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Abstract
We show that every 3-strand braid has a representative waaidgven form, and
furthermore, this form allows us, in most cases, to deducstipity (or negativity)
in the o-ordering of Bs. The o-ordering of B, was introduced by Patrick Dehornoy
in the late 1990's, however, other (equivalent) orderingsemiscovered soon after
by Fenn, Greene, Rolfsen, et al.

1. Introduction

The braid groups, denotef,, were introduced in 1925 by Emil Artin [1] and can

be defined for eacim > 1 as the group generated by, oo, ..., 0,_1 with relations:
(1) oioj =ojo; if |i —j| > 1, and
(2) 0i0j0j = 0j0i0]j if |I - j| = 1.

In this paper, we use this generator and relation descnififoB,,, but we will also
view B, as a mapping class group of the spdde= D?—{p1, P2, ..., Pn}, the unit

disk with the set of distinguished points (call@dincture$ removed. As a mapping
class, the generatar; exchanges punctureg and pi.1 by a counterclockwise half-
twist. The n-strand braid

Ap = (0102 + - - on—1)(0102 - - - On_2) - - - (0102)(01)

is a half-twist of alln strands, and as a mapping clas3 is a full Dehn twist about the
boundary ofD, which generates the infinite cyclic center Bf. We will denoteAz =
010,01 as simply A throughout this paper. Finally, we note that, here, we c@apo
braids on the left.

A solution to the word and conjugacy problems By was discovered in 1968
by Garside in [6] and expanded upon by many others over thes.y&towever, it still
remains an interesting endeavor to find distinguished sgmtative words for elements
of the braid groups and monoids. The goal of this paper is\te ginew distinguished
representative word for all 3-braids which can be obtaingenfa simple algorithm.
The geometric nature of this approach and the use of the mgpupass group point
of view of Bz makes this approach novel and is an improvement upon prgviotmal
forms which use brute force methods. This new standard ferparticularly useful in

2010 Mathematics Subject Classification. Primary 57M07; S8eéary 20F60.



538 E.D. LAWRENCE

deciding for a 3-braids, whetherg > 1 is true in theo-ordering of B;. Until now,
there has been no standard form for braids which claims teriehinie positivity in the
o-ordering. This is a new and practical feature of the stashd@amm given here for the
cases where the integem in the standard form is greater than or equal to 3.

We give a brief description of each section of this paper. #tt®n 2, we give
a proof of the main theorem by using the mapping class grodipitien of B; and
using a Euclidean-like algorithm. In Section 3, we recab thordering of the braid
groups, first defined by Patrick Dehornoy, and show how théndisished form for a
3-braid can in most cases identify it as positive or negativthis ordering. Finally, in
Section 4, we outline future directions in the continuatafthis work. We start with
the statement of the main theorem.

Theorem 1.1. Every3-braid g admits a representative word of the form

(1.1 n = (0201)"wt",

1

wheret = o7 “0201 and w is a word in onlyo; and a{l.

2. Proof of the main result

As a matter of convenience, we arrange the punctures in @agtriar fashion. Let
e be a straight edge betwegn and ps3, and lete; be a properly embedded arc which
separated; into two components: a component which contains only thecpua p;
and its complement. We also require that o, o3 be pairwise disjoint (see Fig. 1).

Let B be an element oBg, and isotopB(e) so that it intersects the sy, oz, as}
transversally and minimally. The intersection @fe) and each once-punctured disk re-
gion is some number (possibly zero) of parallel arcs enetpsiie puncture and possibly
an arc which ends at the puncture. The complement of the thmee-punctured disk
regions is a hexagonal region bounded by the ajcand three subarcs dfD3. The
intersection ofg(e) with this region consists of a disjoint union of embeddedex]
each of which connects two of the ares Thus, there are three types of these edges;
however, all three could not occur in the same diagram, far Would give rise to a
closed loop. The braid,o; rotates the diagram by an angle of /3, therefore by ap-
plying (o201)™ for m =0, 1 or 2 toB(e), we can assume there is no edge connecting
a1 and oz (see Fig. 2).

Let & be the geometric intersection number between the dres (o10,)"B(€)
and ¢;. Note that since there is no edge betwegnand a3, we havea, = a; + ag.
First, there are a few special cases to consideag K= 0, then it must be the case that
a; = a, = 1 to avoid a closed loop. Thus, in this casejs a straight arc betweep;
and p,. We applyo,, and the resulting braid;(c10,)™8 fixes e. Similarly, if a; = 0,
then € is a straight arc betweep, and ps. We applyo; ! and the resulting braid
al‘l(aloz)mﬂ fixes e. If ay = a3z, then we must havey = ag = 1 to avoid a closed
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Fig. 1.

Fig. 2.

loop. In this case’ is a “U”-shaped arc with endpoints; and ps. We may applyo2
or 0,2, and in either case, the resulting braig(c102)™B or o, %(0102)™B fixes e.

Now suppose that & a; < ag, and considero,(€). This arc has fewer inter-
sections with the sefay, oo, w3} than €. In particular, if & denotes the geometric
intersection numbers af»(€) and «;, thena; = ay, &, = a3, anda; = ag — a;. Simi-
larly, if 0 < ag < a1, we applyo; ! and find that the intersection numbers @f(€)
and oy, ap, a3 area; = a; — ag, & = &, and a; = ag, respectively. We repeat the
algorithm of applyingo, whenevera; < ag and applyingo; ! wheneveras < & a fi-
nite number of times until we eventually unravel the afcso that the resulting arc is
isotopic toe.

Thus, in each case we have generated a wort only involving negative powers
of o1 and positive powers of, for which the braidew1(o.01)™B fixes e. However,
any braid that fixese must be a power ot = 01_10201, the half Dehn twist aboug,
times a power of the central elemenf = (0201)%. Thus,

o Y o201)"B = AHT'
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yielding

B = (0201) Mw A"

where w is a word involving only positive powers af; and negative powers af».
This is the desired form, so the result is shown.

3. An application to the o-ordering of Bs

The connection between the braid groups and orderable grdlpugh long over-
due, was not widely recognized when announced by Patriclobely in 1992 [3] be-
cause the methods used were largely unfamiliar to topdkgiSeveral years later, a
topological proof of the orderability oB, was discovered by Fenn, Rolfsen, Wiest,
et al. [5]. This ordering used the description Bf as a mapping class group of an
n-punctured disk, yet surprisingly it leads to the same andegiven by Dehornoy.
In the years since these discoveries, several other agmsadncluding ideas from
hyperbolic geometry and lamination theory, have been ugeshow orderability ofB,.
Here we describe Dehornoy’s ordering Bf known as thes-ordering starting with a
few definitions.

A braid word w is said to beo-positive (resp. o-negative) if, among the letters
o1 that occur inw, the one with lowest index occurs positively only (resp. atagly
only). For example, the wordh = 0203‘10203 is o-positive sinceo, appears inw, but
o, ! does not. By contrast the wokgio,0, ! is neithero-positive nore-negative since
both o1 and oy appear inw. For g, B’ in By, we say thatg <, g’ is true if =18’
admits ann-strand representative word thatdspositive.

For instance, if8 = o1 and ' = o201 in Bg, then 18’ admits the wordy, oz01
which is neither -positive noro-negative. However, using the relatiefio,01 = 020102
in Bz we see that this braid also admits the wegd 0,1 which is o-positive. Hence,
B <3 B’. The relation<y, is a total left-invariant ordering oB,, for 2 < n < oo, and we
shall refer to this ordering as the-ordering of B,. The proof is not included here but
can be found in [4], among other sources. The essential pgiepeof the relation<,
needed for the proof are summed up in the following two statem

Property A (Acyclicity). A braid that admits at least one-positive representa-
tive word is nontrivial.

Property C (Comparison) Every braid in B, admits ann-strand representative
word that iso-positive, o-negative, or empty.

From the definition above, it can be seen thatlg if and only if 8 admits ann-
strand representative word thatoispositive. For a braig in Bz, we use a representative



A NEW DISTINGUISHED FORM FOR 3-BRAIDS 541

word in the form given by Theorem 1.1 to dedugeositivity. Since we will be refer-
ring to 3-strand braids for the remainder of this paper, wephi write < for <s.

First, we make a simple observation abeupositivity in B;. Since there are only
the lettersof! and 0! to consider, a 3-strand braid word is o-positive if and only
if o1 appears inw, but o, * does not; or ifw is a positive power of,. We can im-
mediately conclude the following.

Proposition 3.1. Let 8 € B3 be nontrivial and choose a representative word for
B of the form given inEquation (1.1)If m> 0 and r > 0, then1 < 8.

Proof. Letp = (0201)"wt", wherew is a word in onlyo; ando,®. We simply
observe thatr = o, Y0201 = 02010, 1. Therefore, ifm > 0 andr > 0, only positive

powers ofo; appear in the word. This proves the result. O

We can also conclude that iih > 3, the word iso-positive no matter the value of
r due to the fact that the infinite cyclic center B§ is generated byoboy)3.

Proposition 3.2. Let 8 € B3 be nontrivial and choose a representative word for
B of the form given inEquation (1.1) If m > 3, then1 < 8.

Proof. If we have the wordk = (azal)ma)aflazral, then there is only one occur-
rence of the letter; 1. We can freely reduce this letter by commutiagand ¢201)3.
This proves the result. ]

For further cases, we use a special case of a combinatorihioohdéor comparing
braid words callechandle reductionintroduced by Dehornoy in [2]. Handle reduction
provides an algorithm for finding a-positive oro-negative representative word for a
nonempty braid word (which always exists by Property C). Bfirdtion, if a nonempty
braid word w is neithero-positive noro-negative, then the lettes; of lowest index
must appear both positively and negativelywn Therefore,w contains a subword ei-
ther of the formojvo;* or o, tvo; where all letters of» are ! for k > i. A subword
of this type is called aj-handle and handle reduction is a process of replacing-a
handle inw with an equivalent word in which the first and last lettef§' have been
deleted. This process is iterated until aghandle is left in the word, resulting in an
equivalent word that is either-positive, o-negative, or empty.

So, specifically, here is how handle reduction workssiAhandles®vo; ™ is said
to be permittedif the word v includes noo;i-handle. Ifv is a permitteds;-handle,
we define thereduct of v to be the word obtained fromr by replacing each letter
0% with 03807% 0% ;. We say thatw’ is obtained fromw by handle reduction(or
w reducesto w’) if w’ is obtained by replacing a subword af that is a permitted
handle with its reduct. It should be noted that handle rednotxtends free reduction
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since reducing thesi-handleo;®0;"® amounts to deleting it. By a result of Dehornoy,
handle reduction converges.

Sparing further exposition on the general case, we movetlireo then = 3 case.
Here, the only nontriviabi-handles arer;-handleso oo which we simply refer to
as “handles”. It is also immediately apparent that all hasdhre permitted. There-
fore, if eachos! in a handle is replaced by, ®oflof, after free reductions are per-
formed, we see that handle reduction in this case simplyacegl a subword of the
form ofolor® with its reductoy o os.

We establish an algorithm for performing handle reductidfisst, at each step we
choose to reduce thieftmosthandle inw. Here is what is meant by leftmost. b
is a word of lengthl, then a ¢, q)-subwordof w is the word obtained by deleting all
letters before positiorp and after positiorg, for 1 < p <q <I. A handlev is said to
be leftmostin w if there existp, g such thatv is the (p, q)-subword ofw, and there
is no p’, g with " < q such that the ff, q’)-subword ofw is a handle. For example,
in the 3-strand braid word = 0,010, 30 20207, the (2, 6)-subword = 010, %0, 1 is
the leftmost handle inw. Secondly, we perform all possible free reductions rathant
waiting for trivial handleofo; ® or 050, ¢ to be leftmost. This algorithm is referred to
asleft handle reductionand we use it in proving the following.

Proposition 3.3. Let 8 € Bz be nontrivial and choose a representative word for
B of the form given inEquation (1.1) If m < —4, then 8 < 1.

Proof. For simplicity’s sake, we replaeg with the lettera and o, with the letter
b. The inverse of each generator will be the correspondingtalaletter. Using this
notation, u = (AB)"wAb'a, wherem > 4 andw is a word in lettersa and B only.
Thus, we showu is equivalent to a word in whictA appears, bua does not appear.

First, we consider the case thatdoes not appear in the subwo#d Then,w is
either empty or a power oB. In this case, only appearance of the letters as the
last letter of . Since (\B)? is in the center ofBs, we can annihilate the lettex by
commuting the prefix AB)% with the rest of the word. The resulting word has the
letter A but noa, hence it iso-negative.

Now, suppose the lettea does appear iw. So,w = a*¥B%...a%B%a%, where
s > 0 and some power ad does appear. Consider the leftmasin w; call it a;. The
letter a; is to the right of the prefix AB)™, so it is clear that the leftmost handle in
is of the form AB%a;, wheret; > 1. We replaceAB"a; with its reductb A“B. Notice
that this replacement deletes and adds no mora’s. Furthermore, we have shaved
one AB from our prefix, so the reduced word now has at least t&s in its prefix.

If there are any remaining’s in w, consider the leftmost, and call &. Note that
a must be to the right of the reduttA:B from the previous step. Therefore, again
our leftmost handle is of the forrAB%2a,, wheret, > 1. We replace this handle with
its reductb A2B, again, deletinga, while adding no morea’s. We keep this repeating
this process until there are no more occurrences of ther latia .
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Now, the only appearance af is as the last letter oft’ (the reduction ofu). But
since we have AB)2 in our prefix, we can commute this subword with the rest of the
word to annihilate thisa. The result is a word in whichA appears but does not
appear. Thus, in each cage< 1. O

4. Conclusions

In this paper, we show that every 3-braid admits a distirfgedsword of the form
(azal)mwoglagal wherew is a word inoy and 02*1 only. For example, it can be ver-
ified that o, is equivalent to the wordogos)?o, %01 0, 01. Even though it may be
less practical to use this form for braids like, the value form sheds light on the
positivity or negativity of the braid in the-ordering of Bs. Our results leave remain-
ing cases—-3 < m < 3 open, but initial investigations into these cases suggbstt the
integerr plays a greater role whejm| is small.
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