SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS

Taizo KANENOBU

(Received May 1, 2012, revised September 14, 2012)

Abstract

An $S H(3)$-move is an unknotting operation on oriented knots introduced by Hoste, Nakanishi and Taniyama. We consider some relationships to other local moves such as a band surgery, Γ_{0}-move, and Δ-move, and give some criteria for estimating the $S H(3)$-unknotting number using the Jones, HOMFLYPT, Q polynomials. We also show a table of $S H(3)$-unknotting numbers for knots with up to 9 crossings.

1. Introduction

An $S H(3)$-move is a local change for an oriented link diagram which preserves the number of components as shown in Fig. 1. This move is a special case of an $S H(n)$-move introduced by Hoste, Nakanishi and Taniyama [6], where n is odd. Then they showed that each of these moves are unknotting operation, that is, any knot can be deformed into a trivial knot by a sequence of $S H(n)$-moves. So, we may define an $\operatorname{SH}(n)$-Gordian distance between two knots and an $S H(n)$-unknotting number for a knot. In this paper, we mainly consider an SH (3)-Gordian distance and an $\operatorname{SH}(3)$ unknotting number.

For an $S H(3)$-Gordian distance, Taniyama and Yasuhara [29] have given some interpretations (Proposition 2.1), which suggest the importance of the $S H(3)$-move particularly from 4-dimensional point of view and also give several estimations of an $\operatorname{SH}(3)$ Gordian distance (Propositions 2.2, 2.3, 2.5, 2.6). Since an $S H(3)$-move is realized by a sequence of two coherent band surgeries (Fig. 2), we may apply some criteria by the Jones, Q, and HOMFLYPT polynomials for a band surgery ($[9,10]$) to obtain some criteria on an $\operatorname{SH}(3)$-Gordian distance (Theorem 3.1).

We then consider some relations of an $\operatorname{SH}(3)$-move with other local moves such as a crossing change, a Γ_{0}-move, and a Δ-move. They are also unknotting operation, and we may obtain several relations among a usual Gordian distance, Γ_{0}-Gordian distance, Δ-Gordian distance, and $S H$ (3)-Gordian distance (Propositions 4.1, 4.3). These relations are useful to decide an $S H(3)$-unknotting number, and are also efficient to give a lower bound of an Δ-unknotting number (Example 4.8). Lastly, we give a table of an $S H(3)$ - and Γ_{0}-unknotting numbers for knots with up to 9 crossings (Tables 1, 2); we can decide the $S H(3)$-unknotting numbers completely, but cannot decide the Γ_{0}-unknottings number for 12 knots.

[^0]

Fig. 1. An $S H(3)$-move.
This paper is organized as follows: In Section 2, we present some interpretations for an $\operatorname{SH}(3)$-Gordian distance due to Taniyama and Yasuhara. In Section 3, we give some criteria for an $S H(3)$-Gordian distance by the special values of the Jones, Q, and HOMFLYPT polynomials. In Section 4, we give some relations among several Gordian distances by a crossing change, a Γ_{0}-move, a Δ-move, and an $S H(3)$-move. In Section 5, we give a table of an $S H(3)$ - and Γ_{0}-unknotting numbers for knots with up to 9 crossings. In Section 6, we remark that our method is also acceptable for the pass move and sharp move.

For knots and links we use Rolfsen notations in Appendix C in [26].

2. Some interpretations of an $\mathrm{SH}(3)$-Gordian distance

For an $S H(3)$-Gordian distance Taniyama and Yasuhara [29] have given some interpretations, which is useful to give several estimations of an SH (3)-Gordian distance and an $S H$ (3)-unknotting number.

Let K and K^{\prime} be two oriented knots in S^{3}. We denote the $S H(3)$-Gordian distance of K and K^{\prime} by $\operatorname{sd}_{3}\left(K, K^{\prime}\right)$, and the $S H(3)$-unknotting number of K by $\mathrm{su}_{3}(K)$. The C-distance of K and $K^{\prime}, \mathrm{d}_{C}\left(K, K^{\prime}\right)$, is the minimal genus of an embedded oriented surface in S^{3} whose boundary is the two knots K and K^{\prime}. In other words, the C-distance of K and K^{\prime} is the minimal genus over all 2 -components links whose components are K and $-K^{\prime}$, where $-K^{\prime}$ is the knot K^{\prime} with reversed orientation. The concordance distance of K and $K^{\prime}, \mathrm{c}\left(K, K^{\prime}\right)$, is half of the least number of elementary critical points on an oriented surface in $S^{3} \times[0,1]$ connecting K in $S^{3} \times\{0\}$ to K^{\prime} in $S^{3} \times\{1\}$, that is, a concordance between the two knots, whose projection to [0,1] is a Morse function. The following is the main theorem of [29].

Proposition 2.1. The SH(3)-Gordian distance, the C-distance, and the concordance distance between two knots are equal; $\operatorname{sd}_{3}\left(K, K^{\prime}\right)=\mathrm{d}_{C}\left(K, K^{\prime}\right)=\mathrm{c}\left(K, K^{\prime}\right)$.

The C-distance is an interpretation for the $\operatorname{SH}(3)$-Gordian distance from a 3 -dimensional point of view, which implies the following ([6, Theorems 3* (2)], [29, Theorems 3.1]):

Proposition 2.2. For a knot K, we have:

$$
\begin{equation*}
\mathrm{su}_{3}(K) \leq \mathrm{g}(K) \tag{1}
\end{equation*}
$$

Fig. 2. An $S H(3)$-move is realized by a sequence of two coherent band surgeries.
where $\mathrm{g}(K)$ is the genus of K.
The concordance distance is an interpretation for the $S H(3)$-Gordian distance from a 4-dimensional point of view, which implies Propositions 2.3 and 2.5 below. For two oriented knots K and K^{\prime}, we define the coherent band-Gordian distance, $\mathrm{d}_{\mathrm{band}}\left(K, K^{\prime}\right)$, to be the minimum number of band surgeries needed to deform K into K^{\prime}. We define the coherent band unknotting number of K to be the coherent band-Gordian distance of K and the trivial knot $U, \mathrm{u}_{\text {band }}(K)=\mathrm{d}_{\text {band }}(K, U)$. Then we have:

Proposition 2.3. For two oriented knots K and K^{\prime}, we have:

$$
\begin{equation*}
\mathrm{d}_{\text {band }}\left(K, K^{\prime}\right)=2 \operatorname{sd}_{3}\left(K, K^{\prime}\right) . \tag{2}
\end{equation*}
$$

In particular, we have:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{band}}(K)=2 \mathrm{su}_{3}(K) . \tag{3}
\end{equation*}
$$

Proof. An $S H(3)$-move is realized by a sequence of two coherent band surgeries as shown in Fig. 2; see [6, Fig. 4], and so $\mathrm{d}_{\text {band }}\left(K, K^{\prime}\right) \leq 2 \operatorname{sd}_{3}\left(K, K^{\prime}\right)$. Conversely, suppose that there exist a sequence of oriented links $L_{0}=K, L_{1}, \ldots, L_{n-1}, L_{n}=K^{\prime}$ such that L_{i} is obtained from L_{i-1} by a coherent band surgery for each $i, 1 \leq i \leq n$. Then there exists an oriented surface in $S^{3} \times[0,1]$ connecting K in $S^{3} \times\{0\}$ to K^{\prime} in $S^{3} \times\{1\}$, the number of whose elementary critical points is n. Then $2 \mathrm{c}\left(K, K^{\prime}\right) \leq n$, and so by Proposition 2.1 we have $2 \operatorname{sd}_{3}\left(K, K^{\prime}\right) \leq \mathrm{d}_{\text {band }}\left(K, K^{\prime}\right)$, completing the proof.

Example 2.4. Let $K=3_{1}!\# 5_{1}$. Then K is deformed into H_{-}, the negative Hopf link, by a band surgery along the band as shown in Fig. 3. Since H_{-}is band-trivializable, that is, it can be deformed into the trivial knot by a band surgery, by Proposition 2.3 we have $\mathrm{su}_{3}(K)=\mathrm{u}_{\text {band }}(K) / 2=1$. Similarly, we have $\mathrm{su}_{3}\left(9_{8}\right)=\mathrm{su}_{3}\left(9_{31}\right)=1$. In fact, the knots 9_{8} and 9_{31} are deformed into 4_{1}^{2} ! with linking number -2 and $5_{2} \# H_{+}$, respectively by a band surgery along the bands as shown in Fig. 3, where 41 ! with linking number -2 is the torus link of type $(2,4)$ with anti-parallel orientation and H_{+}is the positive Hopf link; these links are easily seen to be band-trivializable; cf. [10, Lemma 4.3].

3_{1} ! \# 5_{1}

98

9_{31}

Fig. 3. Knots with $\operatorname{SH}(3)$-unknotting number one.
We define the 4 -distance of two oriented knots K and $K^{\prime}, \mathrm{d}_{4}\left(K, K^{\prime}\right)$, to be the minimum genus of a concordance in $S^{3} \times[0,1]$ between K and K^{\prime}. In particular, the 4-distance of K and the trivial knot U is the 4-ball genus of $K, \mathrm{~g}^{*}(K)=\mathrm{d}_{4}(K, U)$. Then $\mathrm{d}_{4}\left(K, K^{\prime}\right)=\mathrm{g}^{*}\left(K \#\left(-K^{\prime}\right)\right)$. We obtain the following ([29, Theorems 1.2 and 3.1]):

Proposition 2.5. For two oriented knots K and K^{\prime}, we have:

$$
\begin{equation*}
\mathrm{d}_{4}\left(K, K^{\prime}\right) \leq \operatorname{sd}_{3}\left(K, K^{\prime}\right) \tag{4}
\end{equation*}
$$

In particular, we have:

$$
\begin{equation*}
\mathrm{g}^{*}(K) \leq \mathrm{su}_{3}(K) \tag{5}
\end{equation*}
$$

A knot with 4-ball genus zero is usually called a slice knot. Namely, a slice knot K in S^{3} bounds a properly embedded locally flat disk in $S^{3} \times[0, \infty)$. A ribbon knot is a slice knot bounding a disk in $S^{3} \times[0, \infty)$ whose critical points consist of maximum and saddle points. We define the ribbon-fusion number of a ribbon knot to be the least number of such saddle points. More precisely, a ribbon knot of m-fusions is a knot obtained from a trivial ($m+1$)-component link by doing band surgery along m bands. So, it has the form

$$
\begin{equation*}
S_{0}^{1} \cup S_{1}^{1} \cup \cdots \cup S_{m}^{1} \cup \bigcup_{i=1}^{m} f_{i}(\partial I \times I)-\operatorname{int} \bigcup_{i=1}^{m} f_{i}(I \times \partial I) \tag{6}
\end{equation*}
$$

where $S_{0}^{1} \cup S_{1}^{1} \cup \cdots \cup S_{m}^{1}$ is a trivial m-component link and $f_{i}: I \times I \rightarrow S^{3}(i=1,2, \ldots$, m) are disjoint embeddings such that

$$
f_{i}(I \times \partial I) \cap S_{j}= \begin{cases}f_{i}(I \times\{0\}), & \text { if } j=0 ; \tag{7}\\ f_{i}(I \times\{1\}), & \text { if } j=i ; \\ \emptyset, & \text { otherwise }\end{cases}
$$

By a ribbon knot we mean a ribbon knot of m-fusions for some m; see [30]. The least number of such m is the ribbon-fusion number of K, which we denote by $\operatorname{rf}(K)$; see
[9]. Then the following is immediate from the equation $\operatorname{sd}_{3}\left(K, K^{\prime}\right)=\mathrm{c}\left(K, K^{\prime}\right)$, which is a generalization of Example 3.2 (1) in [29].

Proposition 2.6. If K is a ribbon knot, then

$$
\begin{equation*}
\operatorname{su}_{3}(K) \leq \operatorname{rf}(K) . \tag{8}
\end{equation*}
$$

In particular, if K is a ribbon knot with ribbon-fusion number one, then $\mathrm{su}_{3}(K)=1$.
Example 2.7. Let $K=9_{41}$, which is a ribbon knot with 1-fusion [13, Appendix F.5], and so by Proposition 2.6, we obtain $\mathrm{su}_{3}(K)=1$. Note that the inequalities in Proposition 4.5 below do not work to decide this.

We denote by $\Sigma_{m}(L)$ the m-fold cyclic covering space of S^{3} branched over an oriented link L in S^{3}, and by $\tilde{\Sigma}(K)$ the infinite cyclic covering space of the complement of an oriented knot K in S^{3}. Let $e_{m}(L)$ be the minimum number of generators of $H_{1}\left(\Sigma_{m}(L) ; \boldsymbol{Z}\right)$, and $e(K)$ the minimum number of generators of $H_{1}(\tilde{\Sigma}(K) ; \boldsymbol{Z})$ as a $\boldsymbol{Z}\left[t, t^{-1}\right]$-module. Then $e(K)$ is equal to the Nakanishi index of K; see [13, p. 72]. For an $\operatorname{SH}(3)$-Gordian distance we have the following:

Proposition 2.8. For two oriented knots K and K^{\prime} in S^{3}, we have the following:

$$
\begin{gather*}
\left|e_{m}(K)-e_{m}\left(K^{\prime}\right)\right| / 2(m-1) \leq \operatorname{sd}_{3}\left(K, K^{\prime}\right), \tag{9}\\
\left|e(K)-e\left(K^{\prime}\right)\right| / 2 \leq \operatorname{sd}_{3}\left(K, K^{\prime}\right) . \tag{10}
\end{gather*}
$$

Proof. Equation (9) can be proved in a similar way to [6, Theorem 4*], and Equation (10) is given in [29, Theorem 1.2], which is essentially due to Nakanishi [21].

For an $S H$ (3)-unknotting number we have the following:
Proposition 2.9. For an oriented knot K in S^{3}, we have the following:

$$
\begin{equation*}
e_{m}(K) / 2(m-1) \leq e(K) / 2 \leq \operatorname{su}_{3}(K) . \tag{11}
\end{equation*}
$$

Proof. The first inequality, $e_{m}(K) /(m-1) \leq e(K)$, is given in [13, Corollary 5.5.2], and the second one follows from Equation (10), which is also given in [29, Theorem 3.1].

REMARK 2.10. The inequality $e_{m}(K) / 2(m-1) \leq \operatorname{su}_{3}(K)$ is given in [6, Theorem 4*].

3. Special values of some polynomial invariants of knots

We consider the special values of the Jones, Q , and HOMFLYPT polynomials of knots, which allow us to estimate an $S H(3)$-Gordian distance and an $S H(3)$-unknotting number in some cases. First we remember the definitions of several polynomials.

The Conway polynomial $\nabla(L ; z) \in \mathbf{Z}[z]$ [3], the Jones polynomial $V(L ; t) \in \mathbf{Z}\left[t^{ \pm 1 / 2}\right]$ [7], and the HOMFLYPT polynomial $P(L ; v, z) \in Z\left[v^{ \pm 1}, z^{ \pm 1}\right][4,25]$ are invariants of the isotopy type of an oriented link L, which are defined by the following formulas:

$$
\begin{gather*}
\nabla(U ; z)=1 \tag{12}\\
\nabla\left(L_{+} ; z\right)-\nabla\left(L_{-} ; z\right)=z \nabla\left(L_{0} ; z\right) \tag{13}\\
V(U ; t)=1 ; \tag{14}\\
t^{-1} V\left(L_{+} ; t\right)-t V\left(L_{-} ; t\right)=\left(t^{1 / 2}-t^{-1 / 2}\right) V\left(L_{0} ; t\right) ; \tag{15}\\
P(U ; v, z)=1 ; \tag{16}\\
v^{-1} P\left(L_{+} ; v, z\right)-v P\left(L_{-} ; v, z\right)=z P\left(L_{0} ; v, z\right), \tag{17}
\end{gather*}
$$

where U is the unknot and $\left(L_{+}, L_{-}, L_{0}\right)$ is a skein triple, that is, three links that are identical except near one point where they are as in Fig. 4.

For an oriented link L, the Conway and Jones polynomials are related to the HOMFLYPT polynomial by:

$$
\begin{gather*}
\nabla(L ; z)=P(L ; 1, z) \tag{18}\\
V(L ; t)=P\left(L ; t, t^{1 / 2}-t^{-1 / 2}\right) . \tag{19}
\end{gather*}
$$

The Conway polynomial of a knot K is of the form

$$
\nabla(K ; z)=1+\sum_{k=1}^{n} a_{2 k}(K) z^{2 k}
$$

where $a_{2 k}(K) \in \boldsymbol{Z}$.
The Q polynomial $Q(L ; z) \in \boldsymbol{Z}\left[z^{ \pm 1}\right][1,5]$ is an invariant of the isotopy type of an unoriented link L, which is defined by the following formulas:

$$
\begin{gather*}
Q(U ; z)=1 \tag{20}\\
Q\left(L_{+} ; z\right)+Q\left(L_{-} ; z\right)=z\left(Q\left(L_{0} ; z\right)+Q\left(L_{\infty} ; z\right)\right) \tag{21}
\end{gather*}
$$

where U is the unknot and $L_{+}, L_{-}, L_{0}, L_{\infty}$ are four unoriented links that are identical except near one point where they are as in Fig. 5.

Some special values of these polynomials are closely related with some finite cyclic covering spaces of S^{3} branched over a link. Let $\Sigma_{m}(L)$ be the m-fold cyclic cover of S^{3} branched over an oriented link $L, c(L)$ the number of the components of L,

Fig. 4. A skein triple.

Fig. 5. An unoriented skein quadruple.
$d=\operatorname{dim} H_{1}\left(\Sigma_{2}(L) ; \boldsymbol{Z}_{3}\right), f=\operatorname{dim} H_{1}\left(\Sigma_{2}(L) ; \boldsymbol{Z}_{5}\right)$, and $h=\operatorname{dim} H_{1}\left(\Sigma_{3}(L) ; \boldsymbol{Z}_{2}\right)$. Further, put $\omega=e^{i \pi / 3}$ and $\left.\rho(L)=Q(L ;(\sqrt{5}-1) / 2)\right)$; we consider L an oriented link in $\rho(L)$. Then have:

$$
\begin{gather*}
V(L ; \omega)= \pm i^{c(L)-1}(i \sqrt{3})^{d} ; \tag{22}\\
\rho(L)= \pm \sqrt{5}^{f} ; \tag{23}\\
P(L ; i, i)=(i \sqrt{2})^{h}, \tag{24}
\end{gather*}
$$

where $V(L ; \omega)$ means the value of $V(L ; t)$ at $t^{1 / 2}=e^{i \pi / 6}$, whence $t^{1 / 2}-t^{-1 / 2}=i$; see [8, 15]; cf. [14, Table 16.3].

Theorem 3.1. If two knots K and K^{\prime} are related by an SH(3)-move, then:

$$
\begin{gather*}
V(K ; \omega) / V\left(K^{\prime} ; \omega\right) \in\left\{ \pm 1, \pm i \sqrt{3}^{ \pm 1}, 3^{ \pm 1}\right\} ; \tag{25}\\
\rho(K) / \rho\left(K^{\prime}\right) \in\left\{ \pm 1, \pm \sqrt{5}^{ \pm 1}, 5^{ \pm 1}\right\} \tag{26}\\
P(K ; i, i) / P\left(K^{\prime} ; i, i\right) \in\left\{1,-2^{ \pm 1}, 4^{ \pm 1}\right\} \tag{27}
\end{gather*}
$$

In particular, if $\mathrm{su}_{3}(K)=1$, then:

$$
\begin{gather*}
V(K ; \omega) \in\{ \pm 1, \pm i \sqrt{3}, 3\} ; \tag{28}\\
\rho(K) \in\{ \pm 1, \pm \sqrt{5}, 5\} ; \tag{29}\\
P(K ; i, i) \in\{1,-2,4\} \tag{30}
\end{gather*}
$$

Proof. If two knots K and K^{\prime} are related by an $\operatorname{SH}(3)$-move, then there is a 2-component link L such that L is obtained from each of K and K^{\prime} by a coherent band
surgery. Then by Theorems 2.2 and 3.1 in [9] and Proposition 2.4 in [10] we have:

$$
\begin{gather*}
V(K ; \omega) / V(L ; \omega), V(L ; \omega) / V\left(K^{\prime} ; \omega\right) \in\left\{ \pm i,-\sqrt{3}^{ \pm 1}\right\} \tag{31}\\
\rho(K) / \rho(L), \rho(L) / \rho\left(K^{\prime}\right) \in\left\{ \pm 1, \sqrt{5}^{ \pm 1}\right\} \tag{32}\\
P(K ; i, i) / P(L ; i, i), P(L ; i, i) / P\left(K^{\prime} ; i, i\right) \in\left\{1,-2^{ \pm 1}\right\} \tag{33}
\end{gather*}
$$

which imply Equations (25), (26), (27), respectively. This completes the proof.
Example 3.2. Let $K=9_{37}, 9_{48}$ or $3_{1}!\# 6_{1}$. Then $V(K ; \omega)=-3$, and so by Theorem 3.1, we have $\operatorname{su}_{3}(K)>1$. On the other hand, since $u(K)=2$ (see [2, 28]), by Equations (35) and (37) below we obtain $\mathrm{su}_{3}(K)=\mathrm{u}_{\Gamma_{0}}(K)=2$. Notice that since $|\sigma(K)|=\mathrm{g}^{*}(K)=1$, Equation (5) does not work. (These knots and $3_{1} \# 3_{1}$ are the only knots with $V(K ; \omega)=-3$ up to 9 crossings.)

4. Relations with other local moves of knots

A Γ_{0}-move is a local change in an oriented link diagram as shown in Fig. 6, which was introduced by Shibuya [27]. Note that in [27] the first move in Fig. 6 is defined as a Γ_{0}-move, but we consider the second one a Γ_{0}-move as well since these moves are equivalent. A Γ_{0}-move is an unknotting operation. In fact, a crossing change is realized by a Γ_{0}-move as shown in Fig. 7. Then for oriented knots K and K^{\prime}, we may define the Γ_{0}-Gordian distance from K to $K^{\prime}, \mathrm{d}_{\Gamma_{0}}\left(K, K^{\prime}\right)$, and Γ_{0}-unknotting number of K, $\mathrm{u}_{\Gamma_{0}}(K)$, in a usual way. Then since a Γ_{0}-move is realized by two crossing changes, we obtain:

Proposition 4.1. Let K and K^{\prime} be knots. Then we have:

$$
\begin{equation*}
\mathrm{d}_{\Gamma_{0}}\left(K, K^{\prime}\right) \leq \mathrm{d}\left(K, K^{\prime}\right) \leq 2 \mathrm{~d}_{\Gamma_{0}}\left(K, K^{\prime}\right) \tag{34}
\end{equation*}
$$

In particular, we have:

$$
\begin{equation*}
\mathrm{u}_{\Gamma_{0}}(K) \leq \mathrm{u}(K) \leq 2 \mathrm{u}_{\Gamma_{0}}(K) \tag{35}
\end{equation*}
$$

Shibuya [27] also introduced a similar local change as shown in Fig. 8, which is called a Γ_{0}^{\prime}-move. Then Γ_{0}^{\prime}-move is equivalent to Γ_{0}-move, that is, a Γ_{0}^{\prime}-move is realized by a Γ_{0}-move, and vice-versa as shown in Fig. 9

Murakami and Nakanishi [19] and Matveev [16] introduced a local change in an oriented link diagram called a Δ-move as shown in Fig. 10, where the orientations of strings are irrelevant.

A Δ-move is known to be an unknotting operation; see [19, Lemma 1.1]. Then for oriented knots K and K^{\prime}, we may define the Δ-Gordian distance from K to K^{\prime}, $\mathrm{d}_{\Delta}\left(K, K^{\prime}\right)$, and Δ-unknotting number of $K, \mathrm{u}_{\Delta}(K)$, in a usual way. A Δ-move has

or

Fig. 6. A Γ_{0}-move.

Fig. 7. A crossing change is realized by a Γ_{0}-move.

Fig. 8. A $\Gamma_{0}^{\prime}-$ move.

Fig. 9. A Γ_{0}^{\prime}-move is realized by a Γ_{0}-move, and vice-versa.

Fig. 10. A Δ-move.

Fig. 11. A Γ_{0}-move is realized by an $S H(3)$-move.

Fig. 12. A Δ-move is realized by a Γ_{0}-move.
the following properties, where (i) is deduced from Theorem 2.3 in [19] and (ii) is Theorem 1.1 in [22]:

Proposition 4.2. (i) For two knots K and K^{\prime}, we have: $\mathrm{d}_{\Delta}\left(K, K^{\prime}\right) \equiv a_{2}(K)-$ $a_{2}\left(K^{\prime}\right)(\bmod 2)$.
(ii) If two knots K and K^{\prime} are related by a single Δ-move, then $\left|a_{2}(K)-a_{2}\left(K^{\prime}\right)\right|=1$. In particular, we have $\mathrm{u}_{\Delta}(K) \equiv a_{2}(K)(\bmod 2)$ and $\mathrm{u}_{\Delta}(K) \geq\left|a_{2}(K)\right|$.

Proposition 4.3. Let K and K^{\prime} be knots in S^{3}. Then we have:

$$
\begin{equation*}
\operatorname{sd}_{3}\left(K, K^{\prime}\right) \leq \mathrm{d}_{\Gamma_{0}}\left(K, K^{\prime}\right) \leq \mathrm{d}_{\Delta}\left(K, K^{\prime}\right) \tag{36}
\end{equation*}
$$

In particular, we have:

$$
\begin{equation*}
\operatorname{su}_{3}(K) \leq \mathrm{u}_{\Gamma_{0}}(K) \leq \mathrm{u}_{\Delta}(K) \tag{37}
\end{equation*}
$$

Proof. The first inequality of Equation (36) is deduced from [29, Proposition 2.1]. In fact, a Γ_{0}-move is realized by an $S H(3)$-move as shown in Fig. 11; cf. [29, Fig. 2.7]. The second inequality of Equation (36) is due to Shibuya [27, Theorem 1.3]. In fact, a Δ-move is realized by a Γ_{0}-move as shown in Fig. 12 [27, Fig. 6].

REMARK 4.4. Combining Equations (34) and (36), we obtain Theorem 2.1 in [19]: for any knots K and K^{\prime}, the following hold:

$$
\begin{align*}
\mathrm{d}\left(K, K^{\prime}\right) & \leq 2 \mathrm{~d}_{\Delta}\left(K, K^{\prime}\right) \tag{38}\\
\mathrm{u}(K) & \leq 2 \mathrm{u}_{\Delta}(K) \tag{39}
\end{align*}
$$

We summarize several estimations on the $S H(3)$-unknotting number.

Fig. 13. The knot 10_{103} yields: (a) the 2 -component link $\mathrm{H}_{-} \# 8_{8}$! by a band surgery; (b) the 5_{2} knot by a Γ_{0}^{\prime}-move; (c) the 5_{2} knot by a Δ-move.

Proposition 4.5. For a knot K, we have:

$$
\begin{gather*}
|\sigma(K)| / 2 \leq \mathrm{g}^{*}(K) \leq \mathrm{su}_{3}(K) \leq \mathrm{g}(K) \tag{40}\\
e_{m}(K) / 2(m-1) \leq e(K) / 2 \leq \mathrm{su}_{3}(K) \leq \mathrm{u}_{\Gamma_{0}}(K) \leq \mathrm{u}(K), \mathrm{u}_{\Delta}(K) \tag{41}
\end{gather*}
$$

Example 4.6. Let $K=935$. Then $\mathrm{u}(K)=3$ (see [2, 24]), and so by Equation (35), we have $\mathrm{u}_{\Gamma_{0}}(K)=2$ or 3 . On the other hand, since $\mathrm{g}(K)=1$, by Equation (40) we obtain $\operatorname{su}_{3}(K)=1$.

Example 4.7. For the knot $K=10_{103}$, we have:

$$
|\sigma(K)| / 2=\mathrm{g}^{*}(K)=1 ; \quad \mathrm{su}_{3}(K)=\mathrm{u}_{\Gamma_{0}}(K)=2 ; \quad \mathrm{g}(K)=\mathrm{u}(K)=\mathrm{u}_{\Delta}(K)=3 .
$$

Proof. From Table F. 3 in [13, p. 103] we have $|\sigma(K)| / 2=\mathrm{g}^{*}(K)=1$ and $\mathrm{g}(K)=$ 3. In fact, performing the band surgery along the band as shown in Fig. 13 (a), we obtain the 2 -component link $H_{-} \# 8_{8}$!, the composition of the negative Hopf link and the mirror image of the knot 8_{8}. Since the 8_{8} knot is a ribbon knot, we have $\mathrm{g}^{*}(K) \leq 1$.

Performing the Γ_{0}^{\prime}-move at the 2 crossings near the marks $*$ indicated in Fig. 13 (b), K becomes the knot 5_{2}, which has unknotting number one, and so $\mathrm{u}_{\Gamma_{0}}(K) \leq 2$. On the other hand, since $\rho(K)=-5$, we have $\operatorname{su}_{3}(K)>1$. Therefore, $\mathrm{su}_{3}(K)=$ $\mathrm{u}_{\Gamma_{0}}(K)=2$.

The Δ-unknotting number, $\mathrm{u}_{\Delta}(K)=3$, is taken from the table in [20]. In fact, performing the Δ-move around the region containing the mark Δ in Fig. 13 (c), K becomes the knot 5_{2}, which has Δ-unknotting number two [22], and so $\mathrm{u}_{\Delta}(K) \leq 3$. On the other hand, since $a_{2}(K)=3, \mathrm{u}_{\Delta}(K) \geq 3$.

The following example shows that the estimation for an Δ-unknotting number by using an $S H$ (3)-unknotting number is effective, which is also similar for the composite knot 3_{1} ! $\# 6_{1}$; see Example 3.2.

Fig. 14. The knot $12 a 177$.
Example 4.8. Let K be the alternating 12 crossing knot $12 a 177$ as shown in Fig. 14; see [2]. Then we have $\mathrm{u}_{\Delta}(K)=3$, which cannot be obtained from only the previous methods as in Proposition 4.2 and the inequalities: $|\sigma(K)| / 2 \leq \mathrm{g}^{*}(K) \leq \mathrm{u}_{\Delta}(K)$, $e(K) / 2 \leq \mathrm{u}_{\Delta}(K)$.

First, we have:

$$
\begin{align*}
\begin{aligned}
\nabla(K ; z)= & 1-z^{2}-3 z^{4}+2 z^{6} \\
V(K ; t)= & t^{-9}\left(1-3 t+7 t^{2}-14 t^{3}+20 t^{4}-25 t^{5}\right. \\
& \left.\quad+28 t^{6}-25 t^{7}+21 t^{8}-15 t^{9}+8 t^{10}-3 t^{11}+t^{12}\right)
\end{aligned} \tag{42}\\
\sigma(K)=2
\end{align*}
$$

By applying the Δ-move around the region containing the mark Δ, K is deformed into the knot 10_{67}, whose Δ-unknotting number is 2 [20], and so $\mathrm{u}_{\Delta}(K) \leq 3$. Since $\left|a_{2}(K)\right|=1$, by Proposition 4.2 we have $\mathrm{u}_{\Delta}(K) \equiv 1(\bmod 2)$ and $\mathrm{u}_{\Delta}(K) \geq 1$. However, since $V(K ; \omega)=-3$, by Theorem $3.1 \mathrm{su}_{3}(K)>1$, and thus by Proposition 4.3 we obtain $\mathrm{u}_{\Delta}(K)=3$.

Furthermore, we have $\mathrm{u}(K)=\mathrm{u}_{\Gamma_{0}}(K)=2$ and $\mathrm{g}^{*}(K)=1$. In fact, by changing the 2 crossings near the marks $*, K$ is unknotted, and so $u(K) \leq 2$. Then using the inequalities in Proposition 4.5, we obtain $\mathrm{su}_{3}(K)=\mathrm{u}_{\Gamma_{0}}(K)=\mathrm{u}(K)=2$. Lastly, by performing a band surgery along the band as shown in Fig. 14, we obtain the composite link $6_{1} \# 4_{1} \# H_{-}$. Then since 6_{1} is a ribbon knot and $4_{1} \# H_{-}$is band-trivializable by [10, Lemma 4.3], the 4 -ball genus of this link is zero, and so $\mathrm{g}^{*}(K) \leq 1$. Since $\sigma(K)=2$, we obtain $\mathrm{g}^{*}(K)=1$.

5. Tables of $\operatorname{SH}(3)$ - and Γ_{0}-unknotting numbers of knots with up to 9 crossings

Table 1 lists the 4 -ball genus, $\mathrm{g}^{*}, S H(3)$-unknotting number, $\mathrm{su}_{3}, \Gamma_{0}$-unknotting number, $\mathrm{u}_{\Gamma_{0}}$, unknotting number, u, Δ-unknotting number, u_{Δ}, and genus, g , of prime knots with up to 9 crossings. We have a complete list of the 4 -ball genus, unknotting number and genus for prime knots with up to 9 crossings in [2]. For the Δ-unknotting number we have a table of prime knots with up to 8 crossings in [22], and one for up to 10 crossings in [20].

Fig. 15. Knots with Γ_{0}-unknotting number one.
For some knots the $S H(3)$ - and Γ_{0}-unknotting numbers are already given in Examples, which are indicated in the last column in Table 1, and for the remaining knots the marks (I), (II) indicate the methods for deciding these numbers. Then we can completely decide the $S H(3)$-unknotting number, but for 11 knots the Γ_{0}-unknotting number is undecided; in Table 11-2 means $\mathrm{u}_{\Gamma_{0}}(K)=1$ or 2, and 2-3 means $\mathrm{u}_{\Gamma_{0}}(K)=2$ or 3 . (I) The inequalities $\mathrm{g}^{*} \leq \mathrm{su}_{3} \leq \mathrm{u}_{\Gamma_{0}} \leq \mathrm{u}$, u_{Δ} and $\mathrm{su}_{3} \leq \mathrm{g}$ in Proposition 4.5 give the $S H(3)$ - and Γ_{0}-unknotting numbers. Notice that for a nontrivial knot, $\mathrm{su}_{3}>0$. Also, in some case we cannot obtain definite numbers; for example, for the knot 7_{4} we have $\mathrm{su}_{3}=1$ since $\mathrm{g}=1$, but $u_{\Gamma_{0}}=1$ or 2 , undecided, since $\mathrm{u}=2$ and $\mathrm{u}_{\Delta}=4$.
(II) Fig. 15 shows $\mathrm{u}_{\Gamma_{0}}(K)=1$, where each knot is transformed into the trivial knot by performing a Γ_{0}^{\prime}-move at the 2 crossings near the marks $*$.

Remark 5.1. Recently, Yoshiaki Uchida has pointed out an error in the figure for giving $u_{\Delta}\left(9_{29}\right)$ in [23, p.59], from which the number $u_{\Delta}\left(9_{29}\right)$ in [20] is taken. So, in Table 1 we list $u_{\Delta}\left(9_{29}\right)=1$ or 3 .

Table 1. $S H(3)$ - and Γ_{0}-unknotting numbers of prime knots with up to 9 crossings.

K	g*	su_{3}	$\mathrm{u}_{\Gamma_{0}}$	u	u_{Δ}	g	Method	K	g*	su_{3}	$\mathrm{u}_{\Gamma_{0}}$	u	u_{Δ}	g	Method
3_{1}	1	1	1	1	1	1	(I)	98	1	1	1-2	2	2	2	Example 2.4
41	1	1	1	1	1	1	(I)	99	3	3	3	3	8	3	(I)
51	2	2	2	2	3	2	(I)	9_{10}	2	2	2-3	3	8	2	(I)
52	1	1	1	1	2	1	(I)	$9{ }_{11}$	2	2	2	2	4	3	(I)
61	0	1	1	1	2	1	(I)	912	1	1	1	1	1	2	(I)
6_{2}	1	1	1	1	1	2	(I)	913	2	2	2-3	3	7	2	(I)
63	1	1	1	1	1	2	(I)	914	1	1	1	1	1	2	(I)
71	3	3	3	3	6	3	(I)	915	1	1	1	2	2	2	(II)
72	1	1	1	1	3	1	(I)	916	3	3	3	3	6	3	(I)
73	2	2	2	2	5	2	(I)	917	1	1	1	2	2	3	(II)
74	1	1	1-2	2	4	1	(I)	918	2	2	2	2	6	2	(I)
75	2	2	2	2	4	2	(I)	919	1	1	1	1	2	2	(I)
76	1	1	1	1	1	2	(I)	920	2	2	2	2	2	3	(I)
77	1	1	1	1	1	2	(I)	921	1	1	1	1	3	2	(I)
81	1	1	1	1	3	1	(I)	92	1	1	1	1	1	3	(I)
82	2	2	2	2	2	3	(I)	923	2	2	2	2	5	2	(I)
83	1	1	1-2	2	4	1	(I)	924	1	1	1	1	1	3	(I)
84	1	1	1	2	3	2	(II)	925	1	1	1	2	2	2	(II)
85	2	2	2	2	3	3	(I)	926	1	1	1	1	2	3	(I)
86	1	1	1	2	2	2	(II)	927	0	1	1	1	2	3	(I)
87	1	1	1	1	2	3	(I)	928	1	1	1	1	1	3	(I)
88	0	1	1	2	2	2	(II)	929	1	1	1	2	1/3	3	(II)
89	0	1	1	1	2	3	(I)	930	1	1	1	1	1	3	(I)
810	1	1	1	2	3	3	(II)	931	1	1	1-2	2	2	3	Example 2.4
8_{11}	1	1	1	1	1	2	(I)	932	1	1	1	2	1	3	(I)
8_{12}	1	1	1	2	3	2	(II)	933	1	1	1	1	1	3	(I)
813	1	1	1	1	1	2	(I)	934	1	1	1	1	1	3	(I)
8_{14}	1	1	1	1	2	2	(I)	935	1	1	2-3	3	7	1	Example 4.6
8_{15}	2	2	2	2	4	2	(I)	936	2	2	2	2	3	3	(I)
8_{16}	1	1	1	2	1	3	(I)	937	1	2	2	2	3	2	Example 3.2
8_{17}	1	1	1	1	1	3	(I)	938	2	2	2-3	3	6	2	(I)
8_{18}	1	1	1	2	1	3	(I)	939	1	1	1	1	2	2	(I)
819	3	3	3	3	5	3	(I)	940	1	1	1	2	1	3	(I)
820	0	1	1	1	2	2	(I)	941	0	1	1-2	2	2	2	Example 2.7
821	1	1	1	1	2	2	(I)	942	1	1	1	1	2	2	(I)
91	4	4	4	4	10	4	(I)	943	2	2	2	2	3	3	(I)
92	1	1	1	1	4	1	(I)	944	1	1	1	1	2	2	(I)
93	3	3	3	3	9	3	(I)	945	1	1	1	1	2	2	(I)
94	2	2	2	2	7	2	(I)	946	0	1	1	2	2	1	(II)
95	1	1	1-2	2	6	1	(I)	947	1	1	1	2	1	3	(I)
96	3	3	3	3	7	3	(I)	948	1	2	2	2	3	2	Example 3.2
9_{7}	2	2	2	2	5	2	(I)	949	2	2	2-3	3	6	2	(I)

Table 2 lists the 4 -ball genus, the $S H(3)$-unknotting number, the Γ_{0}-unknotting number, the unknotting number, the Δ-unknotting number, and the genus, together with the half of the absolute value of the signature, $|\sigma| / 2$, and the absolute value of the coefficient of z^{2} of the Conway polynomial, $\left|a_{2}\right|$, of composite knots with up to 9 crossings and $3_{1} \# 3_{1} \# 4_{1}, 3_{1}$! \# $3_{1} \# 4_{1}$ (Example 5.5). The genus, signature, and a_{2} are definitely obtained. The unknotting numbers are taken from the table in [28]. An upper bound of the Δ-unknotting number of a composite knot is given by

$$
\begin{equation*}
\mathrm{u}_{\Delta}(J \# K) \leq \mathrm{u}_{\Delta}(J)+\mathrm{u}_{\Delta}(K), \tag{45}
\end{equation*}
$$

and we also use Proposition 4.2. In order to find an upper bound of the Γ_{0}-unknotting number of a composite knot we use the formula:

$$
\begin{equation*}
\mathrm{u}_{\Gamma_{0}}(J \# K) \leq \mathrm{u}_{\Gamma_{0}}(J)+\mathrm{u}_{\Gamma_{0}}(K), \tag{46}
\end{equation*}
$$

and also the following proposition, which is trivial, but useful.
Proposition 5.2. Suppose that a knot J^{\prime} is obtained from a knot J by changing a positive crossing to a negative one and a knot K^{\prime} is obtained from a knot K by changing a negative crossing to a positive one. Then the composition $J^{\prime} \# K^{\prime}$ is obtained from $J \# K$ by performing a single Γ_{0}-move.

In particular, suppose that J and K are unknotting number one knots such that J is unknotted by changing a positive crossing to a negative one and K is unknotted by changing a negative crossing to a positive one. Then $\mathrm{u}_{\Gamma_{0}}(J \# K)=1$.

Example 5.3. Let $K=4_{1} \# 5_{1}$. Then the knot 5_{1} is transformed into 3_{1} by changing a negative crossing to a positive one, and 4_{1} is unknotted by changing a positive crossing to a negative one, and so by the proposition above K is deformed into 3_{1} by a Γ_{0}-move. Then we have $\mathrm{u}_{\Gamma_{0}}(K) \leq 2$. Since $\sigma(K) / 2=2$, we obtain $\mathrm{g}^{*}(K)=\mathrm{su}_{3}(K)=\mathrm{u}_{\Gamma_{0}}(K)=2$.

Example 5.4. Let $T_{p, q}$ be the composition of p copies of 3_{1}, the left-hand trefoil, and q copies of 3_{1} !, the right-hand trefoil; $T_{p, q}=\left(\#^{p} 3_{1}\right) \#\left(\#^{q} 3_{1}!\right)$. We assume $0 \leq p \leq q$. Then $T_{p, q}=\#^{p}\left(3_{1} \# 3_{1}\right.$!) $\#\left(\#^{q-p} 3_{1}!\right)$ and $3_{1} \# 3_{1}$! is a square knot, which is a ribbon knot. Then we have:

- Since $\sigma\left(3_{1}\right)=2$, we have $\sigma\left(T_{p, q}\right)=-2(q-p)$.
- Since $\mathrm{g}^{*}\left(3_{1}\right)=1$, we have $\mathrm{g}^{*}\left(T_{p, q}\right)=q-p$.
- Since the double branched covering space $\Sigma_{2}\left(3_{1}\right)$ is the lens space of type (3, 1), $H_{1}\left(\Sigma_{2}\left(T_{p, q}\right) ; \boldsymbol{Z}\right) \cong \boldsymbol{Z}_{3} \oplus \cdots \oplus \boldsymbol{Z}_{3}(p+q$ summands $)$; thus, $e_{2}\left(T_{p, q}\right)=p+q$.
- By Proposition 5.2 we have $\mathrm{u}_{\Gamma_{0}}\left(3_{1} \# 3_{1}!\right)=1$, and so $\mathrm{u}_{\Gamma_{0}}\left(T_{p, q}\right) \leq q$.

Therefore, by Proposition 4.5 we have

$$
\begin{equation*}
\max \{(p+q) / 2, q-p\} \leq \operatorname{su}_{3}\left(T_{p, q}\right) \leq q . \tag{47}
\end{equation*}
$$

Table 2. $\operatorname{SH}(3)$ - and Γ_{0}-unknotting numbers of composite knots with up to 9 crossings and $3_{1} \# 3_{1} \# 4_{1}, 3_{1}!\# 3_{1} \# 4_{1}$.

K	g*	su_{3}	$\mathrm{u}_{\Gamma_{0}}$	u	u_{Δ}	g	$\|\sigma\| / 2$	$\left\|a_{2}\right\|$	Method
$3_{1} \# 3_{1}$	2	2	2	2	2	2	2	2	(I')
3_{1} ! \# 3_{1}	0	1	1	2	2	2	0	2	(II')
$3_{1} \# 4_{1}$	1	1	1	2	2	2	1	0	(II')
$3_{1} \# 5_{1}$	3	3	3	3	4	4	3	4	(I^{\prime})
3_{1} ! \# 51	1	1	1-2	2-3	4	3	1	4	Example 2.4
$3_{1} \# 5_{2}$	2	2	2	2	3	2	2	3	(I')
3_{1} ! \# 5_{2}	1	1	1	2	3	2	0	3	(II')
$4_{1} \# 4_{1}$	0	1	1	2	2	2	0	2	(II')
$3_{1} \# 3_{1} \# 3_{1}$	3	3	3	3	3	3	3	3	(I^{\prime})
3_{1} ! \# $3_{1} \# 3_{1}$	1	2	2	3	3	3	1	3	Example 5.4
$3_{1} \# 6_{1}$	1	1	1	2	$1 / 3$	2	1	1	(II')
3_{1} ! \# 6_{1}	1	2	2	2	3	2	1	1	Example 3.2
$3_{1} \# 6_{2}$	2	2	2	2	2	3	2	0	(I')
3_{1} ! \# 6_{2}	1	1	1	2	2	3	0	0	(II')
$3_{1} \# 6_{3}$	1	1	1	2	2	3	1	2	(II')
$4_{1} \# 5_{1}$	2	2	2	3	2/4	3	2	2	Example 5.3
$4_{1} \# 5_{2}$	1	1	1	2	1/3	2	1	1	(II')
$3_{1} \# 3_{1} \# 4_{1}$	2	2	2	3	3	3	2	1	Example 5.5
3_{1} ! \# $3_{1} \# 4_{1}$	1	2	2	3	3	3	0	1	Example 5.5

In particular, if $q=p, p+1, p+2$ or $p=0$, then $\operatorname{su}_{3}\left(T_{p, q}\right)=q$. In fact, since $V\left(3_{1} ; \omega\right)=-i \sqrt{3}, V\left(T_{p, p+2} ; \omega\right)=-3^{p+1}$, and so by Theorem 3.1, $\mathrm{su}_{3}\left(T_{p, p+2}\right)=p+2$; see [29, Examples 3.2 (3) and 4.3].

Example 5.5. Let $K=3_{1} \# 3_{1} \# 4_{1}$ and $K^{\prime}=3_{1}!\# 3_{1} \# 4_{1}$. Then since $P\left(3_{1} ; i, i\right)=$ $P\left(4_{1} ; i, i\right)=-2$, we have $P(K ; i, i)=P\left(K^{\prime} ; i, i\right)=-8$, which implies $\mathrm{su}_{3}(K), \mathrm{su}_{3}\left(K^{\prime}\right)>$ 1 by Theorem 3.1, and $\mathrm{u}(K), \mathrm{u}\left(K^{\prime}\right) \geq 3$ by [17, Theorem 1.1], which implies $\mathrm{u}(K)=$ $\mathrm{u}\left(K^{\prime}\right)=3$; see [28, Appendix 1]. Since $\mathrm{u}_{\Gamma_{0}}\left(3_{1} \# 4_{1}\right)=1$, we have $\mathrm{u}_{\Gamma_{0}}(K), \mathrm{u}_{\Gamma_{0}}\left(K^{\prime}\right) \leq 2$, and so $\operatorname{su}_{3}(K)=\mathrm{u}_{\Gamma_{0}}(K)=\operatorname{su}_{3}\left(K^{\prime}\right)=\mathrm{u}_{\Gamma_{0}}\left(K^{\prime}\right)=2$. Therefore, we obtain $\mathrm{u}_{\Delta}(K)=$ $\mathrm{u}_{\Delta}\left(K^{\prime}\right)=3$ by Equations (37) and (45). Further, since $|\sigma(K)| / 2=2$, we have $\mathrm{g}^{*}(K)=$ 2 , and since $3_{1}!\# 3_{1}$ is a ribbon knot and $\mathrm{g}^{*}\left(4_{1}\right)=1$, we have $\mathrm{g}^{*}\left(K^{\prime}\right)=1$.

In Table 2 the marks ($\left.\mathrm{I}^{\prime}\right),\left(\mathrm{II}^{\prime}\right)$ indicate the methods for deciding the numbers g^{*}, $\mathrm{su}_{3}, \mathrm{u}_{\Gamma_{0}}, \mathrm{u}_{\Delta}$ as for Table 1 .
(I') The inequalities $|\sigma| / 2 \leq \mathrm{g}^{*} \leq \mathrm{su}_{3} \leq \mathrm{u}_{\Gamma_{0}} \leq \mathrm{u}, \mathrm{u}_{\Delta}$ and $\mathrm{su}_{3} \leq \mathrm{g}$ in Proposition 4.5 and Equation (45) give $\mathrm{g}^{*}, \mathrm{su}_{3}, \mathrm{u}_{\Gamma_{0}}$, and u_{Δ}.
(II') Proposition 5.2 gives $u_{\Gamma_{0}}(K)=1$. Note that the knots 3_{1} ! \# 3_{1} and $4_{1} \# 4_{1}$ are ribbon knots with 1 -fusion and the others are not slice because the signature is not

Fig. 16. (a) Pass move. (b) Sharp move.
zero or the determinant is not a square integer.

6. Final remark

The pass move [12] and the sharp move [18] are other local moves on oriented knots and links as shown in Fig. 16. Since the sharp move is an unknotting operation, we can define a sharp unknotting number. However, the pass move is not an unknotting operation; two knots K and K^{\prime} are related by a sequence of pass moves if and only if $a_{2}(K) \equiv a_{2}\left(K^{\prime}\right)(\bmod 2)$. Then, we may define a pass-unknotting number for all knots with even second coefficient of the Conway polynomial (or knots with Arf invariant zero).

Since the pass move is realized by a sequence of two coherent band moves and the sharp move is realized by a sequence of two $H(2)$-moves [6], we may give a lower bound for a pass-unknotting number and a sharp-unknotting number using an SH(3)-unknotting number and an $H(2)$-unknotting number, respectively, which provide a new estimation. Namely, denoting by $\mathrm{u}_{\#}(K)$, $\mathrm{u}_{\text {pass }}(K), \mathrm{u}_{2}(K)$ the sharp-, pass-, $H(2)-$ unknotting numbers of a knot K, we have $\mathrm{u}_{2}(K) \leq 2 \mathrm{u}_{\#}(K)$ and $\mathrm{su}_{3}(K) \leq \mathrm{u}_{\text {pass }}(K)$.

Example 6.1. Let us consider the two knots $K_{1}=10_{103}$ and $K_{2}=10_{74}$. Since $\mathrm{u}_{2}\left(K_{1}\right)=3[11, \mathrm{p} .453]$ and $\mathrm{u}_{\#}\left(K_{1}\right) \equiv a_{2}\left(K_{1}\right)=3(\bmod 2)$ [18, Theorem 3.5], we obtain $\mathrm{u}_{\#}\left(K_{1}\right) \geq 3$. Conversely, since we may show $\mathrm{u}_{\#}\left(K_{1}\right) \leq 3$, we obtain $\mathrm{u}_{\#}\left(K_{1}\right)=3$, which cannot be obtained by using the signature [18, Theorem 3.2]. Next, since $\nabla\left(K_{2}\right)=$ $1-z^{4}$, we may consider the pass-unknotting number for K_{2}. Since $V\left(K_{2}, \omega\right)=-3$ and $\mathrm{g}\left(K_{2}\right)=2$, we have $\mathrm{su}_{3}\left(K_{2}\right)=2$. By the 4 -move, we may transform K_{2} into the knot 6_{1}, which is further transformed into the trivial knot by a 4 -move, and so $\mathrm{u}_{\text {pass }}\left(K_{2}\right) \leq 2$. Thus we have $\mathrm{u}_{\text {pass }}\left(K_{2}\right)=2$, which cannot be obtained by using the signature; in general $|\sigma(K)| / 2 \leq \mathrm{u}_{\text {pass }}(K)$ for a knot K and $\left|\sigma\left(K_{2}\right)\right|=2$.

In a forthcoming paper we will make a detailed report on these moves.

ACKNOWLEDGEMENTS. The author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 21540092), Japan Society for the Promotion of Science.

References

[1] R.D. Brandt, W.B.R. Lickorish and K.C. Millett: A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), 563-573.
[2] J.C. Cha and C. Livingston: Knotinfo: an online table of knot invariants, http:// www. indiana.edu/~knotinfo/.
[3] J.H. Conway: An enumeration of knots and links, and some of their algebraic properties; in Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 329-358, 1970.
[4] P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett and A. Ocneanu: A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246.
[5] C.F. Ho: A polynomial invariant for knots and links-preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
[6] J. Hoste, Y. Nakanishi and K. Taniyama: Unknotting operations involving trivial tangles, Osaka J. Math. 27 (1990), 555-566.
[7] V.F.R. Jones: Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335-388.
[8] V.F.R. Jones: On a certain value of the Kauffman polynomial, Comm. Math. Phys. 125 (1989), 459-467.
[9] T. Kanenobu: Band surgery on knots and links, J. Knot Theory Ramifications 19 (2010), 1535-1547.
[10] T. Kanenobu: Band surgery on knots and links, II, J. Knot Theory Ramifications 21 (2012), 1250086.
[11] T. Kanenobu and Y. Miyazawa: H(2)-unknotting number of a knot, Commun. Math. Res. 25 (2009), 433-460.
[12] L.H. Kauffman: The Arf invariant of classical knots; in Combinatorial Methods in Topology and Algebraic Geometry (Rochester, N.Y., 1982), Contemp. Math. 44, Amer. Math. Soc., Providence, RI, 101-116, 1985.
[13] A. Kawauchi: A Survey of Knot Theory, translated and revised from the 1990 Japanese original by the author, Birkhäuser, Basel, 1996.
[14] W.B.R. Lickorish: An Introduction to Knot Theory, Graduate Texts in Mathematics 175, Springer, New York, 1997.
[15] W.B.R. Lickorish and K.C. Millett: Some evaluations of link polynomials, Comment. Math. Helv. 61 (1986), 349-359.
[16] S.V. Matveev: Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987), 268-278, 345.
[17] Y. Miyazawa: Gordian distance and polynomial invariants, J. Knot Theory Ramifications 20 (2011), 895-907.
[18] H. Murakami: Some metrics on classical knots, Math. Ann. 270 (1985), 35-45.
[19] H. Murakami and Y. Nakanishi: On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[20] K. Nakamura, Y. Nakanishi and Y. Uchida: Delta-unknotting number for knots, J. Knot Theory Ramifications 7 (1998), 639-650.
[21] Y. Nakanishi: A remark on critical points of link cobordism, Kobe J. Math. 3 (1987), 209-212.
[22] M. Okada: Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan 42 (1990), 713-717.
[23] M. Okada: Δ-unknotting operation and the Conway polynomial of a classical link, Master's thesis, Osaka Univ., (1991), in Japanese.
[24] B. Owens: Unknotting information from Heegaard Floer homology, Adv. Math. 217 (2008), 2353-2376.
[25] J.H. Przytycki and P. Traczyk: Invariants of links of Conway type, Kobe J. Math. 4 (1988), 115-139.
[26] D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, CA, 1976.
[27] T. Shibuya: Local moves and 4-genus of knots, Mem. Osaka Inst. Tech. Ser. A 45 (2000), 1-10.
[28] A. Stoimenow: Polynomial values, the linking form and unknotting numbers, Math. Res. Lett. 11 (2004), 755-769.
[29] K. Taniyama and A. Yasuhara: On C-distance of knots, Kobe J. Math. 11 (1994), 117-127.
[30] T. Yanagawa: On ribbon 2-knots. The 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969), 447-464.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585
Japan
e-mail: kanenobu@sci.osaka-cu.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.

