Gong, F.-Z., Liu, Y. and Wen, Z.-Y.
Osaka J. Math.
50 (2013), 491-502

RICCI CURVATURE OF MARKQOV CHAINS ON
POLISH SPACES REVISITED

Fu-ZHou GONG, YuAN LIU and ZHI-YING WEN

(Received December 1, 2010, revised September 26, 2011)

Abstract
Recently, Y. Ollivier defined the Ricci curvature of Markovaihs on Polish

spaces via the contractivity of transition kernels undes itH Wasserstein metric.
In this paper, we will discuss further the spectral gap, agytrdecay, and logarith-
mic Sobolev inequality for the.-range gradient operator. As an application, given
resistance forms (i.e. symmetric Dirichlet forms with finiéffective resistance) on
fractals, we can construct Markov chains with positive Rimgivature, which yields
the Gaussian-then-exponential concentration of invardistributions for Lipschitz
test functions.

1. Introduction

Recently, Ollivier [9] introduced theRicci curvatureof Markov chains on Polish
spaces, which was characterized by the contractivity afsiteon probabilities under the
L' Wasserstein metric. In this paper, we will discuss and imprsome results about
the spectral gap, entropy decay, logarithmic Sobolev iaktyu(LSI in short) for the
A-range gradient operatgrand related topics.

Let (X, d) be a Polish space endowed withrandom walk m= {my}ex, i.€e. a
family of Borel probability measures oK. Denote by Lip the set of 1-Lipschitz func-
tions, M; the set of Borel probability measures, ad@u, v) the set ofcouplings of
w andv (i.e. all joint distributions onX x X with marginalsu and v). Supposemy
depends orx measurably, and has a finite first moment (jfel(o, y) dmy(y) < oo for
someo € X). Define theL® Wasserstein metri¢or transportation distandebetween
my and my as

Wy, my) = inf /X de, ) dr(e. ).

meC(my,my)

Then, (M1, W;) is a complete metric space (for example, see Villani [1Hyuiva-
lently, the Kantorovich dual theorem reads (see also [12])

/fdmx—/fdmy
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(1.1) Wi(my, my) = sup
feLip,
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According to [9] Definition 3, define the Ricci curvature of,(d, m) as

Wl(mX1 my)
dix,y)

Supposex (X, y) = « = 0 throughout this paper. Denote By the Dirac measure at
andp «m(-) = [ my(-)du(x), whenk > 0, (1.2) implies

(1.2) kX, y):=1— VX # Y.

Wi(8x * m, 8y * m) = Wi(my, my) < (1—«)d(X, y) = (1 — k)W (S, dy),

which means the transitiomm is a strictly contractive map ontoM{1, W;) with the
factor 1— «. So there exists a unique probability measuresuch thaty «* m = v,
which is called aninvariant distribution By convention, denote by-(, -) the inner
product of L2(X, v), || - |2 the L2-norm, andv f the expectation off.

Let's give an overview of main results in this paper as foow

Invariant distribution for nonnegative curvature. In Section 2, we will discuss
the existence and uniqueness of the invariant distributionthe critical casec = 0,
which meanstm is non-expansive on\t;, W;). Define theaveraging operator

M f(x) =/ f dmy,

transition kernel M, A) := M1a(x) = my(A), and denote byM" the n-step transition
kernel. According to Szarek [11], we have

Proposition 1.1. Supposec = 0. Let My = (1/N) >, M", suppose also
(€) 3z, V6 > 0, I, s.t. limsupy_ ., Mn(X, B(z, §)) > 0.
Then {M"(z, -)}n=1 is tight and there exists an invariant distribution. Moreqvif
k(X,y) > 0 everywhergthe invariant distribution is unique.

REMARK 1.1. (&) is necessary to the existence of invariant distributions.

Spectral gap. Spectral gap will be revisited in Section 3. Define ttiéusion
constantat X aso (x) = ((1/2)ff d(y, 2)2dmy(y) dmx(z))l/z, andaverage diffusion con-
stanto = |jo(X)|2. According to [9] Proposition 30, assunee< oo and either M is
self-adjoint or X is finite, then the spectral radius of M dr?(X, v)/{cons} is less
than 1—«. So the spectral gap of ldM in L2(X, v) is at leastx.

Fu-Zhou Gong and Li-Ming Wu give a counterexample (which Wi mentioned
later) to say that, if M is non self-adjoint, there may be nedpal gap inL2(X, v). If
M is self-adjoint, we can remove the original assumption< oo in [9] to show that
the spectral radius of M is strictly less than 1 yet.



SoME NOTES ONRICCI-OLLIVIER CURVATURE 493

Theorem 1.2. Supposec > 0 and M is self-adjoint. Then the spectral radius of
M on L%(X, v)/{cons} is at mostv/1 — k.

In [9] Section 3.3.6, there defines a reversible random wallNowith two param-
etersa andb, which admits positive Ricci curvature and a unique invaridistribution
v. Lettinga = b giveso = co. We point out, from the above theorem, the spectral
gap of ld—M in L?(X, v) does exist, and then the Poincaré inequality holds. Accord
ing to Aida and Stroock [1] or Ledoux [7], one might look fomgato proving the
exponential concentration of for Lipschitz test functions. However, for this moment,
v has a heavy tail, which means there is no exponential coratemt at all. Hence,
this example shows us that < oo is essentially necessary to derive the exponential
concentration for Lipschitz test functions from the Poigcaequality.

Entropy decay. Section 4 will give an entropy-variance inequality, whichplies
Ent,(M" f) has an exponential decay by using Proposition 1.2.

Proposition 1.3. There exists a constant;(hot greater than2(2 + log 2) such
that for positive fe L2(X, v)

Ent, f <Cy;y/Var, f.

Supposec > 0 and M is self-adjoint then for any te N

Ent, M'f < Cy/Var, f (1—«)Y2

REMARK 1.2. From the inequalityaloga < a? — a, it follows Ent, f <
Var, f/(vf). The right-hand fraction can be much bigger thaiVar, f.

Define the Dirichlet form&*(f, g) = (f, (Id — M?)g), which satisfies a modified
LSI if my is absolutely continuous to.

Proposition 1.4. Supposex > 0 and M is self-adjoint. Suppose&my(y) =
p(x, y) dv(y) with ||p(x, -)|l2 < C, for all x. Then for positive fe L%(X, v)

2
Ent, f < &*(f, log f) + ©1C,

—— = vf.
1-+V1—«

In fact, it is hopeless to obtain the standard LSI Eft) < CE*(f, f), since
E*(f, f) < Var, f by the Holder inequality.
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LSI for A-range gradient operator. Section 5 will be devoted to the standard
LSI for the A-range gradient operator D. According to [9] Section 4, defin

[FCY) = FOO s dey) s diyy
(1.3) Df(x) := sup —————""¢ (xy)=2dlyy)
yyex d(y,y)

Assumeo, := sup(1/2) diam(Suppny) < co. Then a modified LSI holds, i.e. there
exists somex > 0 such that for positivef

(1.4) Ent f := v(f -log %) < (sup4z:()2) [ (fo)z 0

where define théocal dimension p = o(x)?/suVar,, f: f € Lip;} and thevariance
Varm, f = (1/2) [[]f(y) — f(2)|> dmy(y) dmy(2). In fact, 0< A < 1/(2005(1 + U)),
whereU takes the supremum afnstability, which will be mentioned later.

Theorem 1.5. Supposec > 0 and o, < oo. Then for0 < A < 1/(800 (1 + U))

2
Ent,(f2) < 3—i sup,/af]—x) /(Df)zdv.
K X X

In general, there is no way to define a gradient-type symm@&iiichlet form £
such that&(f, f) ~ f(Df)2 dv. Otherwise, the above standard LSI yields the Gaussian
concentration for Lipschitz test functions (see [1]), whimontradicts the case thatis
allowed to be Poisson-like.

Ricci curvature for resistance forms. In Section 6, let's consider a probabil-
ity space K, u) equipped with a resistance forng,(¥), namely symmetric Dirichlet
form with finite effective resistance (R, y), see Kigami [5]. Moreover, supposé,(F)
is conservative.

Proposition 1.6. Let {G,},-0 be the resolvent operator family associated to
(&, F), and m a random walk with its average operatk = «G,. Then u is in-
variant to m and (X, V'R, m) has a positive Ricci curvature at least> 0 provided
that 2« | R(0, X) du(x) < (1 — «)? for some oe X. Moreoverif R(o, X) is uniformly
bounded 1 satisfies the Gaussian-then-exponential concentratiohiftschitz test func-
tions by[9] Theorem 33

REMARK 1.3. Equip the real lineR with a probability measure (dx) =
C exp(c|x|*) dx for « > 2. Define£(f, f) = (1/2) [|f’|>dr. Then R(0, X) is not
uniformly bounded, but satisfief R(0, x) du(x) < oo.
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For a basic theory of Dirichlet forms, we refer to Fukushir@shima and Takeda
[4], or Ma and Roéckner [8]. Note that for resistance forms actal sets (for example,
the Sirphski gasket), writingG to be the collection of Lipschitz functions under the
metric «/R(X, y), there usually occurss & G.

Finally, we would like to mention that, all above functioriakqualities use a uni-
fied approach in the viewpoint of Ricci curvature from [9]t might be not sharp for
concrete models of Markov chains.

2. Invariant distribution for nonnegative curvature

Supposec = 0, (1.1) and (1.2) imply that for ang > 1 and f € Lip;
IMPf(x) =M f(y)l <d(x,y), Vx,yeX

So {M"f},-1 is a (uniformly) equicontinuous family oiX.
Now, let's prove Proposition 1.1.

Proof of Proposition 1.1. If€) holds, the tightness dM"(z, -)}n>1 and existence
of invariant distributions directly follow from [11] Progition 2.1 due to equicontinuity.

Moreover, suppose(X, y) > 0 everywhere. LeE be an optimal coupling of tow
distinct w1, uo € M. Similar to [9] Proposition 20, let,y be an optimal coupling
of my and my, depending onx, y) measurably. Ther &, ,dZ(x, y) is a coupling of
w1 * m and up * m, which yields

Wi (g % M, pa % m) s/d(x, y)d{/ Exy dE(X, y’)}(x, y)
= [ dex vy deey ) dE(x )
= [ 40, ¥IE= (¢, Y AR Y) < Wales, o)
It follows w1 = uo if both uy and u, are invariant distributions. O

3. Spectral gap

Let's point out, if M is non self-adjoint, there may be no spacgap inL2(X, v).
Fu-Zhou Gong and Li-Ming Wu give a counterexample as follows.

Let X = {0, 1N be the symbol space of one-sided infinite words, equippeld avit
metric d(x, y) := 2~ Mn=xa#} for x = xgx, -+ andy = yoy1---. Let & be a{0, 1}-
valued Bernoulli random variable with the laid(¢é = 0) = P(¢ = 1) = 1/2. Define the
average operator as Mx) = E[f(£x)], which determines a random walk. Then,
(X, d, m) becomes a compact Polish space and has a Ricci curvatusast (2).
The unique invariant distributiom is the infinite product measu®Y. However, the
spectral radius of M orL?(X, v)/{cons} equals 1, since MM = Id.
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However, the spectral gap in the set of Lipschitz functiohsags exists, since
IMf —vfllip < @—)l fllLip-

Now, we prove Theorem 1.2 without the original conditien< oco in [9].

Proof of Theorem 1.2. Define a new metdcas

N _[d(x, ), if d(x,y) <1,
dix.y) = {«/aix, y), otherwise.

Denote by Lig(d) the set of 1-Lipschitz functions with respectdo Whend(x,y) <1,
we have due to Ligd) c Lip, that

We(m,, my) := sup [MT(x)—Mf(y)l < (@-#)d(x, y).
felip,(d)

When d(x, y) > 1, we have for any coupling of m, and my that

2
(/ &amMQm)s/ A&, n) (e, )
Xx X Xx X

which implies

Wla(mx: my) < /Wi(my, my) < Vi—«- a(X, y).

Hence, ¥, d, m) has a positive curvature at leadt=1— +/1—«x > 0. The as-
sociated diffusion constar(x) is L2-integrable sincev has a finite first moment by
[9] Corollary 21. Then, we can apply the spectral gap resulf9] Proposition 30 to
(X, d, m). O

4. Entropy decay

In this section, we can prove an entropy-variance inequalhich implies the ex-
ponential decay of entropy. Then we will obtain a modified ifShe density function
dmy /dv belongs toL?(X, v).

According to the proof of Theorem 45 in [9], it follows

Lemma 4.1. Let f>0and te N. ThenEnt, f =), [ Enty, (M' f) dv(x).
Proof. This summation formula can be verified straightfatva ]

Referring to Barthe and Roberto [3], we give a preliminargguality, where the
control constant is a bit different.
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Lemma 4.2. Let ¥, (s) =slog(s/r) —(s—r) for any sr > 0. Then
W,2(s?) < 2(1+log p)(s—r)?, Vs e|O, prl.

Proof. Let®(s) = 2(1+ log p)(s — r)? — W;2(s?), which satisfies @/dss—; = 0
and d¢®/ds? = 0 on [0, pr]. O

Now, let’s prove Proposition 1.3. Some ideas come from [3].

Proof of Proposition 1.3. By the definition ofl;(s), we have Entf =
J W, ¢(f)dv. DenoteE = {x: f(x) = 2vf}, which implies for ally € E

0 _ [f(x)

vi T\ v

(4.1) f(x) <2(f(x)—vf), log

Using (4.1) and the Holder inequality gives

@) := / W, (f(x)) dv(x) < / 2(f(x) — vf),/m dv(x) < 24/Var, f.
E E vf
Moreover, puttinge =2 andC = 2(1+ log p), we have by Lemma 4.2 that
()= [ 00(160) du()
EC
< c/ (VF(x) = Vv )2 du(x) < Cy/Var, f.
EC

Combining the above estimates and Theorem 1.2 yields

Ent, f < (I)+ (II) < (2+ C)4/ Var, f.
Hence, we obtain the exponential decay of Bvit f by Proposition 1.2. O

Now we prove Proposition 1.4, a modified LSI.

Proof of Proposition 1.4. Put @) = [ Enty, f dv(x). Lemma 4.1 and Propos-
ition 1.3 give

Ent, f = ;}Q(Mt f) < Q(f) + %,/Varv(m f).

Then, we have by the concavity of logarithm and self-adjass of M that

Q(f):/f-Iogf—Mf-longdv$€*(f,Iogf).
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Recall the notationp(x, y) = dmy(y)/dv(y), we also have by the Minkowski inequal-

ity that
2 1/2
dv(X))

<[ ( [110=viizp. v dv(x))l/z du(y) < 2o f.

Nar (M) = (/ ‘/ F(y) — v f dmy(y)

Combining above estimates, we complete the proof. O

5. LSI for A-range gradient operator

Let & y be an optimal coupling o, andmy for x # y, and

(X, y) = d(x—ly) [ (d(x, y) — d(x, Y)). dey(X', ),
1
atx. y)

satisfyingx (X, ¥) = k4 (X, ¥) —«-(X, y). According to [9] Definition 42, theinstability
U(x,y) is defined adJ(x, y) = k—(X, y)/«(X, y) andU = sup.., U(X, y).

Recall the definition of.-range gradient operator (1.3), let's address two facts fro
[9] Theorem 44 and Lemma 48 respectively.

(X, y) = / (d(x, y) — (X, Y))_ déxy (X, ¥),

Lemma 5.1 (Gradient Contraction) Supposex > 0 and o, < c0. If 0 < A <
1/(2004,(1 4 U)), then for any f withDf < oo and any x

K
(DM f)(x) < (1— E)M(D £)(%).
Lemma 5.2. Let f satisfyingDf < oco. Then for any yz € Suppmy
[f(y) = f(2)] < €” d(y, 2M(D f)(x).
Denote by I the 4i.-range gradient operator.

Lemma 5.3. Let f satisfyingDf < oco. Then for all x
2 2 2
Da(T)(x) < 2/ T (X)[D T (x) + —-(DT)(x).

Proof. We have by using < ! that

| f(y)— f(x)|eizx Ay e3rd(y.%) <DfX e31d(y,x)
d(y, x) er er

|f(y)—f(x)|s(
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and for anyy, y’ € X

[ £2(y) = 2 < [F(y) = FOI@IFE)I+ [F(y) = FOI+ [T (y) = FX)D.
Combining the above estimates yields an upper bound 4f H)(x). []

Now, let’'s prove Theorem 1.5, the standard LSI.

Proof. Take 4 < 1/(200.(1 + U)) such that Lemma 5.1 holds fors®. For
simplicity, denotep(x) = o (x)?/ny (see (1.4))a = e'®o~ < e'5 and g = 1/(exr).

Given f with f? > 0 everywhere. Denoth = M!(f?) for t € N. For anyx € X,
due toaloga < a? — a, we have Enj, (h) < Var, h/Mh(x). Applying Lemma 5.2 to
D,h yields

Vary, h (M(D4h)(x))?
Mh(x) < @) Mh(x)

Moreover, it follows from Lemma 5.1 and 5.3 that

M(Dah) < (1 g)tM‘+1(D4(fZ)) <2(1- g)tMth fIDf + A(D ).

Abbreviate A = M*1((D f)?)(x) and B = Mh(x) = M'*1(f?)(x), then combining the
above estimates and Holder inequality yields

(5.1) Enty, (h) < 4a2p(x)(1— g)m(ﬂ+ 5%)2.

On the other hand, recall the proof of Proposition 1.3 in iBactt (replacev by
my), denoteV¥,(s) = slog(s/r) — (s—r) for anyr, s > 0, then

Ent, h = / Wnine () dmy < 2(2+ log 2)/Varm, h.
Hence, by the similar argument to derive (5.1), there is larobound
t
(5.2) Ent, h < 4(2+ log 2)a,/p(x)(1 _ %) (VAB + BA).

Now, lety > 0 be a parameter which will be determined later. Using eit{bel)
if B2A < y?B or (5.2) otherwise, we have

Enty, h < max{4a®(1 + y)?v/p(x), 4(2+ log 2B(1 + y 1)}

Note that /p(X) < v204 < 1/A, the above maximum is not greater than/A6y
taking y = (+/5—1)/2. Finally, we apply Lemma 4.1 to (5.3). []

(5.3)
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6. Ricci curvature for resistance forms

Let u be a Borel probability measure on the Polish space Let (£, ) be a
symmetric Dirichlet form inL?(X, ) associated to a conservative Markov process with
a transition kernelp;(x, dy). According to [5], define

(6.1) R(x,y):= sup M VX, y € X,

sif.nzo  E(F, 1)

which is called effective resistance if it is finite everywdeln fact, R is a metric on
X and €, F) called a resistance form. For resistance forms on frgctasrefer to [2,
5, 6] and references therein. Sturm [10] gave another kingradlient-type construction
via the I'-convergenceargument.

Define a random walkn = {my} (depending orx) by

dmy(y) := / ae™ py(x, dy) dt.
0

Then my € M; due to the conservativenesg, is invariant tom, and the averaging
operator M is self-adjoint sinceg(F) is symmetric. Moreover, recall the definition of
resolvent operators family, we have fV= aG, f.

Now, let’s prove Proposition 1.6 thaX( /R, m) has a positive curvature.

Proof of Proposition 1.6. Denote by Lighe set of 1-Lipschitz functions under
VR. Let f e Lip; and f(0) = 0 foro € X, then f € L3(X, ), Mf =aG, f € F and

M) =M f(y)l < VRX Y)- VEMT, MT).
Applying the basic properties of resolvent operators, weeha
EMIE,Mf) =a(f —aG,f,aG, f) =a(f —M T, Mf),
and estimate respectively

1£(x) ~ MF(x)] < / VROGY) dmy(y), M (x)] < / VR, y) dmy(y).

Denoteg(x) = |/ +/R(0, y) dmy(y), we obtain by the Hélder inequality that

EMT,MF) < a/ VR(0, X)g(x) + g?(x) du(x) < Za/ R(0, x) di(x).

Hence, the desired result follows from (1.2). O
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In particular, a standard LSI (6.2) holds (X, y) is uniformly bounded.

Proposition 6.1. Suppose &, y) < C for all x, y. Then for any fe F
(6.2) Ent,(f2) < 2C&(f, f).

Proof. Due toaloga < a? —a, we have

o _ Van(f?) 1 2 2012
Eny(12) < 2t = e [ 19200 = PO a1 cucy)
Since | f(x) — f(y)|> < R(x, y)£(f, f) by (6.1), we complete the proof. O]

REMARK 6.1. R(X, y) < C meanso,, < oo, SO we can use Theorem 1.5 and
Proposition 1.6 to show the LSI but with a constant much higban Z.
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