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Abstract
We introduce a fake HOMFLY polynomial of a knot and show exist of such
polynomials of a given knot.

1. Introduction

In this paper, we deal with the HOMFLY polynomial [2, 10, 13] afknot.

The HOMFLY polynomial P(L; v, z) € Z[v*!, z51] of an oriented linkL is an
invariant of the isotopy type ok, which is defined by the following formulas:
1) PU;v, 2 =1,
(2) v P(Lyiv,2)—vP(L_;v,2) = zP(Lo: v, 2),
whereU is the trivial knot andL ., L_ and L are three links that are identical except
near one point where they are as in Fig. 1.

The reduced polynomiaP(L; 1, z) of L is called the Conway polynomial [1] of
L and denoted byw(L; z). The Jones polynomiaV/(L;t) [7] of L is defined as the
reduced polynomiaP(L;t, t¥/2 —t=%/2),

By [10], the HOMFLY polynomial of an oriented knd is of the form

P(K:v,2) =) Py(L:v)22,
j=0

where each Laurent polynomid&h; (K; v) € Z[v*?] is called the 3-th coefficient poly-
nomial of P(K; v, 2) in z or the 2-th HOMFLY coefficient polynomial The 2j-th
coefficient polynomial of a knot is said to Revial if it coincides with that of the
trivial knot.

In [11], the author shows that there are infinitely many 2igei knots with trivial
0-th HOMFLY coefficient polynomial. The purpose of the paperto explore a little
further into HOMFLY coefficient polynomials of a knot.

Let K and K’ be oriented knots. The HOMFLY polynomid(K’; v, z) of K’ is
said to be afake HOMFLY polynomial of K with identical ordé&m if P(K’; v, 2) =
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Fig. 1. A skein triple.

Fig. 2. Pass-moves.

P(K; v, 2) (mod z2™*2), that is Pj(K'; v, 2) = Ppj(K;v,2), 0 < j <m, in terms of
HOMFLY coefficient polynomials ofK and K'.

REMARK 1.1. If the HOMFLY polynomial ofK’ is a fake HOMFLY polynomial
of K with identical order #n, then it is also a fake HOMFLY polynomial oK with
identical order 2, 0<j <m.

In order to state our main theorems we give some definitions.

The Gordian distance fronK to K’ is defined to be the minimum number of
crossing changes needed to transfdfminto K’. We denote it byds (K, K’).

A pass-move [8] is a local move on a diagram of an oriented lasotn Fig. 2.
Two knots are pass-equivalent if one can be obtained fronother by a combination
of Reidemeister moves and pass-movesK land K’ are pass-equivalent, then the pass
distance fromK to K’ is defined to be the minimum number of pass-moves needed to
changeK into K’. We denote it bydyas{K, K’).

Let f be an isotopy type invariant of an oriented link, which takesfues in an
abelian group. Thenf can be uniquely extended to a singular link invariant by the
Vassiliev skein relation:

f(L.) = f(Ly) - f(L),

where L is a singular link with a double poirnt, andL, and L_ are ones obtained
from L, by replacingx with a positive and a negative crossing, respectively. We ca
f a finite type invariant if there exists an integgsuch thatf (L) = 0 for any singular
link L with more thanq double points. The smallest of such integers is the order of
f. We denote a finite type invariant af with orderq by fq(L).

The signature oK, o(K), is a cobordism invariant of a knot; see [12], Section 8F
in [14].
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Theorem 1.2([9]). Let m | and q be integers with n» 0 and |, q > 0. For
an oriented knot K there exist infinitely many knotX,; n € N} with the following
properties
(1) The HOMFLY polynomial of Kis a fake HOMFLY polynomial of K with identi-
cal order 2m;

(2) P(Ky;v,2) =P(K;v,2) mod @? — 1);

() V(Kn:2) = V(K: 2);

(4) K, is a band sum of K and the trivial knoand so K is cobordant to K and
o (Kp) = o (K);

(5) da(Kn, K) =1;

(6) dpas{Kna K)=1,

(7) fj(Kp) = fj(K),0=j=q.

REMARK 1.3. Kawauchi informed the author that Theorem 1.2 could dzom-
plished by using imitation theory, that is, appropriate @inidentical link imitations
of a given knot had the properties in the theorem. Howevethis paper, the proof of
the theorem is given by an elementary method of construatibith shows explicitly
diagrams of knots.

Corollary 1.4. For a non-negative integer mthere exist infinitely many knots
{Kn; n € N} whose2j-th HOMFLY coefficient polynomigl® < j < m, are trivial.

Since an almost identical link imitation of a knot has the safiexander poly-
nomial as the knot, imitation theory does not work on thediwlhg theorem.

Theorem 1.5. Let m be a non-negative integer and q a positive integer. For
an oriented knot K there exist infinitely many knotK,; n € N} with the following
properties
(1) The HOMFLY polynomial of Kis a fake HOMFLY polynomial of K with identi-
cal order 2m;

(2) V(Kn;2) # V(K; 2), and so K, is not an imitation of K
(3) d(Kn, K) =1;

4) dpasiKn’ K)=1;

(5) o(Kn) = o(K);

6) fj(Ky) = fj(K),0=j=q.

To prove theorems, we make use of polynomials derived froamglé which comes
from decomposition of a knot. We introduce them in Sectioe proofs of theorems
are given in Sections 4 and 6 after preliminaries in Sect®rsd 5.
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2. The normal coordinates of a tangle

A tangle T is a pair B%,t) of a 3-ball B® and a proper 1-submanifoltl with
ot # @. T is said to be a 2-string tangle T consists of two arcs and some circle
components. Each oft is called an endpoint of. T is called properly orientedif
each arc ofT is oriented as in Fig. 3.

The numerator (resp. denominator) Bf denoted byN(T) (resp. D(T)) is a link
obtained fromT by connecting four endpoints of by two arcs outsidel as in the
left (resp. right) figure of Fig. 4.

AtangleT is said to be otype N,nry (resp.type Dyp(ry) or an N, ry-tangle
(resp. aD,p(ry-tanglg if T is a properly oriented 2-string tangle andN(T)) <
uw(D(T)) (resp. u(N(T) > w(D(T))), where u(L) denotes the number of components
of a link L.

We denote byE,n, n € Z, and E,, tangles of typeD; and of typeN; as in Fig. 5,
respectively.E,, has 2n| positive (resp. negative) crossingsnif- 0 (resp.n < 0) and
Eo means horizontal parallel strings without crossings.

Let L(T), L(Eo) and L(E) be three links identical outside a ball and inside
are a properly oriented 2-string tanglg the D;-tangle E, and the N;-tangle E,,
respectively.

Lemma 2.1. Let T be a tangle of type Ro(ry. Then there exists a unique pair
(eo(T; v, 2), €(T; v, 2)) of polynomials for T so that
P(L(T); v, 2)
= (v2)* P {ey(T: v, 2) P(L(Eo): v, 2) + vzeo(T: v, 2) P(L(Ex): v, 2)},

where §(T; v, 2), ex(T; v, 2) € Z[v*?, 72].

Proof. Linear skein theory gives a unique pads(T; v, 2), (T: v, 2)) of poly-

nomials forT so that

P(L(T); v, 2)

= (v2)CO{en(T: v, 2) P(L(Eo): v, 2) + vze(T: v, 2) P(L(Ex); v, 2)},
whereey(T; v, 2), ex(T; v, 2) € Z[v*?, zF1]. We only have to show thady(T; v, z) and
ex(T;v, 2) are elements ofZ[v*?, z?]. Considering the HOMFLY polynomials of the
numerator and the denominator ©f we have

P(D(T): v, 2) = (v2)*CMh(D(T); v, 2)
and
P(N(T): v, 2) = (w2) P (wz)th(N(T); v, 2),
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Fig. 3. A properly oriented 2-string tangle.

ORNOL

Fig. 4. The numerator and the denominator.

I

E2n EOO
Fig. 5. Trivial tangles.
whereh(D(T): v,2), h(N(T):v,2) € Z[v*?, 7?], becauseu(N(T)) = u(D(T))+ 1. Thus,

h(D(T); v, 2) = ey(T; v, 2 P(D(Ep); v, 2) + vze,(T; v, 2) P(D(Ew); v, 2)

and
h(N(T); v, 2) = vze(T; v, 2) P(N(Eo); v, 2) + v’Z%e(T; v, Z) P(N(Ex); v, 2).

Since D(Ep) and N(E..) are trivial knots andN(Eg) and D(E.,) are 2-component
trivial links, we obtain

h(D(T); v, 2) = &(T; v, 2) + (L — vH)ex(T; v, 2)
and
h(N(T); v, 2) = (L — v)en(T; v, 2) + v?Z2e(T; v, 2).

From these equalities, we have

{1 —v?)? —v?Ze(T: v, 2) = (L— v?)h(D(T); v, 2) — h(N(T): v, 2).
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It follows that e (T; v, 2) € Z[v*?, Z%], which leads toey(T; v, 2) € Z[v*?, 72]. [

Lemma 2.2. Let T be a tangle of type Ncry. Then there exists a unique pair
(eo(T; v, 2), 5 (T; v, 2)) of polynomials for T so that
P(L(T); v, 2)
= ()" "M {vzey(T; v, 2) P(L(Eo); v, 2) + €x(T: v, ) P(L(Ex)i v, 2)},

where §(T: v, 2), ex(T: v, 2) € Z[v*?, 7.
Proof. The proof of the lemma is similar to that of Lemma 2.1. ]

The polynomialsey(T; v, z) and e,(T; v, z) which appear in Lemmas 2.1 or 2.2
are essentially determined by the tandleonly. So, a pair &(T; v, 2), ex(T; v, 2)) of
the polynomials is called thaormal coordinatesof T.

Let Mp and My be 2x 2 matrices whose entries are Z{v*?!, z*1] defined by
((v 1 _1v)z 1 1321)2) and (1;21)2 - _1u)z‘1 ), respectively.

Let 3; [14] be the trefoil knot. We put(v,z) = —(1—v?)%4v22%2 = P(31!;v,2)—1,
where K! denotes the mirror image of a knét.

REMARK 2.3. detMp = detMy = —v~*z"%A(v, 2) # 0.
The following two lemmas are corollaries of Lemmas 2.1 ari?l 2.

Lemma 2.4. Let T be a tangle of type ). Then the normal coordinates
(eo(T; v, 2), e5(T: v, 2) of T are expressed as follows

eo(T;v,2) | _ —1pg—-1f P(N(T):v, 2)

(eoo(T; 0, 2) ) — (UZ)M(D(T)) 1MD1( P(D(T), . 2) )
~ (wz) PO (1 — v2)zP(N(T); v, 2) + v2Z2P(D(T); v, 2)
A, 2) ( vZP(N(T); v, 2) — (1 — v®) P(D(T); v, 2) )

Proof. Letv = (v2)*P(M)-1 By Lemma 2.1 and equalitie®(N(Eop); v, 2) =
P(D(E.): v,2) = (vt — v)z ! and P(N(E~): v, 2) = P(D(Eo): v, 2) = 1, we have

P(N(T); v, 2 P(N(Eg); v, 2) vzP(N(Ey): v, 2) e(T: v, 2)
u( P(D(T); v, z)) ( P(D(Ep); v,2) vzP(D(Ey); v, 2) ) ( (T v, z))

B MD(QZ((TT;;Z',Zz)))'

Thus, we obtain the first expression of the normal coordsateT. Since Ml =

(—vz/A(v, z))( 1:1”2 (v,livlz))z,l ) we have the second equality. O
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Fig. 6. Addition of tangles.

Lemma 2.5. Let T be a tangle of type Nry. Then the normal coordinates
(eo(T; v, 2), e5(T; v, 2) of T are expressed as follows

e(T:v,2) \ _ u 1,1/ P(N(T); v, 2
(eoo(T; v, z)) = (v lMNl( P(D(T); v, z))
(2 NOTL (1 — w2z P(N(T); v, 2) + vzP(D(T); v, 2)
T Mv, 2) ( v2Z2P(N(T): v, 2) — v(1 — v®) P(D(T); v, 2) )

Proof. The proof of the lemma is similar to that of Lemma 2.4. []

Let T and S be properly oriented 2-string tangles. We define additioriaofles
T and S by connecting endpoints of and S as in Fig. 6 and denote it by + S.
If T is a D;-tangle andS is an N;-tangle, thenT + Sis an N;-tangle.

Lemma 2.6. Let T be a B-tangle and S an Ntangle. Let(ey(T;v,2),e,(T;v,2))
and (ey(S; v, 2), ex(S; v, 2)) be the normal coordinates of T and @spectively. Then
the normal coordinateéey(T + S; v, 2), (T + S; v, 2)) of the tangle T+ S are expressed
as follows

&(T + Siv,2) = &(T: v, 2)e(S; v, 2)
and
(T + Siv, 2) = (T v, 2)€x(S v, 2) + V7220 (T: v, 2)&(Si v, 2)
+ (1-v9)ex(T: v, 2ex(Siv, 2).

Proof. Note thatL(Eg + S) = L(S) and L(E, + S) is the connected sum of
L(Ey) and D(S). By using Lemma 2.1, we have

P(L(T + S)i v, 2) = &(T: v, ) P(L(Eo + S): v, 2)
+vzeo(T; v, 2)P(L(Ex + S); v, 2)
= eo(T: v, 2)P(L(S): v, 2)
+vzeu(T; v, 2 P(D(S); v, 2) P(L(Ex): v, 2).
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Since

P(D(S); v, 2) = vze(S; v, Z) P(D(Eo); v, 2) + €x(S; v, 2 P(D(Ex); v, 2)
=vzg(Sv,2) + (v 1 —v)z e (S v, 2),
we obtain
P(L(T + 9S);v, 2
= ey(T; v, 2){vze (S; v, 2 P(L(Eo); v, 2) + €x(S; v, 2) P(L(E); v, 2)}
+vzeo(T; v, 2){vze (S v, 2) + (v ! — 1)z 'ex(S v, 2)} P(L(Ew); v, 2)
= vz&(T: v, 2)e(S v, 2) P(L(Eo): v, 2)
+ {eo(T: v, 2)ex(Si v, 2) + V2% (T: v, 2)&(S: v, 2)
+ (1 - v))eu(T: v, 2ex(S v, 2}P(L(Ex); v, 2).

This completes the proof. ]

Lemma 2.7. Under the same assumption aemma 2.6,
P(N(T + )i v, 2) = (1—v?)en(T: v, 2)&(S: v, 2) + €o(T: v, 2)ex(Si v, 2)
+ P70 (T v, 2)&0(Si v, 2) + (1 — v*)ex(T: v, D)ex(S: v, 2).

Proof. SinceP(N(Ep);v,2) = (v —v)zt and P(N(E,); v, 2) = 1, Lemma 2.6
shows the claim. 0J

Proposition 2.8. Under the same assumption aesmma 2.6,
P(N(T + 9); v, 2) = P(D(T); v, 2 P(N(S); v, 2) + A(v, 2)ex(T; v, 2)&(S; v, 2).

Proof. SinceP(D(T);v,2) = ey(T;v,2) + (L—v?)e(T;v,2) and P(N(S);v,2) =
(1—v)e(S; v, 2) + ex(S; v, 2), by Lemma 2.7,

P(D(T); v, 2 P(N(S); v, 2)
= (1-v)e(T; v, 2)&(S v, 2) + e(T; v, 2)ex(Si v, 2)

+ (1= 12)%u(T: v, 2)e(S: v, 2) + (1= 19)en(T: v, 2)en(S v, 2)
= P(N(T + 9):v,2) + (1 - v*)° —v*Z}ex(T: v, Den(Si v, 2),

completing the proof. [l

Combining Proposition 2.8 with Lemmas 2.4 and 2.5, we easibain the
following.
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Corollary 2.9. Let T be a Q-tangle and S an Ntangle. Then
A, 22P(N(T + 9); v, 2)
= —v(1—v?)Z{P(N(T):; v, 2 P(N(S); v, 2) + P(D(T): v, 2) P(D(S): v, 2)}
+ v2Z2{P(N(T): v, 2 P(D(S): v, 2) + P(D(T): v, 2 P(N(S): v, 2)}.
Lemma 2.10. Let T and S be tangles of type; DLet (ey(T; v, 2), €x(T; v, 2)
and (ey(S; v, 2), (S, v, 2)) be normal coordinates of T and, Sespectively. Then

the normal coordinategey(T + S; v, 2), ex(T + S; v, 2)) of the D-tangle T4+ S are
expressed as follows

e(T + Siv,2) = (T v, DS v, 2)
and
eo(T + Siv,2) = &(T: v, D)ex(S v, 2)
+exo(T: v, 2){e(Si v, 2) + (1 - v9)ex(S v, 2)).

Proof. SinceL(Ep+ S) = L(S), andL(E,, + S) is the connected sum df(E,,)
and D(S), by Lemma 2.1, we have

P(L(T + 9);v,2) =e(T;v,2)P(L(Eo + 9); v, 2)
+vzey(T; v, 2) P(L(Ex + 9); v, 2)
= e(T; v, 2 P(L(S); v, 2)
+vze(T; v, 2) P(D(S); v, 2 P(L(Ew); v, 2).
Since P(L(S); v, 2) = ey(S;v, 2) P(L(Eo); v, 2) + vzeo(S:v, 2) P(L(Ex); v, 2), the

last expression isy(T; v, 2)ey(S; v, z2) P(L(Eo); v, 2) + vz{ey(T; v, 2)ex(S v, 2) +
ex(T; v, 2)P(D(9); v, 2} P(L(Ey); v, 2). Thus, we obtain

e(T + Sv,2) =e(T; v, 2e(S v, 2)

and
eo(T + Sv,2) =e(T; v, 2)e0(S; v, 2) + €x(T; v, 2 P(D(9):; v, 2).
Since
P(D(S); v, 2) = e(S; v, 2) P(D(Ep); v, 2) + vzeo(S; v, 2) P((Ex); v, 2)
=e(Siv,2) + (1-v¥)ex(Siv, 2),
we have the result. O

3. Preliminaries for the proof of Theorem 1.2

Let X and Y be properly oriented 2-string tangles aR{X, Y) the properly ori-
ented 2-string tangle illustrated in Fig. 7.
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Fig. 7. TangleR(X, Y).

Note thatN(R(X, Y)) = D(Y + X). It is easy to see the following.

Lemma 3.1. Let U and U be the trivial knot and the&-component trivial link
respectively. ThenR(Eg, Eg) = E, R(Eo, Exo) = Eoo UU, R(Ex, Ex) = Ex U Ua.

Lemma 3.2. Let X and Y be tangles of typeiDLet (ey(X; v, 2), ex(X; v, 2)),
(eo(Y; v, 2), ex(Y; v, 2)) and (ey(R(Ex, Eo); v, 2), ex(R(Ew, Eo); v, 2)) be the nor-
mal coordinates of XY and RE., Eo), respectively. Thenthe normal coordinates
(eo(R(X, Y); v, 2), ex(R(X, Y); v, 2)) of the tangle RX, Y) are expressed as follows

e(R(X, Y); v, 2) = ex(X; v, 2)e(Y; v, 2)€n(R(Ex, Eo); v, 2)
and
ex(R(X, Y): v, 2) = &(X; v, 2)&(Y: v, 2) + (1 — v)eo(X; v, 2)ex(Y; v, 2)
+ (1 —v)%e(X: v, 2)ex(Y:v, 2)
+ € (X; v, 2)&0(Y; v, Z)ex(R(Exs, Eo): v, 2).

Proof. By using normal coordinates &f and Y, we have

P(L(R(X, Y)); v, 2) = eo(X; v, 2 P(L(R(Eo, Y); v, 2)
+vzeo(X; v, 2) P(L(R(Ex, Y)); v, 2)
= ep(X: v, 2){en(Y: v, 2) P(L(R(Eo, Eo)): v, 2)
+ vzeo(Y; v, 2) P(L(R(Eo, Eco)): v, 2)}
+ vzeo(X; v, 2){eo(Y; v, 2) P(L(Ex, Eo)); v, 2)
+ vzeo(Y: v, 2) P(L(R(Ew, Ex)): v, 2)}
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= ep(X; v, 2)en(Y: v, 2) P(L(R(Eo, Eo)); v, 2)
+ vze(X: v, 2)ex(Y; v, 2) P(L(R(Eo, Ex)): v, 2)
+ vzeo(X; v, 2)ey(Y; v, 2) P(L(R(Ex, Eo)); v, 2)
+ 0222, (X; v, 2)ex(Y: v, 2) P(L(R(Ew, Ex)): v, 2).

By Lemma 3.1, we obtain

P(L(R(Eo, Eo)); v, 2) = P(L(Ex); v, 2),
P(L(R(Eg, Ex)): v, 2) = (01— 0)ztP(L(R(Ew)); v, 2)
and
P(L(R(Ewo, Exo)); v, 2) = {(v 1 = 0)Z 1}2P(L(R(Ew)); v, 2).

Since R(E, Ep) is an No-tangle, we see that

P(L(R(Ex, Eo)): v, 2) = &(R(E, Eo): v, 2) P(L(Eo): v, 2)
+ (v2) *ex(R(Ex, Eo); v, 2) P(L(Ex): v, 2).

From these equalities, we find thB{(L(R(X, Y)); v, 2) is equal to

vzes(X: v, 2)en(Y: v, 2)e(R(Ew, Eo): v, 2) P(L(Eo): v, 2)
+ {eo(X: v, Den(Y: v, 2)
+ (1 —v?)en(X: v, 2)ex(Y; v, 2)
+ (1= v?)?e(X: v, 2)ex(Y; v, 2)
+ e (X5 v, 2)ep(Y; v, 2)ex(R(Ew, Eo); v, 2)} P(L(Ew); v, 2).

Since R(X, Y) is an N;-tangle, we obtain the claim. []
The proof of the following lemma is straightforward.

Lemma 3.3.
P(N(R(Ew, Eo));v,2) = (v 1 —v)z 1t
and
P(D(R(Ew: Eo)): v, 2) = v 2(v = 0)2 (0?22 + 20 — v)?
+ (5v™% 4 12+ 5027
+ (472 =13+ 4?2
+ (2= 6+09)2° -2,
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Lemma 3.4.
e(R(Ex, Eo); v, 2) = —v (vt —0)?Z2(1L + 22?2 + 7).

Proof. Note thatR(E, Eo) is an Np-tangle. Pufl = R(E., Eo). By Lemma 2.5,
we have

&(T:v,2) = —22(—(1—v) P(N(T): v, 2) + vzP(D(T): v, 2)}.
r(v, 2)
Lemma 3.3 ensures the claim. O

For a properly oriented 2-string tangle, we denote byT+ the properly oriented
2-string tangle obtained from by reversing orientations of strings after rotating thifoug
anglex/2 in the anticlockwise direction about an axis perpendictdathe projective
plane. We call it theotation of T.

Lemma 3.5. Let (e(T; v, 2), x(T; v, 2)) and (e(T*; v, 2), ex(T+; v, 2)) be the
normal coordinates of an Ntangle T and its rotation ¥. Then

(T v, 2), ex(T5 v, 2)) = (ex(T; v, 2), &0(T: v, 2)).

Proof. LetW be a resolution tree fok(T) obtained by switching or smoothing
crossings ofT. We may assume that each end ndd&;), 1 < j <n, of ¥ is disjoint
union of L(Ep) or L(E4) with some circle components. Then, we obtain a resolution
tree for L(T+) from ¥ by replacing each end nodg(S;) of ¥ with L(SJ-L). From the

two resolution trees, we see that the HOMFLY polynomialsL¢T) and L(T+) can
be written as

P(L(T):v,2) = 3 h(L(S): v, DP(L(S): v, )
j=1

and

P(L(TY);v,2) = Z h(L(S)): v, 2) P(L(S]): v, 2),
j=1

whereh(L(S): v, 2) € Z[v*L, Y. Thus, if

P(L(T); v, 2) = go(L(T); v, 2) P(L(Eo); v, 2) + Goo(L(T): v, 2) P(L(Ex); v, 2),
where go(L(T): v, 2), Gw(L(T): v, 2) € Z[v*, 51, then we obtain

P(L(TH): v, 2) = Guo(L(T): v, 2) P(L(Eo): v, 2) + Go(L(T): v, 2) P(L(Ex): v, 2).

Since the tanglel * is of type D1, we have the claim. ]
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Let Xo be anN;-tangle and{Y,,; n € N} a set ofD;-tangles. We define a sequence
{W,; n € N} of Nj-tangles by the following recursive formulas:
(1) W, = R(Xé‘, Yl);
(2) Wh =RMWi,, Yn), n=>2.

Proposition 3.6. For any positive integer n

€0(Wh; v, 2) = eo(Xo; v, Z)(]_[ eo(Yj: v, 2) | e(R(Ew, Eo): v, 2)".
j=1

Proof. The proof is by an induction on the numlerlf n = 1, then Lemmas 3.2
and 3.5 show that

eO(Wl’ v, Z) = &)(R(Xé, Yl)’ v, Z)
= e (Xg: v, 2)&(Y1: v, 2)€(R(Ece, Eo): v, 2)
= ep(Xo: v, 2)ey(Y1: v, 2)€(R(Es, Eo); v, 2).

Thus, the claim is true. Suppose that- 1. By Lemmas 3.2 and 3.5 and the inductive
hypothesis, we have

e(Wh: v, 2) = e(R(W,; 1, Yn): v, 2)
= (W 1; v, 2)&(Yn: v, 2)€0(R(Ewe, Eo); v, 2)
= e9(Wh_1; v, 2)€(Yn; v, 2)€(R(Ew, Eo); v, 2)

j=1

n
= ep(Xo: v, 2) (]_[ eo(Yj; v, z))eo(R(Eoo, Eo); v, 2)".
This completes the proof. []
The normal coordinates of the tangte,, n € Z, are the following.

Lemma 3.7. (€o(Ezn; v, 2), €x(Ezn; v, 2)) = (v, (v*" — 1)/(v? — 1)).

Proof. Leten =n/In|. Since P(L(Ezn-¢)):v,2) = €(Ezn-—¢): v,2) P(L(Eo):v,2) +
vZ€o(Expn—e); v, 2) P(L(Ex); v, 2), we have
P(L(E2n): v, 2) = v*"P(L(Ezqn-e)): v, 2) + env"ZP(L(Exo): v, 2)
= v*rey(Exen); v, 2) P(L(Eo): v, 2)
+ vz{vz‘"”eoo(Eg(n,gn); v, 2) + env? ™} P(L(Es); v, 2).



1086 Y. MiYAZAWA

-
S

Fig. 8. TangleHy.

Thus, we obtain

0
€(Ezniv,2) \ _ onf e(Eoiv, 2) n
(eoo(Ezn:v, Z)) = (eoo(Eo;v,Z)) * ( v22 _11 )
V2 —

Sinceey(Eg; v, 2) = 1 andey(Eo; v, 2) = 0, we have the desired polynomials. [
Lemmas 3.5 and 3.7 give the normal coordinatesEgf, n € Z.
Corollary 3.8. (eo(Ex: v, 2), €x(Ex; v, 2)) = (v — 1)/(v? — 1), v™).

Let n and| be positive integers. We denote artuple (1,2, ..., ry) of integers
ri,r2,...,r by (r)n. We denote byWn, ), the Ni-tangle obtained fronW, by putting
Xo=Ey andYj = Ex,, 1= j =n.

By Proposition 3.6, Lemmas 3.4 and 3.7, and Corollary 3.8hexe the following.

Lemma 3.9.

€o(Wn,1,(r)n); Vs 2)
— (_l)n+1U2(Z?:1rJ—2n)(v2I — 11— U2)2n—122n(1 + Z2)2n(2 + Zz)n_

Let T be a properly oriented 2-string tangle aod crossing onl. We denote by
ST the tangle obtained fronT by switching the crossing. We also denote by T
the tangle obtained frorn by smoothing the crossing.

Let Hq, g = 3, be theN;-tangle depicted in Fig. 8.

Note thatN(Hg) is the trivial knot. We also see th(S;, S, Hq) and N(&;,Hg)
are trivial knots becaus&;, §,Hq = E and §,Hq = Ew.
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Let K be an oriented knot andx a D;-tangle with D(Tx) = K. For a posi-

tive integerq, q > 2, we denote theN;-tangle R(Hqﬁl, Tk) by Q.. Note that

N(Q.q) = D(T) = K. We also denote a kndﬂ(Qé‘qu)‘FW(nJ,(r)n)) by K[n,l,{r)n,ql,
where W, ), denotes theN;-tangle introduced after Corollary 3.8.

Proposition 3.10.
P(KIn, 1, (r)n, gl v, 2) = P(K: v, 2)
= )\,(U, Z)&)(R(Eom EO); v, Z)eo(Hq+1; v, Z)Q)(TK; v, Z)Q)(W(n,l,(r)n)l v, Z).

Proof. By Proposition 2.8, we have
P(K[n! I! (r)n! q]* v, Z) = P(D(Q(LK,q))s v, Z) P(N(W(r”(f)n)* v, Z)
+ (v, 2)80(Qf.q* V» D&(Win 1, (1)): Vs 2)
P(N(Qk.q); v, 22 P(N(Win,1,(r)n); Vs 2)
+ (v, 2)€&(Qk,q)5 Vs 2)€0(Win i, (r)): Vs 2)-

Since P(N(Qk,): v, 2 = P(K:v, 2, P(NWn,,1).))i v, 2) = P(N(Ey): v, 2) =

P(U:v,2) =1, andey(Qk,q): v, 2) = €o(Hg+1: v, 2)€(Tk : v, 2)€(R(E, Eo): v, 2) from

Proposition 3.6, we obtain the result. O
Lemma 3.11. ey(Tk; v, 2) # 0.

Proof. By Lemma 2.4 and(Tk) = K, we obtain

eo(Tk; v, 2) = {(—v(1 = v?)zP(N(Tk): v, 2) + v’Z2P(K: v, 2)}.

M, 2)
It follows that eg(Tk; 1, 2) = V(K; 2). SinceK is a knot, we haveV(K; z) # 0, and
thus, ep(Tk; v, 2) # O. []

Lemma 3.12. For q > 3, V(D(Hy); 2) = (—1)9z%-1.

Proof. The proof is by an induction on the numteger If g = 3, then we see
that V(D(Hs); z) = —2° by a direct calculation. Suppose that- 3. Let c3 and ¢, be
crossings inHg as in Fig. 8. From recursive formulas for skein tripld3(&,Hq) =
Uy, D(Hq)’ D(chHq)) and (D(SJAZC3HC1)! D(ZC3HQ)’ D(ZC4ZC3HQ) = UZ)’ we have
V(D(Hq); 2) = —zV(D(&, Zc, Hy); 2) becauseV(Uy; z) = 0. Since D(S, Z¢,Hy) is the
connected sum ofD(Hy) and a diagram of the positive Hopf link, we obtain
V(D(Hg); 2) = —z2V(D(Hg-1)). By the inductive hypothesis, we have the claim(]
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Lemma 3.13. For q > 3, eg(Hq: v, 2) # 0.

Proof. By Lemma 2.5, we have

eo(Hqi v, 2) = {(=(1 = v?) P(N(Hg); v, 2) + vz P(D(Hq): v, 2)},

A(v, 2)

and thus,ep(Hg; 1, 2) = z7tP(D(Hq): 1, 2) = z'V(D(Hg); 2). Lemma 3.12 completes
the proof. ]

4. Proof of Theorem 1.2

For a 2-variable polynomiah € Z[v*!, z*1], we denote the minimal degree bf
in z by min deg h.

Let K be an oriented knot. Lem, | and q be integers withm > 0, | > 0 and
g>1 Let(r)mez™

Proposition 4.1. K[m,l,{r)m,q] is distinct from K and the HOMFLY polynomial
of KIm, I, (r)m, q] is a fake HOMFLY polynomial of K with identical ord@m.

Proof. Recall thati(v, Z) # 0. Proposition 3.10 and Lemmas 3.4, 3.9, 3.11
and 3.13 show thaP(K[m,l,(r)m,q]:v,2) # P(K;v,2). It follows thatK[m,l,{r)m,q] is
distinct from K. From the definitions of.(v,zZ) and the normal coordinates of a tangle,
we have

mindeg A(v,2) =0, mindegey(Hq:v,2) >0 and mindegey(Tk;v,z) > 0.
By Lemmas 3.4 and 3.9, we obtain
min deg ey(R(Ex, Eo);v,2) =2 and mindegey(Wm,, () s 2) = 2m.
From Proposition 3.10, it follows that
min deg(P(K[m, I, (r)m, q]: v, 2) — P(K; v, 2)) > 2m + 2,
completing the proof. O

Lemma 4.2. P(K[m, 1, {r')m, ql; v, 2) = P(K; v, 2) mod @? — 1).

Proof.  Sinceey(Wim,,(r)m); vs 2) = 0 mod @2 — 1) from Lemma 3.9, the claim is
given by Proposition 3.10. O

Lemma 4.3. V(K[m, I, (r)m, al; 2) = V(K; 2).
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Proof. By Lemma 4.2, we have
V(KIM, I, (r)m, al; 2) = P(K[m, 1, (r)m, a]: 1,2) = P(K:1,2) = V(K: 2). [
Lemma 4.4. dg(K[m,I, (r)m, q], K) = 1

Proof. Since the tanglély+1 can be changed int&,, by switching the crossing
Cz in Hy41 indicated in Fig. 8, the tangla(HqH,TK) becomes the tangIR(Eo, Tx) by
a single crossing change. Then, the kikdim, !, (r)m, q] which is equal toN(Q(lK ot
Wi, r m)) = N(|:3(Hq+l,-|—}()L + Wi, m)) becomes a knON(Eo,TK) + W, m)) =
D(Tk) # N(Wim1, (1)) = K #N(Wmi, (1)) Since N(Wimi 1)) = N(Ez) = D(Ez) =
U, we have the result O

Lemma 4.5. K[m, I, (r)m, q] is a band sum of K and the trivial knot.

Proof.  SinceN(Wm,, 1)) = U andN(Hq11) = U, K[m,l,{r)m,q] can be changed
into K LU by a hyperbolic transformation along the baBdn the tangleQ,q as in
Fig. 7. This completes the proof. O

Lemma 4.6. K[m, I, (r)m, g] can be changed into K by a single pass-move.

Proof. Letay, ay, az andas be crossings in the tangl®«k,q depicted in Fig. 7.
If the four crossings are switched simultaneously, tigm, |, (r)m, q] is changed into
the connected suml(Wm,, ).)) # D(Tk) #N(Hg41), which is equivalent t&K because
N(Wm,(,1m)) @and N(Hg1) are trivial knots. Since such an operation is a pass-move,
the claim is true. ]

Lemma 4.7. Let f be a finite type invariant with order less thantgl. Then

Proof. Letc; andc, be crossings irHg;1 as shown in Fig. 8. Sinc&;, &, Hg+1 =
E., we see thaty, S,K[m,l,(r)m,q] = K. Since switching the crossings andc, can
be realized by applying &€y+1-move [5] in Hqt1, K and K[m, 1, {r)m, q] are Cq41-
equivalent. Thus, by [4, 6] we have the result. []

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. For distinct integessandt, let (r), = (s, 0,..., 0) and
r'Ym =(t,0,...,0), where(r)m, {r')m € Z™. Then, by Lemma 3.9, we obtain

€(Wim,,(r)m): Vs 2) — €(Wm,l,(r)m): Vs 2)
— (_1)m+1v—4m(v25 _ UZt)(UZI _ 1)(1_ v2)2m—122m(1 + ZZ)Zm(Z + 22)m 7& 0.
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Thus, by Proposition 3.10 and Lemmas 3.4, 3.11 and 3.13, we ha
P(K[m, I, (r)m, al: v, 2) — P(K[m, I, {r')m, q]: v, 2)
Av, 2)e(R(Ec, Eo): v, 2)€n(Hgs1: v, Z)&o(Tk: v, 2)
= eO(V\/(m,l,(r)m)i v, Z) - eO(V\/(m,l,(r’)m)i v, Z) 7é 0.

Let K, = K[m,I,{r)m,q], wheren e N and (r)m = (n,0,...,0) € Z™. Then,K; andKj,
i # ], are distinct because of the above argument. Propositibard Lemmas 4.2—-4.7
show that the knot§K,; n € N} are desired ones. O

For (r)m € Z™, we denoteZT;lr,- by |Ir lm- Then, we have the following.
Lemma 4.8. P(K[m,I, {rm ql;v,2) = P(K[m, 1, ")m, al;v,2) if It lm = Ir]lm.
Proof. By Lemma 3.9 and the assumption of the lemma, we fintd tha
€0(Wm,,(r)m)s ¥ Z2) — €(Wm,l, (r)m: s 2) = 0.
From Proposition 3.10, we obtain the result. ]

Conjecture 4.9. K[m, I, (r)m, q] and K[m, I, (r')m, q] are distinct even though

I llm = 7" lim.

REMARK 4.10. Almost identical link imitations which give a solutiocof The-
orem 1.2 have the same HOMFLY polynomial.

Proposition 4.11. For an oriented knot K there exist infinitely many knots with
the same reduced HOMFLY polynomial at=z~/—2 as K. In particular there exist
infinitely many knotgK,: n € N} with P(K,; v, v/—2) = L

Proof. From Lemma 3.9 and Proposition 3.10, it follows thadts in Theorem 1.2
have the same reduced HOMFLY polynomialzat +/—2 asK. ]

Proposition 4.12. Let K be an oriented knot. Let p be a positive integer and
& a primitive 2p-th root of unity. Thenthere exist infinitely many knofX,: n € N}
with V(Ky; €) = V(K; §).

Proof. We show that knots in Theorem 1.2 have the same valutheoflones
polynomial att = & as K. From the second property in Theorem 1.2, there exists
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a polynomialg(v, ) € Z[v*!, z1] so that P(K,; v, 2) — P(K; v, 2) = (v?P — 1)g(v, 2).
Thus, we have

V(Kn: §) = V(K;§) = P(Kn: §, £ =6 7% — P(K; £, £72 —§77/7)
= (% - 1)g(5, 2 -7
:0,

completing the proof. []

5. Preliminaries for the proof of Theorem 1.5

Let X be a properly oriented 2-string tangle aR@X) the properly oriented 2-string
tangle illustrated in Fig. 9.

Note thatN(R(X)) = D(X), and thatR(X) is an N;-tangle if X is a D;-tangle.

The following lemma is easily obtained.

Lemma 5.1. R(Eg) = Ex.

It is easy to see thal(R(Ey)) is the trivial 2-component link. Since it is shown
that D(R(E)) is the link % [14] with appropriate orientations, we have the following.

Lemma 5.2. P(N(R(Ew)):v,2) = (v 1 —v)z ! and P(D(R(E4));v,2) = (v 72—
240222 4+ (v + 302 =34+ v?) + (—v 4 4+ 3v7? = 2)22 + v 24

Let a(v, 2) = v22%(1—v%2 + Z%). Since R(E,) is a tangle of typeN,, Lemma 2.5
gives the following.

Lemma 5.3. (e(R(Ew); v, 2), €x(R(Ewx): v, 2)) = (a(v, 2), (1 — v?)(1 — (v, 2)).

Lemma 5.4. Let X be a Q-tangle and(ey(X;v, 2), e (X; v, 2)) the normal coor-
dinates of X. Thenthe normal coordinategey(R(X); v, 2), e (R(X); v, 2) of the tangle
R(X) are expressed as follows

e(R(X); v, 2) = ex(X; v, 2)e(R(Ex); v, 2)
and

€x(R(X); v, 2) = e(X; v, 2) + €x(X; v, )€ (R(Ex); v, 2).

Proof. SinceX is a tangle of typeDi, by using the normal coordinates o,
we have

P(L(R(X); v, 2) = eo(X; v, 2) P(L(R(Ep)); v, 2) + vze (X; v, 2 P(L(R(Ex)); v, 2).
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Fig. 9. TangleR(X).

Lemma 5.1 shows thaP(L(R(Ey)); v, 2) = P(L(Ex); v, 2). Since R(Ey) is an Na-
tangle, Lemma 2.2 gives

P(L(R(Ex)); v, 2) = &(R(Ex); v, 2) P(L(Eo); v, 2)
+ v 172 e (R(Ex): v, 2) P(L(Ex); v, 2).

Thus, we obtain
P(L(R(X)): v, 2) = vzeo(X: v, 2)e(R(Ex); v, 2) P(L(Eo); v, 2)
+ {€o(X; v, 2) + €x(X; v, 2)ex(R(Ex): v, 2)} P(L(Ex); v, 2).

Since R(X) is an N;-tangle, we have the desired formulas. ]

Let g, g > 2, be an integer. We define a sequeri@é, q): n € N} of Ni-tangles
by the following recursive formulas:
(1) Wug = R(Hg10):
(2) W(n,q) = R(W(#—l,q))’ n>2.

REMARK 5.5. N(Wn,q)) = D(Hgi4) = N(Hqy2) = U.

Proposition 5.6. For any positive integer n

e0(Wn,g): v, 2) = €(Hg+1: v, 2)&(R(Ex); v, 2)".

Proof. The proof is by an induction on the numirerilf n = 1, then Lemmas 3.5
and 5.4 show that

eo(WiLg); v, 2) = €xc(Hgy13 v, 2)8(R(Ew); v, 2) = €o(Hg15 v, 2)€0(R(Exo); v, 2).
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Thus, the claim is true. Suppose that> 1. By the inductive hypothesis and Lem-
mas 3.5 and 5.4, we have
(Wna): v: 2) = (W1 g): Vs 2)€0(R(Exc)i v, 2)
= eO(W(n—l,q)§ v, 2)&(R(Ew); v, 2)
= eg(Hg+1; v, 2)e(R(Ex): v, 2)".

This completes the proof.

Let K be an oriented knot andly a D;-tangle with D(Tx) = K.
Lemma 5.7. The normal coordinates of the tangle % Ey, | € Z, are

(eo(Tk + Ez: v, 2), ex(Tk + Ea; v, 2))

vd —1
= (v2|eo(TK: v, 2), meo(TK: v, 2) + ex(Tk: v, Z))

Proof. Since Lemma 3.7 givem(Ez;v,2) + (1—v?)ex(Ea:v,2) =1, the lemma
O

immediately comes from Lemma 2.10.

We denote a knotN((Tk + Ea) + Wn,q) by K[n, g, 1].
Proposition 5.8.

P(K[n, g, v, 2) — P(K: v, 2)
2

= A(v, 2)e(Hg+1: v, D &(R(Ex): v, Z)”( i 1leo(TK; v, 2) + ex(Tk: v, Z))-

Proof. By Proposition 2.8, we have

P(K[n, q,1]; v, 2) = P(D(Tk + E2); v, 2) P(N(Wn,q)); v, 2)
+ A(v, 2)ex(Tk + Ea: v, 2)&(Wpn,g): v, 2).

Since D(Tk + E2) = D(Tk) = K and N(Wn,q)) = U, the first term on the right-hand

side of the above equality is equal B(K; v, z). Proposition 5.6 and Lemma 5.7 lead
O

to the claim.

Corollary 5.9.
V(K[n, g,1]: 2) = V(K; 2) + (-1)TH2" 221V (K; 2) + ex(Ti: 1, 2)).
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Proof. Note that
e(Tk: 1,2 = P(K:; 1,2 = V(K; 2
and
&(Hg+1:1,2) = 2 *P(D(Hq+1): 1, 2) = 2 'V(D(Hg+1): 2).

By Lemma 5.3, we have the result. O

From the definition of the normal coordinates of a tangle(Tk:1, 2v/—1) is
an integer.

Lemma 5.10.

V(K[n, q,1]: 2v-1) -
V(K;2v/-1)

if 1 > [ex(Tk; 1, 2/=1)/V(K; 2v/=1)|.

1

Proof. Note thatn > 1 andq > 2. By Corollary 5.9, we obtain

V(KIn, q.1]; 2v=1) eo(Tk: 1, 2~/—_1)>

— 1+42n+q+1<| 4

V(K;2v-1) V(K;2v-1)
Sincele,(Tk; 1, 2v/—1)/V(K; 2/ —-1)| + e(Tk:; 1, 2v—1)/V(K; 2+/—1) > 0, we have
the desired inequality. ]

6. Proof of Theorem 1.5

Let K be an oriented knot and@lx a D;-tangle withD(Tx) = K. Let m,| andq
be integers witm > 0, | > g = |ex(Tk: 1, 2/-1)/V(K; 2+/-1)| andq > 1.
The following is an immediate consequence of Lemma 5.10.

Lemma 6.1. V(K[m+ 1,q,1];2) # V(K; 2), that is K[m + 1,q,1] is distinct
from K.

Proposition 6.2. The HOMFLY polynomial of kn+ 1,q,1] is a fake HOMFLY
polynomial of K with identical ordem.

Proof. Note that Lemma 6.1 show&K[m+1,q,l];v,2) # P(K;v,2). From the
definitions of A(v, z) and the normal coordinates of a tangle, we obtain four iakqu
ities: mindeg A(v, z) = 0, min deg ey(Hg+1; v, 2) > 0, min deg ey(Tk; v, z) = 0 and
mindeg e (Tk;v,z) > 0. By Lemma 5.3, we have mindgg(R(E); v, z) = 2. From
Proposition 5.8, it follows that

min deg(P(K[m+ 1,q,1]; v, 2) — P(K; v, 2)) > 2m + 2,
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completing the proof. O
Lemma 6.3. dg(K[m+1,q,!], K) =1

Proof. Since the tanglély; 1 can be changed int&., by switching the crossing
C3 in Hgy1 indicated in Fig. 8, the tangl&(Hqﬁrl) becomesR(Ey) = E., by a single
crossing change. Hence, the tandMm.1q) is changed intoE, by a single cross-
ing change, and thuk[m + 1, q, |] becomesN(Tk + Ez + Es) = D(Tk + Ez) =
D(K) =K. O

The valueV(K ;2+v/—1), whose absolute value is equal to the determinark ofs
an integer. By [3], it is known that the signatus€K) of K has the following prop-
erties:

(1) V(K:2V=1)/|V(K: 2v-D) = V=1
@) lo(K)=o(K)| =2,
where K’ is a knot obtained fronK by switching a crossing oK.

Lemma 6.4. o(K[m+1,q,!]) = o(K).

Proof. Since two integer¥(K[m + 1, q, I]: 2v/=1) and V(K; 2¢/=1) have the
same signature by Lemma 5.10, we hav&K[m + 1, q,1]) = o(K)(mod 4). Since
ds(K[m+1,q,1], K) =1 by Lemma 6.3, we obtaifo (K[m+1,q,1]) —o(K)| < 2.
These two relations give the claim. O

Lemma 6.5. K[m+ 1,q,!] can be changed into K by a single pass-move.

Proof. We consider the 3-string tangle in the diskoounded by dotted segments
depicted in the tangleHq.; as in Fig. 8. If we apply a-move [8] to the 3-string
tangle, then we find that the tangld, 1 can be changed into the tangke,,. Thus,
K[m+1,q,!] can be changed int& by a singlel’-move as the proof of Lemma 6.3.
Since aI’-move can be accomplished by a combination of Reidemeisteesnand a
pass-move, we complete the proof. O

Lemma 6.6. Let f be a finite type invariant with order less than4ql. Then
f(K[m+1,q,1]) = f(K).

Proof. The proof is similar to that of Lemma 4.7. [

Proof of Theorem 1.5. For two integerandl’ with I’ > | > |g, by Corollary 5.9,
we obtain
V(K[m+1,9,1:2) = V(K[m+ 1, q, 1]; 2) = (=1)3H1AMTD+2+2y (K 2)(1 = 1)

£0.
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Hence,K[m+1,q,l'] and K[m+ 1,q,I] are distinct. Proposition 6.2 and Lemmas 6.1
and 6.3-6.6 show that knof&[m+ 1,q,1]; lo <| € N} are desired ones. L]

Proposition 6.7. For an oriented knot K there exist infinitely many knots with
the same reduced HOMFLY polynomial atzv/v2 — 1 as K. In particular there exist
infinitely many knot§K,; n € N} with P(Kp; v, vVv2—1)= 1.

Proof. From Lemma 5.3 and Proposition 5.8, it follows tha kmotsK, in The-
orem 1.5 have the same reduced HOMFLY polynomiak at vv2 —1 asK. ]
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