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Abstract
We study the group of symplectic birational transformatiaf the plane. It is
proved that this group is generated by SlZ2, the torus and a special map of order
5, as it was conjectured by A. Usnich.
Then we consider a special subgroty of finite type, defined over any field
which admits a surjective morphism to the Thompson groupi@égwise linear auto-

morphisms ofZ2. We prove that the presentation for this group conjecturgd b
Usnich is correct.

1. Introduction

1.1. The group Symp. Recall that a rational mag : C2? --» C?>—or arational
transformationof C2—is given by

(X1 y) - (fl(X1 y)! f2(X1 y))r

where f;, f, are two rational functions (quotients of polynomials) inotwariables.
The map f is said to bebirational if it admits a inverse of the same type, which
is equivalent to say thaf is locally bijective, or thatf induces an isomorphism be-
tween two open dense subsets@f The group of birational maps @? is the famous
Cremona group

Following [4], we defineSympas the group of symplectic birational transform-
ations of the plane, which is the group of birational transfations ofC? which pre-
serve the differential form

dx A dy

wo = .
Xy

In [4], a natural surjective morphism fro®ympto the Thompson group of piece-
wise linear automorphisms &2 is constructed (see also [3]) although the Thompson
group is not embedded in the Cremona group. The gi®wmpp related to other topics
of mathematics, is also an interesting subgroup of the Cnangroup, from the geo-
metric point of view. The base-points of its elements arepalf the differential form
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wp, but its elements can contract curves which are not polesgofin this article, we
describe the geometry of elements ®mp and give proofs to two conjectures of [4]
(Theorems 1 and 2 below).

1.2. The results. The two groups SL(2Z) and (C*)? naturally are embedded
into Symp the matrix(i‘ g) € SL(2,Z) corresponds to the map,fy) --> (x2y°,xCy%),
and the pair ¢, B) € (C*)? corresponds tox y) --> (ax, By). Moreover, the map

P:(x,y) -—> (Y, (y + 1)/x), of order 5, is also an element &mp Our first main
result consists of proving the following result, conjeetirin [4]:

Theorem 1. The group Symp is generated BYy.(2,Z), (C*)? and P.

The mapP is a well-known linearisable map ([2]), and the gro{§L(2,Z), (C*)?)
is a toric well-understood group. The mix of this group wkhprovides all the com-
plexity to Symp In the proof, the reader can see that all non-toric basetpaome
from P, but in fact, there are many relations 8ymp and we can have complicated
elements with many non-toric base-points.

However, the natural subgroug C Sympgenerated by SL(Z) and P is easier to
understand. It is an interesting subgroup of finite type ef @remona group, which is

moreover defined ove® or over any field. We writeC, | the element = (:i (1))

and| = (g _01) of SL(2,Z). The presentation

SL(2,z)=(I,C|1*=C®=][C, 17 =1)

is classical. We will prove the following result on the rédais of H, conjectured
in [4]:

Theorem 2. The following is a presentation of the group: H
H=(.C,P|1*=C®=[C, 1} =P°=1,PCP=1).

The author thanks S. Galkin for asking him these questionhénWorkshop on
the Cremona group organised by I. Cheltsov in Edinburgh ékaginning of 2010.

2. Some reminders on birational transformations

Recall that any birational transformation @ extends to a unique birational trans-
formation of the projective complex plar®? (written alsoPZ or CP?) via the embed-
ding (x,y) — (x : y: 1). We will take X, Y, Z as homogeneous coordinates Bf, so
that the affine coordinates, y on C? correspond tox = X/Z andy = Y/Z. Any
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birational transformatiorp of P2 can be written as
@: (XY :Z)-—> (P(X,Y, Z): P(X,Y, Z): Ps(X,Y, 2)),

where theP, are homogeneous polynomials of the same degree without oconfactor.
The degree of the map is the degree of e If this one is> 1, then there is a
finite number of points of?? wherey is not defined, which corresponds to the set of
common zeros ofy, P, Ps.

More generally, the base-points @fare the points where all curves of the linear
systemY_ A; P, A; € C pass through. Note that these points are not necessari?pn
but maybe in some blow-up, and correspond thus to some taumljections. See for
example [1] for more detalils.

3. Normal cubic forms and geometric descriptions

Recall that the divisor of a differential form dR? is a divisor of degree-3. In
particular, the divisor corresponding t@ on P? is —(X) — (Y) — (2).

DEFINITION 3.1. We say that a differential form on P? is anormal cubic form
if —div(w) is the divisor of a (possibly reducible) singular cubic,os8b singular points
are ordinary double points (in particular we ask thativ(w) is effective and reduced).

Note that in the above definition;div(w) can be either (i) the union of three lines
with exactly three double points, (ii) the union of a smootimic and a line intersecting
into two distinct points, (iii) an irreducible cubic curvaving a unique ordinary double
point. The formwg is a normal cubic form of type (i).

Before using the above definition, we remind the reader thewiing simple result,
already observed in [4].

Lemma 3.2. Let w be a differential form on a smooth algebraic surface S and
let n: S— S be the blow-up of @ S. We write D= div(w) the divisor ofw, D its
strict transform on$, and E the exceptional curve contracted by

Then div(n*(w)) = D + (m + 1)E, where me Z is the multiplicity of D at q.

In particular,

(1) E is a zero ofdiv(n*(w)) & D has multiplicity> 0 at g.

(2) E is a pole ofdiv(n*(w)) < D has multiplicity < —2 at g;

(3) E is a pole of multiplicity one ofliv(n*(w)) <& D has multiplicity—2 at q.

Proof. Let us take some local coordinatgsv on S at q so that this point cor-
responds tas = v = 0. The formw locally corresponds t@(u, v) - du A dv, whereg
is a rational function in two variables, arid corresponds tog(u, v)).
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The blow-up can be viewed locally asg,{) — (uv,v), andn*(w) becomesp(uv,v)-
d(uv) A dv = ¢(uv, v)v - du A dv. In these coordinates; is the equation of the div-
isor E and ¢(uv,v) corresponds tg*(div(w)). Moreoverg(uv,v) = v™-y(u,v), where
m € Z is the multiplicity of D at q (which is the multiplicity ofe at (0,0)), and where
¥ (0, 0) e C*. Observing that)(u, v) corresponds td, we obtain the result. ]

DEerFINITION 3.3. LetS be a smooth surface, let be a differential form onS
and letp € S. We define the multiplicity ofw at p to be the multiplicity of divf) at
p. If this multiplicity is negative, we say thab is a pole ofw.

We can now relate the base points of birational maps to thgentd normal cu-
bic forms. The following proposition deals with base-psimf a birational mapy of
P2, which belong toP? or to blow-ups ofPP?. Saying that the points are pole of
corresponds to use the above definition with the lift of th#edéntial form on the
corresponding blow-up oP?.

Proposition 3.4. Let ¢: P? --> P2 be a birational map and letw be a normal
cubic form. The following are equivalent
(1) All base-points ofp are poles of the transform ab;
(2) The formg,(w) is a normal cubic form.

Proof. If ¢ has no base-point, both assertions are trivially true, somag as-
sume thatp has at least one base-point.

We denote byy: S— P2 the blow-up of all base-points af, and bye: S — P2
the morphismgn, which is the blow-up of all base-points gf ™.

Suppose first that at least one base-pajintf ¢ (which may be infinitely near to
P?) is not a pole ofw. By Lemma 3.2, the exceptional curve of this point, and of all
infinitely near points, are zeros @f (). Sinceq is a base-point, at least one of these
curves is not contracted hy, and thusp, (w) = €.(n*(w)) has zeros; it is therefore not
a normal cubic form.

Suppose now that all base-points @fare poles ofw. If —div(w) is an irreducible
cubic curve, it has a unique ordinary double point, we asstimén blows-up this
point, by replacingy by its composition with the blow-up if needed, obtaining o
(non-minimal) resolution ofp. We now prove the following assertion:

The divisor 3 = —div(n*(w)) is linearly equivalent to—Kg and is an effective
reduced divisor consisting of a loop of smooth rational @si.e. a finite number of
smooth rational curves where each one intersect exactly dtihers and each inter-
section is transversal

Firstly, since divp) is linearly equivalent toKp2, by definition of the canonical
divisor. Secondly, we recall thatdiv(w) is an effective divisor, and that it is either
a loop of smooth rational curves or an irreducible nodal cubirve. In this latter
case, writingu: F; — P? the blow-up of the singular point-div(u*(w)) is the union



SYMPLECTIC BIRATIONAL TRANSFORMATIONS OF THE PLANE 577

of the exceptional curve with the strict transform of the iculand is thus a loop of
smooth rational curves. We proceed then by induction on tiraber of points blown-
up by n, applying Lemma 3.2 at each step; blowing-up a smooth paina doop does
not change the structure of the loop, and blowing-up a sargpbint only adds one
component. The assertion is now clear.

The fact thatDs is an effective divisor linearly equivalent teKg implies that
D = —div(p.(w)) = —div(e.(n*(w))) = €.(Ds) is an effective divisor linearly equivalent
to —Kp2, and is thus a cubic curve. All components Bf being rational,D cannot
be smooth. It remains to see that all singular pointDofire ordinary double points.
Writing o’ = ¢.(w), if D = —div(w’) had one other singularities, we can check using
Lemma 3.2 thatDs = —div(¢*(w')) would not be a loop. []

4. Decomposition into quadratic maps

It is well known that any birational transformation of theapé decomposes into
guadratic maps. Using Proposition 3.4, we can deduce the $samelements which
send a normal cubic form on another one (Lemma 4.1), and thémavmore careful
study to elements which preserve the divisor«gf (Proposition 4.2).

Lemma 4.1. Let ¢: P? -—> P? be a birational map of degree & 1, and let
w be a normal cubic form. Ip.(w) is a normal cubic form there exist quadratic
transformationsey, . . ., ¢, such that
(1) o9 =¢no---0¢u;
2) fori =1,...,n, (¢ o---0¢p1)+(w) is a normal cubic form.

Proof. We start as in the classical proof of Noether—Castelo theorem, by tak-
ing a de Jonquiéres transformatign (a birational map ofP? which preserves a pencil
of lines) such that each base-pointifis a base-point 0§ and gy~ has degree: d.
The existence of such & can be checked for example in Chapter 8 of [1] (see in
particular the proof of Theorem 8.3.4).

Since all base-points ap are poles ofw (Proposition 3.4), the same is true for
¥, SO ¥ (w) is a normal cubic form.

It remains thus to prove the lemma in the case whelis a de Jonquiéres trans-
formation of degreal > 1, which preserves the pencil of lines passing throsghP?.
We prove the result by induction od, the cased = 2 being clear. We follow the
classical proof of the theorem of Noether—Castelnuovo.

The linear system of (which is the pull-back byy of the system of lines of the
plane) consists of curves of degreéepassing througls with multiplicity d — 1 and
through 2 — 2 other pointsty, . . ., tog_2 with multiplicity one.

If at least one of the;’s is a proper point ofP?, sayt;, there exists another,
sayty, and a quadratic de Jonquiéres transformatkrwith base-pointss, t;, t,. The
linear systems o, and¢ intersecting intod — 1 free points, the map o (¢1)~* is a
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de Jonquiéeres transformation of degibe- 1. Since §1).(w) is a normal cubic form,
the result follows from the induction hypothesis.

If no one of thet’s is a proper point of the plane, there exists at least one of
these, sayt;, which corresponds to a tangent directionspfand another point;, say
to, which is infinitely near tot;. We choose a proper point in P2 which is a pole
of w and which is not aligned witts and t;. There exists a quadratic de Jonquieres
transformationp, with base-pointss, t;, u. The linear systems af; and ¢ intersecting
into d free points, the map = ¢ o (¢1)~* is a de Jonquiéres transformation of degree
d. The linear system of is the image byp,; of the linear system ofy; it has one
proper base-point distinct from, which corresponds to the “image” tf by ¢, (in the
decomposition ofp; into blow-ups and blow-downs, the exceptional curve asdgedi
to t; is sent onto two a line o2 andt, is sent onto a general point of this line).
Since (1)«(w) is a normal cubic form, we can apply the preceding casé.to [

Proposition 4.2. Let ¢: P? --> P? be a birational map of degree- 1, and as-
sume that

div(¢.(wo)) = div(wo)

(wherewy is the differential form dx dy/(xy)). Then there exist quadratic transform-
ations ¢y, . . ., ¢n such that

(1) ¢ =¢no---0¢;

(2) fori =1,...,n, div((¢i o--- 0 ¢1)s(wo)) = div(wp).

REMARK 4.3. A differential formw satisfies divp) = div(wo) if and only if v =
nwo for someu € C*. In fact, as we can see from the proofs in Section 5, if a bira-
tional mapg € Bir(IP?) satisfiesg, (wo) = uwo for someu € C*, thenp is £1, and
both are possible (taking for example (x:y:2) + (y: X : 2) we getu = —1).

Proof. Applying Lemma 4.1, we obtain a decompositipr= ¢, o - - - o ¢; Where
wj := (¢j o--- 0 ¢1)«(wo) is a normal cubic form foi =0, ..., n.

Denote bym the maximal degree of the irreducible components—aiv(w;) for
i =0,...,n, denote byr the minimal index wheres, has a component of degree.
We now prove the result by induction on the pains, i —r), ordered lexicographically.

If m=1, —div(w;) is the union of three lines for each Composing the quadratic
maps with an automorphism @2 which sends div(;) onto div(wg), we can assume
that div(;) = div(wp) for eachi and obtain the result.

Suppose now that = 2, which implies that O<r < n, sincewy = w, # w;. The
divisor —div(wy) is the union of a lineL and a conicl’, and the divisor—div(w;_1)
is the union of three lines. In particular, the cullg = (¢ ).(T") is a line andLo =
(67 H+(L) is either a point or a line. This implies that the three bpsits s;, S, 3
of ¢ belong toT" (as proper or infinitely near points) and that at least onehefrt
lies on L. Up to renumberings; is one of the two points of' N L, ands; is either
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a proper point ofl" or the point infinitely near tcs; corresponding to the tangent of
I'. The curvel's = (¢r+1)+(") is either a conic or a line, so at least two of the three
base-pointg;,ty,t3 of ¢, .1 belongs tol', andLs = (¢r+1)«(L) can be a point, a line or
a conic. Up to renumbering; is a proper point ofi", andt, is either another proper
point of I', or the point infinitely near td; corresponding to the tangent direction of
I'. We can also assume thattif belongs toI’ N L, so doedt;.

ot
(Lo, o) « ey

b
T (R e ()

[t1,t2,13]

We now define two proper point, b of T'. If t; e ' N L, the pointb is a general
point of " (i.e. distinct from thes andt;), and otherwisé is such that. NT" = {s;,b}.
The pointa is a general point of” (i.e. distinct fromb and alls, tj). We define four
birational quadratic mapg1, x2, x3, x4 of P2, with base pointsg, s, a], [s1, a, b],
[t1, @, b] and [, to, b] respectively. We moreover sef = ¢+ and xs = ¢r11. By
construction, we have the following: far=0,...,4, x has its three base-points dh
and at least one of them belongs ltg so I'i = (x;)«(I") is a line, andL; = (x;)«(L)
is either a point or a line; moreover; and i1 have two common base-points, so
6 = xi+10 x * is a quadratic map. We obtain the following commutative thiay

(Lo, I'o) (Ls, I's)
| - \)(0:¢F1 X5=Pri1 — — - A
! (15517 = < _ = Tkl |
160 _ (L, ) — b4 |
| X1/ _ - 7 AN = - \)(4 |
v . RN Y !
< >
(Lla Fl) 4 N (L4, F4)
~_ 60 X2 7 N Xs 4
> 7 [sn.ab] [tab] > P
~ 0, N ~
(Lo, To) = — = == —— - (L3, ')
By construction,—div((xi)+(«r)) is the union of three lines for =0, ..., 4; re-

placing ¢r 11 o ¢ by 04636,01600, we reduce the paimg, n —r).

Suppose now thah = 3 (which implies that i< r < n—1). The divisor—div(w;)
consists of a nodal cubic curé. The curvel'y = (¢, 1).(T") is a conic, so all base-
points sy, S, 3 of ¢, 1 belong toT", and one of them, sag, is the singular point of
I'. Up to reordering, we can assume tlsatis either a proper point of" or the point
infinitely near tos; corresponding to the tangent 6f We denote by, to, t3 the three
base-points ofp; ;. The curvel’y = (¢r11)«(I") is either a cubic or a conic, which
means that either ali’s belong toI" or that only two belong td" but one of these
two is the singular poing,;. If s; is a base-point o1, we can assume that = s;,
that t, belongs toI' and that eithett, is a proper point ofP? or is infinitely near to
t1 = 5. If 51 is not equal to any of th¢, we can assume thaf is a proper point of
I'. We choose a general proper pomtof ', not collinear with any two of thes, t
and define two birational quadratic maps, x» of P2, with base pointsg, s,, a] and
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[s1, tp, @] respectively. We moreover sety = ¢ and x3 = ¢ 1. By construction,
we have the following: fori = 0,..., 2, xj has its three base-points dnh and at
least one of them is;, so T = (x;)«(") is a conic; moreovel; and x;j.; have two
common base-points, s = xi;10 x * is a quadratic map. We obtain the following
commutative diagram:

. -

Xo=¢~ _ — — 70N = — _ X3=¢rs1

- s N =

== T sss) v N [ttots] — —~ — _
Io € / N 3T
\\\90 Xl// \\Xz 6, -7
~ . [s1.%.8] [s1.t2,8] -~

¥ ) N ~

~ 1 ~

F]_ —————————— - Fz

By construction,—div((xi)«(«r)) is the union of the conid’ and a line fori =
0,...,4; replacinggr .1 0 ¢y by 6,6:69, we reduce the paimg, n —r). ]

5. Quadratic elements ofSymp and the proof of Theorem 1

We now describe some of the main quadratic elementSyofip useful in the gen-
eration of elements oSymp(see Proposition 4.2).

We fix notation for some points which are poleswf. The pointspy, p2, ps are
the vertices of the trianglXY Z= 0, andqy, g, gz are points on edges:

pr=(1:0:0), p,=(0:1:0), ps=(0:0:1),
g1=@0:1:-1), g2=(1:0:-1), g3=(1:-1:0).
Any quadratic birational transformation @? has three base-points. We describe
now some quadratic transformations, by giving their dgsicm on C2, P? (writing

only the image of X, y) and (X : Y : Z) respectively) and by giving their base-points.
Firstly, we describe the classical generators:

2 (% %) (YZ:XZ:XY), PL. P2, P,
P (y, y :(F 1), (XY : (Y +2)Z: X2), PL, P2, .
P2, (y:(r 1 x +ny+ 1), (Y(Y +2): Z(X+Y +2): XY),  pr, 01 Gz,
ps. (X +ny+ 1 x+ 1), (X+Y +2)Z: X(X+2Z): XY), P2, 01, G,
pt (X J; = x), (Z(X +2): XY:Y2), PL, P2, .

Secondly, we construct more complicated elements. ForjasyC*, we denote by
05 € Aut(P?) the automorphismX :Y : Z) — (AX : Y : Z). If A # —1, the mapsS, and
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T,, respectively given bys, = (P2C)™1p_, P?C and T, = P?p_,C P?, are described in
the following table:

Sy (AXX+Y+2Z):YX+Y—=A1Z): Z(—2AX+Y —21Z)), (0:x:1),0, 03,
T, XY : (Y +2Z)AZ-Y):—AX2Z), P1, 91, (0: A : 1).

Recall thatC is the automorphismX :Y : Z) — (Y : Z : X) of P2, which corresponds

to the birational mapx, y) --> (y/x, 1/x) of C?, and thus to the matri :i é) of

SL(2,Z). We denote by Sym y 7 C Aut(P?) the symmetric group of permutations of
the variables, generated iy and X : Y : Z) — (Y : X : Z). We now describe linear
and quadratic elements &ymp

Lemma 5.1. The group of automorphisms @&? which preserve the triangle
XYZ=0

is (C*)? x Symyx.y,z), and its subgroup(C*)? x (C) is equal to the group of auto-
morphisms ofP? which are symplectic.

Proof. Follows from a simple calculation. []

Lemma 5.2. Let ¢: P2 -—> P2 be a birational map of degre which has three
proper base-points. The following condition are equivélen
(1) div(p.(wo)) = div(wo).
(2) ¢ =aQB, wherea € (C*)*xSymy vz, B € (C*)*x(C) and Qe {1%,P,P2,P3, P4
or Q € {S, T,} for someir € C* \ {—1}.

Proof. The second assertion clearly implies the first onegesQ € Sympis a
guadratic map with three proper base-points. It remains thyrove the other direction.

Denote byLy, Ly, Lz C P? the three lines of equatioX =0,Y =0 andZ = 0.
Each of the three lineg; is a pole ofwy and its image by is thus either a point or
a line. So for each, one or two of the base-points ¢f belong toL;.

Denote byk € {0, 1, 2, 3 the number of base-points @f which are vertices of
the triangleXY Z = 0. Replacingy by ¢C or ¢C? if needed, thek vertices are the
first points of the triple b, p2, p3). We will find Q € {I, P, P?, P3, P4 S, T,} and
B e (C*)?x Symx.y,zy such thaty and QB have the same base-points.

Before proving the existence @, 8, let us prove how it yields the result. The fact
thaty and QB have the same base-points implies that « QB for somex € Aut(P?).
Since divfwg) = div(p.(wo)) = div(Q.(wo)) = div(B«(wp)), we also have diw(wo)) =
div(wo), which means that € (C*)? x Symy y.z) (Lemma 5.1).

We find now g and Q, by studying the possibilities fok.
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If k =3, the base-points af are p, p2, ps and it suffices to choos® = 12 and
B =1

If k = 2, the base-points are;, p2, U, whereu € (L; U L) \ Ls. We choose
B € (C*)? which sendsu onto g; or g, and choose respectivel) = P or Q = P%.

If k=1, the base-points ang,u,v, whereu € L1\ (LoUL3). If ve L, we choose
B € (C*)? which sendsu onto g; and v onto g, and choose the® = P2. If v € L,
we chooses = /'C~1 , whereg’ € (C*)?, such that sends respectivelyp;, u, v onto
P2, 02, Gz, and chooseQ = P3. If v € L1, we chooses € (C*)? which sendsu onto
g1 = (0: —1:1); the pointv is sent onto (Q A : 1) for somei € C*\ {—1}. We can
thus chooseQ = T,.

If k=0, the base-points ang, v, w, which belong respectively tb;, L,, L3. We
choosep € (C*)? which sendsv onto g, and w onto gs. The pointu is sent onto
(0:x:1), for somexr € C*\ {—1} (» is not—1 becauseu, v, w are not collinear). We
chooseQ = S.. OJ

Now, using all above results, we can prove Theorem 1, which @irect conse-
quence of the following proposition.

Proposition 5.3. The group Symp is generated (§*)?, C and P.

Proof. Letf be an element o8ymp If its degree is 1, it is an automorphism of
P2, which is thus generated b and P (Lemma 5.1).

Otherwise, we writef = 6, o---06; using Proposition 4.2, and denote hythe
number ofé which have at least one base-point which is not a proper pafirie2.
We prove the result by induction on the paim, (), ordered lexicographically, the
casem = n = 0 being induced by Lemma 5.1.

Suppose first that the three base-point®pfire proper points oP2. In this case,
we apply Lemma 5.2 and writ®y = «Qp, wherex € (C*)ZxSyn}X,Y]Z), andQ, B are
generated by@*)?, C and P. Replacingf with f(Qp)~, we replace the paimg, n)
with (m, n —1).

Suppose now that at least one base-pointgfsay a, is not a proper point of
P2. Denote byLi, L, L3 C P2 the three lines of equatioX =0, Y =0 andZ = 0.
Each of the three lines; is a pole ofwy and its image by, is thus either a point
or a line. This means that there is at least one base-pointach ef the three lines
L1, Ly, L3, and thus that the two other base-pointsdgfare proper points, ¢ € P?,
and at least one of the two points ¢ belongs toL; for i = 1,..., 3. We choose
some proper pointd of the triangle, not aligned with any two of the poirasb, c.
There exists a quadratic transformati@hof P2 with base-pointsh, ¢, d. The mapQ
sendswgy onto a normal cubic form by Proposition 3.4. Moreover, the gmaf any
of the linesLy, Ly, L3 is a line or a point, s@Q sendswy onto a normal cubic form
corresponding to a triangle. Replaciii@g with its composition with an automorphism
of P2, we may assume that the triangleXsy Z= 0. Becausea is not aligned with any
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two of the pointsb, c, d, the linear system of conics passing throwglb, c is sent by
Q onto a system of conics with three proper base-points. Irseguenced; Q! is a
quadratic transformation with three proper base-poineplatingd; with (0:Q 1) o Q,
we replace i, n) with (m—1,n + 1). []

6. The group H = (SL(2,Z), P)

Let us now focus ourselves on the grotip of finite type generated by SL(Z)
and P, or simply by C, I, P (and in fact only byP and C sincel = PCP). Recall
that C is the automorphismX :Y : Z) — (Y : Z : X) of order 3 of P? and thatl and
P have respectively order 4 and 5.

Recall the following notation for the pointpy, p2, ps, d1, 02, U3-

pr=(1:0:0), po=(0:1:0), ps=(0:0:1),
gp=@0:1:-1), g2=(1:0:-1), g3=(1:-1:0).

We moreover denote by the point in the first neighbourhood qf; which corres-
ponds to the tangent = 0, and do the same fopZ, p/ ™4, pX, p%, aX and so on.

We now define twelve quadratic maps containedHn whose three base-points
belong to the setps, pY, p7, p; "%, d1, 9} or to its orbit by C.

1
Qi=1, (;/, x), (Z%: XY:Y2), P1, P2, P,
1
Q=13 (y, ;), (XY:Z2: X2), PL. P2, 3’
_ 2 11 XZ:
Qs =12 ) (YZ:XZ:XY), P1, P2, P,
+1
Qe =P, (y, yx ) (XY : (Y +2)Z:X2), P1, P2, G,
Xx+1
Os = pL ( . ,X), Z(X+2): XY:Y2), PL. P2, G2,
Qs = P12 (%,x(ygl)), (Z%: (Y +2)X : Y 2), P P2, Py 7,
11
Q, = P12 (yxj(' , ;) (X +2)Y :Z2%:X2), P P2, P37,
Qs = I2P, (E, X ) Z(Y +2): XY Y(Y +2),  pupl.a
y'y+1
X
Qg = IP, (y+1’y)’ (XZ:Y(Y + 2): Z(Y + 2)), P1, PL, G,
1 1
O = P2, (y:: X +ny+ ) (Y(Y +2): Z(X + Y + Z) : XY), py, G, Gz,
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1 1
Qu = P3C, (X +ny+ , X; ) (X +Y +2)Y : Z(Y + 2) : X2), pu, s, G,
+ 1)
Q2 = PIP, (y, y < ) ) (XY : (Y + 2)*: X2), PL, G, G-

Any element ofH can be written as a word written with the letteZs |, P. We
will say that alinear word is a word of typeC? with a € {0, 1, 3. Similarly, we
will say that aquadratic wordis a word of typeC2Q;CP, where 1<i <12, a,be
{0, 1, 2. Note that a linear word corresponds to a linear automomplis P2 and that
a quadratic word corresponds to a quadratic birationalsfoamation of P2.

We would like to prove that the relations

R={1*=C®=][C,1]=P°=1,PCP=1}

(which can easily be verified) generate all the otherddia= (I, C, P). To do this (in
Proposition 6.6), we need to prove some technical simpleviasn(Lemmas 6.1, 6.2
and 6.5) and one key proposition (Proposition 6.3).

Lemma 6.1. If Q is a quadratic worgthen Q* and rQr~! are quadratic words
for any r € Symy v z) C Aut(P?) (permutation of the coordinates

Proof. If r = C, thentQr~! is a quadratic word by definition. We can thus
assume that isthe map K:Y :Z)— (Y : X: Z) (or (x,y) — (y,x)), which conjugates
P, I, C to respectivelyP~%, |-1, C~1. If Q is a power ofl or of P, it is clear that
Q! = tQrtis a quadratic word. It remains to study the case wkke= Q; with
i €{6,7,8,9,12.

First, we do the case of inverses. SINRBEP = |, we have Q) ' = I°P~1 =
IPC = QoC, and thus Qo)* = CQs. Moreover, Q;)~* = I2P = Qg. Finally, using
[4=1andl = PCP, we have

Q) =Pt tpt=pPYPCP)I(PCPP1=CPIPC=CQyC.

Now, the conjugation. We haveQgr ' = Q; and tQgr ! = I2P1 =
[ (PCP)P = 1PC = QgC. This implies thatr Qoz ! = QgC. Finally, 1Q,r ! =
(Q12)7t is a quadratic word, as we just proved. ]

Lemma 6.2. The words

|api1 Pilla Pillapil

where a€ N, are equivalentup to relations in Rto quadratic words.
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Proof. From the list, we see that any non-trivial power lofor P is a quad-
ratic word. In particular, the casa = O is trivial. Using PCP = |, we find the
following table:

12p PI3P PIap-1

IP=Qo |PIP=Qp |PIPL=PXC
2P = Qs c-tp-ic! PIPC = Q.C
p-ic-! | PI-lP=C~!| PI-lp~l1=C1p?

wWN R

the result is now clear fot2P, P12P and PI12P~1.

For anya, the word 12P~! is equal tol*Y(PCP)P~1 = I31PC, and is thus
also a quadratic word. The word®*!|?2 being the inverses of 2P*!, these are also
quadratic words (Lemma 6.1). The same holdsRot 2Pt = (P12P)~L. It remains
to see thatP~112P is a quadratic word for each. Sincel? = PCPI2P~1C1P~,
we find P~112P = CPI2P~1C1, which is quadratic word sinc® 12P~! is one. [

Proposition 6.3. Let f and g be two quadratic words in H. If the two quadratic
maps associated have twespectively threecommon base-pointshen fg? is equal
to a quadratic(respectively linear word, modulo the relations R.

Proof. The list of the twelve quadratic words above give thesible base-points
of f andg: the base-points 0Q; and CQ; are the same, and the base-pointSpC
are the image byC~! of the base-points ofi.

A quick look at the list shows that if and g have the same three base-points,
then f = C'g, for some integeii. In particular, fg~* is equal to a linear word. We
have thus only to study the case when exactly two of the these-points off and
g are common.

In the sequel, we will use the following observations:

(i) we can exchange the role df andg since fg! is a a quadratic word if and only
if its inversegf~! is (Lemma 6.1);

(i) we can replacef and g with C' f and Clg since this only multipliesfg™ by
some power ofC;

(iii) we can replace bottl andg with their conjugates under any permutation X{ Y, Z),
using Lemma 6.1.

Using (iii), we can “rotate” the two common points by actingttwC, which acts
asps > P2+ Pr, Gz > G2 > 1, Py — pX — pf and so on. The possibilities for the
two common base-points can thus be reducedipg p2}, {01, 02}, {01, d;*} or {ps, u},
where u € {qy, Gz, O3, Py, pZ, p; T4}. Conjugating by X : Y : Z) = (X : Z:Y) if
neededu may be chosen ifqy, Gz, py, py.} only.

We study each case separately.

(a) Case{pi, p2}—Using (i) and reading the list, we can choose thitg €
{P*1, P12 | *} (here the star means any power Igf If both f and g are pow-
ers of |, or both are powers oP, so is the productfg™, and we are done. If is
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a power ofl andg is a power ofP, then fg~! is equal tol' P*! and the result fol-
lows from Lemma 6.2. Ifg = P*112 and f is a power ofl, then fg~! is again equal
to 1' P! for some integeii. If g = P*!12 and f = P*?, then fg=! = P*1|2Pp+1,
which is a quadratic word by Lemma 6.2.

(b) Case{qs, q.}—The only possibilities forf, g are P? or P3, and fg=! = P*L.

(c) Case{ar, g;'}—The only possibility isf = g = Q1, = PIP, a contradiction.

(d) Case{ps, g1}—The third base-point can be respectively, ps, o, Gs, Py, p{ or
gy, and this corresponds respectively By P*C~t = 13p, P2, P3C1 = P 1I1p,
2P, IP and PIP. In particular, f and g are equal tof’P and g’'P where f’, g’ e
{P*L1, P11, 1*}. Here, fg~? (or its inverse) belongs toP*, | *, P *, P P*1} and
we are done by Lemma 6.2.

(e) Case{pi, qo}—The only possibilities forf, g are P~ or P2, and fg=! = P*3,
(f) Case{ps, py}—Here f, g € {1, 12P} and fg=t = (12P1~1)*1, a quadratic word
by Lemma 6.2.

(g) Case{py, pf*Y}—Here f, g € {P12, P7LI12C™! = P~C7 %12} and fg! =
(PCP)*! = | +1, O

Corollary 6.4. Let W, W> be two quadratic words. If YWV, corresponds to a
birational map of degred (respectively2), then WW; is equal modulo the relations
R, to a linear word (respectively to a quadratic wojyd

Proof. The map corresponding W,W; has degree 1 (respectively 2) if and only
if the maps corresponding to\, and W;)~! have 3 (respectively 3) common base-
points. The result follows then from Proposition 6.3. O

Lemma 6.5. Let &, a,, ag be three non-collinear distinct pointsuch that
(Q) fori =1, 2,3, is a base-point of a quadratic word
(P) for i =1, 2, 3,if & is not a proper point of the planet is infinitely near to a
point &, j #i;
(¢) for any line L of the triangle XY Z 0 in P?, there exists an jawhich belongs
to L.
Then there exists a quadratic word Q having,ay, ag as base-points.

Proof. Let us writer = #{a1, ap, ag} N {p1, P2, p3} € {0, 1, 2, 3.

If r > 2, we can assume that = p;, ax = p» (up to renumbering and multiplying
by C or C?). The last pointas being not collinear ta; anday, and being a base-point
of a quadratic word, it belongs top), pX, ps, di, G2, P17, p5XT4}. We can choose
Q=0Q forie{l,...,7}.

If r =1, we can assume that = p;. Condition @) implies thatq; is equal to
a; or ag. The possibilities for the remaining point afe;, p7, gz, gs, 4}, and we can
chooseQ = Q; fori €{8,...,12.
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The case = 0 is not possible. Otherwise we would have

{a1, &, as} C {01, G, U3, G;, O , G5},

which is impossible since, gz, gz are collinear. L]

Proposition 6.6. Let W be a word in | P, C. If W corresponds to a birational
map of degreel or 2, it is equal up to relations Rto a linear or quadratic word. In
particular, if W corresponds to the identity @ir(P?), it is equal to1l modulo R.

Proof. If W is a power ofC, the result is obvious, so we can wrid/ =
W - - - WoW; where eachW, is a quadratic word. Note that many such writings exist.
We call A the linear system of lines dP?. Fori = 1,...,k, we denote byA; the
linear system ofW - - - WoW;(Ap) (identifying here the word with the corresponding
quadratic map ofP?), and byd; its degree. Note thatl € {1, 2} is the degree of
(the birational map corresponding tdy. We write D = maxX{d; |i = 1,...,k} and
n=maxi | d = D}.

Suppose first thaD = 2. If k > 1, the mapW,W; has degree 2 or 1 and we can
replace it with a single quadratic or linear word (Coroll&y). Continuing in this
way, we show thatV is equivalent, moduldR, to a linear or a quadratic word.

We suppose now thaD > 2, which implies that 1< n < k. We order the pairs
(D, n) using lexicographical order, and proceed by inductioroviag that O, n) can
be decreased, we will reduce to the cd3e= 2 studied before.

If r =degW,.1W,) € {1, 2}, we can replaceN, W, with a single quadratic or
linear word (Corollary 6.4), and this decreasés, (). We can thus assume that=
degWh 1 Wh) € {3, 4.

We are looking for a quadratic wor@ satisfying the following property:

deg@Q(An)) < dy = deg(An),

() 1y _ [(2,2 0 1 = degWa i Wo) = 3,
(degQW), degfihs1QY)} = {{2’ SR VA O

We first show that such & gives us a way to decreas®,(n), before proving
that Q exists.

If r = 3, both QW, and W,,1Q~! have degree 2 so are equivalent to, up to
relations in R, to quadratic wordsr; and o, (Corollary 6.4). ReplacingV,1W, =
(Wh41Q1H)(QW,) by 0,01, we decrease the paiD(n). The replacement is described
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in the following commutative diagram.

an An Wn+1
An-1 ow W ot Ant1
Q(An)
deg(QWn) = deQWn+lQ_l) =2

If r =4 and degQW,) = 2, QW, is equivalent to a quadratic wora,. More-
over, since ded,.1Q 1) = 3 and degQ(A,)) < D, we can use the cage= 3 de-
scribed before to writeW,,1 Q! as a product of two quadratic wordso; satisfy-
ing deg61Q(A)) < D. The replacement oV, W, with o,0100, described below,
decreases the paiD( n).

W”,-»""-W A Wn+1

Q—lg SN
An1 5 Ani1

QWh i WhaQ L7
\ H UZT
[e0]

QAn) —2 5 01Q(A)
deg@QW,) = 2, dean+1Qil) =3

If r =4 and deg{V,.1Q 1) = 2, W,.1Q! is equivalent to a quadratic worgh.
We again apply case = 3 (since degQ(Ay)) < D) to replaceQW, with a product of
two quadratic wordsr,o; with degei1(An-1)) < D. The replacement oV, W, with
000201, described below, decreases the pd, ).

WA“-
Wy T W

An-1 : Ani1

ldl " QWA Wn%

Ul(An—l) Li Q(}/\n)

deg(QWn) =3, dean+1Q_1) =2

It remains to prove the existence §f satisfying the propertyx{.

We haveD = d, = deg(A). The systemA, 1 = Whi1(An) has degreel,, 1 < D,
and An_1 = (Wh)*A, has degreal,_; < D. Denote respectively by = {s1, S, Ss}
and T = {ty,t,,t3} the base-points oV, .1 and W,)~1. For any pointp, we will write
m(p) the multiplicity of A, at p. The fact thatW,,,; is a quadratic map with base-
points s, , S3 implies thatd,,1 = degWh1(An)) = 2D — Zi3=1 m(s). In particular
Y2 m(s) > D. Similarly, dys = 2D — Y2 m(t) and Y2, m(t) > D.
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In order to find Q, we will find its three base-points. We are looking for three
distinct pointsay, ap, a3 € SU T which satisfy the following conditions:

3
> m(@) > D,
(%%) i=1
2,2 if r=degWhi1Wh) =3,
{1,2 if r=degW,1W,) = 4.

() [for each lineL of the triangleXY Z = 0 oneg belongs toL.

{{all a, a3} N S, {a11 ap, a3} N T} = {

The conditionZ?=1 m(a) > D implies that the three points are not collinear (because
An has no fixed component). Replacing a patby &' if & is infinitely near toa/
and if & ¢ {a;, &, as}, and then applying conditionef, we get a quadratic wor@
having a;, a;, az as its base-points (Lemma 6.5). Conditios)(implies then ).

It remains to find three pointa;, a,, ag satisfying &x) and ). This is now done
separately in the cases= 3 andr = 4.

Suppose that = 3, which means thaSN T = {u}, for some proper pointi of
the plane. We order the points & and T such thatS = {u, s, S}, T = {u, ty, to},
with m(s;) > m(s;) and m(t;) > m(t;). We observe that at least one of the inequalities
m(u) + m(ty) + m(s;) > D, m(u) + m(s;) +m(ty) > D is satisfied. Indeed, otherwise the
sum would giveZ?=1 m(s) + Zf’zl m(t;) < 2D, which is impossible. We assume first
that m(u) + m(sy) + m(ty) > D, and write Ay = {u, s;,t1}, A> = {u, S, tp}. Fori =1,2,
we haveZpEAi m(p) > m(u) + m(s;) + m(ty) > D, and thus the three points o4
satisfy condition £x) and in particular are not collinear. We claim now that asteane
of the two setsA;, A, satisfies condition«). Suppose the converse for contradiction.
This means that for = 1, 2, there exists a ling; in the standard trianglXY Z= 0
such thatL; N Ay = @. SinceT = {u, ty, tp} satisfies condition«), we see that;
Lo\ Ly andty € L1\ Lo, in particularL; # L,. Denoting byLgs the last line of the
triangle, we haveu, s; € L3\ (L1 U Ly). Sincet; andt, are not collinear withu and
s, both do not belong td_3. This implies thatT = {u, ty, to} = {01, 02, g3}, which is
impossible sincey, gz, g3 are collinear (they belong to the ling€ +Y + Z = 0). The
casem(u) + m(t;) + m(s;) > D is the same, by just exchangir®and T in the proof.

Suppose that = 4, which means thaBN T = @#. We order the points and
ti such thatm(s;) > m(s;) > m(s3) and m(ty)) > m(ty) > m(t3). We observe that at
least one of the inequalitie®i(s;) + m(tz) + m(ts) > D, m(ty) + m(sz) + m(sz) > D is
satisfied. Indeed, otherwise the sum would gEézl m(s) + Z?zl m(t) < 2D, which
is impossible. We assume first thafs;) +m(ty) + m(ts) > D, and write A; = {s;,1o,t3},
Ao = {s1, t, t3}, Az = {s1, 11, t}. Fori =1,2,3, we havezpeA‘, m(p) > m(s) +
m(tz) + m(ts) > D, and thus the three points & satisfy condition £x). We claim
now that at least one of the three séissatisfies condition«). Suppose the converse
for contradiction. This means that for= 1, 2, 3, there exists a ling; in the standard
triangle such that; N A; = @. SinceT NL; # @, we havet; € L; for eachi andtj ¢ L;
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for i # j. This implies that the three points are contained ifds, 02, ds, 6%, 4y, 45},
which is impossible becaus€ = {tj, tp, t3} is the set of base-points of a quadratic
word (we can see this on the list of base-points of quadraticdsy or simply observe
that i1, gz, g3 are collinear). The case(t;) + m(s;) + m(s3) > D is the same, by just
exchangingS and T in the proof. ]
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