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Abstract
We show that, as in de Rham cohomology over the complex numbers, the value

of the entropy of an automorphism of the surface over a finite field Fq is taken on
the span of the Néron–Severi group inside ofl -adic cohomology.

1. Introduction

If X is a smooth proper surface (any smooth proper surface over a field is project-
ive) over the field of complex numbers, and'W X ! X is an automorphism, then a no-
tion of topological entropyof ' has been defined on the underlying topological mani-
fold X(C) and shown to be the same as the following cohomological definition ([7],
[17], see also [6] and [5, Theorem 2.1]): letH2�(X(C)) D H0(X(C)) � H2(X(C)) �
H4(X(C)) be the even degree de Rham cohomology. The automorphism' acts lin-
early on H2�(X(C)) via contravariance, and as the identity onH0(X(C))� H4(X(C)).
Thus, the maximum absolute value of the eigenvalues of' is � 1. One defines the
entropy h(') to be the maximum of the natural logarithm of those absolutevalues. It
is then� 0 and of interest are the cases when it is> 0. Clearly, it can only happen
when ' is not of finite order onH2�(X(C)), so a fortiori when' does not have finite
order as an automorphism ofX.

Keiji Oguiso observed (private communication) that Hodge theory implies that,this
maximum is taken on the span of the Néron–Severi group insideof de Rham cohomology,
in fact on the transcendental part of de Rham cohomology,' has finite order (see Prop-
osition 5.1 for a slightly more precise statement). On the other hand, the definition of
the entropy stated above is clearly algebraic. One can replace de Rham cohomology
by l -adic étale cohomology in the definition. Taking then a ringR � C of finite type
overZ over which (X, ') has a model (XR, 'R) such thatXR has good reduction at all
closed pointss 2 SpecR, one sees that the value of the entropy of's D 'R 
R �(s)
on H2�(X

Ns, Ql ) is taken on theQl -span of the Néron–Severi group inside ofl -adic
cohomology, whereXs D XR �R s, X

Ns D Xs 
�(s) N�(s).
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We ask whether this property comes from the fact that over thefinite field �(s),
(Xs, 's) is the reduction modp of (X, ') or whether it is true in general as a property
of eigenvalues of automorphisms acting onl -adic cohomology over finite fields.

Our main result says:

Theorem 1.1. Let X be a smooth, projective surface over a finite fieldFq, let 2
be a polarization, and let ' 2 Aut(X) be an automorphism of the underlying surface.
Let NX D X 


Fq
N

Fp be the corresponding surface over an algebraic closureNFp of Fq

(where p is the characteristic).
Let l ¤ p be a prime, and let

V D V(X, [2], ') � [2]? � H2
ét( NX, Ql (1))

be the largest'-stable subspace, which is contained in the orthogonal complement of
[2] 2 H2

ét( NX, Ql (1)) with respect to the cup product pairing

H2
ét( NX, Ql (1))


Ql H2
ét( NX, Ql (1))! H4

ét( NX, Ql (2))� Ql .

Then, ' has finite order on V .

We note here that from the Hodge index theorem for divisors, the intersection form
on the orthogonal complement of [2] within the Q-span of the Néron–Severi group is
a negative definiteQ-valued bilinear form. Hence there is an orthogonal direct sum
decomposition, compatible with',

H2
ét( NX, Ql (1))D h'

n
2i ? V,

whereh'n[2]i is theQl -span of the images of [2] under iterates of' and'�1. Thus
V is well-defined, and the intersection form restricted toV is non-degenenerate.

We note that the formulation of Theorem 1.1 does not involve directly theQl -span
of the Néron–Severi, which is not always liftable to characteristic 0 even ifX, defined
over the finite field, is so liftable. Hence, one sees that one can reverse the classical
argument sketched above, to get the following corollary:

Corollary 1.2. Let (Y, 2) be a polarized surface over an algebraically closed
field k, and let' W Y ! Y be an algebraic automorphism of Y(with ' not necessarily
preserving the polarization).

Let l be a prime, invertible in k, and let

V D V(Y, [2], ') � [2]? � H2
ét( NX, Ql (1))

be the largest'-stable subspace, which is contained in the orthogonal complement of
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[2] 2 H2
Ket(Y, Ql (1)) with respect to the cup product pairing

H2
ét(Y, Ql (1))


Ql H2
ét(Y, Ql (1))! H4

ét(Y, Ql (2))� Ql .

Then' has finite order on V .

While the Hodge theoretic argument is purely abstract (i.e., depends only on the
properties of Hodge structures, and not on geometric arguments), the arguments we
present in this note for proving Theorem 1.1 rely on the classification of smooth pro-
jective surfaces, on the fact that surfaces of general type (over a finite field) have a
finite group of automorphisms, on the Tate conjecture for abelian surfaces, and, un-
fortunately, on one argument involving liftingK3 surfaces to characteristic 0. So, due
to this one K3 case, we can’t say that we have a purely arithmetic proof of Corol-
lary 1.2 overC. On the other hand, Theorem 1.1 should follow from the standard
conjectures (see Section 6.1). So, aside from its interest for entropy questions, it can
also be viewed as a motivic statement. To reinforce this viewpoint, we show in section
Theorem 6.1

Theorem 1.3. In the situation ofTheorem 1.1,the maximum of the absolute values
of the eigenvalues of' on

L4
iD0 H i

ét( NX, Ql ) (with respect to any complex embedding of

Ql ) is achieved on theQl -span ofh'n[2], n 2 Zi, in H2
ét( NX, Ql ).

We deduce of course the same theorem over any field:

Corollary 1.4. In the situation of Corollary 1.2, the maximum of the absolute
values of the eigenvalues of' on

L4
iD0 H i

ét( NY, Ql ) (with respect to any complex em-

bedding ofQl ) is achieved on theQl -span ofh'n[2], n 2 Zi, in H2
ét( NY, Ql ).

2. Some preliminaries and general reduction steps to prove Theorem 1.1

As was already done in the formulation of the theorem and its corollary, we write
' for the contravariant action of' on cohomology; it should be clear from the con-
text if ' denotes the automorphism, or the linear automorphism obtained from it in a
specific linear representation.

As in Theorem 1.1, one considers the action of' on H i ( NX, Ql ), we may as well
replaceFq by a finite extension, and thus we will always assume that the Néron–Severi
group N S( NX) is defined overFq.

We may also replace' by any power'n, n ¤ 0, without loss of generality. In par-
ticular, as already observed, Theorem 1.1 has content only when' acts onH2

ét( NX,Ql (1))
through a linear automorphism of infinite order.
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Lemma 2.1. Suppose[2] 2 N S( NX) has a finite orbit under'. Let k� Fq be a
finite extension on which2 is defined as a line bundle. Then' itself has finite order as
an automorphism on X


Fq k, so a fortiori it has finite order on the whole cohomology

H�

ét( NX, Ql (1)), and Theorem 1.1is trivially valid.

Proof. Replacing' by a suitable power, we may assume that
(i) the algebraic equivalence class [2] 2 N S( NX) is fixed by '
(ii) there is a very ample line bundleL on X, which satisfies'�L � L, whose class
in N S( NX) is m[2] for some positive integerm.
Here, (i) is clear. For (ii), first choose a very ampleL on X with classm[2] for some
positive integerm. Now the orbit of [L] in Pic( NX) under the group of automorphisms
generated by' is contained in a fixed coset of Pic� (X)( NFp), consisting ofFq-rational
points in Pic(NX), and this is a finite set. Now replacing' by a suitable positive power,
we may assume that the class ofL in Pic( NX) is fixed. Then (ii) holds, since'�L and
L are line bundles onX, which become isomorphic onNX, so that they are isomorphic
on X.

In particular, from (ii), if we fix an isomorphism'�L� L, then the automorphism
' of X yields a graded automorphism of the ringAD

L

n�0 H0(X, L
n). Conversely,
' is the induced automorphism onX D Proj A, obtained from the graded ring auto-
morphism of A. Now Lemma 2.2 below finishes the argument.

Lemma 2.2. Let k be a finite field, and AD
L

n�0 An a finitely generated graded
algebra over A0 D k. Then any graded automorphism of A has finite order.

Proof. SinceA is finitely generated overk, it is generated byW D

Ln
iD0 Ai for

somen, where we note thatW is a finite vector space. Any graded automorphism of
A restricts to ak-linear automorphism ofW, and this restriction uniquely determines
the graded automorphism. Thus we may identify the group of graded automorphisms
with a subgroup of the finite groupGL(W).

Proposition 2.3. Let the notation be as inTheorem 1.1. Let i � 0, j 2 Z.
(i) The eigenvalues of' acting on any étale cohomology group Hi

ét( NX,Ql ( j )) are al-
gebraic integers, which are units(that is, invertible elements in the ring of algebraic
integers).
(ii) The characteristic polynomial of' on Hi

ét( NX, Ql ( j )) has integer coefficients, and
is a monic polynomial with constant term�1. This polyomial is independent of j, and
of the chosen prime l¤ p.
(iii) A similar conclusion holds for the characteristic polynomial of ' acting on any
'-stable subspace of Hiét( NX, Ql ( j )), which can be defined using a projector in the ring
of self-correspondences of X(i.e., corresponds to a direct summand of the Chow motive
of X which, on base change toNFp, has only one non-zero étale cohomology group). In
particular, this holds for the characteristic polynomial of' on V .
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Proof. This is a standard consequence of the Grothendieck–Lefschetz fixed point
formula, applied to powers of' ([9, Proposition 2.7]), combined with Deligne’s re-
sults on Weil’s conjectures ([4]). In (ii) and (iii), the point is that the characteristic
polynomial in question has rational coefficients, since it is determined by the action on
cohomology of a Chow Motive, while its roots are algebraic integers (this argument
appears in a paper of Katz and Messing [8]). Over finite fields, Deligne’s theorem im-
plies that the individual étale cohomology groups do correspond to Chow motives (see
[8, Theorem 2.1], and the proof in [8, Theorem 2.1] applies equally well to any Chow
motive which is a summand of the motive ofX, whose étale cohomology is concen-
trated in one degree.

Next, we consider the subspace ofV spanned by algebraic cycles.

Proposition 2.4. Assume we are in the situation ofTheorem 1.1. Let

Valg D (N S( NX)
Ql ) \ V .

Then Valg is stable under', and ' on Valg has finite order.

Proof. TheQl -vector spaceValg has a naturalZ-structure N V defined by the
maximal '-stable subgroup

N V � [2]? � N S( NX),

where? is the orthogonal complement with respect to the intersection poduct onN S( NX).
One hasValg D N V 
Ql , and this identification is'-equivariant.

Now N V comes equipped with the intersection productN V 
 N V ! Z, which
is non-degenerate after
R, and isnegative definite, by the Hodge index theorem for
divisors. This pairing is clearly'-stable as well, so that' can be considered as an or-
thogonal transformation for a Euclidean space structure onN V
R. In particular it is
semi-simple. Moreover all eigenvalues of' on N V
C are of absolute value 1. Since
these eigenvalues are algebraic integers (in fact units), and the characteristic polynomial
of ' on N V 
 Q has rational coefficients, the eigenvalues are in fact algebraic inte-
gers, all of whose conjugates have absolute value 1; thus they are roots of unity, by a
well-known theorem of Kronecker. This finishes the proof.

One obtains the immediate corollary:

Corollary 2.5. Theorem 1.1holds whenever

V D Valg,
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or equivalently, whenever

N S( NX)
Ql D H2
ét( NX, Ql (1)).

More generally, let

Vtr D V \ N S( NX)?,

where the orthogonal? is taken in H2( NX, Ql )(1). This is a'-stable subspace of V,
which may be defined as the cohomology of a suitable Chow motive, and the conclu-
sion of Theorem 1.1is equivalent to a similar statement about the eigenvalues of ' on
the subspace Vtr.

REMARK 2.6. The cup product also induces a non-degenerate symmetric bilinear
form on Vtr with values inQl . Since' is an automorphism ofX, ' acts as an orthog-
onal transformation ofVtr with respect to this bilinear form.

3. Using classification of surfaces

Now we consider the possibilites for the surfaceX, from the perspective of the
Enriques–Bombieri–Mumford classification of surfaces in arbitrary characteristic (a con-
venient reference for most of what we need is the book [1]). Since we need only con-
sider surfaces whereV ¤ Valg, we may assume that the Kodaira dimension ofNX is� 0.

As a consequence, from [1, Corollary 10.22], sinceX has Kodaira dimension� 0,
the birational equivalence class ofNX has a unique non-singular minimal model, say
X0. Increasing the finite fieldFq, we may assume the modelX0, and the morphism
NX ! X0, are defined overFq. Since' acts on X, it acts on its function field, and

thus on this unique minimal model ([1, Theorem 10.21]). So the automorphism' of NX
descends toX0, and the spacesVtr of NX and X0 are naturally identified. Hencewe are
reduced to the case whenNX is itself minimal, i.e., NX does not contain any exceptional
curves of the first kind.

We may also assumeX is not of general type. Indeed,' yields a graded auto-
morphism of the canonical model Proj

�

L

H0(X, !
n
X )
�

of X, which (by Lemma 2.2)
has finite order. Hence, some power of' is an automorphism which acts trivially on
the function field ofX, since it is trivial on the canonical model, which (ifNX is of gen-
eral type) is birational toX. Thus a power of' agrees with the identity on a Zariski
dense subset, and hence equals the identity.

Thus, we need only focus on the cases when the Kodaira dimension of X is 0 or 1.

Proposition 3.1. In the situation ofTheorem 1.1,suppose X has Kodaira dimen-
sion 1. Then the conclusion ofTheorem 1.1holds.



ALGEBRAIC ENTOROPY 833

Proof. LetC D Proj
�

L

n�0 H0(X,!
n
X )
�

(this graded ring is finitely generated; see
[1, Theorem 9.9]). Then from classification (same result in [1]) there is a morphism

f W X ! C

which gives rise to an elliptic or quasi-elliptic fibration,i.e., the generic fiber is a regu-
lar projective curve which has arithmetic genus 1, and the geometric generic fiber is
either an elliptic curve, or is an irreducible rational curve with an ordinary cusp (this
can occur only in characteristics 2 and 3, [1, Theorem 7.18]).

In the quasi-elliptic case, the Leray spectral sequence forétale cohomology im-
plies that

N S( NX)
Ql D H2
ét( NX, Ql (1)),

since the stalks ofR1 f
�

Ql (1) at all geometric points ofC vanish. (Alternately, as re-
marked by the referee, one could argue that, after a purely inseparable base-change
C0

! C, one obtains a surface birational to aP1-bundle overC0, which implies that
X is uniruled; in particular, all cycles onX are algebraic.)

Hence we may assume without loss of generality thatf is an elliptic fibration.
The proof of [1, Theorem 9.9]) implies that some power of the canonical line bundle
of NX is the pullback of a line bundle fromC.

Now we note that' induces a graded automorphism of the canonical ring
L

n�0 H0(X, !
n
X ), and thus an automorphism ofC, which we may also denote by

', such that f W X ! C is '-equivariant.
As usual, after replacing' by a power, we may assume (from Lemma 2.2) that the

induced automorphism of the canonical ring (and thus of the base curveC) is trivial.
Now for any morphismD ! C, ' acts in a canonical way on the total space of

the base changed morphismX �C D ! D, preserving the fibers; we denote this in-
duced automorphism also by'. Hence, if D ! C is a finite morphism of nonsingular
curves, so thatX�C D is an integral projective surface,' also acts on the normalization
of X �C D, which is a normal projective surface, denoted byXD. Making a suitable
such base changegW D ! C, and normalizing, we may arrange that the resulting ellip-
tic fibration XD ! D has a section. Clearly the singular locus of the normal surface
XD is stabilized (as a set) by the automorphism. Consider the minimal resolution of
singularities QX ! XD. If we write it as the blow-up of some ideal sheaf whose radi-
cal defines the singular locus, we may assume (after replacing ' by a suitable power)
that this ideal sheaf is stabilized by', so that' lifts canonically to an automorphism
of the blow-up QX (since ' clearly determines an automorphism of the Rees algebra
sheaf). Note also that a power of the canonical sheaf ofQX is the pullback of a line
bundle from D, the surface QX is also an elliptic surface of Kodaira dimension 1, and
QX ! D is the morphism determined by the canonical ring ofQX.

The morphism QX ! X is a generically finite proper morphism between smooth
projective surfaces, which is'-equivariant. We may choose a polarization [Q

2] for QX



834 H. ESNAULT AND V. SRINIVAS

which is the sum of the pullback of [2] and a divisor class with support in the ex-
ceptional divisor of QX ! XD. (This is a consequence of the negative definiteness of
the intersection pairing on the exceptional curves, and theNakai–Moishezon ample-
ness criterion.) Then the resulting spaceV( QX, [ Q2], ') containsV D V(X, [2], ') as a
'-stable subspace.

Thus, we are further reduced to considering the situation where the mapf W X ! C
determined by the canonical divisor ofX, is an elliptic fibration which has a section,
and ' is an automorphism ofX preserving the fibers.

Let U � C be the maximal open subset over whichf is smooth, so that
fU W f �1(U ) ! U is an abelian scheme of relative dimension 1. LetNC, NU , f �1( NU )
be the corresponding schemes overNFp. The localisation sequence

M

s26

H2
X
Ns
( NX, Ql (1))! H2

ét( NX, Ql (1))! H2
ét( f �1( NU ), Ql (1))

is exact and'-equivariant, where6 is the discriminant off . On one hand, each sum-
mand H2

X
Ns
( NX,Ql ) is (up to a Tate twist) the free abelian group on the irreducible com-

ponents of the geometric fiberX
Ns, and' acts via a permutation on the classes of these

components. Thus' has finite order on
L

s26 H2
X
Ns
( NX, Ql ). Further, the map fromVtr

to H2
ét( f �1( NU ), Ql (1)) is injective.
On the other hand, any automorphism of (the total space of) the abelian scheme

f �1(U ), which is compatible with the structure morphismfU , is the composition of
a group-scheme automorphism (which has finite order) and a translation, since this is
true on the elliptic curve which forms the geometric genericfiber. Replacing' by a
power, we may assume further that' acts on f �1(U ) as a translation by a section,
with respect to the abelian scheme structure.

We claim that, in this situation,' is unipotent onH2
ét( f �1( NU ),Ql (1)). Indeed, the

Leray spectral sequence yields a'-equivariant exact sequence

0! H1
ét( NU , R1 f

�

Ql (1))! H2
ét( f �1( NU ), Ql (1))! H0

ét( NU , R2 f
�

Ql (1))! 0.

The action of' on H0
ét( NU , R2 f

�

Ql (1)) is the identity, while the action of' in R1( fU )
�

Ql

is trivial.
On the other hand, the composition

H2
ét( NX, Ql (1))! H2

ét( f �1( NU ), Ql (1))! H0
ét( NU , R2 f

�

Ql (1))� Ql

is identified with the intersection product with the cohomology class of a geometric
fiber, from the projection formula. In particular,Vtr is contained in the kernel of the
restriction map

H2
ét( f �1( NU ), Ql (1))! H0

ét( NU , R2 f
�

Ql (1)),
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that is,

Vtr � H1
ét( NU , R1 f

�

Ql (1))

as a'-stable subspace on which' acts trivially . We conclude that the action' on Vtr

is trivial as it is on R1 f
�

Ql (1).
Since, in the discussion above, we had possibly replaced' by a power, we con-

clude that the original automorphism' has finite order onVtr. Furthermore, we also
conclude that the eigenvalues of' on the whole groupH2

ét( NX,Ql (1)) are roots of unity.

REMARK 3.2. Our proof shows that ifX is elliptic, the eigenvalues of' are
roots of unity on the wholeH2

ét( NX, Ql ), that is' acts quasi-unipotently on it.

Proposition 3.3. Suppose that, in the sitution of Theorem 1.1,the surface NX is
minimal of Kodaira dimension0, and NX is not a K3 or abelian surface. ThenThe-
orem 1.1holds for X.

Proof. As stated in [3, p. 1], the minimal surfaces with Kodaira dimension 0 fall
into 4 classes:K3 surfaces, Enriques surfaces (both of “classical” and “non-classical”
type), abelian surfaces and surfaces fibered over their Albanese, which is an elliptic
curve (and the fibrations are either elliptic or quasi-elliptic).

In case the Albanese variety ofNX is an elliptic curve, we may assume (after in-
creasingFq if needed) thatX has anFq-rational '-fixed point. Then Alb(NX) and the
Albanese mapping are defined overFq, and ' induces a unique (group-scheme) auto-
morphism of the elliptic curve Alb(NX) making the Albanese mapping'-equivariant.
Since the automorphism group of an elliptic curve is finite, replacing' by a power,
we reduce to the situation where the action on Alb(NX) is trivial.

Now we may argue just as in the proof of Proposition 3.1, usingthe Albanese
mapping instead of the mapping deduced from the canonical ring. Again, the case
when Vtr is possibly nontrivial is for an elliptic fibration, and a similar Leray spectral
sequence argument goes through.

In the case of Enriques surfaces, including the non-classical ones, in fact one has
V D Valg (see [3, Theorem 4]), by an argument of Artin involving the Brauer group,
so we conclude by Corollary 2.5.

4. The case of an abelian surface

Any automorphism of the abelian surfaceNX is the composition of a group auto-
morphism and a translation by a closed point, where the translation has finite order.
Hence, increasing the finite fieldFq and replacing' by a power, if necessary, we may
assumeX is an abelian surface overFq, and ' is a group-scheme automorphism of



836 H. ESNAULT AND V. SRINIVAS

X. We may assume that all the endomorphisms ofNX are defined overFq (since the
endomorphism ring is finitely generated).

We may also deduce (by again increasingFq and replacing' by a power, if nec-
essary) that the validity of Theorem 1.1 forX depends only on the isogeny class ofNX.
This follows because for anyn > 1, ' acts as an automoprhism of finite order on the
n-torsion X( NFp)[n], and thus for any isogenyNX ! X0, some power of' acts trivially
on its kernel, and so a suitable power of' descends to a compatible automorphism
of X0.

Let F W NX !

NX be thegeometric Frobenius morphismassociated toX, considered
as anFq-scheme; thus

F W NX !

NX

is an NFp-morphism of degreeq2, which acts on eachH i
ét( NX, Ql ), with (by Deligne’s

theorem) a characteristic polynomial withZ-coefficients, whose (algebraic integer) roots
all have complex absolute value (

p

q)i . We may assume without loss of generality that
q is an even power ofp, so that these absolute values are integers.

We now defineP(t) 2 Z[t ] to be the (monic)minimal polynomialof F viewed
as an element of the finite rank torsion-freeZ-module End(X). Thus P(t) 2 Q[t ] is
the minimal polynomial ofF as an element in End(X) 
 Q, and P(t) 2 Ql [t ] is the
minimal polynomial ofF as an element in

End(X)
Ql � End(H1( NX, Ql )) D End(H1( NX, Ql ( j ))) for all j 2 Z.

From Tate’s theorems [16] (see in particular Theorem 2; see also [12, Appendix 1, The-
orem 3]), proving the Tate conjecture for endomorphisms of abelian varieties over finite
fields, we know in particular thatP(t) has no multiple roots, and is thus a product of
distinct monic irreducible polynomials which are pairwiserelatively prime. Equivalently,
F acts semisimply onH1

ét( NX, Ql ).
We consider also thecharacteristic polynomial2 Z[t ] of F , as defined in [12],

§19, Theorem 4, which is the same, viewed inQl [t ], as the characteristic polynomial
of F as an element in End(H1( NX, Ql )).

Since dim
Ql H1

ét( NX, Ql ) D 4, it has degree 4.
In case the minimal polynomial is irreducible overQ, the characteristic polynomial

must be a power of this minimal polynomialP(t), and so the degree of the minimal
polynomial P(t) must divide 4.

We now distinguish between several cases.
CASE 1: The minimal polynomial P(t) is reducible overQ.
In this case, NX is not simple, since its endomorphism algebra has zero divisors,

and in fact NX must then be isogenous to a product of two mutually non-isogeneous
elliptic curves (this is the only way to have two mutually coprime factors of P(t)).
But then NX has a finite group of automorphisms as an abelian variety, since this is the
case for an elliptic curve, and any automorphism of a productof two non-isogeneous
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elliptic curves is a product of automorphisms on each of the two factors. Hence, in
this situation,' cannot have infinite order, and we have nothing to prove.

CASE 2: P(t) is a linear polynomial.
Then the characteristic polynomial is a power of a linear polynomial, and from the

Tate conjecture, this implies thatNX is isogenous toE � E for a supersingular elliptic
curve E. But in this case, since the endomorphism algebra ofE is a quaternion divi-
sion algebra, which has dimension 4 overQ, the Picard number ofE�E is 6, which is
also the second Betti number; one thus has thatV D Valg, and Vtr D 0, so we conclude
with Corollary 2.5.

CASE 3: P(t) is an irreducible quadratic polynomial overZ.
Let � be a complex root ofP(t). Then � is a non-real complex number, with

j�j

2
D �

N

� D q. Indeed, if� is a real root, it must be an integer, sinceq is an even
power of p; however P(t) is irreducible.

Hence we must have thatP(t)D (t��)(t�N�), whereQ(F)�Q(�) is an imaginary
quadratic field. Clearly the characteristic polynomial ofF on H1

ét( NX, Ql ) is just P(t)2

(see [12, Appendix 1, Theorem 3 (e)]).
Since X is an abelian surface, the cup product gives an isomorphism

H2
ét( NX, Ql ) D

 

2̂

H1
ét( NX, Ql )

!

.

Thus we see that the characteristic polynomial ofF on H2
ét( NX, Ql ) has to be

(t � �2)(t � N�2)(t � j�j2)4
D (t � �2)(t � N�2)(t � q)4.

From the Tate conjecture for divisors onNX, we conclude thatVtr is 2-dimensional,
and the characteristic polynomial ofF on Vtr is the quadratic polynomial

(t � �2)(t � N�2).

As noted before, the cup product onH2
ét( NX, Ql (1)) gives rise to a non-degenerate

symmetric bilinear form onVtr with values inQl , and ' and (1=q)F are orthogonal
transformations with respect to this form, which commute.

Now ' is a unit in the ring of endomorphisms of the abelian varietyX, and from
the Tate conjecture, End(NX) 
 Q is a central simple algebra of dimension 4 over its
centreK D Q[F ], the subalgebra generated byF (this central simple algebra is either
a matrix algebra of size 2, or a quaternion divison algebra).Hence the reduced char-
acteristic polynomial1 of ', considered as an element of this endomorphism algebra, is

1This is the characteristic polynomial of', considered as an element of End(NX) 
K NK , which is
the algebra of 2� 2 matrices overNK .



838 H. ESNAULT AND V. SRINIVAS

a quadratic polynomial with coefficients inK ,

(4.1) f (x) D x2
� Trd(')x C Nrd(')

where Trd(') 2 K and Nrd(') 2 K are the values of the reduced norm and trace of
the central simple algebra.

Now on

H1
ét( NX, Ql )
 N

Ql

we may diagonalizeF . Fixing an embedding ofQl into the complex number fieldC,
we can split the resulting complex vector space into its� and N� eigenspaces for the
action of F .

Clearly ', considered as a complex linear transformation, stabilizes this decompos-
ition, since' commutes withF . Further, on each of the 2-dimensionalF-eigenspaces,
on which F acts as� � Id and N� � Id, ' has the appropriate characteristic polynomial
(with C-coefficients)� ( f ) or N� ( f ), where� , N� are the embeddings ofK into C deter-
mined by� (F) D �, N� (F) D N

� (resulting in two conjugate embeddingsK [x] ,! C[x],
denoted the same way).

The upshot is that, on the 2-dimensional complex vector space

Vtr 
Ql C

' is diagonalizable, and has eigenvalues� (Nrd(')) and N� (Nrd(')). But Nrd(') 2 K is
actually an algebraic integer, which is a unit. SinceK is an imaginary quadratic field,
Nrd(') must be a root of unity. Thus' is semisimple onVtr, with eigenvalues which
are roots of unity, and this finishes the proof of Theorem 1.1 in this case.

CASE 4:
P(t) is an irreducible polynomial overQ of degree4.
In this case,F has 4 distinct algebraic non-real eigenvalues onH1

ét( NX, Ql ), which
(once we embedQl into C) are of the form�, N�, �, N�, with j�j2 D j�j

2
D q.

In this case, onH2
ét( NX, Ql ), F has the eigenvalues��, N��, � N�, N� N�, which are

again all distinct and non-real, as well as the eigenvalueq with multiplicity 2. From
the Tate conjecture forNX, we see thatVtr is a 4-dimensional space, on whichF acts
with the above 4 distinct non-real eigenvalues.

Now the Tate conjecture implies (see [16, Theorem 2], or [12,Appendix 1, The-
orem 3]) that the minimal and characteristic polynomials ofF on H1

ét( NX,Ql ) coincide,
and we have that End(NX)
Q D Q(F) D K . Hence for some polynomialf (t) 2 Q[t ],
we have that' D f (F) 2 K .

Fixing an embedding ofQl into C, we may choose a basis of eigenvectors{v
�

,v
N

�

,
v

�

,v
N�

} for F on H1
ét( NX,Ql )
C, indexed by the corresponding eigenvalues. Then these

are also eigenvectors for', with eigenvaluesf (�), f (N�), f (�), f ( N�) respectively.
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Now Vtr
C has a resulting basis{v
�

^v

�

,v
�

^v

N�

,v
N

�

^v

�

,v
N

�

^v

N�

}. For this basis,
it is then clear that' acts diagonally, with eigenvaluesf (�) f (�), f (�) f ( N�), etc.

We now observe thatK is a CM field, i.e., a totally non-real quadratic extension
of a totally real number subfield. Indeed, the distinct embeddings of K into C are de-
termined byF 7! �, F 7! �, and their complex conjugate embeddings, soK is totally
non-real. It is also clear that the subfieldL D Q(F C q=F) is totally real, andK is a
quadratic extension, sincej�j2 D j�j

2
D q.

Since ' 2 K is an automorphism ofX, it is a unit in the ring of integersOK .
From theDirichlet unit theorem(see for example [2, Chapter 2, Theorem 5]), the unit
groups ofOK and of the integersOL in the totally real subfieldL have the same rank.
This means that, after replacing' by some power, we may assume' lies in L, and
all of its eigenvalues onH1

ét( NX, Ql )
 C are real algebraic numbers.
Hence onH1

ét( NX,Ql )
C, ' has two distinct eigenvaluesf (�) D f (N�) and f (�) D
f ( N�), each with multiplicity 2 (since' has infinite order, and determinant 1 (as the de-
gree of' is 1), these two real numbers must be distinct, and satisfyf (�)2 f (�)2

D 1).
But this implies' acts onVtr 
 N

Ql as the real scalarf (�) f (�), which must be�1.

5. The case of aK3 surface

In the proof of Theorem 1.1, there is one case remaining: the case whenX is a
K3 surface. As in [3], this meansNX is a smooth, projective minimal surface, and we
have the properties

!X � OX , H1(X, OX) D 0, dim
Ql H2

ét( NX, Ql (1))D 22, Pic� ( NX) D 0.

We first treat the case of a supersingularK3 surface in the sense of Shioda. Then
by definition of supersingularity (in this sense)H2( NX, Ql (1)) is algebraic and we can
apply Corollary 2.5.

We now rely on the crutch of lifting to characteristic 0. Froma recent paper [10]
(see in particular Theorem 6.1 and the bottom of p. 8), it follows that if X is not a
Shioda-supersingularK3 surface, we can find
(i) a complete discrete valuation ringR, with residue fieldNFp, and quotient field of
characteristic 0,
(ii) an R-scheme� W X ! SpecR, such that� is projective and smooth, of relative
dimension 2, with closed fiberNX,
(iii) if Y WD X

N�

is the geometric generic fiber of� , then the specialization homo-
morphism Pic(Y)! Pic( NX) is an isomorphism, which induces an isomorphism between
the respective cones of effective cycles,
(iv) there is aninjectivespecialization homomorphism Aut(Y) ! Aut( NX), whose image
has finite index.

The specialization map on automorphisms in (iv), which is important for us here,
is defined as follows. If is an automorphism ofY, then (after making a base change
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if needed), the authors of [10] prove that it is induced by an automorphism of the
generic fiberX

�

, which extends to anR-automorphism X of X n S for some finite
set S� NX � X of closed points; the induced automorphism ofNX n S then extends to
an automorphism ofNX, which is defined to be the specialization of .

Granting this, we see that, after replacing' by a power, if necessary, we may
assume' is the specialization of an automorphism ofY, in the above sense. It then
follows that, under the specialization isomorphism

H2
ét(Y, Ql (1))� H2

ét( NX, Ql (1))

the respective actions of and ' are compatible. Further, the polarization [2] of NX
determines uniquely a polarization ofY, which we may also denote by [2], compatibly
with the specialization isomorphism. The specialization isomorphism above is of course
one component of an isomorphism between cohomology rings, and so respects the cor-
responding cup products, thus inducing also an isomorphismof l -adic vector spaces

V(Y, [2],  ) � V( NX, [2], '),

again compatible with the respective automorphisms , '. It thus suffices to prove that
the  has finite order onV(Y, [2],  ).

We may identify the algebraic closure of the quotient field ofthe DVR R with the
complex number fieldC, and thus also consider as an automorphism of the complex
projective K3 surfaceY.

In fact, one has the following more general assertion; this observation is, in a
sense, the motivation for Theorem 1.1 proved in this paper, and was explained to us
by K. Oguiso (in the shape that' on H2

tr (Y, C) has finite order):

Proposition 5.1. Suppose is an automorphism of a projective smooth surface
Y overC, with a polarization2 (not necessarily invariant under ). Then has finite
order on V(Y, [2],  ).

Proof. By the comparison theorem between étale and singularcohomology, we
reduce to proving a similar assertion for the action of on H2(Y,Q). In other words,
it suffices to show that the eigenvalues of acting on the similarly definedQ vec-
tor space

V(Y, [2],  ) � H2(Y, Q)

are roots of unity. Since is also compatible with the cup product, it defines an or-
thogonal transformation with respect to the non-degenerate bilinear form onV defined
by the cup product.
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Consider now the associated non-degenerate real bilinear form on V
R

D V 


Q

R.
From the Hodge decomposition, we may writeV

R

as an orthogonal direct sum

V
R

D V (1,1)
R

? V
R,tr,

where

V (1,1)
R

D V
R

\ H (1,1)
� H2(Y, C),

and the other summand is its orthogonal complement. This does give an orthogonal
direct sum decomposition ofV

R

, since by the Hodge index theorem (the Hodge theo-
retic version), the cup product pairing onV

R

is negative definite onV (1,1)
R

, and positive
definite on its orthogonal complement.

Since the Hodge decomposition onH2(Y,C) is also preserved by , it follows that
 preserves the above orthogonal direct sum decomposition ofV

R

. Hence, after chang-
ing the sign of the inner product onV (1,1)

R

, we see that preserves a non-degenerate
Euclidean form onV

R

. Hence the is semi-simple and all its eigenvalues are complex
numbers of absolute value 1.

However, we also know that the eigenvalues of are algebraic integers, which
are invertible, and the characteristic polynomial of has integer coefficients (since it
obviously has rational coefficients). Thus, by Kronecker’stheorem, these eigenvalues
are roots of unity.

6. Some further remarks

6.1. Standard conjectures and Theorem 1.1. P. Deligne explained to us that
our Theorem 1.1 would be a consequence of the standard conjectures, were they avail-
able. We reproduce his argument.

As explained in Section 2, we have to show that' has finite order on transcen-
dental cohomologyH2

tr ( NX,Ql (1)), whereX is a smooth projective surface over a finite
field Fq. We denote byM the underlying Chow motive withQ coefficients, which
is endowed with a quadratic formbW M 
 M ! Q, which induces the cup-product
H2

tr ( NX,Ql (1))
 H2
tr ( NX,Ql (1))! H4( NX,Ql (2)) in l -adic realization. The automorphism

' induces an orthogonal automorphism ofM. Its characteristic polynomial lies inQ[t ].
But the l -adic realization of the characterisitc polynomial lies inZ[t ] ([8]), thus in fact,
it lies onZ[t ]. On the other hand, there should exist ([14, V 2.4.5.1 (iv)]) a fiber func-
tor ! overR on the category of Chow motives of weight 0, with the extra property that
b(!) is a positive definite form. Thus this implies already that' is semi-simple and
that its eigenvalues onM have absolute value 1. On the other hand, they are algebraic
integers again by [8]. We conclude by Kronecker’s theorem that the eigenvalues are
roots of unity.

6.2. Entropy, even and odd degree cohomology.Recall that theentropy of a
homeomorphism' W M ! M of a compact, orientable manifoldM is defined to be the
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natural logarithm of the spectral radius of the linear tranformation induced by' on
the rational cohomology algebraH �(M,Q). Since' is a homeomorphism, it induces a
(Z-linear) automorphism of the integral cohomology algebra,so that the characteristic
polynomial of' acting on cohomology has integer coefficients, and the eigenvalues of
' on cohomology are algebraic integers which are invertible,that is, are units in the
ring of algebraic integers.

If M is a complex smooth projective variety, and' is an algebraic automorphism,
the value of the entropy is taken on theevendegree cohomologyH2�(M, Q) (see [5,
Theorem 2.1]).

We can now go through our proof of Theorem 1.1 from which we deduce:

Theorem 6.1. In the situation ofTheorem 1.1,the maximum of the absolute values
of the eigenvalues of' on

L4
iD0 H i

ét( NX, Ql ) with respect to any complex embedding is

achieved on theQl -span ofh'n[2], n 2 Zi, in H2
ét( NX, Ql ).

Proof. The automorphism' acts as the identity onH i
ét( NX, Ql ), for i D 0 and

i D 4. Since' respects the cup-productH1
ét( NX, Ql ) � H3

ét( NX, Ql ) ! H4
ét( NX, Ql ), its

eigenvalues onH3
ét( NX,Ql ) are the inverse of its eigenvalues onH1

ét( NX,Ql ). On the other
hand, the characteristic polynomial of' on any H i

ét( NX,Ql ) hasZ-coefficients, and the
eigenvalues lie inNZ. Thus the constant term of this polynomial is�1 and, fixing a
complex embedding of a number field containing all the roots,at least one eigenvalue
has absolute value� 1. Thus the maximum of the absolute values is always achieved
on

L3
iD1 H i

ét( NX, Ql ).
By Theorem 1.1, we just have to see that the absolute values ofthe eigenvalues

on H1
ét( NX, Ql ) and H3

ét( NX, Ql ) are at most those onH2
ét( NX, Ql ).

Again we may assume (after replacingFq by a finite extension and' by a power)
that X has a rational fixed point under', which we take to define the Albanese mapping
albW X ! Alb(X). Then the action of' extends so as to make alb a'-equivariant map.

If the image of alb is 0, this meansH1
ét( NX,Ql ) D H3

ét( NX,Ql ) D 0, there is nothing
to prove.

If the image of alb is a curveC, then ' acts onC, thus on its normalizationQC.
Since the genus ofQC is � 1, the action of' on QC, thus onC has finite order. Thus via
the surjective pull-back map alb�W H1

ét( NC,Ql )! H1
ét( NX,Ql ), and its injective push-down

dual map alb
�

W H3
ét( NX,Ql ) ! H1

ét( NC,Ql ) the action of' on H i
ét( NX,Ql ), i D 1, 3 is finite

as well.
If the image of alb is 2-dimensional, then eitherX is of general type, in which

case' has finite order and there is nothing to prove, or elseX is an abelian surface.
In this case, we have a more general Proposition 6.2 below onH1. But for an abelian
surface,H i

ét( NX, Ql ) D H j
ét( NX

_, Ql ) for (i , j ) D (3, 1) and (2, 2), whereX_ is the dual
abelian surface. Since the eigenvalues of the induced autmorphism '

_ on H2
ét( NX

_, Ql )
are those of' on H2

ét( NX,Ql ), Proposition 6.2 concludes the proof of Theorem 6.1.
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We now show that for automorphisms of abelian varieties, thespectral radius of
the induced linear automorphism onH1 is at most that for the similar linear auto-
morphism of H2.

Proposition 6.2. Let X be an abelian variety over a field k, and ' an auto-
morphism of X. LetNX D X
k Nk be the corresponding variety over an algebraic closure
Nk, and let l be a prime invertible in k.

Then the complex absolute values of the eigenvalues of' on H1
ét( NX,Ql ) are bounded

above by the maximum of the complex absolute values of the eigenvalues of' on
H2

ét( NX, Ql ).

Proof. By the standard arguments involving the choice of a model over a finite-
ly generatedZ-algebra, and specialization, we reduce to the case whenk D Fq is a
finite field. We also fix an embeddingQl ,! C, so that we may speak of the eigen-
values as complex numbers. Without loss of generality, we may also increase the size
of the finite field Fq, replace' by a power, and replaceX by an isogenous abelian
variety. Thus, we may writeX D X1 � � � � � Xr where theXi are powers of mutually
non-isogenous absolutely simple abelian varieties, in which case' must be a product
'1 � � � � � 'r with ' j 2 Aut(X j ). From the Künneth formula, it follows that it suffices
to consider the case whenX D X1 is a power of an absolutely simple abelian variety.
In this case, End(X)
Q is a central simple algebra over a number field.

We also make use of the fact thatH2
ét( NX,Ql ) D

V2 H1
ét( NX,Ql ) for an abelian vari-

ety. The automorphism' has eigenvalues onH1
ét( NX,Ql ) which are invertible algebraic

integers whose product is 1, and so the maximal absolute value of these eigenvalues is
always� 1.

Thus, if we consider the complex absolute values of the eigenvalues of ' on
H1

ét( NX,Ql ), counted with multiplicity, the proposition is clearly true, unless the largest
such absolute value is> 1, and appears exactly once, while all the other absolute
values are< 1. Since the set of eigenvalues is closed under complex conjugation (as
the characteristic polynomial of' has integer coefficients), this largest absolute value
must correspond to a real eigenvalue, which we may take to be positive (replace' by
its square if needed).

In other words, we have to rule out the possibility that' acting onH1
ét( NX, Ql ) has

one real eigenvalue� > 1, occuring with multiplicity 1, and all other eigenvalues of
complex absolute value< 1 (in particular,� must be a “Pisot–Vijayaraghavan number”).
We do this by induction on the dimension ofX. Let P(t) 2 Z[t ] be the monic min-
imal polynomial of' as an element of End(NX), and let f (t) 2 Z[t ] be the monic min-
imal polynomial overQ for the real algebraic integer�. Then there is a factorization
of polynomialsP(t) D f (t)g(t), since� is an eigenvalue for', so thatP(�) D 0. Now
� must be a simple root ofP(t), so that f (t), g(t) are relatively prime polynomials in
Q[t ]. If g(t) is non-constant, then the identity componentY of the subgroup-scheme
ker f (') � X is a subabelian variety of dimension� 1 and< dim X which is '-stable
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and such that� > 1 is an eigenvalue of' on H1
ét( NY,Ql ). ThusY has dimension� 2 and

we can replaceX by Y to show Proposition 6.2, that is we can assume thatg(t) is con-
stant, so thatP(t) D f (t) (as they are both monic). Further, since� occurs with multi-
plicity 1 as an eigenvalue,P(t) is also the characteristic polynomial of' on H1

ét( NX,Ql ).
In particular, the subringL � End(X) 
 Q generated by' over Q, is a subfield,

isomorphic toQ(�). We must also have

[L W Q] D degP(t) D dim
Ql H1

ét( NX, Ql ) D 2 dim X.

Thus ' has distinct eigenvalues onH1
ét( NX, Ql ), and is diagonalizable, andQl (') is a

maximal commutative subring of End
Ql (H

1
ét( NX, Ql )). In particular L � End( NX) is also

a maximal commutative subring. Thus the geometric Frobenius F 2 End( NX), which
commutes with', lies in L, and F D Q(') for some polynomialQ(t) 2 Q[t ]. We
conclude thatF has the eigenvalueQ(�) 2 R on H1

ét( NX,Ql ). This means, assuming, as
we may, thatq is an even power ofp, that F has an integer eigenvalue. SinceX is a
power of an absolutely simple abelian variety, Tate’s theorems imply that the minimal
polynomial of F in End( NX) 
 Q is irreducible, and so, having an integer root, must
be a linear polynomial. This forcesX to be isomorphic to a power of a supersingular
elliptic curve, sayX � En.

Now End(NX)
Q� Mn(D), whereD D End( NE)
Q is the unique quaternion divi-
sion algebra overQ which splits at all places apart fromp and1. SinceL � Mn(D)
is a maximal commutative subfield of the central simple algebra Mn(D), we know that
L is a splitting field for the algebra, i.e.,Mn(D) 


Q

L � EndL (Mn(D)) � M2n(L)
as central simple algebras overL (where D is regarded as anL-vector space through
right multiplication; the isomorphism is given byMn(D)
 L 3 a
 b 7! (x 7! axb) 2
EndL (Mn(D))). (We thank M.S. Raghunathan for a discussion on this point.). SinceL
has a real embedding, we conclude thatMn(D)


Q

R� M2n(R), which contradicts that
D is non-split at1. This concludes the proof.

6.3. Algebraic entropy. In general, ifX is a smooth proper variety over a field
k, and' an algebraic automorphism ofX, then we may associate to it two numerical
invariants, as follows.
(1) Let l be a prime invertible ink, and let NX D X�k Nk be the corresponding (smooth,
proper) variety over an algebraic closureNk. The characteristic polynomial of' on
H �

ét( NX,Ql ) is independent ofl , and has integer coefficients, and algebraic integer roots
(which are units); hence we may define the spectral radius of' on H �

ét( NX,Ql ) as a real
number� 1, and define its natural logarithm to be theentropyof '. When k � C, so
that we may associate to (X, ') a compact complex manifoldX

C

, and a holomorphic
automorphism'

C

, then our definition agrees with the usual one (given above) for '
C

.
(2) We may instead define an invariant using algebraic cycles, as follows. Let NX be as
above, andC H�

num( NX) the ring of algebraic cycles onNX modulo numerical equivalence.
Then' yields an automorphism of the ringC H�

num( NX), whose underlying abelian group
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is known to be a finitely generated free abelian group; thus the characteristic poly-
nomial of ' on this ring has integer coefficients, and eigenvalues whichare algebraic
integer units. We may now define thealgebraic entropyof ' to be the natural loga-
rithm of the spectral radius of' acting onC H�

num( NX).
Our main result, Theorem 1.1, and its Corollary 1.2, with Theorem 6.1, imply that

for automorphisms of smooth projective algebraic surfaces, the algebraic entropy co-
incides with the entropy. One may ask whether this is true in arbitrary dimension. It
would in particular imply that the value of the entropy on thewhole l -adic cohomology
is taken on even degree cohomology, which is true in characterisitc 0 (see Section 6.2).

ACKNOWLEDGEMENTS. This work has been greatly influenced by the observa-
tion of Keiji Oguiso, and his willingness to explain to us a bit of entropy theory. We
benefited from discussions with Curt McMullen on entropy, withPierre Deligne on
the relation between Theorem 1.1 and the standard conjectures (see Section 6.1), with
M.S. Raghunathan on algebraic groups. The first author thanksthe Tata Institute for
Mathematics and the second author the Essen Seminar for Algebraic Geometry and
Arithmetics for hospitality.

References
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