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Abstract
We show that every 3-strand braid has a representative word of a given form, and

furthermore, this form allows us, in most cases, to deduce positivity (or negativity)
in the � -ordering of B3. The � -ordering of Bn was introduced by Patrick Dehornoy
in the late 1990’s, however, other (equivalent) orderings were discovered soon after
by Fenn, Greene, Rolfsen, et al.

1. Introduction

The braid groups, denotedBn, were introduced in 1925 by Emil Artin [1] and can
be defined for eachn > 1 as the group generated by�1, �2, : : : , �n�1 with relations:
(1) �i� j D � j�i if ji � j j > 1, and
(2) �i� j�i D � j�i� j if ji � j j D 1.

In this paper, we use this generator and relation description of Bn, but we will also
view Bn as a mapping class group of the spaceDn D D2

� {p1, p2, : : : , pn}, the unit
disk with the set of distinguished points (calledpunctures) removed. As a mapping
class, the generator�i exchanges puncturespi and piC1 by a counterclockwise half-
twist. The n-strand braid

1n D (�1�2 � � � �n�1)(�1�2 � � � �n�2) � � � (�1�2)(�1)

is a half-twist of alln strands, and as a mapping class12
n is a full Dehn twist about the

boundary ofDn which generates the infinite cyclic center ofBn. We will denote13 D

�1�2�1 as simply1 throughout this paper. Finally, we note that, here, we compose
braids on the left.

A solution to the word and conjugacy problems forBn was discovered in 1968
by Garside in [6] and expanded upon by many others over the years. However, it still
remains an interesting endeavor to find distinguished representative words for elements
of the braid groups and monoids. The goal of this paper is to give a new distinguished
representative word for all 3-braids which can be obtained from a simple algorithm.
The geometric nature of this approach and the use of the mapping class group point
of view of B3 makes this approach novel and is an improvement upon previous normal
forms which use brute force methods. This new standard form is particularly useful in
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deciding for a 3-braid�, whether� > 1 is true in the� -ordering of B3. Until now,
there has been no standard form for braids which claims to determine positivity in the
� -ordering. This is a new and practical feature of the standard form given here for the
cases where the integerm in the standard form is greater than or equal to 3.

We give a brief description of each section of this paper. In Section 2, we give
a proof of the main theorem by using the mapping class group definition of B3 and
using a Euclidean-like algorithm. In Section 3, we recall the � -ordering of the braid
groups, first defined by Patrick Dehornoy, and show how the distinguished form for a
3-braid can in most cases identify it as positive or negativein this ordering. Finally, in
Section 4, we outline future directions in the continuationof this work. We start with
the statement of the main theorem.

Theorem 1.1. Every 3-braid � admits a representative word of the form

(1.1) � D (�2�1)m
!�

r ,

where� D ��1
1 �2�1 and ! is a word in only�1 and ��1

2 .

2. Proof of the main result

As a matter of convenience, we arrange the punctures in a triangular fashion. Let
e be a straight edge betweenp1 and p3, and let�i be a properly embedded arc which
separatesD3 into two components: a component which contains only the puncture pi

and its complement. We also require that�1, �2, �3 be pairwise disjoint (see Fig. 1).
Let � be an element ofB3, and isotop�(e) so that it intersects the set{�1, �2, �3}

transversally and minimally. The intersection of�(e) and each once-punctured disk re-
gion is some number (possibly zero) of parallel arcs enclosing the puncture and possibly
an arc which ends at the puncture. The complement of the threeonce-punctured disk
regions is a hexagonal region bounded by the arcs�i and three subarcs of�D3. The
intersection of�(e) with this region consists of a disjoint union of embedded edges,
each of which connects two of the arcs�i . Thus, there are three types of these edges;
however, all three could not occur in the same diagram, for this would give rise to a
closed loop. The braid�2�1 rotates the diagram by an angle of 2�=3, therefore by ap-
plying (�2�1)m for mD 0, 1 or 2 to�(e), we can assume there is no edge connecting
�1 and�3 (see Fig. 2).

Let ai be the geometric intersection number between the arcse0 D (�1�2)m
�(e)

and �i . Note that since there is no edge between�1 and �3, we havea2 D a1 C a3.
First, there are a few special cases to consider. Ifa3 D 0, then it must be the case that
a1 D a2 D 1 to avoid a closed loop. Thus, in this case,e0 is a straight arc betweenp1

and p2. We apply�2, and the resulting braid�2(�1�2)m
� fixes e. Similarly, if a1 D 0,

then e0 is a straight arc betweenp2 and p3. We apply ��1
1 and the resulting braid

�

�1
1 (�1�2)m

� fixes e. If a1 D a3, then we must havea1 D a3 D 1 to avoid a closed
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Fig. 1.

Fig. 2.

loop. In this casee0 is a “U”-shaped arc with endpointsp1 and p3. We may apply� 2
2

or ��2
1 , and in either case, the resulting braid� 2

2 (�1�2)m
� or ��2

1 (�1�2)m
� fixes e.

Now suppose that 0< a1 < a3, and consider�2(e0). This arc has fewer inter-
sections with the set{�1, �2, �3} than e0. In particular, if a0i denotes the geometric
intersection numbers of�2(e0) and �i , then a01 D a1, a02 D a3, and a03 D a3 � a1. Simi-
larly, if 0 < a3 < a1, we apply��1

1 and find that the intersection numbers of��1
1 (e0)

and �1, �2, �3 are a01 D a1 � a3, a02 D a1, and a03 D a3, respectively. We repeat the
algorithm of applying�2 whenevera1 < a3 and applying��1

1 whenevera3 < a1 a fi-
nite number of times until we eventually unravel the arce0 so that the resulting arc is
isotopic toe.

Thus, in each case we have generated a word!

�1 only involving negative powers
of �1 and positive powers of�2 for which the braid!�1(�2�1)m

� fixes e. However,
any braid that fixese must be a power of� D ��1

1 �2�1, the half Dehn twist aboute,
times a power of the central element12

D (�2�1)3. Thus,

!

�1(�2�1)m
� D 1

2k
�

r
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yielding

� D (�2�1)�m
!1

2k
�

r

D (�2�1)3k�m
!�

r ,

where! is a word involving only positive powers of�1 and negative powers of�2.
This is the desired form, so the result is shown.

3. An application to the � -ordering of B3

The connection between the braid groups and orderable groups, though long over-
due, was not widely recognized when announced by Patrick Dehornoy in 1992 [3] be-
cause the methods used were largely unfamiliar to topologists. Several years later, a
topological proof of the orderability ofBn was discovered by Fenn, Rolfsen, Wiest,
et al. [5]. This ordering used the description ofBn as a mapping class group of an
n-punctured disk, yet surprisingly it leads to the same ordering given by Dehornoy.
In the years since these discoveries, several other approaches, including ideas from
hyperbolic geometry and lamination theory, have been used to show orderability ofBn.
Here we describe Dehornoy’s ordering ofBn known as the� -ordering starting with a
few definitions.

A braid word w is said to be� -positive (resp.� -negative) if, among the letters
�

�1
i that occur inw, the one with lowest index occurs positively only (resp. negatively

only). For example, the wordw D �2�
�1
3 �2�3 is � -positive since�2 appears inw, but

�

�1
2 does not. By contrast the word�1�2�

�1
1 is neither� -positive nor� -negative since

both �1 and ��1
1 appear inw. For �, � 0 in Bn, we say that� <n �

0 is true if ��1
�

0

admits ann-strand representative word that is� -positive.
For instance, if� D �1 and� 0 D �2�1 in B3, then��1

�

0 admits the word��1
1 �2�1

which is neither� -positive nor� -negative. However, using the relation�1�2�1D �2�1�2

in B3 we see that this braid also admits the word�2�1�
�1
2 which is � -positive. Hence,

� <3 �
0. The relation<n is a total left-invariant ordering ofBn for 2� n � 1, and we

shall refer to this ordering as the� -ordering of Bn. The proof is not included here but
can be found in [4], among other sources. The essential properties of the relation<n

needed for the proof are summed up in the following two statements.

Property A (Acyclicity). A braid that admits at least one� -positive representa-
tive word is nontrivial.

Property C (Comparison). Every braid in Bn admits ann-strand representative
word that is� -positive,� -negative, or empty.

From the definition above, it can be seen that 1<n � if and only if � admits ann-
strand representative word that is� -positive. For a braid� in B3, we use a representative
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word in the form given by Theorem 1.1 to deduce� -positivity. Since we will be refer-
ring to 3-strand braids for the remainder of this paper, we simply write < for <3.

First, we make a simple observation about� -positivity in B3. Since there are only
the letters��1

1 and ��1
2 to consider, a 3-strand braid wordw is � -positive if and only

if �1 appears inw, but ��1
1 does not; or ifw is a positive power of�2. We can im-

mediately conclude the following.

Proposition 3.1. Let � 2 B3 be nontrivial, and choose a representative word for
� of the form given inEquation (1.1). If m � 0 and r � 0, then 1< �.

Proof. Let� D (�2�1)m
!�

r , where! is a word in only�1 and ��1
2 . We simply

observe that� D �

�1
1 �2�1 D �2�1�

�1
2 . Therefore, ifm � 0 and r � 0, only positive

powers of�1 appear in the word. This proves the result.

We can also conclude that ifm� 3, the word is� -positive no matter the value of
r due to the fact that the infinite cyclic center ofB3 is generated by (�2�1)3.

Proposition 3.2. Let � 2 B3 be nontrivial, and choose a representative word for
� of the form given inEquation (1.1). If m � 3, then 1< �.

Proof. If we have the word� D (�2�1)m
!�

�1
1 �

r
2�1, then there is only one occur-

rence of the letter��1
1 . We can freely reduce this letter by commuting! and (�2�1)3.

This proves the result.

For further cases, we use a special case of a combinatorial method for comparing
braid words calledhandle reductionintroduced by Dehornoy in [2]. Handle reduction
provides an algorithm for finding a� -positive or� -negative representative word for a
nonempty braid word (which always exists by Property C). By definition, if a nonempty
braid wordw is neither� -positive nor� -negative, then the letter�i of lowest index
must appear both positively and negatively inw. Therefore,w contains a subword ei-
ther of the form�i ��

�1
i or ��1

i ��i where all letters of� are��1
k for k > i . A subword

of this type is called a�i -handle, and handle reduction is a process of replacing a�i -
handle inw with an equivalent word in which the first and last letters��1

i have been
deleted. This process is iterated until no�i -handle is left in the word, resulting in an
equivalent word that is either� -positive,� -negative, or empty.

So, specifically, here is how handle reduction works. A�i -handle� e
i ��

�e
i is said

to be permitted if the word � includes no�iC1-handle. If v is a permitted�i -handle,
we define thereduct of v to be the word obtained from� by replacing each letter
�

�1
iC1 with �

�e
iC1�

�1
i �

e
iC1. We say thatw0 is obtained fromw by handle reduction(or

w reducesto w

0) if w0 is obtained by replacing a subword ofw that is a permitted
handle with its reduct. It should be noted that handle reduction extends free reduction
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since reducing the�i -handle� e
i �

�e
i amounts to deleting it. By a result of Dehornoy,

handle reduction converges.
Sparing further exposition on the general case, we move directly to thenD 3 case.

Here, the only nontrivial�i -handles are�1-handles� e
1�

d
2 �

�e
1 which we simply refer to

as “handles”. It is also immediately apparent that all handles are permitted. There-
fore, if each��1

2 in a handle is replaced by��e
2 �

�1
1 �

e
2 , after free reductions are per-

formed, we see that handle reduction in this case simply replaces a subword of the
form �

e
1�

t
2�

�e
1 with its reduct��e

2 �

t
1�

e
2 .

We establish an algorithm for performing handle reductions. First, at each step we
choose to reduce theleftmosthandle inw. Here is what is meant by leftmost. Ifw
is a word of lengthl , then a (p, q)-subwordof w is the word obtained by deleting all
letters before positionp and after positionq, for 1� p � q � l . A handlev is said to
be leftmost in w if there exist p, q such thatv is the (p, q)-subword ofw, and there
is no p0, q0 with q0 < q such that the (p0, q0)-subword ofw is a handle. For example,
in the 3-strand braid wordw D �2�1�

�3
2 �

�2
1 �

2
2�1, the (2, 6)-subwordv D �1�

�3
2 �

�1
1 is

the leftmost handle inw. Secondly, we perform all possible free reductions rather than
waiting for trivial handle� e

1�
�e
1 or � e

2�
�e
2 to be leftmost. This algorithm is referred to

as left handle reduction, and we use it in proving the following.

Proposition 3.3. Let � 2 B3 be nontrivial, and choose a representative word for
� of the form given inEquation (1.1). If m � �4, then � < 1.

Proof. For simplicity’s sake, we replace�1 with the lettera and�2 with the letter
b. The inverse of each generator will be the corresponding capital letter. Using this
notation,� D (AB)m

!Abr a, where m � 4 and! is a word in lettersa and B only.
Thus, we show� is equivalent to a word in whichA appears, buta does not appear.

First, we consider the case thata does not appear in the subword!. Then,! is
either empty or a power ofB. In this case, only appearance of the lettera is as the
last letter of�. Since (AB)3 is in the center ofB3, we can annihilate the lettera by
commuting the prefix (AB)3 with the rest of the word. The resulting word has the
letter A but no a, hence it is� -negative.

Now, suppose the lettera does appear in!. So,! D ask Bsk�1
� � � as3 Bs2as1, where

si � 0 and some power ofa does appear. Consider the leftmosta in !; call it a1. The
letter a1 is to the right of the prefix (AB)m, so it is clear that the leftmost handle in�
is of the form ABt1a1, wheret1 � 1. We replaceABt1a1 with its reductbAt1 B. Notice
that this replacement deletesa1 and adds no morea’s. Furthermore, we have shaved
one AB from our prefix, so the reduced word now has at least threeAB’s in its prefix.

If there are any remaininga’s in !, consider the leftmost, and call ita2. Note that
a2 must be to the right of the reductbAt1 B from the previous step. Therefore, again
our leftmost handle is of the formABt2a2, where t2 � 1. We replace this handle with
its reductbAt2 B, again, deletinga2 while adding no morea’s. We keep this repeating
this process until there are no more occurrences of the letter a in !.
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Now, the only appearance ofa is as the last letter of�0 (the reduction of�). But
since we have (AB)3 in our prefix, we can commute this subword with the rest of the
word to annihilate thisa. The result is a word in whichA appears buta does not
appear. Thus, in each case� < 1.

4. Conclusions

In this paper, we show that every 3-braid admits a distinguished word of the form
(�2�1)m

!�

�1
1 �

r
2�1 where! is a word in�1 and ��1

2 only. For example, it can be ver-
ified that �2 is equivalent to the word (�2�1)2

�

�2
2 �

�1
1 �

�1
2 �1. Even though it may be

less practical to use this form for braids like�2, the value form sheds light on the
positivity or negativity of the braid in the� -ordering of B3. Our results leave remain-
ing cases�3� m< 3 open, but initial investigations into these cases suggests that the
integer r plays a greater role whenjmj is small.
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