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SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS
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Abstract
An SH(3)-move is an unknotting operation on oriented knots introduced by

Hoste, Nakanishi and Taniyama. We consider some relationships to other local moves
such as a band surgery,00-move, and1-move, and give some criteria for estimating
the SH(3)-unknotting number using the Jones, HOMFLYPT, Q polynomials. We also
show a table ofSH(3)-unknotting numbers for knots with up to 9 crossings.

1. Introduction

An SH(3)-move is a local change for an oriented link diagram whichpreserves
the number of components as shown in Fig. 1. This move is a special case of an
SH(n)-move introduced by Hoste, Nakanishi and Taniyama [6], where n is odd. Then
they showed that each of these moves are unknotting operation, that is, any knot can
be deformed into a trivial knot by a sequence ofSH(n)-moves. So, we may define
an SH(n)-Gordian distance between two knots and anSH(n)-unknotting number for
a knot. In this paper, we mainly consider anSH(3)-Gordian distance and anSH(3)-
unknotting number.

For anSH(3)-Gordian distance, Taniyama and Yasuhara [29] have given some in-
terpretations (Proposition 2.1), which suggest the importance of theSH(3)-move partic-
ularly from 4-dimensional point of view and also give several estimations of anSH(3)-
Gordian distance (Propositions 2.2, 2.3, 2.5, 2.6). Since an SH(3)-move is realized by a
sequence of two coherent band surgeries (Fig. 2), we may apply some criteria by the
Jones, Q, and HOMFLYPT polynomials for a band surgery ([9, 10]) to obtain some
criteria on anSH(3)-Gordian distance (Theorem 3.1).

We then consider some relations of anSH(3)-move with other local moves such
as a crossing change, a00-move, and a1-move. They are also unknotting operation,
and we may obtain several relations among a usual Gordian distance,00-Gordian dis-
tance,1-Gordian distance, andSH(3)-Gordian distance (Propositions 4.1, 4.3). These
relations are useful to decide anSH(3)-unknotting number, and are also efficient to
give a lower bound of an1-unknotting number (Example 4.8). Lastly, we give a table
of an SH(3)- and00-unknotting numbers for knots with up to 9 crossings (Tables1,
2); we can decide theSH(3)-unknotting numbers completely, but cannot decide the
00-unknottings number for 12 knots.
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Fig. 1. An SH(3)-move.

This paper is organized as follows: In Section 2, we present some interpretations
for an SH(3)-Gordian distance due to Taniyama and Yasuhara. In Section 3, we give
some criteria for anSH(3)-Gordian distance by the special values of the Jones, Q, and
HOMFLYPT polynomials. In Section 4, we give some relations among several Gordian
distances by a crossing change, a00-move, a1-move, and anSH(3)-move. In Sec-
tion 5, we give a table of anSH(3)- and00-unknotting numbers for knots with up to
9 crossings. In Section 6, we remark that our method is also acceptable for the pass
move and sharp move.

For knots and links we use Rolfsen notations in Appendix C in [26].

2. Some interpretations of anSH(3)-Gordian distance

For an SH(3)-Gordian distance Taniyama and Yasuhara [29] have givensome in-
terpretations, which is useful to give several estimationsof an SH(3)-Gordian distance
and anSH(3)-unknotting number.

Let K and K 0 be two oriented knots inS3. We denote theSH(3)-Gordian distance
of K and K 0 by sd3(K , K 0), and theSH(3)-unknotting number ofK by su3(K ). The
C-distanceof K and K 0, dC(K ,K 0), is the minimal genus of an embedded oriented sur-
face in S3 whose boundary is the two knotsK and K 0. In other words, theC-distance
of K and K 0 is the minimal genus over all 2-components links whose components are
K and�K 0, where�K 0 is the knotK 0 with reversed orientation. Theconcordance dis-
tanceof K and K 0, c(K , K 0), is half of the least number of elementary critical points
on an oriented surface inS3

� [0, 1] connectingK in S3
�{0} to K 0 in S3

�{1}, that is,
a concordance between the two knots, whose projection to [0,1] is a Morse function.
The following is the main theorem of [29].

Proposition 2.1. The SH(3)-Gordian distance, the C-distance, and the concord-
ance distance between two knots are equal; sd3(K , K 0) D dC(K , K 0) D c(K , K 0).

The C-distance is an interpretation for theSH(3)-Gordian distance from a
3-dimensional point of view, which implies the following ([6, Theorems 3� (2)], [29,
Theorems 3.1]):

Proposition 2.2. For a knot K, we have:

(1) su3(K ) � g(K ),



SH(3)-MOVE ON KNOTS 441

Fig. 2. An SH(3)-move is realized by a sequence of two coherent
band surgeries.

whereg(K ) is the genus of K .

The concordance distance is an interpretation for theSH(3)-Gordian distance from
a 4-dimensional point of view, which implies Propositions 2.3 and 2.5 below. For two
oriented knotsK and K 0, we define thecoherent band-Gordian distance, dband(K , K 0),
to be the minimum number of band surgeries needed to deformK into K 0. We define
the coherent band unknotting numberof K to be the coherent band-Gordian distance
of K and the trivial knotU , uband(K ) D dband(K , U ). Then we have:

Proposition 2.3. For two oriented knots K and K0, we have:

(2) dband(K , K 0) D 2 sd3(K , K 0).

In particular, we have:

(3) uband(K ) D 2 su3(K ).

Proof. An SH(3)-move is realized by a sequence of two coherent band surgeries
as shown in Fig. 2; see [6, Fig. 4], and so dband(K , K 0) � 2 sd3(K , K 0). Conversely,
suppose that there exist a sequence of oriented linksL0 D K , L1, : : : , Ln�1, Ln D K 0

such thatL i is obtained fromL i�1 by a coherent band surgery for eachi , 1� i � n.
Then there exists an oriented surface inS3

� [0, 1] connectingK in S3
� {0} to K 0 in

S3
� {1}, the number of whose elementary critical points isn. Then 2c(K , K 0) � n,

and so by Proposition 2.1 we have 2 sd3(K , K 0) � dband(K , K 0), completing the proof.

EXAMPLE 2.4. Let K D 31! #51. ThenK is deformed intoH
�

, the negative Hopf
link, by a band surgery along the band as shown in Fig. 3. SinceH

�

is band-trivializable,
that is, it can be deformed into the trivial knot by a band surgery, by Proposition 2.3 we
have su3(K ) D uband(K )=2D 1. Similarly, we have su3(98) D su3(931) D 1. In fact, the
knots 98 and 931 are deformed into 421! with linking number�2 and 52#H

C

, respectively
by a band surgery along the bands as shown in Fig. 3, where 42

1! with linking number
�2 is the torus link of type (2, 4) with anti-parallel orientation and H

C

is the positive
Hopf link; these links are easily seen to be band-trivializable; cf. [10, Lemma 4.3].
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Fig. 3. Knots withSH(3)-unknotting number one.

We define the 4-distanceof two oriented knotsK and K 0, d4(K , K 0), to be the
minimum genus of a concordance inS3

� [0, 1] betweenK and K 0. In particular, the
4-distance ofK and the trivial knotU is the 4-ball genusof K , g�(K ) D d4(K , U ).
Then d4(K ,K 0)D g�(K #(�K 0)). We obtain the following ([29, Theorems 1.2 and 3.1]):

Proposition 2.5. For two oriented knots K and K0, we have:

(4) d4(K , K 0) � sd3(K , K 0).

In particular, we have:

(5) g�(K ) � su3(K ).

A knot with 4-ball genus zero is usually called aslice knot. Namely, a slice knot
K in S3 bounds a properly embedded locally flat disk inS3

� [0,1). A ribbon knot is
a slice knot bounding a disk inS3

� [0,1) whose critical points consist of maximum
and saddle points. We define the ribbon-fusion number of a ribbon knot to be the least
number of such saddle points. More precisely, a ribbon knot ofm-fusions is a knot
obtained from a trivial (mC 1)-component link by doing band surgery alongm bands.
So, it has the form

(6) S1
0 [ S1

1 [ � � � [ S1
m [

m
[

iD1

fi (� I � I ) � int
m
[

iD1

fi (I � � I ),

whereS1
0[S1

1[� � �[S1
m is a trivial m-component link andfi W I � I ! S3 (i D 1, 2,: : : ,

m) are disjoint embeddings such that

(7) fi (I � � I ) \ Sj D

8

<

:

fi (I � {0}), if j D 0I
fi (I � {1}), if j D i I
;, otherwise.

By a ribbon knot we mean a ribbon knot ofm-fusions for somem; see [30]. The least
number of suchm is the ribbon-fusion numberof K , which we denote by rf(K ); see
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[9]. Then the following is immediate from the equation sd3(K , K 0) D c(K , K 0), which
is a generalization of Example 3.2 (1) in [29].

Proposition 2.6. If K is a ribbon knot, then

(8) su3(K ) � rf(K ).

In particular, if K is a ribbon knot with ribbon-fusion number one, then su3(K ) D 1.

EXAMPLE 2.7. Let K D 941, which is a ribbon knot with 1-fusion [13, Appen-
dix F.5], and so by Proposition 2.6, we obtain su3(K ) D 1. Note that the inequalities
in Proposition 4.5 below do not work to decide this.

We denote by6m(L) the m-fold cyclic covering space ofS3 branched over an
oriented link L in S3, and by Q6(K ) the infinite cyclic covering space of the comple-
ment of an oriented knotK in S3. Let em(L) be the minimum number of generators
of H1(6m(L)I Z), and e(K ) the minimum number of generators ofH1( Q6(K )I Z) as a
Z[t, t�1]-module. Thene(K ) is equal to the Nakanishi index ofK ; see [13, p. 72]. For
an SH(3)-Gordian distance we have the following:

Proposition 2.8. For two oriented knots K and K0 in S3, we have the following:

jem(K ) � em(K 0)j=2(m� 1)� sd3(K , K 0),(9)

je(K ) � e(K 0)j=2� sd3(K , K 0).(10)

Proof. Equation (9) can be proved in a similar way to [6, Theorem 4�], and
Equation (10) is given in [29, Theorem 1.2], which is essentially due to Nakanishi [21].

For anSH(3)-unknotting number we have the following:

Proposition 2.9. For an oriented knot K in S3, we have the following:

em(K )=2(m� 1)� e(K )=2� su3(K ).(11)

Proof. The first inequality,em(K )=(m�1)� e(K ), is given in [13, Corollary 5.5.2],
and the second one follows from Equation (10), which is also given in [29, Theorem 3.1].

REMARK 2.10. The inequalityem(K )=2(m � 1) � su3(K ) is given in [6,
Theorem 4�].
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3. Special values of some polynomial invariants of knots

We consider the special values of the Jones, Q, and HOMFLYPT polynomials of
knots, which allow us to estimate anSH(3)-Gordian distance and anSH(3)-unknotting
number in some cases. First we remember the definitions of several polynomials.

TheConway polynomialr(LIz) 2 Z[z] [3], the Jones polynomial V(LI t) 2 Z[t�1=2]
[7], and theHOMFLYPT polynomial P(LI v, z) 2 Z[v�1, z�1] [4, 25] are invariants of
the isotopy type of an oriented linkL, which are defined by the following formulas:

r(U I z) D 1I(12)

r(L
C

I z) � r(L
�

I z) D zr(L0I z)I(13)

V(U I t) D 1I(14)

t�1V(L
C

I t) � tV(L
�

I t) D
�

t1=2
� t�1=2

�

V(L0I t)I(15)

P(U I v, z) D 1I(16)

v

�1P(L
C

I v, z) � vP(L
�

I v, z) D zP(L0I v, z),(17)

whereU is the unknot and (L
C

, L
�

, L0) is a skein triple, that is, three links that are
identical except near one point where they are as in Fig. 4.

For an oriented linkL, the Conway and Jones polynomials are related to the
HOMFLYPT polynomial by:

r(LI z) D P(LI 1, z)I(18)

V(LI t) D P(LI t, t1=2
� t�1=2).(19)

The Conway polynomial of a knotK is of the form

r(K I z) D 1C
n
X

kD1

a2k(K )z2k,

wherea2k(K ) 2 Z.
The Q polynomial Q(LI z) 2 Z[z�1] [1, 5] is an invariant of the isotopy type of an

unoriented linkL, which is defined by the following formulas:

Q(U I z) D 1I(20)

Q(L
C

I z)C Q(L
�

I z) D z(Q(L0I z)C Q(L
1

I z)),(21)

whereU is the unknot andL
C

, L
�

, L0, L
1

are four unoriented links that are identical
except near one point where they are as in Fig. 5.

Some special values of these polynomials are closely related with some finite cyc-
lic covering spaces ofS3 branched over a link. Let6m(L) be them-fold cyclic cover
of S3 branched over an oriented linkL, c(L) the number of the components ofL,
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Fig. 4. A skein triple.

Fig. 5. An unoriented skein quadruple.

d D dim H1(62(L)I Z3), f D dim H1(62(L)I Z5), and h D dim H1(63(L)I Z2). Further,

put ! D ei�=3 and�(L)D Q
�

LI (
p

5� 1)=2)
�

; we considerL an oriented link in�(L).

Then have:

V(LI !) D �i c(L)�1(i
p

3)dI(22)

�(L) D �
p

5
f
I(23)

P(LI i , i ) D (i
p

2)h,(24)

whereV(LI!) means the value ofV(LI t) at t1=2
D ei�=6, whencet1=2

� t�1=2
D i ; see

[8, 15]; cf. [14, Table 16.3].

Theorem 3.1. If two knots K and K0 are related by an SH(3)-move, then:

V(K I !)=V(K 0

I !) 2 {�1,�i
p

3
�1

, 3�1}I(25)

�(K )=�(K 0) 2 {�1,�
p

5
�1

, 5�1}I(26)

P(K I i , i )=P(K 0

I i , i ) 2 {1,�2�1, 4�1}.(27)

In particular, if su3(K ) D 1, then:

V(K I !) 2 {�1,�i
p

3, 3}I(28)

�(K ) 2 {�1,�
p

5, 5}I(29)

P(K I i , i ) 2 {1,�2, 4}.(30)

Proof. If two knots K and K 0 are related by anSH(3)-move, then there is a
2-component linkL such thatL is obtained from each ofK and K 0 by a coherent band
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surgery. Then by Theorems 2.2 and 3.1 in [9] and Proposition 2.4 in [10] we have:

V(K I !)=V(LI !), V(LI !)=V(K 0

I !) 2 {�i , �
p

3
�1

}I(31)

�(K )=�(L), �(L)=�(K 0) 2 {�1,
p

5
�1

}I(32)

P(K I i , i )=P(LI i , i ), P(LI i , i )=P(K 0

I i , i ) 2 {1,�2�1},(33)

which imply Equations (25), (26), (27), respectively. Thiscompletes the proof.

EXAMPLE 3.2. Let K D 937, 948 or 31! # 61. Then V(K I !) D �3, and so by
Theorem 3.1, we have su3(K ) > 1. On the other hand, since u(K ) D 2 (see [2, 28]),
by Equations (35) and (37) below we obtain su3(K ) D u

00(K ) D 2. Notice that since
j� (K )j D g�(K ) D 1, Equation (5) does not work. (These knots and 31 # 31 are the
only knots with V(K I !) D �3 up to 9 crossings.)

4. Relations with other local moves of knots

A 00-move is a local change in an oriented link diagram as shown inFig. 6, which
was introduced by Shibuya [27]. Note that in [27] the first move in Fig. 6 is defined as
a 00-move, but we consider the second one a00-move as well since these moves are
equivalent. A00-move is an unknotting operation. In fact, a crossing changeis realized
by a 00-move as shown in Fig. 7. Then for oriented knotsK and K 0, we may define
the 00-Gordian distancefrom K to K 0, d

00(K , K 0), and00-unknotting numberof K ,
u
00(K ), in a usual way. Then since a00-move is realized by two crossing changes,

we obtain:

Proposition 4.1. Let K and K0 be knots. Then we have:

(34) d
00(K , K 0) � d(K , K 0) � 2d

00(K , K 0).

In particular, we have:

(35) u
00(K ) � u(K ) � 2u

00(K ).

Shibuya [27] also introduced a similar local change as shownin Fig. 8, which is
called a000-move. Then000-move is equivalent to00-move, that is, a000-move is real-
ized by a00-move, and vice-versa as shown in Fig. 9

Murakami and Nakanishi [19] and Matveev [16] introduced a local change in an
oriented link diagram called a1-moveas shown in Fig. 10, where the orientations of
strings are irrelevant.

A 1-move is known to be an unknotting operation; see [19, Lemma 1.1]. Then
for oriented knotsK and K 0, we may define the1-Gordian distancefrom K to K 0,
d
1

(K , K 0), and1-unknotting numberof K , u
1

(K ), in a usual way. A1-move has



SH(3)-MOVE ON KNOTS 447

Fig. 6. A 00-move.

Fig. 7. A crossing change is realized by a00-move.

Fig. 8. A 0

0

0-move.

Fig. 9. A 0

0

0-move is realized by a00-move, and vice-versa.

Fig. 10. A1-move.
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Fig. 11. A 00-move is realized by anSH(3)-move.

Fig. 12. A1-move is realized by a00-move.

the following properties, where (i) is deduced from Theorem2.3 in [19] and (ii) is
Theorem 1.1 in [22]:

Proposition 4.2. (i) For two knots K and K0, we have: d
1

(K , K 0) � a2(K ) �
a2(K 0) (mod 2).
(ii) If two knots K and K0 are related by a single1-move, then ja2(K )�a2(K 0)j D 1.

In particular, we haveu
1

(K ) � a2(K ) (mod 2) and u
1

(K ) � ja2(K )j.

Proposition 4.3. Let K and K0 be knots in S3. Then we have:

(36) sd3(K , K 0) � d
00(K , K 0) � d

1

(K , K 0).

In particular, we have:

(37) su3(K ) � u
00(K ) � u

1

(K ).

Proof. The first inequality of Equation (36) is deduced from [29, Proposition 2.1].
In fact, a00-move is realized by anSH(3)-move as shown in Fig. 11; cf. [29, Fig. 2.7].
The second inequality of Equation (36) is due to Shibuya [27,Theorem 1.3]. In fact,
a 1-move is realized by a00-move as shown in Fig. 12 [27, Fig. 6].

REMARK 4.4. Combining Equations (34) and (36), we obtain Theorem 2.1 in
[19]: for any knotsK and K 0, the following hold:

d(K , K 0) � 2d
1

(K , K 0)I(38)

u(K ) � 2u
1

(K ).(39)

We summarize several estimations on theSH(3)-unknotting number.
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Fig. 13. The knot 10103 yields: (a) the 2-component linkH
�

#88!
by a band surgery; (b) the 52 knot by a000-move; (c) the 52 knot
by a1-move.

Proposition 4.5. For a knot K, we have:

j� (K )j=2� g�(K ) � su3(K ) � g(K )I(40)

em(K )=2(m� 1)� e(K )=2� su3(K ) � u
00(K ) � u(K ), u

1

(K ).(41)

EXAMPLE 4.6. Let K D 935. Then u(K ) D 3 (see [2, 24]), and so by Equa-
tion (35), we have u

00(K ) D 2 or 3. On the other hand, since g(K ) D 1, by Equa-
tion (40) we obtain su3(K ) D 1.

EXAMPLE 4.7. For the knotK D 10103, we have:

j� (K )j=2D g�(K ) D 1I su3(K ) D u
00(K ) D 2I g(K ) D u(K ) D u

1

(K ) D 3.

Proof. From Table F.3 in [13, p. 103] we havej� (K )j=2D g�(K )D 1 and g(K )D
3. In fact, performing the band surgery along the band as shown in Fig. 13 (a), we
obtain the 2-component linkH

�

#88!, the composition of the negative Hopf link and the
mirror image of the knot 88. Since the 88 knot is a ribbon knot, we have g�(K ) � 1.

Performing the000-move at the 2 crossings near the marks� indicated in Fig. 13
(b), K becomes the knot 52, which has unknotting number one, and so u

00(K ) � 2.
On the other hand, since�(K ) D �5, we have su3(K ) > 1. Therefore, su3(K ) D
u
00(K ) D 2.

The 1-unknotting number, u
1

(K ) D 3, is taken from the table in [20]. In fact,
performing the1-move around the region containing the mark1 in Fig. 13 (c), K
becomes the knot 52, which has1-unknotting number two [22], and so u

1

(K ) � 3.
On the other hand, sincea2(K ) D 3, u

1

(K ) � 3.

The following example shows that the estimation for an1-unknotting number by
using anSH(3)-unknotting number is effective, which is also similar for the composite
knot 31! # 61; see Example 3.2.
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Fig. 14. The knot 12a177.

EXAMPLE 4.8. Let K be the alternating 12 crossing knot 12a177 as shown in
Fig. 14; see [2]. Then we have u

1

(K )D 3, which cannot be obtained from only the pre-
vious methods as in Proposition 4.2 and the inequalities:j� (K )j=2 � g�(K ) � u

1

(K ),
e(K )=2� u

1

(K ).
First, we have:

r(K I z) D 1� z2
� 3z4

C 2z6
I(42)

V(K I t) D t�9(1� 3t C 7t2
� 14t3

C 20t4
� 25t5

C 28t6
� 25t7

C 21t8
� 15t9

C 8t10
� 3t11

C t12)I
(43)

� (K ) D 2.(44)

By applying the1-move around the region containing the mark1, K is deformed
into the knot 1067, whose1-unknotting number is 2 [20], and so u

1

(K ) � 3. Since
ja2(K )j D 1, by Proposition 4.2 we have u

1

(K )� 1 (mod 2) and u
1

(K ) � 1. However,
since V(K I !) D �3, by Theorem 3.1 su3(K ) > 1, and thus by Proposition 4.3 we
obtain u

1

(K ) D 3.
Furthermore, we have u(K ) D u

00(K ) D 2 and g�(K ) D 1. In fact, by changing
the 2 crossings near the marks�, K is unknotted, and so u(K ) � 2. Then using the
inequalities in Proposition 4.5, we obtain su3(K )D u

00(K )D u(K )D 2. Lastly, by per-
forming a band surgery along the band as shown in Fig. 14, we obtain the composite
link 61 # 41 # H

�

. Then since 61 is a ribbon knot and 41 # H
�

is band-trivializable
by [10, Lemma 4.3], the 4-ball genus of this link is zero, and so g�(K ) � 1. Since
� (K ) D 2, we obtain g�(K ) D 1.

5. Tables of SH(3)- and �0-unknotting numbers of knots with up to 9
crossings

Table 1 lists the 4-ball genus, g�, SH(3)-unknotting number, su3, 00-unknotting
number, u

00, unknotting number, u,1-unknotting number, u
1

, and genus, g, of prime
knots with up to 9 crossings. We have a complete list of the 4-ball genus, unknotting
number and genus for prime knots with up to 9 crossings in [2].For the1-unknotting
number we have a table of prime knots with up to 8 crossings in [22], and one for up
to 10 crossings in [20].
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Fig. 15. Knots with00-unknotting number one.

For some knots theSH(3)- and00-unknotting numbers are already given in Ex-
amples, which are indicated in the last column in Table 1, andfor the remaining knots
the marks (I), (II) indicate the methods for deciding these numbers. Then we can com-
pletely decide theSH(3)-unknotting number, but for 11 knots the00-unknotting number
is undecided; in Table 1 1-2 means u

00(K ) D 1 or 2, and 2-3 means u
00(K ) D 2 or 3.

(I) The inequalities g� � su3 � u
00 � u, u

1

and su3 � g in Proposition 4.5 give the
SH(3)- and00-unknotting numbers. Notice that for a nontrivial knot, su3 > 0. Also,
in some case we cannot obtain definite numbers; for example, for the knot 74 we have
su3 D 1 since gD 1, but u

00 D 1 or 2, undecided, since uD 2 and u
1

D 4.
(II) Fig. 15 shows u

00(K ) D 1, where each knot is transformed into the trivial knot by
performing a000-move at the 2 crossings near the marks�.

REMARK 5.1. Recently, Yoshiaki Uchida has pointed out an error in the figure
for giving u

1

(929) in [23, p. 59], from which the number u
1

(929) in [20] is taken. So,
in Table 1 we list u

1

(929) D 1 or 3.
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Table 1. SH(3)- and00-unknotting numbers of prime knots with
up to 9 crossings.

K g� su3 u
00 u u

1

g Method
31 1 1 1 1 1 1 (I)
41 1 1 1 1 1 1 (I)
51 2 2 2 2 3 2 (I)
52 1 1 1 1 2 1 (I)
61 0 1 1 1 2 1 (I)
62 1 1 1 1 1 2 (I)
63 1 1 1 1 1 2 (I)
71 3 3 3 3 6 3 (I)
72 1 1 1 1 3 1 (I)
73 2 2 2 2 5 2 (I)
74 1 1 1-2 2 4 1 (I)
75 2 2 2 2 4 2 (I)
76 1 1 1 1 1 2 (I)
77 1 1 1 1 1 2 (I)
81 1 1 1 1 3 1 (I)
82 2 2 2 2 2 3 (I)
83 1 1 1-2 2 4 1 (I)
84 1 1 1 2 3 2 (II)
85 2 2 2 2 3 3 (I)
86 1 1 1 2 2 2 (II)
87 1 1 1 1 2 3 (I)
88 0 1 1 2 2 2 (II)
89 0 1 1 1 2 3 (I)
810 1 1 1 2 3 3 (II)
811 1 1 1 1 1 2 (I)
812 1 1 1 2 3 2 (II)
813 1 1 1 1 1 2 (I)
814 1 1 1 1 2 2 (I)
815 2 2 2 2 4 2 (I)
816 1 1 1 2 1 3 (I)
817 1 1 1 1 1 3 (I)
818 1 1 1 2 1 3 (I)
819 3 3 3 3 5 3 (I)
820 0 1 1 1 2 2 (I)
821 1 1 1 1 2 2 (I)
91 4 4 4 4 10 4 (I)
92 1 1 1 1 4 1 (I)
93 3 3 3 3 9 3 (I)
94 2 2 2 2 7 2 (I)
95 1 1 1-2 2 6 1 (I)
96 3 3 3 3 7 3 (I)
97 2 2 2 2 5 2 (I)

K g� su3 u
00 u u

1

g Method
98 1 1 1-2 2 2 2 Example 2.4
99 3 3 3 3 8 3 (I)
910 2 2 2-3 3 8 2 (I)
911 2 2 2 2 4 3 (I)
912 1 1 1 1 1 2 (I)
913 2 2 2-3 3 7 2 (I)
914 1 1 1 1 1 2 (I)
915 1 1 1 2 2 2 (II)
916 3 3 3 3 6 3 (I)
917 1 1 1 2 2 3 (II)
918 2 2 2 2 6 2 (I)
919 1 1 1 1 2 2 (I)
920 2 2 2 2 2 3 (I)
921 1 1 1 1 3 2 (I)
922 1 1 1 1 1 3 (I)
923 2 2 2 2 5 2 (I)
924 1 1 1 1 1 3 (I)
925 1 1 1 2 2 2 (II)
926 1 1 1 1 2 3 (I)
927 0 1 1 1 2 3 (I)
928 1 1 1 1 1 3 (I)
929 1 1 1 2 1=3 3 (II)
930 1 1 1 1 1 3 (I)
931 1 1 1-2 2 2 3 Example 2.4
932 1 1 1 2 1 3 (I)
933 1 1 1 1 1 3 (I)
934 1 1 1 1 1 3 (I)
935 1 1 2-3 3 7 1 Example 4.6
936 2 2 2 2 3 3 (I)
937 1 2 2 2 3 2 Example 3.2
938 2 2 2-3 3 6 2 (I)
939 1 1 1 1 2 2 (I)
940 1 1 1 2 1 3 (I)
941 0 1 1-2 2 2 2 Example 2.7
942 1 1 1 1 2 2 (I)
943 2 2 2 2 3 3 (I)
944 1 1 1 1 2 2 (I)
945 1 1 1 1 2 2 (I)
946 0 1 1 2 2 1 (II)
947 1 1 1 2 1 3 (I)
948 1 2 2 2 3 2 Example 3.2
949 2 2 2-3 3 6 2 (I)
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Table 2 lists the 4-ball genus, theSH(3)-unknotting number, the00-unknotting num-
ber, the unknotting number, the1-unknotting number, and the genus, together with the
half of the absolute value of the signature,j� j=2, and the absolute value of the coefficient
of z2 of the Conway polynomial,ja2j, of composite knots with up to 9 crossings and
31 # 31 # 41, 31! # 31 # 41 (Example 5.5). The genus, signature, anda2 are definitely ob-
tained. The unknotting numbers are taken from the table in [28]. An upper bound of the
1-unknotting number of a composite knot is given by

(45) u
1

(J # K ) � u
1

(J)C u
1

(K ),

and we also use Proposition 4.2. In order to find an upper boundof the 00-unknotting
number of a composite knot we use the formula:

(46) u
00(J # K ) � u

00(J)C u
00(K ),

and also the following proposition, which is trivial, but useful.

Proposition 5.2. Suppose that a knot J0 is obtained from a knot J by changing a
positive crossing to a negative one and a knot K0 is obtained from a knot K by chang-
ing a negative crossing to a positive one. Then the composition J0#K 0 is obtained from
J # K by performing a single00-move.

In particular, suppose that J and K are unknotting number one knots such thatJ
is unknotted by changing a positive crossing to a negative one and K is unknotted by
changing a negative crossing to a positive one. Thenu

00(J # K ) D 1.

EXAMPLE 5.3. Let K D 41 # 51. Then the knot 51 is transformed into 31 by
changing a negative crossing to a positive one, and 41 is unknotted by changing a
positive crossing to a negative one, and so by the proposition above K is deformed
into 31 by a 00-move. Then we have u

00(K ) � 2. Since� (K )=2 D 2, we obtain
g�(K ) D su3(K ) D u

00(K ) D 2.

EXAMPLE 5.4. Let Tp,q be the composition ofp copies of 31, the left-hand tre-
foil, and q copies of 31!, the right-hand trefoil;Tp,q D (#p 31) # (#q 31!). We assume
0 � p � q. Then Tp,q D #p(31 # 31!) # (#q�p 31!) and 31 # 31! is a square knot, which
is a ribbon knot. Then we have:
• Since� (31) D 2, we have� (Tp,q) D �2(q � p).
• Since g�(31) D 1, we have g�(Tp,q) D q � p.
• Since the double branched covering space62(31) is the lens space of type (3, 1),
H1(62(Tp,q)I Z) � Z3� � � � � Z3 (pC q summands); thus,e2(Tp,q) D pC q.
• By Proposition 5.2 we have u

00(31 # 31!) D 1, and so u
00(Tp,q) � q.

Therefore, by Proposition 4.5 we have

(47) max{(pC q)=2, q � p} � su3(Tp,q) � q.
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Table 2. SH(3)- and00-unknotting numbers of composite knots
with up to 9 crossings and 31 # 31 # 41, 31! # 31 # 41.

K g� su3 u
00 u u

1

g j� j=2 ja2j Method
31 # 31 2 2 2 2 2 2 2 2 (I0)
31! # 31 0 1 1 2 2 2 0 2 (II0)
31 # 41 1 1 1 2 2 2 1 0 (II0)
31 # 51 3 3 3 3 4 4 3 4 (I0)
31! # 51 1 1 1-2 2-3 4 3 1 4 Example 2.4
31 # 52 2 2 2 2 3 2 2 3 (I0)
31! # 52 1 1 1 2 3 2 0 3 (II0)
41 # 41 0 1 1 2 2 2 0 2 (II0)
31 # 31 # 31 3 3 3 3 3 3 3 3 (I0)
31! # 31 # 31 1 2 2 3 3 3 1 3 Example 5.4
31 # 61 1 1 1 2 1=3 2 1 1 (II0)
31! # 61 1 2 2 2 3 2 1 1 Example 3.2
31 # 62 2 2 2 2 2 3 2 0 (I0)
31! # 62 1 1 1 2 2 3 0 0 (II0)
31 # 63 1 1 1 2 2 3 1 2 (II0)
41 # 51 2 2 2 3 2=4 3 2 2 Example 5.3
41 # 52 1 1 1 2 1=3 2 1 1 (II0)
31 # 31 # 41 2 2 2 3 3 3 2 1 Example 5.5
31! # 31 # 41 1 2 2 3 3 3 0 1 Example 5.5

In particular, if q D p, p C 1, p C 2 or p D 0, then su3(Tp,q) D q. In fact, since

V(31I!)D �i
p

3, V(Tp, pC2I!)D �3pC1, and so by Theorem 3.1, su3(Tp, pC2)D pC2;
see [29, Examples 3.2 (3) and 4.3].

EXAMPLE 5.5. Let K D 31 #31 #41 and K 0

D 31!#31 #41.Then sinceP(31I i , i )D
P(41I i ,i )D�2, we haveP(K I i ,i )D P(K 0

I i ,i )D�8, which implies su3(K ), su3(K 0)>
1 by Theorem 3.1, and u(K ), u(K 0) � 3 by [17, Theorem 1.1], which implies u(K ) D
u(K 0) D 3; see [28, Appendix 1]. Since u

00(31 # 41) D 1, we have u
00(K ), u

00(K
0) � 2,

and so su3(K ) D u
00(K ) D su3(K 0) D u

00(K
0) D 2. Therefore, we obtain u

1

(K ) D
u
1

(K 0)D 3 by Equations (37) and (45). Further, sincej� (K )j=2D 2, we have g�(K )D
2, and since 31! # 31 is a ribbon knot and g�(41) D 1, we have g�(K 0) D 1.

In Table 2 the marks (I0), (II 0) indicate the methods for deciding the numbers g�,
su3, u

00, u
1

as for Table 1.
(I0) The inequalitiesj� j=2 � g� � su3 � u

00 � u, u
1

and su3 � g in Proposition 4.5
and Equation (45) give g�, su3, u

00, and u
1

.
(II 0) Proposition 5.2 gives u

00(K ) D 1. Note that the knots 31! # 31 and 41 # 41 are
ribbon knots with 1-fusion and the others are not slice because the signature is not
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Fig. 16. (a) Pass move. (b) Sharp move.

zero or the determinant is not a square integer.

6. Final remark

The pass move [12] and the sharp move [18] are other local moves on oriented
knots and links as shown in Fig. 16. Since the sharp move is an unknotting operation,
we can define a sharp unknotting number. However, the pass move is not an unknot-
ting operation; two knotsK and K 0 are related by a sequence of pass moves if and
only if a2(K ) � a2(K 0) (mod 2). Then, we may define a pass-unknotting number for
all knots with even second coefficient of the Conway polynomial (or knots with Arf
invariant zero).

Since the pass move is realized by a sequence of two coherent band moves and
the sharp move is realized by a sequence of twoH (2)-moves [6], we may give a
lower bound for a pass-unknotting number and a sharp-unknotting number using an
SH(3)-unknotting number and anH (2)-unknotting number, respectively, which provide
a new estimation. Namely, denoting by u#(K ), upass(K ), u2(K ) the sharp-, pass-,H (2)-
unknotting numbers of a knotK , we have u2(K ) � 2u#(K ) and su3(K ) � upass(K ).

EXAMPLE 6.1. Let us consider the two knotsK1 D 10103 and K2 D 1074. Since
u2(K1)D 3 [11, p. 453] and u#(K1)� a2(K1)D 3 (mod 2) [18, Theorem 3.5], we obtain
u#(K1) � 3. Conversely, since we may show u#(K1) � 3, we obtain u#(K1) D 3, which
cannot be obtained by using the signature [18, Theorem 3.2].Next, sincer(K2) D
1 � z4, we may consider the pass-unknotting number forK2. Since V(K2, !) D �3
and g(K2) D 2, we have su3(K2) D 2. By the 4-move, we may transformK2 into
the knot 61, which is further transformed into the trivial knot by a 4-move, and so
upass(K2) � 2. Thus we have upass(K2) D 2, which cannot be obtained by using the
signature; in generalj� (K )j=2� upass(K ) for a knot K and j� (K2)j D 2.

In a forthcoming paper we will make a detailed report on thesemoves.
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