Nakayama, M.
Osaka J. Math.
51 (2014), 67-87

ON THE S!-FIBRED NILBOTT TOWER
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Abstract
We shall introduce a notion d8!-fibred nilBott tower It is an iteratedS!-bundle
whose top space is called &t-fibred nilBott manifold and theSt-bundle of each

stage realizes &eifert construction The S'-fibred nilBott tower is a generalization
of real Bott towerfrom the viewpoint of fibration. In this note we shall proveth

any S'-fibred nilBott manifold isdiffeomorphicto an infranilmanifold. According to
the group extension of each stage, there are two class&-fitired nilBott mani-
folds which is defined afinite typeor infinite type We discuss their properties.
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1. Introduction

Let M be a closed aspherical manifold which is the top space of eratéd
S'-bundle over a point:

(11) M=M,—> My_1—>-+— M1—>{pt}

SupposeX is the universal covering o and eachX; is the universal covering oi;
and putry(Mj) =7 (i=1,...,n—1) andm(M) = x.
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DEFINITION 1.1. An S'-fibred nilBott toweris a sequence (1.1) which satisfies
[, I and Il below. The top spaceM is said to be arS'-fibred nilBott manifold(of
depth n.
I. EachM; is a fiber space oveM;_; with fiber S'.
Il. For the group extension

(1.2) 1-Z—>nm —>mi1—1
associated to the fiber space |, there is an equivariantipahbundle:
(1.3) R — Xi 2 X;_1.
lll. Each 7; normalizesR.
The purpose of this paper is to prove the following results.

Theorem 1.2. Suppose that M is an'Sibred nilBott manifold.
(i) If every cocycle of Iﬁ(m_l,Z) which represents a group extensiih?) is of finite
order,then M is diffeomorphic to a Riemannian flat manifold.
(iiy If there exists a cocycle of q}(lm_l, Z) which represents a group extensi¢h.2)
is of infinite order,then M is diffeomorphic to an infranilmanifold. In additiomm
cannot be diffeomorphic to any Riemannian flat manifold.

As a consequence, we have the following classification. @eposition 4.1 and
Proposition 4.2.)

Proposition 1.3. The 3-dimensional &fibred nilBott manifolds of finite type are
those ofG1, Ga, B, Bz, Bs, Ba.

Proposition 1.4. Any 3-dimensional &fibred nilBott manifold of infinite type is
either a Heisenberg nilmanifoltll/A(k) or an Heisenberg infranilmanifoldN/T" (k).

Real Bott manifolds consist df;, G,, B1, Bz among thes&1, G, B, Ba, Bs, Bs.

(Refer to the classification of 3-dimensional Riemannian fitenifolds by Wolf
[13]. We quote the notation§;, B; there.)

Masuda and Lee [8] have also proved the above results.

By (1.2) of Definition 1.1, a 3-dimensiona'-fibred nilBott manifoldM gives a
group extension:

1-Z->m(M)-Q—1

where Q is the fundamental group of a Klein Bottké or a torusT2. Then this group
extension gives a 2-cocycle in the group cohomolcbgﬁ(Q,Z) with a homomorphism
¢: Q — Aut(Z) = {£1}. Conversely we have shown
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Theorem 1.5. Every cocycle of ljl(Q, Z) can be realized as a diffeomorphism
class of an &fibred nilBott manifold.

2. Seifert construction

We shall explain the Seifert construction briefly. It is altém construct a closed
aspherical manifold for a given extension. Let

(2.1) 1—>A—>n—V>Q—>1

be a group extension angl: Q — Aut(A) a conjugation function defined by a section
s: Q — = for the projectionv. Define f: Q x Q — A by s(x)s(B) = f(«, B)s(aB).
Then f defines the groupr which is the productA x Q with the group law:

(2.2) 0, )(m, ) = (n- p()(M) - f(, B), B).

(Vn,me A, Va, g € Q) (cf. [10] for example).

SupposeA is a torsionfree finitely generated nilpotent group. By thel'déa’s
unique existencéheorem, there is a simply connected nilpotent Lie graipcontain-
ing A as a discrete uniform subgroup. (See [12] for example.) Maed Q acts
smoothly and properly discontinuously on a contractiblestn manifoldW such that
the quotient spac&V/Q is compact, then there is a map Q — Map(W, N) whose
images consist of smooth maps ¥f into N satisfying:

(2.3) f(a, B) = (@(@) o A(B) o ™) - Mar) - A(@B) ™" (o, B € Q),

here¢: Q — Aut(\) is the unique extension af by Mal’cev’s unique existenc@rop-
erty. We simply writef = §%A for (2.3). And an action ofr on N’ x W is obtained by

(2.4) 0, @)(x, w) = (- (@)(X) - M) (@w), aw).

This action fr, N' x W) is said to be a Seifert construction. (See [5] for details.)
In particular, whenQ is a finite groupF and W = {pt} it follows Map(W, N) =
N for which there is a smooth map: F — N satisfying f = §'x:

(2.9) f(a, B) = p@)(x(B) - x(@) - x(@B) ™t (o, B € F).

Let E(\V) be a semidirect produck” x K with K be a maximal compact subgroup of
Aut(N). And we can define a discrete faithful representationt — E(\) by

(2.6) p((n, @) = (n- x (@), 1(x(@) ) o p()),

(here . is a conjugation map). Then the action ofon A is defined by

2.7) 0, @)(x) = p((n, @))(x) = n- p(@)(x) - x(@).



70 M. NAKAYAMA

Note that the actiona(, \) is a Seifert construction and if is torsionfreeN /x is an
infranilmanifold (cf. [5] or [10]).

3. Si-fibred nilBott tower

In this section we shall gives a proof of Theorem 1.2 of Intrcttbn and apply
our theorem to torus actions.

3.1. Proof of Theorem 1.2. Suppose that

1 1 1 1
(3.1) MZMniMn—li"‘iMli{pt}

is an S‘-fibred nilBott tower. By the definition, there is a group ex®n of the
fiber space;

(3.2) 1-Z —>nm —>m1—1

for anyi. The conjugate by each element mf defines a homomorphis@: 7;_; —
Aut(Z) = {£1}. With this action,Z is a 7j_1-module so that the group cohomology
H; (i1, Z) is defined. Then the above group extension (3.2) represeitsocycle in

H2(xi 1, Z) (cf. [10]).

Proof of Theorem 1.2. Given a group extension (3.2), we ss@dwny induction
that there exists a torsionfree finitely generated nilpotemmal subgroum;_; of finite
index in ;_; such that the induced extensidy) is a central extension:

(3-3) 1 Z T Ti_1 1

It is easy to see thal\; is a torsionfree finitely generated normal nilpotent subgro
of finite index inz;. Thenm; is a virtually nilpotent subgroup, i.e. & A; — 7 —
FF— 1 whereF = m/& is a finite group. LetN;, N,_; be a nilpotent Lie group
containing A;, Aj_; as a discrete cocompact subgroup respectively. L& & N; x
Aut(N;) be the affine group. IK; is a maximal compact subgroup of AbK(), then
the subgroup BY;) = N; x K; is called the euclidean group ®j. Then there exists
a faithful homomorphism (see (2.6)):

(3.4) oi: i — E(N)

for which pi|; = id and the quotientN; /i () is an infraniimanifold. The explicit
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formula is given by the following
(3.5) pi((n, @) = (n- x(@), 1(x(@) ™) o p())
forne Aj,a € F wherex: F — Ni, ¢: i — Aut(N;). As A; < N;, there is a

1-dimensional vector spade containingZ as a discrete uniform subgroup which has
a central group extension (cf. [12]):

1>-R—> l\Nli—>Ni,1—>1

where Nj_; = N;/R is a simply connected nilpotent Lie group. A& < R N A; is
discrete cocompact iR andR N A;/Z — Aj/Z =~ A;_ is an inclusion, noting that
Ai_1 is torsionfree, it follows thaR N A; = Z. We obtain the commutative diagram in
which the vertical maps are inclusions:

1 Z Aj Aj_1 1
(3.6) l l l
1 R N Ni_1 1

1 TTj i1 1
(37) ﬂil ﬁll
1 z pi (i) pi(mi—1) — 1.

Since A; and N; centralizesZ and R respectively,p; is a homomorphism fromr;_;
into E(N;—1). The explicit formula is given by the following:

(3-8) pi((R, @) = (0 X (@), p(x(@)™) o d(a))

forne A1, € F wherey = piox: i — N1, ¢: Fi — Aut(N;j_y);

$(@)(R) = p(@)(x).

Using (1.3) and Mal’cev’s unique extension property (corepd?]), it is easy to check
that the aboveyS: Fi — Aut(Nj_;) is a well-defined homomorphism. Thus we obtain
an equivariant fibration:

(3.9) @, R) = (pi(m), Ni) 2> (5 (i 1), Ni_1).
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Suppose by induction thatri(_1, Xj_1) is equivariantly diffeomorphic to the infranil-
action (i (wi_1), Ni_1) as above. We have two Seifert fibrations from (1.3):

(Z,R) = (1, Xi) > (i1, Xi_1)

and (3.9):

(Z,R) = (pi(m), Ni) 2> (5 (i 1), Ni_1).

As pi: i — pi(m) is isomorphic such thapi|z = id, the Seifert rigidity implies that
(i, Xi) is equivariantly diffeomorphic tog(ri), Ni). This shows the induction step.
If M = X/, then , X) is equivariantly diffeomorphic to an infranil-actiop(r), N)
for which p: 7 — E(N) is a faithful representation.

We have shown tha is diffeomorphic to an infraniimanifoldN /(). According
to Cases |, Il (stated in Theorem 1.2), we prove tNats isomorphic to a vector space
for Case | orN is a nilpotent Lie group but not a vector space for Case |l @etiyely.

Case l. As every cocycle oﬂ-|§(m_1, Z) representing a group extension (3.2) is
finite, the cocycle inH?(A;_, Z) for the induced extension of (3.3) that-2 Z —

Ai — Ai_1 — 1 is also finite. By induction, suppose thaf_; is isomorphic to a free
abelian groupZ'~1. Then the cocycle irH%(Z'~1, Z) is zero, SoA; is isomorphic to

a free abelian groufZ'. Hence the nilpotent Lie groupl; is isomorphic to the vector
spaceR!. This shows the induction step. In particular,is isomorphic to a Bieberbach
group pi (i) < E[R'). As a consequenc¥/x is diffeomorphic to a Riemannian flat
manifold R"/p ().

CAsSE Il.  Suppose thatr_; is virtually free abelian untii — 1 and the cocycle
[f]le qu(m_l, Z) representing a group extension-4Z — m; — mwj_1 — 1 is of in-
finite order in H(f(m_l, Z). Note thatmj_; contains a torsionfree normal free abelian
subgroupZ~1. As in (3.3), there is a central group extension/qf

1 Z T Ti_1 1

(3.10) H T Ti
z A

where [ri_1: Z' ] < co. Recall that there is a transfer homomorphismH?(z'1,Z) —
HZ(i_1, Z) such thatr o i* = [rj_1: Z'*]: H(mi_1, Z) > HZ(mi_1, Z), see [1, (9.5)
Proposition p. 82] for example. The restrictioi ] gives the bottom extension sequence
of (3.10). If *[f]=0e H%(Z% Z), then O=t o i*[f] =[mi_1: Z' ][ f] e Hg(ni_l,Z).

So i*[ f] # 0. ThereforeA; (respectivelyN;) is not abelian (respectively not isomorphic
to a vector space). As a consequeniieis a simply connected (hon-abelian) nilpotent
Lie group. O
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In order to studySt-fibred nilBott manifolds further, we introduce the follavg
definition:

DEFINITION 3.1. If an S'-fibred nilBott manifold M satisfies Case | (respect-
ively Case Il) of Theorem 1.2, theM is said to be arS'-fibred nilBott manifold of
finite type (respectively of infinite type).

Apparently there is no inter between finite type and infinigpet And S'-fibred
nilBott manifolds are of finite type until dimension 2.

REMARK 3.2. LetM be anSt-fibred nilBott manifold of finite type, them(x)
is a Bieberbach group (cf. Theorem 1.2). By the Bieberbackoidm,p(xr) satisfies a
group extension

(3.11) 1-7Z" - p(r) > H -1

whereZ" = p(7) NR", and H is the holonomy group o0p(x). We may identifyp(x)
with 7 wheneverr is torsionfree.

Proposition 3.3. Suppose M is an Sibred nilBott manifold of finite type. Then
the holonomy group of is isomorphic to the power of cyclic group of order t@&,)°
in O(n) (0 <s=n).

Proof. LetM be anS!-fibred nilBott manifold of finite type. Recall an equivari-
ant fibration:

@, R) = (i, Ni) 2 (i1, Ni_1).

If f is a cocycle inHj(m_l, Z) for Case | representing (3.2), then there exists a map
A: m_1 — R such that

(3.12) fa, B) = p(@)((B)) + Me) = A(@p) (o, B € mi1)

(see [3]). Moreover letr{, @) € 7; and &, w) € N; = R x Ni_1, then the action ofy;
is given by

(3.13) 0, &)(x, w) = (N + d()(X) + A(e), aw)

(ne€Z, a €mi_1). See (2.4). As we have shown in Case | of Theorem W;2; /7 _1
is a Riemannian flat manifol®&'~/z;_;, we may assume that

aw=b, + Aiw (weR™)
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(b, € R', A, € O — 1)) in the above action of (3.13). Then the above action {3.13
has the formula:

o0 a2V (% )]

where[;()] e Ni = RxR'~1 = R'. Suppose inductively thatA, | « € 7i_1} < (Z,) L.
Here

+1
(3.15) @)t = <0( —1).
+1

Since ¢(mi_1) < {1}, the holonomy grouH; of m; is isomorphic to Z,)S, (0 <s <
i). This proves the induction step.

O

3.2. Torus actions onS'-fibred nilBott manifolds. Given an effectivel “-action
on a closed aspherical manifol, define an orbit magv: T — M by eu(t) = tx
(3x € M). Thenev induces a homomorphism of the fundamental groeips 71(T¥) —
71(M) which is known to be injective by Conner and Raymond [3]. But: Hi(T*) —
H;(M) is not necessarily injective.

DEFINITION 3.4. Whenev,: Hy(TK) — Hy(M) is injective, we call that the k-
action is homologically injective.

Corollary 3.5. Each S-fibred nilBott manifold of finite type Madmits a homo-
logically injective T<-action where k= RankH(M;). Moreovey the action is maximal
i.e. k= RankC(rm;).

Proof. We suppose by induction that there ifi@mologically injectivemaximal
Tk-L.action onM;_; = T'"1/H;_; such thatk — 1 = RankHy(M;_1) = RankC(r;_1)
(k— 1> 0). Sincenj, mj_1 are Bieberbach groups, there are two group extensions

17 — T ﬂ) H — 1,

i1 e
1-72Z" " —>m_1— H_1—>1

where H;, H;_1 are holonomy groups of;, mj_; respectively andz' = 7; NR!, Z' 1 =
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7i_1 NRI~1. We have a following diagram

1 1
1 Z Z A 1
(3.16) 1 z T — 1
hl hi—l
H =—=H_1
1 1

Let p: R' = RxR'"* — T' = S' x T'~1 be the canonical projection such that Kee

Z' = 7 NR'. By Proposition 3.3,H; = (Z,) for somes (1 < s <i). The action
(7, R') induces an isometric actiorH(, T') from (3.14). We may represent the action
as follows:

z ta - ¥ (@)(z2)

Vir) Zzl
(3.17) al Tl =

Z Z !

here& = hi((n, @) € Hi, t; = p(n + A(a)) € S, andy: H; — {£1]} is defined by

oz if d@) =1,
(319 v = {3 § St

7

Note that {;)2 = p(n+ A(e)) p(n + A(a)) = p(2n + 2 (). By (3.14) if ¢(a) = 1, then

oo e )

Since D+ 20 (a) € Z, (tz)° =1 i.e. ty = £1.
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I y(a) =1 for all &, it follows from (3.17) that the left translation o8 on
T = St x T'-1 induces anSt-action on M; = T'/H; so that TX-action on M; =
T'/H; follows

V4] t-z1
3.20 t “ “
(920 v vl
Zi Zi

where (,t") € St x T*1 [z1,...,z] € M; = T'/H;. On the other hand, if there is an
element& of H; which v(&)(z) = z, then M; admits aT* *-action by the induction
hypothesis. The group extension (3.11) gives rise to a gexiension:

(3.21) 1— Z/[ni, ;] N Z — 7 /[, 7] NN wi_1/[mi1, mia] — 1.
As in the proof of Proposition 3.3, [(&), (n, 1)] = ((¢(«) — 1)(n), 1). It follows that

[, ;] N Z = {1} or [, nij] N Z = 2Z according to whetheH; = Kery or not. So
(3.21) becomes

(3.22) 1— Z — Hy(Mi) = Hi(Mi_1) — 1,
or
(3.23) 1— Zy — Hy(M) = Hy(Mj_1) — 1.

For (3.22), it followsk = RankH;(M;) for which M; admits a homologically injective
Tk-action as above. For (3.23§,— 1 = RankH;(M;) and M; admits a homologically
injective Tk~1-action by the induction hypothesis.

Now we show the action is maximal. Suppogéx) = 1 for all &. Noting that the

. Pi . . .
group extension 1> Z — m; — m_1 — 1 is a central extension, we obtain a group
extension:

157 - Clm) D p(Clm)) — 1.

On the other hand, sindd; admits the abova ¥-action,Zk ¢ C(r;). Let RankC(r;) =
k+1,(0=0,1,2,..), thenz"'=1 ¢ p(C(m)). By the induction hypothesik — 1 =
RankC(xi_1) > Rankp;(C(r;)). Thereforel = 0 that isk = RankC(r;).

Assume that there exists an elemént H; such thaty(@)(z) = z. It is easy to
check thatZ N C(m;) = {1}, i.e. C(m;) < C(mi_1) and sinceM; admits Tk~ 1-action,
Z¥-1 < C(m;). By the induction hypothesigk — 1 = RankC(r;). Hence in each case
the torus action is maximal. O
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4. 3-dimensional St-fibred nilBott towers

By the definition of S'-fibred nilBott manifold M,,, M, is either a torusT? or a
Klein bottle K so thatM, is a Riemannian flat manifold.

4.1. 3-dimensional S'-fibred nilBott manifolds of finite type. Any
3-dimensionalS'-fibred nilBott manifold M3 of finite type is a Riemannian flat mani-
fold. It is known that there are just 10-isomorphism clasges .., Gs, B1, ..., B4 of

3-dimensional Riemannian flat manifolds. (Refer to the sifamtion of 3-dimensional
Riemannian flat manifolds by Wolf [13].) In particular, foidRannian flat 3-manifolds
corresponding td3, and B4, we have shown that there are tv@-fibred nilBott tow-
ers: B, - K — St — {pt} and B, — K — S' — {pt} in [10]. Remark that every real
Bott manifold is anS'-fibred nilBott manifold of finite type and, and 3, are not real
Bott manifolds. And the following proposition has been @dv See [10] for details.

Proposition 4.1. The 3-dimensional &fibred nilBott manifolds of finite type are
those ofG1, Gz, B1, B, Bs, Ba.

4.2. 3-dimensional S'-fibred nilBott manifolds of infinite type. Any
3-dimensionalSt-fibred nilBott manifold M3 of infinite type is an infranil-Heisenberg
manifold. The 3-dimensional simply connected nilpoteng¢ lgroup N3 is isomorphic
to the Heisenberg Lie groud which is the producR x C with group law:

X2 (y,w)=XX+y—Imzw, z+ w).
Then a maximal compact Lie subgroup of Auf(is U(1)x () which acts onN

i0 _ i0 i0
@.1) €’(x,2) = (x,€"2), (€ eU(1)),
(X, 2) = (=X, 2).

A 3-dimensional compact infranilmanifold is obtained asumtientN/T" whereT is a
torsionfree discrete uniform subgroup ofNg(= N x (U(1) x (z)). See [4].
Let

S M3z — M>

be an S'-fibred nilBott manifold of infinite type which has a group emsion 1—

Z — 3 — m, — 1. As before this group extension contains a central grougnsion
1—>2Z — A3 —> A, — 1. SinceR C N is the center, this induces the commutative
diagram of central extensions (cf. (3.16)):

1

Z As A,
4.2) l l l
R N C
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Using this, we obtain an embedding:

1 Z T3 T2 1
4.3) l pl ﬁl
1 R E(N) Cx UQ) x (r)) —— 1.

Note thatC x (U(1) x () = R? x O(2) = E(2). SinceR N 3 = Z from (4.3), p(12)
is a Bieberbach group in E(2) so thR2/5(r,) is either T2 or K.

DefineL: E(N) - U(1) x (r) to be the canonical projection.

CAsE (i). Supposel(r3) = {1}. Then p(m,) < C. So we may assumes = A
from (4.2). For eaclk € Z, we introduce the nilpotent groups(k) which is a subgroup
of N generated by

c=(2k, 0), a=(0,k), b=(0,ki.
Put Z = (c) which is a central subgroup ak(k). It is easy to see that
(4.4) [a, b] = c7X.

Then A; < N is isomorphic toA(k) for somek € Z. SinceR is the center oiN, we
have a principal bundle

St = R/Z - N/A(K) — C/Z2.

Then the euler number of the fibration 4sk. (See [9] for example.)

CAsE (ii). Suppose that the holonomy group e% is nontrivial. Then we note
that L(r3) = Z, < U(1) x (), but not in U(1). By (3.16)L(r3) = L(7r2), first remark
that L(,) is not contained in U(1). For this, suppose thht &) is an element of
15 <R?x0(2). Then for anyx € R?, (b, A)x # X, because the action of, on R? is
free. Therefore de{ — 1) = 0. This implies that ifA € SO(2)= U(1), thenA = 1I.
So L(m,) = L(sr3) is not contained in U(1).

Suppose that there exists an elemgnrt 73 such thatlL(g) = (€, 7) € U(1) % ().
Noting (4.1), it follows L(g)?> = 1. ThenL(w3) = (U(1) N L(m3)) - (L(g)). Let Ty =
L=X(U(1) N L(r3)) < 3 which has the commutative diagram:

P3

1 Z T3 T2 1
(4.5) T T
1 Z g T 1.

Here ) = ps(r3). Sincern; also acts orR? freely, it follows L(rj) = L(7}) = U(1)N
L(m3) = {1}. HencelL(my) = L(w3) = Z, = (L(g)). In particular M, is the Klein
bottle K.
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Let n = (x, 0) be a generator oZ < N. Chooseh € n3 with L(h) = 1 such
that the subgroup(ps(g), ps(h)) is the fundamental group oK. It has a relation
p3(9) p3(h) p3(9) = pa(h)~%. Then(n, g, h) is isomorphic tors. In particular, those
generators satisfy

ghg!=n*h"! 3k e 2),

4.6
(4.9 gngl=L@n=tn=n"t ahnhl=L(h)n=n.

On the other hand, fix a non-zero intederLet I'(k) be a subgroup of B) gen-
erated by

(4.7) n=(k,0),1), o= ((0 g) r), B = ((0, ki), ),

where @, X) e N =R xC < E(N).
Note thata? = ((0,K), 1). Then it is easily checked that

(4.8) Olﬂa_l = nkﬁ‘l, anae~t = n_l, ﬂnﬂ_l =n,

l1——>R——EN)——CxUQ)x (1)) ——1

w T

1 (n) r'(k) (&, By ————> 1.

Then the subgroup generated &, 8 is isomorphic to the subgroup of translations of
R? t; = [g] ty = [2] Let T?2 = R?/(t1,t). Then it is easy to see that the quotient
y = [&] of order 2 acts onT? as

(4.10) v(2, ) = (~z1, 20).

As a consequence®?/(&, B) = T2/(y) turns out to beK. So M3z = N/T'(k) is an
St-fibred nilBott manifold:

St — N/I'(k) - K
where S = R/(n) is the fiber (but not an action).

Compared (4.6) witl'(k), 3 is isomorphic toI'(k) with the following commuta-
tive arrows of isomorphisms:

1 Z 3 193 1

w T
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As both (3, X3) and € (k), N) are Seifert actions, the isomorphism of (4.11) implies
that they are equivariantly diffeomorphic, i.8l3 = X3/m3 = N/I'(K). This shows the
following.

Proposition 4.2. A 3-dimensional &fibred nilBott manifold M of infinite type
is either a Heisenberg nilmanifoltl/A(k) or a Heisenberg infranilmanifoldN/I"(k).

5. Realization

5.1. Realization ofS'-fibration over a Klein bottle K. Let Q be a fundamen-
tal group of a Klein BottleK, then Q has a presentation:

(5.1) {g.h|ghgt=h".

A group extension 1> Z — 7 — Q — 1 for any 3-dimensiona$'-fibred nilBott mani-
fold over K represents a 2-cocycle iH(,f(Q,Z) for some representatiop. Conversely,
given any representatiofn: Q — Aut(Z) = {+1}, we shall prove that any element of
HZ(Q, Z) can be realized as ag'-fibred nilBott manifold.

We must consider following cases of a representation

Case 1. ¢(g) =1, ¢(h) = 1.

CAse 2. ¢(g) =1, ¢(h) = —1.

Case 3. ¢(g) = -1, ¢(h) = 1.

CAse 4. ¢(g) = -1, ¢(h) = —1.

Supposeg; (i = 1, 2, 3, 4) is the representatiagh for Case i. Any element of
H;(Q, Z) gives rise to a group extension

1—>Z—>n—p>Q—>1.

Then 7 is generated byj, h, n such that(n) = Z and p(§) = g, p(h) = h. There
existsk € Z which satisfies

(5.2) ghg* = n*h~2.

Putz =;m(k) for eachk € Z and [fy] denotes the 2-cocycle dﬂdfi(Q,Z) representing
i (k). Note that [f] = 0.
CAsE 1. Sincegy is trivial, H2 (Q, Z) = H%(Q, Z) ~ H?(K, Z) ~ Z», and the

group 17 (k) satisfies the following presentation:
(5.3) gngt=n, hnh™*=n, ghg?'=nkh1.

Lemma 5.1. The groups;(0), 177(1) are isomorphic toB;, B, respectively.
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Proof. First we shall discussz(0). Let d, h, n € 17(0) be as above. Put= g,
t1 = 6% t, = n andt; = h. Remark that a group generated by, t, t3 coincides with
17(0). Using the relation (5.3),

& _t11
etrel =ghgt=h"t= tz_l,
etz l=gngl=n=ts

Compared these relations with those Bf, 17(0) is isomorphic to53; (due to the
Wolf’'s notation [13]).

Second, we shall discuss (1). Let§,h,n € 17(1) be as above. Put= §, t; = &,
t, = §2n andt; = h. A group generated by, t1, t,, t3 coincides with,7(1). By using
the relation (5.3),

&= tly
e t=0g gt =g"ng T =g"n=t,
etae™! = ghg™! = §?§2nh™ = tytpt3 .
This implies thaty (1) is isomorphic toB,. (See [13].) []

For arbitraryk € Z, we have the following.

Proposition 5.2. The group extensiopr (k) is isomorphic toB3;, or B, in accord-
ance with k is even or odd.

Proof. Take ffi] € HZ (Q, Z) ~ Z, by Lemma 5.1, then

n= g gilﬁ = (01 g)(or h)(_ fl(gill g)! gil)(ov h)

(5.4)

= fi(g, h) — fi(g™*, @) + fi(gh, g% + fi(h™, h),
and so
(5.5) n“ = kfi(g, h) — kf. (g%, g) + kfi(gh, g™) + kfy(h™2, h).

Since kf;] € Hjl(Q,Z), we can construct a groudy which is represented by {1, ¢1).
Then Hy is generated by the elementsand g’ = (0, g), h" = (0, h) satisfying that

(n, a)(m, B) = (N + pa(x)(M) + kfs(er, B), @f) (YN, M€ Z, Va, f € Q).
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It follows

g'hg~th" = (0, 9)(0, h)(—kfi(g™*, g), g71)(0, h)
= kfi(g, h) —kfi(g™%, g) + kfi(gh, g*) + kfi(h ™%, h)
=nX (from (5.5)).

Thus we obtaing’h’g’~* = nkh'~L. In view of (5.2), a correspondenag — §, h’ — h
gives an isomorphisn¥ of the group extensions:

1 Z Hy Q 1
(5.6) idl wl idl
1 Z 177 (K) Q 1.

If we recall that [f¢] (resp. k- f1]) representsn(K) (resp. Hy), then it follows [fy] =
k-[f.]. Noting that [f;] is a two torsion element, the result follows. ]

CASE 2. Let ¢2(g) = 1, ¢o(h) = —1, then,x (k) has the following presentation.
(5.7) gngt=n, hnht=n"? ghg?'=n*h"?
for somek € Z.
Proposition 5.3. The groups,7(0), (1) are isomorphic toBs, B, respectively.
Proof. Letd, h, n € ,7(0) be as before. Put =hg, e =h?, t; = @, t, = h 2

and t3; = n. Note that the group generated by ¢, t;, tp, t3 coincides with,(0).
Using the relation (5.7),

Since these relations correspond to those3ef(cf. [13]), 7 (0) is isomorphic toBs.
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Let §, h, n € ,7(1) be as above. Pui = hg, ¢ = n"th?, ty =n'§@ t, = h 2
andt; = n~L. Using the relation (5.7), we obtain the following pres¢iota

e” =1y,
eae™t = nththghn = h1gn = totza
ata™t = hgh2gtht =h2? = tg_l,
atza™t = ﬁgn—l h1l=n= tg_l,

This implies thatyz (1) is isomorphic toB,. (See [13]). O]
Proposition 5.4. quz(Q, Z) is isomorphic toZ,.
Proof. We first show thadez(Q,Z) is a 2-torsion group. LeQ’ be the subgroup

of Q generated byg, h? € Q satisfying thatgh’g~ = (ghg')?> = h=2. We have a
commutative diagram:

(5.8) 1— 57— s k) ———>Q——1
1 s r—r 1

wherer’ is the subgroup ofx (k) generated by, §, h2. Note that
§h2g " = n"Arinkht = A2,

Since the subgroupg, h?) of 7’ maps isomorphically ont®’ and a restrictionp,| Q' =
id, it follows 7’ =Z x Q’. This shows that the restriction homomorphis’“mH(fz(Q,Z)e
H?(Q/, z) is the zero map, equivalently[ f,] = 0. Using the transfer homomorphism
t: H3(Q', Z) - HZ (Q, Z) and by the property o *([f]) =[Q: Q[ f]1=2[f] (V[f]e
HZ (Q, Z)), we obtain 2ff]=0.

Let [fy] be a 2-cocycle of,7(k). Similarly as in the proof of Proposition 5.2
we obtain

(5.9) [fi] = k- [fa].

As a consequencehljz(Q, Z) is isomorphic toZ,. []
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The following is obvious using Proposition 5.3 and Proponit5.4.

Corollary 5.5. The group extensionn (k) is isomorphic toBs or B4 in accor-
dance with k is even or odd.

Case 3: The groupsnr (k) has the following presentation for sonkes Z;

(5.10) gngt=n?t hnht=n, ghg'=nA"1t

Lemma 5.6. The groupszm(0), 37 (k) are isomorphic toG,, I'(k) respectively.
(cf. (4.7))

Proof. Letd, h, n € 37(0) be as before. Put = §, t; = § t, = h andt; = n.
Note that the group generated byt;, to, t3 coincides withgr (0). By using the relation
(5.10), it is easy to check that:

a? =1,
atza_l = tz_l,
atga™t = t?,_l.
And so 37 (0) is isomorphic toG,. (See [13].)
Supposed, h, n € 37(k) (k # 0). By the relations (4.6) and (5.10)r (k) is iso-
morphic toT'(k) (cf. (4.7)). O

Proposition 5.7. Hqi(G, Z) is isomorphic toZ.

Proof. From Theorem 1.2 and Lemma 5I§K) represents the torsionfree elem-
ent [f] in H§3(G, Z). Moreover as in the proof of Proposition 5.2, we can show that

[f] = k-[f1]. Therefore dea(G, Z) is isomorphic toZ. L]
CASE 4. The groupsr(K) has the following presentation.

(5.11) gngt=n"? hnht=n"t @ghg'=n At

Pute = gh. It is easy to check that

(5.12) ane™*=n, hnh*=n"? «he =n*ht

In view of (5.7), this implies that (k) is isomorphic to,m (k).

We have shown that any element Idﬁ(Q,Z) can be realized as'-fibred nilBott
manifold M3, and obtain the following table:
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Case 1| Case 2 and 4 Case 3
HJ(Q, Z) Zy Zy Y
[f]=0 B1 B3 G
71(Mg) | [f] # O: torsion B> By —
[f]: torsionfree — — (k)

5.2. Realization of S'-fibration over T2. Let Z? be the fundamental group of
a torus T2 generated by, 8. Given a representation: Z°> — Z = {+1}, we shall
show that any element dﬂqf(Zz, Z) can be realized as a8'-fibred nilBott manifold.

We must consider following cases of a representation

CASE 5. ¢(x) =1, ¢(B) = 1.

CASE 6. ¢(a) =1, ¢(B) = —1.

CASE 7. ¢(x) = -1, ¢(B) = —1.

Supposep; (i =5,6,7) is the representatignfor Case i. Any element olf-Iqﬁ (z?,7)
gives rise to a group extension

1—>Z—>n—p>Z2—>l.

Thenr is generated by, 8, m such that(m) = Z and p(@) = «, p(8) = B. There
existsk € Z which satisfies

(5.13) afat = mkB.
Put =7 (k) for eachk € Z and [fy] denotes the 2-cocycle dﬂgi (z?,7) representing
i (K). Note that [f] = O.
CAse 5: The groupsr (k) has the following presentation.
(5.14) amat=m, AmBt=m, aBat=m"g,

for somek € Z. Compared these relations with (4.4),

Proposition 5.8. The groupssz(0), s7(k) are isomorphic tori(T3), m1(A(—K))
respectively.

Similarly as in the proof of Proposition 5.7, we obtain

Proposition 5.9. HZ(z?, Z) is isomorphic toZ.

CASE 6: The groupgm (k) has the following presentation.
(5.15) amaét=m, AmBt=m1 aBat=mg,

for somek € Z.
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Proposition 5.10. The groups(0), ¢ (1) are isomorphic to31, B, respectively.

Proof. First letk = 0. Putm=h, @ = n, 8 = §, then we can check easily that
67(0) is isomorphic to;7(0). Soem(0) is isomorphic toB;.

Supposek = 1. Putm=n, @ = §, m18 = h, then it is easy to check thatr (1)
is isomorphic toB,. O

Moreover similarly as in the proof of Proposition 5.4, we adibta

Proposition 5.11. HZ (22, Z) is isomorphic toZ.

CAse 7: The group;z (k) has the following presentation.
(5.16) amlat=m, AmBt=m71, afal=mkg,
for sor~nek € Z. Then it is easy to check thair (k) is isomorphic togrz (K) if we put
g=agp.

We have shown that any element Idf(ZZ,Z) can be realized as!-fibred nilBott
manifold M3, and we obtain the following table:

Case 5| Case 6 and 7

HZ(z? z) Z Zo
[f]=0 G1 By
m1(M3) | [f] # O: torsion — B

[f]: torsionfree | A(K) —

6. Halperin—Carlsson conjecture

Theorem 6.1 (Halperin—Carlsson conjecture [11])Let T° be an arbitrary effec-
tive action on an m-dimensional*$bred nilBott manifold M of finite type. Then

(6.1) sCj <b; (=the j-th Betti number of W
In particular 2° < 3T ; RankH;(M).

Proof. By Corollary 3.5,M admits a homologically injectivel “-action where
k = RankC(r) whererr = m1(M). Then we have shown in [6] that any homologically
injective TK-actions on any closed aspherical manifold satisfies that

kCj = b; (=the j-th Betti number ofM).

It follows from the result of Conner—Raymond [3] that theee dn injective homo-
morphism 1— Z°® — C(x). This shows that < k so we obtain
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REMARK 6.2. This result is obtained whev; is a real Bott manifold by Masuda,

Choi and Oum [2].
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