 1

3

�

, k D 0, 1.

Since the contact form on it is�0 D �jW D 2dz� 2
Pn�1

jD1 y j dxj , it is easy to see that

the symplectically orthogonal complementary bundle� 0? of � 0 D Ker(�0) in (� jW,�j
� jW )

is trivial. In fact, we have

�

0

D Span({y1�zC �x1, : : : , yn�1�zC �xn�1, �y1, : : : , �yn�1}),

�

0?

D Span({yn�zC �xn , �yn}).

ConsiderL D {([x1], :::, [xn],0,:::,0)2 M j 1=3� xn � 2=3}. It is a compact Legendrian
submanifold with boundary�L D �0L [ �1L, where

�kL D {([x1], : : : , [xn], 0, : : : , 0) 2 M j xn D (kC 1)=3}, k D 0, 1.

Clearly, �kL � Wk, k D 0, 1, and thus�L � W. By (2.1) the metricg D gJ C � 
 �

satisfies: g(R
�

, R
�

) D 1, g(Xr , Xs) D g(Yr , Ys) D Ærs and g(Xr , Ys) D g(Xr , R
�

) D
g(Yr , R

�

) D 0 for r, sD 1, : : : , n. For p D ([x1], : : : , [xn], 0, : : : , 0) 2 �0L we have

TpL D Span({�x1jp, : : : , �xn jp}), Tp�0L D Span({�x1jp, : : : , �xn�1jp}).

Since X j jp D �x j jp, j D 1, : : : , n, it follows that Xnjp is the inward unit normal vector
at p of �L in L. Similarly, for p D ([x1], : : : , [xn], 0, : : : , 0) 2 �1L the inward unit
normal vector atp of �L in L is �Xnjp. Namely the inward unit normal vector field
N of �L in L belongs to0(� 0?j

�L ). HenceW is a scaffold forL.
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3. Constructing a new metric

In the study of the deformation of the special Legendrian submanifold L without
boundary by Tomassini and Vezzoni [17], the deformations ofL are parameterized by
sections of the normal bundleN(L) using the exponent map exp(V) W L ! M. How-
ever, in our case, sinceW is generally not totally geodesic, it cannot be assured that
the image of�L under exp(V) sits in W. In order to fix out the problem we shall fol-
low the ideas in [1] to construct a new metricOg such that the image of�L under the
corresponding exponent map is contained inW, that is, such thatW is totally geodesic
near�L. The following is an analogue of [1, Lemma 5].

Lemma 3.1. Let L be a compact Legendrian submanifold of the contact manifold
(M, J, �) with (nonempty) boundary�L and let W be a scaffold for it of codimension
two. Then there is a neighborhoodU D U (�L , M) of �L in M and a contact em-
bedding� W U ! R � T�(�L) � R2 such that the following conditions hold:
(i) �(W \U ) � R � T�(�L) � {(0, 0)},
(ii) �(�L) D {0} � �L � {0, 0},
(iii) ( t, x, v, s1, s2) 2 �(U )! (t, x, v, 0, 0)2 �(U ),
(iv) for any nowhere zero smooth section VW W! �

0?

jW, � can be required to satisfy
�

�

(V(p)) D (�=�s1)j
�(p) for any p2 �L, where (s1, s2) the coordinate functions ofR2.

Note that the condition (iv) is slightly weaker than the corresponding one of [1,
Lemma 5 (4)]. It is sufficient for us to construct a suitable metric in Proposition 3.2.
Even so our proof uses not only contact neighborhood theorembut also symplectic
neighborhood theorem in contrast with the proof of [1, Lemma5 (4)]. It is a key of
our proof.

Proof of Lemma 3.1. Since�L is a compact Legendrian submanifold ofR �
T�(�L) without boundary, from the Neighborhood Theorem for Legendrian (cf. Corol-
lary 2.5.9 in [4]) it follows that there exists a contactomorphism �0 from a neigh-
borhood U0(�L , W) of �L in W to one V0(0

�L ) of the zero section ofT�(�L) in
R � T�(�L) such that

(3.1) �0(x) D (0, x) 8x 2 �L.

Fix a Riemannian metric on the bundleT�(�L), and then take a sufficiently small
� > 0 such that

(3.2) M 0

1 WD {(t, x, v) W jt j � �, v 2 T�

x (�L) with jvj � �} � V0(0
�L ).

We get another neighborhood of�L in W,

(3.3) M 0

0 WD �
�1
0 (M 0

1) � U0(�L , W) � W.
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Then �0 W M 0

0 ! M 0

1 is a contactomorphism. Obverse thatM 0

0 and M 0

1 are compact
contact submanifolds ofW and T�(�L) � R with boundary and of codimension zero,
respectively.

Let �can denote the canonical 1-form onT�

�L. Recall that the contact form and
Reeb vector field onJ1

�L D R � T�(�L) are

(3.4) Q

� D dt � �can and R
Q

�

D

�

�t
.

Assume thats1, s2 are the coordinate functions ofR2. We have a contact form on
J1
�L � R2

D R � T�(�L) � R2,

(3.5) � D

Q

� � s1 ds2 D dt � �can� s1 ds2,

whose Reeb vector field is given byR
�

D �=�t . Denote by (ker(Q�))? the symplectically

orthogonal complement of ker(Q�) in ker(�) (with respect tod�). It is easily checked
that it is equal to the trivial bundle

Span

��

�

�s1
,
�

�s2

��

! J1
�L � R2.

Define M0 WD M, M1 WD R � T�(�L) � R2, and M 0

0 and M 0

1 as above. (Identify
M 0

1 � M 0

1 � {(0, 0)} � J1L � R2). Since � 0? is trivial we can pick two vector fields
V1, V2 such thatV1, V2 form a basis of� 0? and satisfyd�(V1, V2) D 0. There exists an
obvious symplectic vector bundle isomorphism

�

0?

jM 0

0
! Span

��

�

�s1
,
�

�s2

��

�

�

�

�

M 0

1

given by

8(V1(x)) D
�

�s1

�

�

�

�

(�0(x),0,0)

and

8(V2(x)) D
�

�s2

�

�

�

�

(�0(x),0,0)

for any x 2 M 0

0. By Theorem 2.5.15 of [4], we may extend�0 into a contactomorphism
�1 from a neighborhoodU (M 0

0) of M 0

0 in M0 D M to that U (M 0

1) of M 0

1 � M 0

1 �

{(0, 0)} in M1 such thatT�1j
�

0?

jM0

0
and8 are bundle homotopic (as symplectic bundle

isomorphisms) up to a conformality. (Note: From the proof of [4, Theorem 2.5.15] it
is not hard to see that the theorem still holds if compact contact submanifoldM 0

i have
boundary andM 0

i � Int(Mi ).)
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Actually, we may assume thatU (M 0

1) has the following form:

(3.6)
U (M 0

1) D {(t, x, v) W jt j < ", v 2 T�

x (�L) with jvj < "0}

� {(s1, s2) 2 R2
W js1j, js2j < Æ},

where 0< "0 < " and Æ > 0, and

U (M 0

0) WD ��1
1 (U (M 0

1)).

By suitably shrinkingU (M 0

0) and U (M 0

1) if necessary, we can require

W0 WD W \U (M 0

0) � U0(�L , W),(3.7)

�1(W0) � R � T�

�L � {(0, 0)},(3.8)

(t, x, v, s1, s2) 2 U (M 0

1)) �

�1
1 (t, x, v, 0, 0)2 W0.

Clearly, U (M 0

0) and �1 satisfy the conditions (i)–(iii) in Lemma 3.1.
For (iv) we need to modify�1 and U (M 0

0). Since�1 is a contactomorphism,

�1�(�
0?

jW0) � Span

��

�

�s1
,
�

�s2

��

�

�

�

�

�1(W0)

.

It follows that there exist smooth real functionsf1, f2 W W0! R such that

�1�(V(x)) D f1(x)
�

�s1

�

�

�

�

�(x)

C f2(x)
�

�s2

�

�

�

�

�(x)

and

j f1(x)j C j f2(x)j ¤ 0

for any x 2 W0, where V W W ! �

0?

jW is the given nowhere zero smooth section in
Lemma 3.1 (iv).

Take � > 0 sufficiently small so that

R
�

WD {(t, x, v, 0, 0)2 R � T�

�L � R2
W jt j � �, jvj � �} � �1(W0).

Consider the compact symplectic submanifold of (T�

�L � R2, �d�can� ds1 ^ ds2),

(3.9) S
�

WD {(x, v, 0, 0)2 T�

�L � R2
W jvj � �}.

Its symplectic normal bundle is

Span

��

�

�s1
,
�

�s2

��

�

�

�

�

S
�

,



DEFORMATIONS OF SPECIAL LEGENDRIAN SUBMANIFOLDS 683

and �1�(V) restricts to a nowhere zero smooth section

(3.10) p 7! f1 Æ �
�1(p)

�

�s1

�

�

�

�

p

C f2 Æ �
�1(p)

�

�s2

�

�

�

�

p

.

Obverse that there exists an obvious symplectic vector bundle isomorphism

9 W Span

��

�

�s1
,
�

�s2

��

�

�

�

�

S
�

! Span

��

�

�s1
,
�

�s2

��

�

�

�

�

S
�

which sends the section in (3.10) to one

p 7!
�

�s1

�

�

�

�

p

.

Hence the symplectic neighborhood theorem1 (cf. [9, Theorem 3.30]) yields a symplec-
tomorphism between neighborhoods ofS

�

in (T�

�L � R2, �d�can� ds1 ^ ds2),

' W N0(S
�

)! N1(S
�

)

such that

(3.11) '(p) D p and d'(p) D 9p

for any p 2 S
�

. In particular, we have

(3.12) d'(p)(�1�(V)jp) D
�

�s1

�

�

�

�

p

8p 2 S
�

.

Since (3.5) implies

ker(�)j(t,x,v,s1,s2) D T(x,v)T
�

�L � Span

��

�

�s1
,
�

�s2

��

�

�

�

�

(s1,s2)

,

the map

(3.13) �2 W R �N0(S
�

)! R �N1(S
�

), (t, p) 7! (t, '(p))

must be a contactomorphism with respect to the induced contact structure from (R �
T�(�L) � R2, �).

Take a neighborhoodU of �L in M such that

U � U (M 0

0) and �1(U ) � R �N0(S
�

),

(t, x, v, s1, s2) 2 �2(�1(U ))) (t, x, v, 0, 0)2 �2(�1(U )).

1From the proof of [9, Theorem 3.30] it is not hard to see that the theorem still holds if compact
symplectic submanifoldQ j have boundary andQ j � Int(M j ).
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Then the composition� WD �2 Æ (�1jU ) is a contact embedding fromU into (R �
T�(�L)�R2, �) such that the condition (iii) is satisfied. By (3.8) and (3.11) it is easy
to see that (i) is satisfied for� and U , i.e.

�(W \U ) � R � T�

�L � {(0, 0)}.

From (3.1) and (3.11) it follows that�(�L) D {0} � �L � {0, 0}. That is, (i) holds.
Finally, (3.12) implies that� satisfies the condition (iv), i.e.

d�(p)(V(p)) D
�

�s1

�

�

�

�

�(p)

8p 2 �L.

As in [1], with Lemma 3.1 we may construct the desired metricOg as follows.
STEP 1. Recall thatN the inward unit normal vector field of�L in L and N 2

0(� 0?j
�L ). Let U and� be as in the Lemma 3.1 with�

�

(N(p)) D (�=�s1)j
�(p) for any

p 2 �L. By shrinking W we assume thatN has been extended into a nowhere zero
section in0(� 0?jW). Hence using Lemma 3.1 (iii) we may define a metricg0 on �(U )
as follows:

g0(t, x, v, s1, s2) WD (��1)�(gjW(��1(t, x, v, 0, 0)))C ds1
 ds1C ds2
 ds2

for every (t, x, v, s1, s2) 2 �(U ).
STEP 2. Consider the metricg1 WD �

�g0 on U . Take a neighborhoodV of �L
in M such that the closure ofV is contained inU . Let � W M ! R be a smooth
function such that� D 1 on a neighborhoodV , and� D 0 outsideU . We then define
the metric Og by

Og WD �g0 C (1� �)g.

The following two propositions correspond to Propositions6 and 7 in [1],
respectively.

Proposition 3.2. For the neighborhoodV of �L in Step 2,W\V is totally geo-
desic with respect to the metricOg.

Proof. For anyp 2 W \ V , Lemma 3.1 gives a local contact coordinate system
around it,

O(p)! R � R

2n�2
� R

2, q 7! (t(q), z1(q), : : : , z2n�2(q), s1(q), s2(q))

such that
• for some smooth functionh W O(p)! R it holds that

(3.14) �jO(p) D eh

 

dt �
n�1
X

kD1

zn�1Ck dzk � s2 ds1

!

,
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and the Reeb fieldR
�

D �=�t ;
• W \O(p) 3 q 7! (t(q), z1(q), : : : , z2n�2(q)) is a a local contact coordinate system
around p in the relatively open neighborhoodW \O(p) and

(3.15) �jW\O(p) D eh0

 

dt �
n�1
X

kD1

zn�1Ck dzk

!

,

whereh0 D hjW\O(p). Moreover the Reeb field of�jW\O(p) is given by the restriction
of �=�t to W \O(p).

For convenience we writet as z0. In the corresponding local coordinate vector
fields

�

�z0
D

�

�t
,
�

�z1
,
�

�z2
, : : : ,

�

�z2n�2
,
�

�s1
,
�

�s2

we have

(3.16) Og D
n�1
X

k,lD0

(gjW)kl dzk 
 dzl C ds1
 ds2.

It is easily computed that

Og

�

r

�=�zk

�

�zl
,
�

�si

�

D

1

2
( Ogzksi ,zl C Ogzl si ,zk � Ogzkzl ,si ) D 0.

So the second fundamental form ofW\V with respect toOg vanishes, that is,W\V

is totally geodesic.

Proposition 3.3. Let L be a compact Legendrian submanifold with boundary of
the contact manifold(M,�), and let W be a codimension two scaffold for L. Denote by
ON(L) the normal bundle of L with respect toOg. For p2 �L, suppose thatOV 2 ONp(L)

satisfies the boundary condition

(d�)p(N(p), OV) D 0.

Then OV 2 � 0p. (In fact we have proved

{ OV 2 ONp(L) j (d�)p(N(p), OV) D 0} \ Tp�L D {0}.)

Proof. For any pointp 2 �L, take the local coordinate system around it as in
the proof of Proposition 3.2. By composing with a suitable linear contactomorphism
of form

R � R

2n�2
� R

2
! R � R

2n�2
� R

2,

(z0, z1, : : : , z2n�2, s1, s2) 7! (z0, A(z1, : : : , z2n�2), s1, s2),
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we may assume that

�

�z1

�

�

�

�

p

, : : : ,
�

�zn�1

�

�

�

�

p

forms a basis ofTp�L, and that they are also orthogonal to vectors

�

�zn

�

�

�

�

p

, : : : ,
�

�z2n�2

�

�

�

�

p

with respect toOg. (Note: Such a transformation does not change the Reeb field, i.e. we
have still R

�

D �=�t .) Since the normal vector fieldN of �L in L in the local coor-
dinate system is equal to�=�s1, we get an orthogonal basis ofTpL,

�

�z1

�

�

�

�

p

, : : : ,
�

�zn�1

�

�

�

�

p

,
�

�s1

�

�

�

�

p

.

It is easy to see that for some� 2 R the vector fields

�

�zn

�

�

�

�

p

, : : : ,
�

�z2n�2

�

�

�

�

p

,
�

�s2

�

�

�

�

p

C �

�

�t

�

�

�

�

p

spans ONp(L). Let

OV WD an
�

�zn

�

�

�

�

p

C � � � C a2n�2
�

�z2n�2

�

�

�

�

p

C b

�

�

�s2

�

�

�

�

p

C �

�

�t

�

�

�

�

p

�

2

ONp(L)

satisfy (d�)p(N(p), OV) D 0. SinceN(p) D (�=�s1)jp and R
�

(p) D (�=�t)jp we have

(3.17) (d�)p

�

�

�s1

�

�

p, an
�

�zn

�

�

�

p
C � � � C a2n�2

�

�z2n�2

�

�

�

p
Cb

�

�s2

�

�

�

p

�

D 0.

By (3.14) it is easy computed that

(3.18)

d�jO(p) D eh

 

�

n�1
X

kD1

dzn�1Ck ^ dzk � ds2 ^ ds1

!

C eh dh^

 

dt �
n�1
X

kD1

zn�1Ck dzk � s2 ds1

!

.

Note that s1 D s2 D 0 at p. It follows from (3.17)–(3.18) thatbeh
jp D 0 and thus

bD 0. This shows

OV D an
�

�zn

�

�

�

�

p

C � � � C a2n�2
�

�z2n�2

�

�

�

�

p

2 �

0

p.
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Clearly, when OV ¤ 0 we have alsoOV � Tp�L.

REMARK 3.4. Letbexp be the exponent map of the metricOg. For any p 2 �L
and v 2 ONp(L) with d�(N(p), v) D 0, Proposition 3.2 and Proposition 3.3 show that
bexp(p, v) 2 W \U if jvj is small enough.

REMARK 3.5. Here we give a proof for the statement just after Claim 2.6. Forx 2
�L we can decomposeV(x) into a sum OV(x)C LV(x), where OV(x) 2 ONx(L) and LV(x) 2
Tx L. Then (d�)x(N(x), V(x)) D (d�)x(N(x), OV(x)) C (d�)x(N(x), LV(x)). Since N(x)
sits in Tx L, (d�)x(N(x), LV(x)) D 0 and hence (d�)x(N(x), V(x)) D (d�)x(N(x), OV(x)).
Suppose (d�)x(N(x), V(x)) D 0. Then (d�)x(N(x), OV(x)) D 0 and thus OV(x) 2 � 0x by

Proposition 3.3. It follows that�x(V(x)) D �x( OV(x))C �x( LV(x)) D 0.

4. The proof of Theorem 1.1

Let us start with a brief review of notations in Hodge theory (cf. [12, 15] for de-
tails) and then proceed to the proof of Theorem 1.1.

For k 2 N [ {0}, 1� p <1 and 0< a < 1, let Wk, p
�

r (L) (resp. Ck,a
�

r (L)) de-
note the space ofr -forms of classWk, p (resp. Ck,a) as usual (cf. [12, 15]). Each form
! of them has a “tangential component”t! and a “normal component”n! (cf. [11,
Definition 4.2] or [15, (2.25)]), which satisfy

(4.1) t(?!) D ?(n!) and n(?!) D ?(t!)

by Lemma 4.2 of [11], where? is the Hodge star operator of the metricOg. Set

Ck,a
�

r
D(L) WD {! 2 Ck,a

�

r (L) W t! D 0},

Ck,a
�

r
N(L) WD {! 2 Ck,a

�

r (L) W n! D 0}

and

HCk,a
�

r (L) WD {! 2 Ck,a
�

r (L) W d! D Æ! D 0}.

Replacing Ck,a by Wk, p gives corresponding spacesWk, p
�

r
D(L), Wk, p

�

r
D(L) and

HWk, p
�

r (L). Clearly, for Sr
N D Ck,�

�

r
N(L) and Sr

D D Ck,�
�

r
D(L) (or Sr

N DWk, p
�

r
N(L)

and Sr
D D Wk, p

�

r
D(L)), (4.1) implies

(4.2) ?(Sr
N) � Sn�r

D and ? (Sr
D) � Sn�r

N .

By the definition of the co-differentialÆ, for any r -form ! it holds that

(4.3) ?(?!) D (�1)r (n�r )
!, ? Æ! D (�1)r d ? !, ? d! D (�1)rC1

Æ ? !.

For k 2 N [ {0} the closureCk,a(d�r (L)) of d�r (L) in Ck,a
�

rC1(L) is contained
{d� W � 2 CkC1,a

�

r (L)} by the Poincaré lemma (cf. §3.1 of [1]).
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Since the exponent mapbexp of the metricOg is a local diffeomorphism, (by tubular
neighborhood theorem) the sufficiently small neighborhoodof the zero section ofON(L)
satisfying the boundary condition corresponds to the deformations of submanifoldL
with boundary�L confined inW in one-to-one way.

Let C2,a(0( ON(L))) denote the Banach space ofC2,a-sections of the bundleON(L).
Define the Banach space

X WD {V 2 C2,a(0( ON(L))) W d�(N, V j
�L ) D 0},

and denote byU a neighborhood of 0 inX . For V 2 U definebexpV W L ! M, x 7!
bexpV (x) WDbexpx(V(x)). Set

(4.4)
F W U ! C1,a

�

1(L)� C0,a
�

n(L),

V 7! ((bexpV )��, 2(bexpV )� Im �).

It is C1 as done in [1, 17]. Clearly,bexpV is homotopic to the inclusionj W L ,! M
viabexptV , and hence they induce the same homomorphisms between the deRham co-
homology groups. It follows that the de Rham cohomology classes

[bexp�V (Im �)] Dbexp�V [Im �] D j �[Im �] D [ j �(Im �)] 2 Hn(L , R) vanish.

This shows that

Im F � C1,a
�

1(L)� dC1,a
�

n�1(L).

ConsiderF as a map toC1,a
�

1(L)� dC1,a
�

n�1(L).
To compute the differential ofF at 0, for V 2 X we set f D �(V) and Y WD

V � f R
�

. Then f 2 C2,a(L) and Y 2 C1,a(0(� jL )). By Proposition 3.3,V(p) 2 � 0p for
any p 2 �L, and so f (p) D 08p 2 �L. Now V D f R

�

C Y. By the Cartan formula
one can compute the linearization ofF at 0,

(4.5)

F 0(0)(V ) D
d

dt
(bexp�tV �, 2bexp�tV Im �)jtD0

D (LV�, 2LV Im �)jL

D (d� f R
�

CY� C � f R
�

CYd�, 2d� f R
�

CY Im �)jL

D (d f C �Yd�, 2d�Y Im �)jL

D (d f C �Yd�, �d ? �Yd�)jL

D (d( f Æ j )C j �(�Yd�), �d ? j �(�Yd�)).

Here the fifth equality comes from (2.2). In order to show thatF 0(0) is surjective, we
need to write each

(�, d� ) 2 C1,�
�

1(L)� dC1,�
�

n�1(L)
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as a convenient form.
Note that t(d!) D d(t!) and n(Æ!) D Æ(n!) for any C1-form ! on L (cf. [15,

Proposition 1.2.6 (b)]). SinceC0,a
�

n�1(L) � L2
�

n�1(L), by [11, Theorem 5.7, 5.8] or
[12, Theorem 7.7.7, 7.7.8] we may write� D Æn


0

C d
 00 C h(� ), where




0

2 C1,a
�

n
N(L)), 


00

2 C1,a
�

n�2
D (L), h(� ) 2 HC0,a

�

n�1(L).

Moreover (4.2) andt(d!) D d(t!) imply

Æn D (�1)n(nC1)C1
? d0? W C

2,�
�

n
N(L)! C1,�

�

n�1
N (L).

We may assume

d� D �d ? du with u 2 C2,�
�

0
D(L).

Similarly, we have

� D Æv C d� C h(�),

where

v 2 C2,a
�

2
N(L)), � 2 C2,a

�

0
D(L), h(�) 2 HC1,a

�

1(L)).

By (4.3), d ? Æv D (�1)2d(d ? v) D 0 andd(?h(�)) D (�1) ? Æh(�) D 0. We get

(�, d� ) D (d� � duC duC Æv C h(�), �d ? (duC Æv C h(�))

D (d� C !, �d ? !),

where

(4.6)
� WD � � u 2 C2,a

�

0
D(L),

! WD duC Æv C h(�) 2 C1,a
�

1(L).

Take f D � . We need to find aY 2 C1,a(0(� jL )) such that

f R
�

C Y 2 C1,a(0( ON(L)))

and

j �(�Yd�) D !.

Since j �(�YC f R
�

d�) D j �(�Yd�) D !, it suffices to find aZ 2 C1,a(0( ON(L))) such that

(4.7) j �(�Zd�) D !.

To this goal, consider the symplectic vector bundle (� jL , d�j
� jL ) with a Lagrangian

subbundleT L. Let T L
?

Og

�

be the orthogonal complementary bundle ofT L in � jL with
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respect toOg. Then T L
?

Og

�

D � \

ON(L). So � jL D T L�
Og (� \ ON(L)). Note that! may

be viewed as a section of the bundle Hom(T L,R). We may extend it into a section of
Hom(� jL , R), O!, by defining

O!p(uC v) D !p(u)

for any p 2 L and uC v 2 TpL �
Og (� \ ON(L))p, whereu 2 TpL and v 2 (� \ ON(L))p.

Note that O! 2 C1,a(0(Hom(� jL ,R))). The non-degeneracy ofd� on � implies that there
exists a unique sectionZ W L ! � jL such that

(d�)p(Z(p), A) D O!p(A) 8p 2 L and A 2 �p.

Clearly, Z 2 C1,a(� jL ). Since� jL D T L�
Og (� \ ON(L)) we get a unique decomposition

Z D Z1C Z2, where Z1 2 C1,a(0(T L)) and Z2 2 C1,a(0(� \ ON(L))). Obverse that

j �(�Z1 d�) D 0.

In fact, for any p 2 L and u 2 TpL it holds that

( j �(�Z1d�))p(u) D (�Z1d�)) j (p)( j
�

u) D (d�)p(Z1(p), u) D 0

since TpL is a Lagrangian subspace of (�p, (d�)p). Hence we get

(d�)p(Z2(p), A) D O!p(A) 8p 2 L and A 2 �p.

This implies j �(�Z2 d�) D !. In summary we have proved:

Claim 4.1. There exists a unique section ZW L ! � jL \ ON(L) such that (4.7)
is satisfied. Moreover, Z is also of class C1,a. As a consequence the map F0(0) is
surjective.

Next let us compute ker(F 0(0)). Let V 2 X sit in ker(F 0(0)). As above we may
write V D f R

�

C Y, where f D �(V) and Y 2 CkC1,a(0(� jL )). (4.5) yields

d f C j �(�Yd�) D 0,(4.8)

�d ? j �(�Yd�) D 0.(4.9)

From (4.8) we get

0D Æ(d f C j �(�Y d�)) D Æ d f C Æ( j �(�Y d�))

D Æ d f C (�1)2nC1
? d ? ( j �(�Y d�))

D Æ d f
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because of (4.9). Hence4 f D 0. By Proposition 3.3 the boundary condition
d�(N, V j

�L ) D 0 implies V(p) 2 � 0p � �p for any p 2 �L, and thus f j
�L D 0. Since

�L is a non-empty closed manifold, the maximum principle leadsto f � 0. Hence
V D Y. By (4.8) we have

(d�)p(Y(p), u) D 0 8p 2 L and u 2 TpL.

This means thatY(p) belongs toTpL � �p since TpL is a Lagrangian subspace in

(�p, (d�)p). Moreover,Y(p) D V(p) 2 ONp(L), and TpL \ (�p \ ONp(L)) D {0} 8p 2 L.
We getV(p) D 0 for any p 2 L. It shows kerF 0(0)D 0. Combing this with Claim 4.1
we prove that the differential

F 0(0)W T0X ! C1,a
�

1(L)� dC1,a
�

n�1(L)

is a Banach space isomorphism. The inverse function theoremimplies that there exists
a neighborhood of 0 inX , U0 � U , such thatF�1(0)\U0 D {0}. This completes the
proof of Theorem 1.1.

5. The proof of Theorem 1.2

Let hR
�

i denote the real line bundle generated byR
�

jL . Then the normal bundle
of L with respect to the metricg, N(L), is equal tohR

�

i�g J T L. For a small section
V W L ! N(L), the exponent map ofg yields a map

expV W L ! M, x 7! expx(V(x)).

Thus there exists a neighborhoodV of 0 in

Y WD {V 2 C2,a(0(hR
�

i))� C1,a(0(J T L)) W �(V)j
�L D const}

so that the following map is well-defined:

(5.1)
G W V ! C1,a

�

1(L)� C0,a
�

n(L),

V 7! (exp�V �, 2 exp�V Im �).

It is C1 ([17]), and Im(G) � C1,a
�

1(L)�dC1,a
�

n�1(L) as above since expV is homo-
topic to the inclusionj W L ,! M via exptV .

ConsideringG as a map toC1,a
�

1(L) � dC1,a
�

n�1(L), and writing V D J X C
f R

�

, we may get

(5.2)

G0(0)(V) D
d

dt
(exp�tV �, 2 exp�tV Im �)jtD0

D (LV�, 2LV Im �)jL

D (d f C �J X d�, �d � �J X d�)jL
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as above. Moreover, each (�, d� ) 2 C1,�
�

1(L) � dC1,�
�

n�1(L) may be written as
(�, d� ) D (d� C !, �d ? !), where� and ! are as in (4.6). Takef D � , and one
easily find X 2 C1,�(0(T L)) such that j �(�J Xd�) D !. Clearly, such aV D f R

�

C J X
satisfies�(V)j

�L D 0. HenceG0(0) is surjective.
Assume thatV D f R

�

C J X sits in ker(G0(0)). Then f and J X satisfy

d f C j �(�J X d�) D 0, �d ? j �(�J X d�) D 0.

It follows that4 f D Æ d f D 0. Recall that f D �(V) is equal to a constantc on �L.
By the maximum principle we getf � c, and hence

j �(�J X d�) D 0.

From this we deriveJ X D 0 as above. This prove ker(G0(0))D {cR
�

j c 2 R}. Hence
(0, 0) is a regular value of the restriction ofG to a small neighborhoodV0 of 0 2 V ,
and thus the moduli spaceM(L) is a 1-dimensional smooth manifold by the implicit
function theorem.

Since �R
�

� D 0 andLR
�

� D 0 we have t (Im �) D Im �8t , where t is the flow of
R
�

. For special Legendrian embedding (submanifold)p W L ! M we obtain p�t � D 0
and p�t Im � D 0 with pt D  t Æ p for any t . So the deformation in Theorem 1.2 is
actually given by the isometries generated by the Reeb vector field.

REMARK 5.1. If we replaceV by a neighborhoodW of 0 in

C2,a(0(hR
�

i))� C1,a(0(J T L)),

then the map

OG W W ! C1,a(31(L))� C0,a(3n(L)), V 7! (exp�V �, 2 exp�V Im �),

is still C1 and has the image Im(OG) � C1,a(31(L))� dC1,a(3n�1(L)). From the above
proof it is easy to see thatOG0(0) is surjective. IfV D f R

�

C J X belongs to ker(OG0(0)),
we have4 f D 0 as above. But�L is a nonempty closed manifold, by Theorem 3.4.6
of [15] eachb 2 C1(�L) corresponds to a uniquef 2 C1(L) satisfying4 f D 0 and
f j
�L D b. It follows that ker(OG0(0)) must be of infinite dimension.

The corresponding problems with [1, Corollary 9] and [17, Theorem 4.8] can also
be considered similarly.
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