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Abstract

In this paper, for a compact special Legendrian submanifgtd smooth bound-
ary of contact Calabi-Yau manifolds we study the defornmaté it with boundary
confined in an appropriately chosen contact submanifoldoginsension two which
we also call a scafford (Definition 2.3) by analogy with Bugslfil]. Our first result
shows that it cannot be deformed, and the second claims #fatndations of such
a special Legendrian submanifold forms a one-dimensiomaloth manifold under
suitably weaker boundary confinement conditions. They maywibwed as supple-
ments of the closed case considered by Tomassini and Vegzohi

1. Introduction and main results

The calibrated geometry was invented by Harvey and Lawsdhdin seminal paper
[5]. A class of important calibrated submanifolds is spetigrangian submanifolds in
Calabi-Yau manifolds. LetM, J, w, 2) be a real B-dimensional Calabi—-Yau manifold.
A special Lagrangian submanifold of it is a submaniféldvith w|. = 0 and Im)|. =
0. In 1996 McLean [10] developed the deformation theory ofcedd agrangian sub-
manifolds (and other special calibrated submanifolds) stnaived:

McLean theorem ([10]). A normal vector field V to a compact special Lagrang-
ian submanifold L without boundary ifM, J, w, 2) is the deformation vector field to a
normal deformation through special Lagrangian submaui$oif and only if the corres-
ponding1-form (JV)" on L is harmonic. There are no obstructions to extending a firs
order deformation to an actual deformation and the tangguace to such deformations
can be identified through the cohomology class of the harenfarim with H'(L; R).

Since then the theory is generalized to various situati®ee [6, 7, 13] and refer-
ences therein. For example, S. Salur [14] generalized Mcltkaarem to symplectic
manifolds. We here only list those closely related to ourde Tirst one is the case
of compact special Lagrangian submanifolds with nhonempyndary considered by
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Butsher [1]. He called a submanifold in the Calabi—-Yau manifoldN], J, w, €2) min-
imal Lagrangianif »|. = 0 and Img?Q)|. = 0 for somed € R. If L is a Lagrangian
submanifold of M, w) with nonempty boundarpL and N € (T, L) is the inward
unit normal vector field ofL in L, he defined acaffoldfor L to be a submanifoldV
of M such thatdL C W, the bundle TW) is trivial, and thatN is a smooth section
of the bundle T,L W)~.

Butsher theorem ([1]). Let L be a special Lagrangian submanifold of a com-
pact Calabi-Yau manifold M with non-empty boundaty and let W be a symplectic
codimension two scaffold for L. Then the space of minimalrdrgjan submanifolds
sufficiently near L(in a suitable G# sensg but with boundary on W is finite dimen-
sional and is parametrized over the harmordidorms of L satisfying Neumann bound-
ary conditions.

The work inspired Kovalev and Lotay [8] to study the analcgdaformation problem
of a compact coassociative 4-fold with boundary inside di@adar fixed 6-dimensional
submanifold with a compatible Hermitian symplectic struetin a 7-manifold with closed
G,-structures. Recently Gayet and Witt [3] also investigakeddeformation of a compact
associative submanifold with boundary in a coassociatit@m&nifold in a topological
G,-manifold.

As a natural generalization of the Calabi—-Yau manifoldshie tontext of contact
geometry Tomassini and Vezzoni [17, Definition 3.1] introeld the notion of a con-
tact Calabi-Yau manifold, cf. Definition 2.1. LeM(n, J,€) be a (2 + 1)-dimensional
contact Calabi-Yau manifold, anfl: L — M be a compact special Legendrian sub-
manifold without boundary (cf. Definition 2.2). Two speciaégendrian submanifolds
jo: L= M and j;: L — M are calleddeformation equivalenif there exists a smooth
map F: L x[0, 1] - M such that
e F(-,t):Lx{t} > M is a special Legendrian embedding for ang [0, 1];

e F(-,0)=jo, F(-,1)=ju

(cf. [17, Definition 4.4]). If there exists a diffeomorphisgne Diff(L) such thatj, =
joo ¢ we say jo and j; to be equivalent This yields an equivalent relatior among

all embeddings fronL to M. Let (L) be the set of special Legendrian submanifolds
of (M, a, J,€) which are deformation equivalent fo L < M. Call 9(L) := 9(L)/~

the moduli space of special Legendrian submanifoldsich are deformation equivalent
to j: L — M. Tomassini and Vezzoni [17, Theorem 4.5] proved:

Tomassini-Vezzoni theorem([17, Theorem 4.5]) Let (M, n, J, €) be a contact
Calabi-Yau manifold of dimensionn2+ 1, andL C M be a compact special Legendr-
ian submanifold without boundary. Then the moduli spa®éL) is a smooth one-
dimensional manifold.
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Motivated by the above works, we study in this paper the loadbmnations of
compact special Legendrian submanifolds with (nonempbyniary. (The boundary is
always assumed to be smooth throughout this paper.) Diffdrem the casédL = @
considered by Tomassini and Vezzoni [17], it is showed in Bén®d.1 that the moduli
spaceMi(L) is infinite dimensional.

In order to get interesting results it is necessary to addestwoundary condi-
tions. Inspired by [1, Definition 1] we introduce a notion staffold for L in Def-
inition 2.3, which is a suitable contact submanifdld. Two special Legendrian sub-
manifolds jo: L < M and j;: L — M with jo(dL) € W and j;(dL) Cc W are called
deformation equivalenif there exists a smooth map: L x [0, 1] = M such that
e F(-,1):Lx{t} > M is a special Legendrian embedding wii{oL,t) c W for
anyt € [0, 1];

e F(-,0)=jo F(-,1)= 2

Themoduli space of special Legendrian submanifaldsch are deformation equiva-

lenttoj: L — M with j(dL) C W is defined as

M(L, W) := {special Legendrian submanifolds df1( «, J, €)
which are deformation equivalent to: L < M
with j(dL) C W and are neajj}/~.

Our first result is

Theorem 1.1. Let(M,J,«,¢€) be a contact Calabi—-Yau manifgldnd L be a com-
pact special Legendrian submanifold with nonempty boupnddr inside a scaffold W
of codimension two. Then L cannot be deformed as a specianide;n submanifold
with boundary confined in W. In other wor@&(L, W) only consists of the class of j.

This is in contrast with the case of compact special Legandsubmanifolds without
boundary considered in Tomassini-Vezzoni theorem. Suobal tigidity is similar to the
case of a compact simply connected special Lagrangian sufotthwithout boundary in
McLean theorem, and Simons’ rigidity result of stable minimabmanifolds with fixed
boundary in [16].

Now we turn to consider weaker boundary conditions. IMtd¢, J,¢) be a (214 1)-
dimensional contact Calabi—-Yau manifold, abhd- M be a compact special Legendrian
submanifold with (non-empty) boundary. A normal vectordi®l to L is calledbound-
ary a-constantif «(V)|;_ is constant. The following result, which is stated in a samil
way to McLean theorem above, is similar to that of Tomassiui ¥@zzoni [17].

Theorem 1.2. Let(M,«,J,€) be a(2n+1)-dimensional contact Calabi—-Yau mani-
fold, and and LC M be a compact special Legendrian submanifold witbn-empty
boundary. A boundarg-constant normal vector field V to L is the deformation vector
field to a normal deformation through special Legendrianreahifolds if and only if
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a(V) is constant. Moreover the tangent space to such deformati®rgiven byRR,,
where R is the Reeb vector field af.

Similar to the casel being compact and without boundary considered in The-
orem 4.5 of [17] the deformation in Theorem 1.2 is also givgntie isometries gen-
erated by the Reeb vector field, which is completely differfom the deformation
without boundary constraints as proved in Remark 5.1.

The key points in the proofs of Theorems 1.1 and 1.2 are to fisditable def-
inition of scaffold for a special Legendrian submanifoldthvboundary and to prove
a corresponding result with Lemma 5 of [1], Lemma 3.1. For fillener we propose
and study it in Section 2. The proof of the latter will be givenSection 3 and is
more troublesome because we need to use not only contadtboeigpod theorem but
also symplectic neighborhood theorem. In Sections 4 and & complete the proofs
of Theorems 1.1 and 1.2 respectively.

2. Preliminaries

2.1. Contact Calabi-Yau manifolds and special Legendrianudbmanifolds. Let
(M, @) be a contact manifold with contact distributign= kera and Reeb vector field
Ry. Thenk := do/2 restricts to a symplectic vector bundle structureéor> M, «|¢,
and every compatible complex structudee J (£, «|¢) gives a Riemannian metrig,
on the bundleg — M, g;(u, v) = «(u, Jv) for u,v € &. By settingJ(R,) = 0 we can
extend J to an endomorphism of M, also denoted by Jvithout special statements.
Clearly

(2.1) P=—l+a®R, and g: =gy +aQu

is a Riemannian metrig on M, wherel is the identity endomorphism of M. Define
a Nijenhuis tensor of] by

Ny(X, Y) = [IX, IY] = I[X, IY] = I[IX, Y] + IZX, Y]

for all X, Y e TM. If N;j = —da ® R, then the pair ¢, J) is a Sasakian structure
on M, and the triple M, «, J) is called aSasakian manifoldOn such a manifold it
holds thatdA;(M) C A5(M) and J(A5(M)) = AF(M), where A5(M) is the set of
all differential r-form y on M with g,y =0 andLgr,y = 0. So we have a split

AgM)eC = P AHE)

p+a=r

andx = (1/2) da € AYY).
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DEFINITION 2.1 ([17, Definition 2.1]). A contact Calabi-Yau manifoldis a
quadruple M, «, J, €) consisting of a (8 + 1)-dimensional Sasakian manifol(c, J)
and a nowhere vanishing basic forme A’J"O(é) such that

Kn
€N g = Cn_
n!
and

de =0,
wherec, = (—1)"™+D/2(21)" andx = (1/2) da.

DEFINITION 2.2 ([17, Definition 4.2]). Let K?"*1 «, J,€) be a contact Calabi—
Yau manifold. An embedding: L — M is called aspecial Legendrian submanifoi
dimL =n, p‘fa =0 andp*Ime = 0.

Clearly, p*e = p*(Ree¢) is a volume form onL. Thus every special Legendrian
submanifold has a natural orientation. By [10, p.722] or B2oposition 2.6] we have

2.2) (o 1M €) = = (p" (1)) = — # (")

for any sectionY: L — p*&, where the star operator is computed with respect to
p*(g;) = p*(x o (id x J)) and the volume form Wol() := p*e = p*(Ree).

For any n-dimensional manifoldN, the cotangent bundl&*N has a canonical
1-form Acan The 1-jet bundleJ'N = R x T*N is a contact manifold with contact
form o = 7;(dt) — 75 (Acan) @and Reeb vector field/dt, wheret € R is the real par-
ameter andpr; is the projection fromR x T*N onto thei-th factor,i = 1, 2. (See [9,
Example 3.44]).

2.2. Boundary conditions. Corresponding to [1, Definition 1] we introduce:

DEFINITION 2.3. LetL be a submanifold of the contact manifol (& = kera)
with boundarydL and letN € I'(T;_ L) be the inward unit normal vector field efL
in L. A contact submanifoldW, ¢") of (M, &) is called ascaffoldfor L if
@iy aL CcWw,
(i) N €T a), and
(iii) the bundle &'+ is trivial, where &'t is the symplectically orthogonal complement
of & in (§lw, «lejw)-

Given a contact manifoldM, «) let J andg be as in (2.1). If \V,&’) is a contact
submanifold of M, & = kerw), that is, W N & = & for all x € W, the following
claim shows that the condition (iii) of Definition 2.3 is ewalent to one thatTW)-s
is trivial, where T W)*¢ denotes the orthogonal complementary bundld W in TywM
with respect to the metrig.
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Claim 2.4. (TW)e = (J&)* = J(E™).

Proof. Forx € W, since&;* C & and J, restricts to a complex structure dn
we have

- ={ve&|k(v,u) =0 Vueg}
={v €& | k(Jv, Ju) =0 Vu € &}
={ve&]9(Jv,u)=0Vueg]
={veé& | g(dv,bR, +uU) =0 VbR, +ue RR + &}
={veé&|g(dv,Y)=0VY e T,W}.

This implies J&"* = (TW)*s or £+ = J(TW)*e. Moreover, bothJ&- and &~ are
contained inz |y, and£ is J-invariant. It is easy to check thalt't = (J&')*. O

Proposition 2.5. Let L be a Legendrian submanifold of the contact manifold
(M, & = kera) with (nonempty boundarydL and let W be a scaffold for L. Then
aL is a Legendrian submanifold ¢, &’).

Proof. SincelL is the Legendrian submanifold ofA,&), TL C &|.. Moreover the
definition of the scaffold implies thatdL C T; W and thusToL C T,LW N &y =
&’|sL. This shows that the boundaBL is a Legendrian submanifold ofA| &’). [

Under the assumptions of Proposition 2.5, fet L - M be a deformation oL
satisfying f(0L) c W for all t, and letV = (d/dt) f;|;—o be the corresponding de-
formation vector field. ClearlyyV (x) € TxW for any x € dL. SincelL is a Legendrian
submanifold, we havd L C &|.. Note thatN(x) € TxL for any x € L. Then the
condition (i) of Definition 2.3 implies thatN(x) € £/, and soN(x) € TyL N & and

JXN(X) € JX(TXL N %_;(L) C \]x'i:;(L C stx = gx-

SinceW is a contact submanifold, we may writé(x) = Y + aR,(x), whereY e &;.
By Claim 2.4, JxN(x) € J&t = (TxW)1e and thus

0= g(KN(x), V(X)) = 93(IN(x), Y) = k(IN(X), Y) = k(N(x), Y).
Note thatY = V(x) — ¢(V(X))R.(x) and thatig, do = 0. We get

Claim 2.6. If f;: L - M be a deformation of L satisfying:(6L) c W for all
t, then the corresponding deformation vector field V satigiesmann boundary con-
dition: da(N(x), V(x)) =0 Vx € dL.

The Neumann boundary condition impliegV |, ) = 0, see Remark 3.5.
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EXAMPLE 2.7. It is not hard to construct an example satisfying thenbauy
conditions of Theorems 1.1 and 1.2. Leg (..., Xn, Y1, - - -, Yn, 2) denote the standard
Euclidean coordinate iiR?"*1, The standard contact Calabi-Yau structure J, €) on
R2*1 is given by

n
a=2dz—2) " yjdx, €= (dxg+idy)A---A(dX +idyn)
j=1
and

J: & = Ker(w) = Span(y19; + dx,, . . ., Yndz + 0x,, Oy, - . -, Oy, }) = &

where J is given by JX, =Y, =9y, andJY, = =X, = =y 9, — 0, r =1,...,n.
(See [17, Example 3.2]). Observe that this structure isriagé under the action of the
subgroupz” x {0}"*! of Z>"*1, It descends to such a structure bh= R?"*1/(Z" x
{0}"+1) = R"/Z" x R"*1, also denoted by J, €) without occurs of confusions. As
usual we write the point oM as (Ki], ..., [Xn], Y1, ..., Yn, 2). Let n > 2. Consider
the contact submanifold of\{, o), W = W U W,

k+1
W = {([xl],...,[xn], Vis oo os Y1, 0,2) € M X“ZT}’ k=0,1.

Since the contact form on it i8’ = «|w =2dz—2)" ;11 y;j dx;, it is easy to see that

the symplectically orthogonal complementary bunglte of &' = Ker(e') in (&|w, «|e|,)
is trivial. In fact, we have

n
j

E/ = Span(ylaz + axly RIS | yn—laz + aXn,la ay11 vy ayn,]_})y
£ = Span(ynd; + dx,, dy,}).

ConsiderL = {([x1],...,[*n],0,...,0) € M | 1/3 < xn < 2/3}. It is a compact Legendrian
submanifold with boundaryL = 9oL U 9;L, where

AL = (X, . [%], 0,...,00€ M | xo = (k + 1)/3}, k=0, 1.

Clearly, oxL € W, k =0, 1, and thussL Cc W. By (2.1) the metricg =g; + ¢ ® o
satisfies: g(R., R,) = 1, g(X;, Xs) = g(Yr, Ys) = & and g(X;, Ys) = 9(Xr, Ry) =
aiY;, Ry))=0forr,s=1,...,n. Forp=([X], ..., [*],0,...,0) € dL we have

ToL = Span(ox,[p, - - -+ 9x,[p}),  TpdoL = Span(dx,|p, - - -+ 9. 41p})-

Since Xj|p = 9 |p, ] =1,...,n, it follows that Xn|, is the inward unit normal vector
at p of oL in L. Similarly, for p = ([x1], ..., [X], 0, ..., 0) € 9;L the inward unit
normal vector atp of dL in L is —X,|,. Namely the inward unit normal vector field
N of aL in L belongs toI'(¢"*];.). HenceW is a scaffold forL.
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3. Constructing a new metric

In the study of the deformation of the special Legendrianngatifold L without
boundary by Tomassini and Vezzoni [17], the deformationd cdre parameterized by
sections of the normal bundIb(L) using the exponent map eXp(: L — M. How-
ever, in our case, sinc&/ is generally not totally geodesic, it cannot be assured that
the image ofdL under exp¥) sits in W. In order to fix out the problem we shall fol-
low the ideas in [1] to construct a new metdcsuch that the image diL under the
corresponding exponent map is containedAin that is, such thaWV is totally geodesic
neardL. The following is an analogue of [1, Lemma 5].

Lemma 3.1. Let L be a compact Legendrian submanifold of the contact folahi
(M, J, @) with (honempty boundarydL and let W be a scaffold for it of codimension
two. Then there is a neighborhoo#t = % (9L, M) of dL in M and a contact em-
bedding¢: % — R x T*(dL) x R? such that the following conditions hold
(i) o(WNZ%)CRxT*@L) x {(0, O},

(i) ¢(aL) = {0} x dL x {0, O},

(i) (t,x,v,8,S) € (%) — (t,X,v,0,0)e ¢(%),

(iv) for any nowhere zero smooth section W — £"*|y, ¢ can be required to satisfy
#:(V(p)) = (3/3s1)|¢(p) for any pe aL, where(sy, s2) the coordinate functions dk?.

Note that the condition (iv) is slightly weaker than the esponding one of [1,
Lemma 5 (4)]. It is sufficient for us to construct a suitabletmeein Proposition 3.2.
Even so our proof uses not only contact neighborhood thedsetnmalso symplectic
neighborhood theorem in contrast with the proof of [1, Lem®néd)]. It is a key of
our proof.

Proof of Lemma 3.1. SincdL is a compact Legendrian submanifold &f x
T*(dL) without boundary, from the Neighborhood Theorem for Ledye@an (cf. Corol-
lary 2.5.9 in [4]) it follows that there exists a contactomioism ¢y from a neigh-
borhood (L, W) of dL in W to one #,(0y.) of the zero section off *(dL) in
R x T*(dL) such that

(3.1) do(X) = (0,x) Vx e L.

Fix a Riemannian metric on the bundle*(dL), and then take a sufficiently small
€ > 0 such that

(3.2) M7= {(t, X, v): |t] <€, v e T, (AL) with |v| < e} C #(05L).
We get another neighborhood 6t in W,

(3.3) Mg = ¢ 2 (M]) C (L, W) C W.
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Then ¢o: My — M; is a contactomorphism. Obverse thil; and M; are compact
contact submanifolds o and T*(dL) x R with boundary and of codimension zero,
respectively.

Let Acan denote the canonical 1-form oh*9L. Recall that the contact form and
Reeb vector field onJ'dL = R x T*(9L) are

B
3.4 =dt—A and R; = —.
( ) IB can ﬁ 8t

Assume thats;, s, are the coordinate functions @2. We have a contact form on
J9L x R?2 =R x T*(L) x R?,

(3-5) ,3=/§—Sld52=d'[—)»can—sld82,

whose Reeb vector field is given i = 3/at. Denote by (ker§))* the symplectically
orthogonal complement of ke&] in ker(8) (with respect todg). It is easily checked
that it is equal to the trivial bundle

3 9
Spar({—, —}) — JL xR
9s;’ 9%

Define Mg := M, My := R x T*(dL) x R?, and M/ and M; as above. (Identify
M, = Mj x {(0, O)} C J'L x R?). Since&™* is trivial we can pick two vector fields
V1, V, such thatVy, V, form a basis of’* and satisfyda(Vy, Vo) = 0. There exists an
obvious symplectic vector bundle isomorphism

(AR i i
é |MO_)8par({8$g_' 382

My
given by
)
O (Va(x)) = P
S1 {(g0(x),0,0)
and
9
D(Va(x)) = 35
%2 [(90(x),0,0)

for any x € M. By Theorem 2.5.15 of [4], we may exterqd into a contactomorphism
¢1 from a neighborhoodz (Mg) of M} in Mg = M to that % (M;) of M; = M;] x
{(0, O)} in My such thatT¢1|5¢|M6 and ® are bundle homotopic (as symplectic bundle
isomorphisms) up to a conformalityNéte From the proof of [4, Theorem 2.5.15] it
is not hard to see that the theorem still holds if compact axtrsubmanifoldV; have
boundary andM! C Int(M;).)
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Actually, we may assume tha¥ (M;) has the following form:

3.6) (M) = {(t, X, v): |t| <&, veTH(OL) with [v| < &'}
' x {(s1, %) € R: |3y, |s2] < o},
where O< ¢/ < ¢ andé > 0, and
U (M) := o1 (% (My)).

By suitably shrinking% (Mg) and % (M?) if necessary, we can require

(3.7) Wo := W N % (M) C %L, W),
(3.8) $1(Wo) C R x T*aL x {(0, O)},
(t, X, v, 81, ) € Z(M]) = ¢72(t, X, v, 0, 0) € W,

Clearly,  (Mp) and ¢, satisfy the conditions (i)—(iii) in Lemma 3.1.
For (iv) we need to modifyp; and % (M(). Since¢; is a contactomorphism,

d 0
$1.(E*w,) C Spar({g, E})

It follows that there exist smooth real functiorfs, f,: Wy — R such that

$1(Wo)

d
(%) —
+ 2(X)852

P1.(V () = fl(x)%

»(x) #(x)

and
| f1()] + [ f2(x)| # O
for any x € Wy, whereV: W — &4y is the given nowhere zero smooth section in
Lemma 3.1 (iv).
Take € > 0 sufficiently small so that
R :={(t,x,v,0,0)e R x T*aL x R?: |t| < ¢, |v] < €} C Pp1(Wp).
Consider the compact symplectic submanifold 8L x R?, —dAcan— ds; A dsp),

(3.9) S :={(x,v,0,0)e T*dL x R?: |v] < €}.

Its symplectic normal bundle is

seo {55 3w )l
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and ¢1,(V) restricts to a nowhere zero smooth section

0 d
(3.10) pr> frop( p)a + fro0 ¢7l(p)£
P

P
Obverse that there exists an obvious symplectic vector lbuisdmorphism
ad a ] d
v {5576, = ({5 ))
081" 952 /|5 81" 92 /|5
which sends the section in (3.10) to one

p

= — .
lep

Hence the symplectic neighborhood theotefef. [9, Theorem 3.30]) yields a symplec-
tomorphism between neighborhoods Kfin (T*9L x R?, —dAcan— ds; A ds),

@1 No(8) = Mi(8)
such that

(3.11) p(p)=p and de(p) =V,

for any p € S. In particular, we have

(3.12) do(p) (b1 (V)]) = % Vpes.

p

Since (3.5) implies

. 9 9
ker(ﬂ)ktiX,U,Sl,SQ) = T(X,U)T oL x Spar({a, g})

(s1,%)
the map

(3.13) ¢2: R x No(S§) = R x Ni(K), (t, p) (L, ¢(p)

must be a contactomorphism with respect to the induced cbstaucture from R x
T*@L) xR?, B).
Take a neighborhood” of dL in M such that

U C UMy and ¢1(Z) CR x Mp(S),
(t, X, v, 81, %) € P2(p1(%)) = (. X, v, 0, 0) € P2(a(%)).

1From the proof of [9, Theorem 3.30] it is not hard to see that ttheorem still holds if compact
symplectic submanifold); have boundary an@; C Int(M;).
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Then the compositionp := ¢, o (¢1|%) is a contact embedding from” into (R x
T*(dL) x R?, B) such that the condition (iii) is satisfied. By (3.8) and @.1t is easy
to see that (i) is satisfied fap and 7, i.e.

d(W N %) CRxT*IL x {(0, 0).

From (3.1) and (3.11) it follows thap(dL) = {0} x aL x {0, O}. That is, (i) holds.
Finally, (3.12) implies thatp satisfies the condition (iv), i.e.

a
de(p)(V(p) = 35 Ly Vpeal. m
#(p

As in [1], with Lemma 3.1 we may construct the desired mefrias follows.

Step 1. Recall thatN the inward unit normal vector field ofL in L and N €
['(§*]5L). Let Z and¢ be as in the Lemma 3.1 with.(N(p)) = (3/3S1)|4(p for any
p € oL. By shrinkingW we assume thalN has been extended into a nowhere zero
section inT'(¢"*|w). Hence using Lemma 3.1 (iii) we may define a metgicon ¢(%)
as follows:

g'(t, x, v, 51, %) := (¢ )*@w(® (t, x,v,0,0))+ ds ®ds, + ds, ® ds

for every ¢, x, v, 81, ) € ¢(%).

STEP 2. Consider the metrigy := ¢*g’ on . Take a neighborhood” of dL
in M such that the closure of is contained inZ. Let p: M — R be a smooth
function such thajp = 1 on a neighborhood”’, and p = 0 outside?%. We then define
the metricg by

§:=pg +(1-p)g

The following two propositions correspond to PropositioBsand 7 in [1],
respectively.

Proposition 3.2. For the neighborhood” of oL in Step 2,WN7¥ is totally geo-
desic with respect to the metrig.

Proof. For anyp e WnN ¥, Lemma 3.1 gives a local contact coordinate system
around it,

O(p) > RxRM™2xR?, g~ (t(q), z2(q), - . -, Zon—2(0), S2(q), ()

such that
e for some smooth functiom: O(p) — R it holds that

n-1
(3.14) alop) = eh<dt—ZZn1+k de—Szd51>,
k=1
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and the Reeb field?, = 9/0t;
e WNO(p)>qgr> (t(q), z2(q), - . ., Zzn_2(q)) is a a local contact coordinate system
around p in the relatively open neighborhodd/ N O(p) and

n-1
(3.15) alwnogp) = €" <dt =) Zn14k dzk),

k=1

wherehg = hlwno(p). Moreover the Reeb field af|wno(p) is given by the restriction
of 3/at to W N O(p).

For convenience we writé as zy. In the corresponding local coordinate vector
fields

3 9 9 0 9 9 9
0z ot dz; 9z 0zonn 0S1 0Sp
we have
n-1
(3.16) =) (@lwkdzx®dz +ds ®ds.
k,I=0

It is easily computed that

. I 1, . X
Q(Va/azkﬁ, g) = E(ngSle + 0252 — G22.5) = 0.

So the second fundamental form 8f N ¥ with respect tog vanishes, that isw N ¥
is totally geodesic. ]

Proposition 3.3. Let L be a compact Legendrian submanifold with boundary of
the contact manifoldM,«), and let W be a codimension two scaffold for L. Denote by
N(L) the normal bundle of L with respect th For pe aL, suppose tha¥/ € Np(L)
satisfies the boundary condition

(der)p(N(p), V) = 0.
ThenV e &p- (In fact we have proved
(V€ Np(L) | (da)p(N(p), V) = 0} N TpdL = {0}.)

Proof. For any pointp € dL, take the local coordinate system around it as in
the proof of Proposition 3.2. By composing with a suitableeér contactomorphism
of form

R x R x R? - R x R*"? x R?,
(201 Zl! ve ey ZZn—Z: Sl! SZ) = (201 A(Zlv LEEEE | ZZn—2)1 S.I.v 32)1
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we may assume that
0

021

i)
U 0z0

p p

forms a basis off,0L, and that they are also orthogonal to vectors

0
0Zn

0
T 0zon2

)
P p

with respect toj. (Note Such a transformation does not change the Reeb field, i.e. we
have still R, = 9/dt.) Since the normal vector fieltl of dL in L in the local coor-
dinate system is equal t®/ds;, we get an orthogonal basis L,

0]
0Z1

0
ST

d
p 81

y .
P p

It is easy to see that for sontec R the vector fields

0

0Zn

0
T 0z

ol
p 0%

0

ot

P p

+ b(i
p 9%

satisfy do)p(N(p), \7) = 0. SinceN(p) = (3/9s1)|p and R,(p) = (3/9t)|, we have

d
b ) _o.
0202 ‘P 0 Ip

p
spansN,(L). Let

d
Vi =a,—
anazn

i)
A—

+oet a2 o

p

€ Ny(L
0Zon-2 ) (L)

p p

ad ]
(3.17) (da)p(ﬁ |p,ana_zn ‘p+"'+a2n—2

By (3.14) it is easy computed that

n-1
dalop) = e <— Z dz, 1.k Adz —ds A dsl)

(3.18) k=t

n-1
+e'dh A (dt—Zzn_Hk de—SQdSl>.

k=1

Note thats; = s, = 0 at p. It follows from (3.17)—(3.18) thabeh|p = 0 and thus
b = 0. This shows

’

+-o 4 a; 2 &p-

0Zn-2|p
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Clearly, whenV # 0 we have also/ ¢ TpoL. O

REMARK 3.4. LetéXp be the exponent map of the metfic For any p € dL
andv € Np(L) with da(N(p), v) = 0, Proposition 3.2 and Proposition 3.3 show that
exp(p, v) e WN % if |v| is small enough.

REMARK 3.5. Here we give a proof for the statement just after Claién Borx €
dL we can decompos¥(x) into a sumV (x) + V(x), whereV(x) € N,(L) and V(x) €
TyL. Then Ha)x(N(X), V(X)) = (da)x(N(X), V(X)) + (da)x(N(x), V(x)). Since N(x)
sits in Ty L, (da)x(N(x), V(x)) = 0 and henceda)x(N(X), V(X)) = (da)x(N(X), V(X)).
Suppose da)x(N(x), V(x)) = 0. Then fa),(N(x), V(x)) = 0 and thusV(x) € &, by
Proposition 3.3. It follows thatr,(V (X)) = ax(V (X)) 4 ax(V(X)) = 0.

4. The proof of Theorem 1.1

Let us start with a brief review of notations in Hodge theocy. (12, 15] for de-
tails) and then proceed to the proof of Theorem 1.1.

Forke NU{0}, 1< p<oc and O<a < 1, let W*PQ' (L) (resp.C*2Q"(L)) de-
note the space af-forms of classWkP (resp.C%?) as usual (cf. [12, 15]). Each form
o of them has a “tangential component’» and a “normal componenthw (cf. [11,
Definition 4.2] or [15, (2.25)]), which satisfy

4.1) t(xw) = x(nw) and n(xw) = x(tw)
by Lemma 4.2 of [11], where is the Hodge star operator of the metfic Set
C2QL (L) := {w € C*3Q"(L): tw = 0},

CkaQL (L) := {w € C*2Q"(L): nw = 0}
and

HCRAQN(L) 1= {w € C*3Q"(L): dow = S = 0}.

Replacing Ck2 by WkP gives corresponding space&/*PQL(L), W*PQL(L) and
HWKPQT(L). Clearly, for §, = C**Qf (L) and S, = C**QL(L) (or §, = WKPQL (L)
and §, = WkPQL(L)), (4.1) implies

(4.2) *(S)C S and *(S)c S
By the definition of the co-differentiad, for any r-form w it holds that
(4.3) *(xw)= (1) "o, xéw=(-1d*w, *do=(-1)"sxw.

For k € N U {0} the closureC*3(dQ" (L)) of d"(L) in CkaQ +1(L) is contained
{dn: n € CK12Qr(L)} by the Poincaré lemma (cf. §3.1 of [1]).
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Since the exponent magxp of the metrioj is a local diffeomorphism, (by tubular
neighborhood theorem) the sufficiently small neighborhobthe zero section oﬂ(L)
satisfying the boundary condition corresponds to the dedfbions of submanifold.
with boundaryoL confined inW in one-to-one way.

Let C23(T"(N(L))) denote the Banach space 6f?-sections of the bundI&i(L).
Define the Banach space

X :={V € C*A(T(N(L))): de(N, Vs1) = 0},

and denote byZ a neighborhood of 0 in¥. ForV € % defineexp,: L > M, x >
exp, (x) := exp (V(x)). Set

” F: % — CHQYL) @ C%?Q"(L),
“4 V > ((6Xp,) e, 2EXD,)" Ime).

It is C! as done in [1, 17]. ClearlyeXp, is homotopic to the inclusiorj: L < M
via expy, and hence they induce the same homomorphisms between tRéate co-
homology groups. It follows that the de Rham cohomology s#as

[exp; (Im€)] = expy[Im €] = j*[Im €] = [j*(Im€)] € H"(L, R) vanish.

This shows that
Im F € C2QY(L) @ dC*2Q"Y(L).
ConsiderF as a map taC*2Q*(L) @ dC*2Q"1(L).
To compute the differential oF at O, forV € X we setf = «(V) andY :=
V — fR,. Then f € C#3(L) andY e C**(I'(¢].)). By Proposition 3.3V (p) € &, for

any pe dL, and sof(p) =0Vp e dL. Now V = fR, + Y. By the Cartan formula
one can compute the linearization Bf at 0,

FO)(V) = (6T, o, 2650, I )l o
= (Lva, 2Ly Im€)|L
(4.5) = (dtfr, 4y + LR, +vda, 2diR, 4y IMe)|L
— (df + iyda, 2dey IM€)],
— (df + tyda, —d % tyda)|L
= (d(f o j) + j*(tyde), —d * j*(tyda)).

Here the fifth equality comes from (2.2). In order to show tR&0) is surjective, we
need to write each

(n, d¢) e C*QY(L) @ dCT*Q" (L)
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as a convenient form.
Note thatt(dw) = d(tw) and n(Sw) = §(nw) for any C-form » on L (cf. [15,

Proposition 1.2.6 (b)]). Sinc€®2Q" (L) C L2Q" (L), by [11, Theorem 5.7, 5.8] or
[12, Theorem 7.7.7, 7.7.8] we may write= &py’ + dy” + h(¢), where

y' € CHQU(L)), y” € CMQE?(L), h(r) e HCOQ (L).
Moreover (4.2) and(dw) = d(tw) imply
8n = (=)Mo dow: C2UQR(L) — CHQY H(L).

We may assume
d¢ = —dxdu with ue C>*Q3(L).

Similarly, we have
n=dv+dp +h(n),

where
veC?QY(L)), B eC™QY(L), h() e HCQN(L)).

By (4.3), d 6v = (—1)2d(d % v) = 0 andd(xh(n)) = (=1) % sh(n) = 0. We get

(n,d¢) = (dB —du+du+ v+ h(n), —d x (du+ sv + h(n))
= (dx + v, —d x w),
where

x =B —ueC>Q(L),
(4.6) o
w = du+ v + h(n) € CHQ(L).
Take f = x. We need to find & € CY3(I'(¢].)) such that
fR, +Y e CY3T(N(L)))

and

j*(vda) = .
Since j*(ty4fr,da) = j*(iyda) = o, it suffices to find aZ e Clva(F(l\AI(L))) such that
4.7) j*(1zda) = w.

To this goal, consider the symplectic vector bundi (do|¢|, ) with a Lagrangian
subbundleT L. Let TLSL@ be the orthogonal complementary bundleTof in &|_ with
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respect tog. ThenTL;* = & N N(L). So&|. = TL &g (5 N N(L)). Note thatw may
be viewed as a section of the bundle Hdnh(R). We may extend it into a section of
Hom(|., R), &, by defining

Pp(U + v) = wp(U)

for any pe L andu + v € TpL @4 (¢ N N(L))p, whereu € T,L and v € (£ N N(L)),.
Note that® € C3(I'(Hom(|._,R))). The non-degeneracy ofx on £ implies that there
exists a unique sectiod: L — &|_ such that

(da)p(Z(p), A) = wp(A) Vpel and A e gp.

Clearly, Z € C12(£|.). Since&| = TL&g(EN N(L)) we get a unique decomposition
Z = Z1 + Z», WhereZ; € CY&('(TL)) and Z, € C(I'(¢ N N(L))). Obverse that

i*(1z, da) = 0.
In fact, for anyp € L andu € TplL it holds that
(i*(tz,de))p(u) = (1z,de))j(p)(j:U) = (de)p(Z2(p), u) =0
since Tyl is a Lagrangian subspace df,( (do)p). Hence we get
(da)p(Z2p), A) = &p(A) VYpel and A € &p.
This implies j*(¢z, do) = w. In summary we have proved:

Claim 4.1. There exists a unigue section: Z — &|. N NI(L) such that(4.7)
is satisfied. MoreoverZ is also of class &2. As a consequence the map(® is
surjective.

Next let us compute keR'(0)). Let V € X sit in ker(F’(0)). As above we may
write V = fR, + Y, where f = a(V) andY e CK*13(T(£]L)). (4.5) yields

(4.8) df + j*(tyda) =0,
(4.9) —d * j*(tyda) = 0.
From (4.8) we get
0=48(df + j*(ty da)) = 8df + 8(j*(ty da))

= sdf + (=12 wd % (j*(ty da))
=sdf



DEFORMATIONS OF SPECIAL LEGENDRIAN SUBMANIFOLDS 691

because of (4.9). Hencé&f = 0. By Proposition 3.3 the boundary condition
da(N, V]sL) = 0 implies V(p) € &, C &p for any p € dL, and thusf|,. = 0. Since
dL is a non-empty closed manifold, the maximum principle letwlsf = 0. Hence
V =Y. By (4.8) we have

(da)p(Y(p),u)=0 Vpel andue TpL.

This means thaty(p) belongs toT,L C &, since TyL is a Lagrangian subspace in
(£p, (da)p). Moreover,Y(p) = V(p) € Ny(L), and ToL N (£, N Np(L)) = (O} Vp e L.
We getV(p) =0 for any p € L. It shows kef'(0) = 0. Combing this with Claim 4.1
we prove that the differential

F'(0): ToX — CH*Q!(L) @ dCH2Q" (L)

is a Banach space isomorphism. The inverse function theareties that there exists
a neighborhood of 0 X', % C %, such thatF—1(0) N % = {0}. This completes the
proof of Theorem 1.1. ]

5. The proof of Theorem 1.2

Let (R,) denote the real line bundle generated Ry|.. Then the normal bundle
of L with respect to the metrig, N(L), is equal to{R,) &4 JT L. For a small section
V: L — N(L), the exponent map of yields a map

exp,: L > M, xm exp(V(x)).
Thus there exists a neighborhood of O in
Y :={V e C*}(((Ry))) ® CH*(M(ITL)): a(V)aL = cons}
so that the following map is well-defined:

G: ¥ — C2QY(L) @ CP2Q"(L),

(5.1)
V = (exg) o, 2 exd, Ime).

It is C* ([17]), and Im@G) € C12QL(L) @ dC2Q" (L) as above since expis homo-
topic to the inclusionj: L < M via expy.

ConsideringG as a map toC?Ql(L) @ dC2Q"%(L), and writingV = JX +
f R,, we may get

d
G'(0)(V) = &(exﬁv o, 2 exgy Im€)|io
(5.2) = (Lva, 2Ly Im €|,
= (df + tyx da, —d * 13x le)||_
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as above. Moreover, eachy,(d¢) € CHQY(L) @ dC**Q" (L) may be written as
(n,d¢) = (dx + w, —d x w), where x and w are as in (4.6). Takef = x, and one
easily find X e CY*(I'(T L)) such thatj*(tyxde) = w. Clearly, such & = fR, + JX
satisfiesa(V)|;. = 0. HenceG'(0) is surjective.

Assume thatv = fR, + JX sits in kerG’(0)). Then f and J X satisfy

df + j*(tyxda) =0, —dx j*(tjx da) = 0.

It follows that Af = §df = 0. Recall thatf = «(V) is equal to a constart on L.
By the maximum principle we gef = ¢, and hence

j*(lJX dOl) =0.

From this we derive] X = 0 as above. This prove k&((0)) = {cR, | ¢ € R}. Hence
(0, 0) is a regular value of the restriction & to a small neighborhoodq of 0 € 7,
and thus the moduli spac®i(L) is a 1-dimensional smooth manifold by the implicit
function theorem. O

Sincetg,e =0 andLg,e = 0 we havey:(Ime) = ImeVt, wherey is the flow of
R,. For special Legendrian embedding (submanifgdd)L — M we obtain pfoe = 0
and pf Ime = 0 with p, = ¥ o p for any t. So the deformation in Theorem 1.2 is
actually given by the isometries generated by the Reeb vdietial.

REMARK 5.1. If we replace? by a neighborhood? of 0 in

C*(I((Ry))) ® CH4(r(ITLY),

then the map
G: # — C*3(AY L)) ® CO3(A"(L)), V > (exg) a, 2 exd Ime),

is still C and has the image i) < C13(AL(L)) & dC3(A™L(L)). From the above
proof it is easy to see th&b'(0) is surjective. IfV = f R, + J X belongs to kei®'(0)),

we haveA f = 0 as above. ButL is a nonempty closed manifold, by Theorem 3.4.6
of [15] eachb € C*>(dL) corresponds to a uniqué € C*(L) satisfyingAf =0 and
fls. = b. It follows that ker('(0)) must be of infinite dimension.

The corresponding problems with [1, Corollary 9] and [17gdtem 4.8] can also
be considered similarly.
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