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Abstract
We obtain a partial classification result for generic 3-disienal conformally flat

hypersurfaces in the conformal 4-sphere: explicit analgiita are obtained for con-
formally flat hypersurfaces with Bianchi-type canonicali€hard net. This is the first
classification result for conformally flat hypersurfaceghout additional symmetry.
We discuss the curved flat associated family for conformédly hypersurfaces and
show that it descends to an associated family of confornfldtyhypersurfaces. The
associated family of conformally flat hypersurfaces wittaBihi-type Guichard net
is investigated.

1. Introduction

A generic conformally flat hypersurface of the conformalphare comes with a
special coordinate system, its “canonical principal Gaichnet”. These are curvature
line coordinatesx, y, z) so that, in particular, the coordinate system defines &tdp
thogonal system in the intrinsic geometry of the hypersgfa.e., the coordinate sur-
faces of different families, say = const andy = const, intersect orthogonally. Further,
these coordinates form a Guichard net, that is, they satisfgro trace condition (2.1)
for the induced conformal structure. This condition allowsencode the induced con-
formal structure in terms of a single real-valued functieny(, z) — ¢(X, vy, z), which
in turn allows to classify conformally flat hypersurfacestarms of these functions,
satisfying a system of partial differential equations, f&eLemma 1].

As a conformally flat hypersurface also admits conformalrdoates, these can
be used to map the system of coordinate surfaces to Euclidespace to obtain a
Guichard net inR3. The conformally flat hypersurface can then (locally) beorec
structed in an essentially unique way from this Guichardiméfuclidean space, that is,
from the intrinsic geometry of the hypersurface equippethhis special coordinate
system, see [5, 82.4.6]. Thus the classification of genewinnsional conformally
flat hypersurfaces i8* is equivalent to a classification of such Guichard nets inliEuc
ean 3-space or, equivalently, the conformal 3-sphere. ilmdbntext it is an interesting
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question to understand the relation between the geomeltfiise hypersurface and its
canonical principal Guichard net.

Note that this correspondence between conformally flat tsyptaces and their ca-
nonical principal Guichard nets is established fmarametrizedGuichard nets. The
Guichard condition allows for rescaling of the coordinat@dtions by a real constant
A: this is closely related to the associated family of a camfalty flat hypersurface, as
we shall discuss in the last section of this paper. Thus tbeeafentioned relation be-
tween conformally flat hypersurfaces and Guichard nets idliiean 3-space requires
fixing the scaling of the coordinate functions to obtain weigess up to Mobius trans-
formation in the correspondence, cf. [9, Corollaries 34nd 3.2.1].

Some examples and simple classification results were a@uatdim[4] and [5, Sec-
tion 2.4]. Based on [9], we obtained a classification of thdyfdarge class of conform-
ally flat hypersurfaces with cyclic Guichard net, that is,endone family of coordinate
lines are circular arcs in the intrinsic geometry of the hgpéface, in [6]. This class
is characterized by separation of variables in the systedifigrential equations for the
real valued functiorp describing the induced conformal class.

The aim of this paper is to provide a class of examples, whegecharacterizing
function ¢ cannot be written as the sum of a function of one variable ama af two
variables. Or, otherwise said, where the canonical praidpuichard net is not cyclic.

After clarifying the technology to be used in Section 2, wecdss the intrinsic
geometry of the conformally flat hypersurfaces obtaineanfr relatively simple class
of solutionsg that do not give rise to cyclic Guichard nets in general. Wel fihat
there is a constant sectional curvature representativdnefitduced conformal struc-
ture so that all (coordinate) surfaces of the canonical st net have constant Gauss
curvature, that is, the triply orthogonal system is a Biargystem in three different
ways, see [8, §22]:

We say that a triply-orthogonal system of surfaces in a @ristectional curvature
space is of Bianchi-type if all surfaces have constant Gaussature.

Imposing this geometric condition for a non-cyclic Guiaharet, the corresponding
conformally flat hypersurface turns out to have an inducedamal structure given by
a functiong of that type as we shall see in Section 4. Hence we obtain sifitas
tion result:

Main Theorem. Let ¢(X,Y, z) = g(@x+ by +cz), where ¢ = C — Acos 2J and
a, b, c, A, C e R satisfy abc£ 0 and A# 0, £C. Theng defines a conformally flat
hypersurface f in the conformdksphere so that its canonical principal Guichard net
is non-cyclic and oftriply) Bianchi type for a suitable choice of constant sectional
curvature representative of the induced conformal striectulConverselyany conform-
ally flat hypersurface with this intrinsic geometry comesnfrsuch a functionp.
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In the process of proving the latter part of the theorem intiSec4, we obtain
another class of conformally flat hypersurfaces, satigfyimlder conditions on its ca-
nonical Guichard net.

The classifications of 3-dimensional generic conformady flypersurfaces, Guichard
nets and the functiong satisfying a certain set of partial differential equatiorespect-
ively, are all equivalent. However, it is a highly non-tavitask to establish relations be-
tween the geometric properties of a hypersurface and itsnmeal Guichard net and the
analytic properties of the induced conformal structureSégtion 2 we also discuss some
alternative analytic data that may facilitate the undeditag of the interplay between
geometry and analysis. However, as this paper shows, thgsenaf even seemingly sim-
ple classes of conformally flat hypersurfaces is gettingsiasingly laborious as symmetry
is lost. Hence another, more geometric characterizatiaronformally flat hypersurfaces
seems desirable for obtaining a complete classification.

2. The setup

We will work in a Mobius geometric realm, within the same framoek as in our
previous paper [6] (for more background details on the fdismathe reader is referred
to Blaschke’s classic [1], to Cartan’s original paper [3t,to [5]). In particular, our
hypersurfaces will “live” in the projective light cone

S'~L5/R, where L°:={yeR}||y]*=0}

denotes the light cone in Minkowski 6-spaR&: by |-|?> we denote the quadratic form
of the Minkowski inner product o8, so that|y|? > 0, |y|> = 0 or |y|? < 0 accord-

ing to whethery is spacelike, lightlike or timelike, respectively; noteathrescaling

of a light cone lift of a hypersurface corresponds to a canfdrchange of the in-
duced metric,

fosf=e'f=l=(dfdf) =1 =(dE"f) de"f)) =el

Hyperspheres of the conformal 4-sphere are, in this framewencoded by spacelike
lines in RS or either of two unit representatives

seS={yeR}||yf=1).
Note that the quadrics
Q" :={yel®[(y,Q =-1

are spaces of constant curvature= —|Q|? (see [5, Section 1.4]), and that the “stereo-
graphic projections” between any two such quadrics areacordl. In particular, a
conformally flat hypersurface in the conformal 4-sphere barplaced in any of these
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quadrics by means of the scalirgf /(f, Q) (provided that(f, Q) # 0, that is, f does
not hit the infinity boundary ofQ* in case|Q|?> > 0). Thus, if 1, wy, w3) denotes a
principal orthonormal co-frame for a hypersurfageM® — Q* with principal curva-
turesk; (in the space formQ?) then its (real) conformal fundamental forms are

y1 = Vs — k1| k1 — k2|,

v2 = VK1 — k2| |12 — Kea|wa,

s = k2 — k3| |k3 — k1ws.

We shall see later (Section 2.2 below) that theare indeed conformal invariants—
up to permutation and choice of sign: in the case dafeameric hypersurface, that is,
a hypersurface with pairwise distinct principal curvagyran ordering of the princi-
pal curvatures can be used to remove the permutation ampidgtiie sign ambiguity

will play no geometric role other than sign choices for a tnt@l frame and we will

therefore not account for it.

The conformal fundamental forms are close; = 0, if and only if the hyper-
surface is conformally flat, see [5, §2.3.3]. Consequeritly,(locally) integrating the
conformal fundamental forms, we obtain a canonical coatdirsystemx; y, z) for any
conformally flat hypersurface as soon as we assume the hyfsrs to be generic: its
canonical principal Guichard net

dXZ)/]_, dy=)/2, dZ=)/3.

It is obvious that the obtained coordinate system is praici;n order to see that it
defines a Guichard net (cf. [5, §2.4.4]) assume, without lfsgenerality, thatcs is
the middle principal curvature, that is,

(k2 — k3)(k3 — k1) > O
then the induced metric df becomes
(2.1) |=12dx® +12dy? +15dZ with 12 +13 =13.
Hence we can write
(2.2) | = € {cog ¢ dX® + sir? ¢ dy? + dZ}
on the coordinate domaibd ¢ R® with suitable functionsy and .
Here the functionyr reflects the choice of liftf, taking values in a particular

space form@Q* c L®, whereas the functiop encodes the conformal geometry of the
hypersurface.
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By [11], see also [5, 82.3.5], the conformal fundamentahf®rand Wang'’s Mdbius
curvature

K2 — K3
W =

K2 — K1

form a complete set of conformal invariants for generic igpgaces in the conformal
4-sphere: two hypersurfaces are conformally equivalerand only if they have the
same conformal fundamental forms and Mobius curvature.

2.1. Canonical lift. The meaning ofy for the conformal geometry off be-
comes clear from the following consideration, cf. [5, §@]4.let f := e ¥§ with ¢
from (2.2) denote a rescaling of the immersipmto Q* and note that such a rescaling
does not change the conformally flat hypersurface as an isiomeinto the conformal
4-sphereS* ~ L5/R. Then we choose an adapted Mobius geometric frame

(51,82 88 f, f) ~ F: U — 04(6),

wheres, = f,/| f|, etc.,s is an enveloped sphere congruence, that is, it defines a unit
normal field for f: U — L%, and f L s, s is the unique lightlike vector field so that
(f,f) =1, cf. [6, Section 2] or [5, Section 1.7]. Additionally, we ynase the freedom

of choice of an enveloped sphere congruence ta tix be the curvature sphere congru-
ence for thez-direction, that is, we choosgto satisfys, L f, or, equivalently,n3 =0

in (2.3): if t L Q denotes the unit normal field gfin Q* then we takes = t + «f.
Then, using the compatibility conditions, the structureiapnsdF = F® for F can

be written entirely in terms of:

0 w2 —w31 —NM1 w1 X1
—wp 0 w2z —M2 w2 X2
oo | @ o= 0 -n w3 x3

n N2 n3 0 0 x|
X1 —x2 -—x3 —x 0 O
—w1 —w? —w3 0 0 0

where

. 1
w12 = —(py dX + ¢x dy), @1 =cospdX, n =singdX, xi1=o01+ -,

2
i 1
(23) w23 = Yz Cos(p dy! Wy = Sln(p dy, Ny = — COS(p dy, X2 = 02 + éa)z,
i 1
w31 = @z SiNnpdX, wz=dz, n3=0, Xs = 03— s,

X = ¢, dz
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ando; are the Schouten forms of the induced metrie €os ¢ dx? + sir? p dy? +d 2,
see [6, (3.10)]:

Ulz_{(/’xx_(ﬂyy_(/)zz_ﬁﬂ_g}w _ Pxz

sin 2p 2 sin
_ 4 2
(24) Oy = — —(pxx .(pyy Yz — & wy + $yz w3,
sin 2p 2 cosy
2
— — ¢72C0S
_ §.0xz w1 + Pyz w0y & Pxx ‘Pyyl Pzz 2 n ¢z ws.
sing COoSy sin 2p 2

The remaining compatibility conditions then yield a systefipartial differential equa-
tions for ¢ as a necessary and (locally) sufficient condition for thestexice of a con-
formally flat hypersurface withy defining its induced conformal structure via (2.2),
cf. [6, Lemma 1]

Lemma 1. Parametrizing a conformally flat hypersurface: R* > U — S* in
the conformal4d-sphere by its canonical principal Guichard néts induced conformal
structure is given by

(2.5) | = cog ¢ dx? + sir? p dy? + dZ,
where ¢ satisfies

0 = (¢yz tang)y + (pxz COty)y,

O:((Pxx_(Pyy+(Pzz) _ w? (&)
sin 2p « sirfe\e /),

(2.6) 0= (_(Pxx + oyy + (ﬂzz) (05 (‘py)
- + — 1,
sin 2p y cofo\e,/,

0— (ﬁaxx + oyy + Qﬂzz) wf (ﬁl)y) ‘pzz (§0X)
= : - ) 4 — =].
sin 2p ;. cof9\g, ), sife\e/y

Conversely if ¢ satisfies(2.6) then it gives(locally) rise to a unique(up to Mébius
transformation generic conformally flat hypersurface witf2.5) as its induced con-
formal class in terms of its canonical principal Guichardtne

Note that sin2 # 0 as we assume (2.5) to define a non-degenerate metric; the
formal requirementp, # 0 in the equations (2.6) is clearly analytically unprobléma
However, note that the cagg = 0 leads to a special case of our previous classification
in [6]: the normal bundle spéds, f, f1 is flat,

0=dx =gy, dyArdz—g,,dzAdx,
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if the z-lines are circular arcs, cf. [6, Lemma 2]; in particular.tiis case the canonical
Guichard net X, vy, 2) is a cyclic system. We will come back to this case later, in
Section 4.1.

Equivalent formulations of the equations (2.6) may faaiét finding further solu-
tions: for example, the first three of these conditions carfobmulated as the integra-
bility de = 0 of the 1-form

— - Ccos
X (Pyy_ Pzz 2 dz
sin 2p

see [6, Lemma 1], whereas the last can be formulated as thgratility of the 2-form

o 1= —@xz COte dX + ¢y, tang dy + o

(oxx — (Pyy) COS 2 — ¢
sin 2p

on the other hand, the last equation can also be formulatea @mdition on the di-
vergence ofx:

dx Ady;

B = gxzcotp dyAdz+ gy, tanp dzA dx —

Pxx — Pyy — ¢z7COS 2
sin 2

(—¢xz COte)x + (py. tang)y + ( ) = (0% + 9 + 92)z-
z
Here we compute divergence and gradient with respect to #hariétricdx?® + dy? +
dZ of the coordinate domain of the canonical principal Guidhaet.
If we let x denote the Hodge-operator with respect to this metric and set=
—w1, another interesting formulation of (2.6) can be given immie of the forms

tang(x dn + dg,),

£ ._ —
O imatxp= {Cot(p(* dn —dg,).

Clearly, the compatibility conditions (2.6) now read

dot =—do~ and dx6")=dx6").

As
2d 2d
d9+=sin§p/\9++tan(pd*dn, d*G*:ﬁ/\*@*—{—tanq)d*dwz,
—2d -2d
- — Sinzz A97+Cot(pd*d]7, dx6" = Sinzz A*97—00t¢d*d¢2,

these become
O=dxdnp+dpA(@T—67) and O=dxdp, +dp Ax(B" +67).

A key problem, however, in determining conformally flat hygaefaces from either the
forms « and B or from 6% will be to extracty or the connection form (2.3) from
these forms.
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2.2. Change of lift. In our analysis below, we will repeatedly need to change
our light cone lift f of the conformally flat hypersurface and, consequentlyadapted
frame F. Thus we change the lift of the hypersurface,

(2.7) f—f:=ef,

where ¢ denotes some function, while keeping the curvature sphengraences as
part of our frame:

F=(ssn%s f, f)=>F =(@,8,8,s f, ),

where
/ £ £/ — £ 1
s >g:=s+ayf and f— f:= *ﬁ{f—]Zajwsj—E;(ajw)zf}

since f’ L §, s, f’ is lightlike and satisfiesf’, f') = 1; here ¢, 32, 33) denotes
the dual frame field of the orthonormal co-frame;(w,, wz) of the induced metric
| = (df, df).

It is then straightforward to compute the effect on the dtmecequationsp — @',
Clearly,

(2.8) wi — o =0 and n —n =—(ds §) =,
since f envelopss so thatds L f. Then

ony = 0} = (5, 05) = any + 90 — Ay o

(2.9) x — x' =—(ds ) =e"’{x—23jwm},
j

i = =~dg, f) =e’{x )

with

1
(2.10) =) (81- dyo; + oy — Yo e, + E(a,«p)zwi).

i
From the Gauss equations
a)i'/\aj’+0'i’/\a)3 :17{/\77’]- +a)i’/\xjf +Xi’/\a)]
=niAnj+oi A —7)+ 06— 1) Ao

=wi A (o) —1j) + (01 — i) A wj
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we infer that ther; carry, up to scaling, the change of the Schouten tensor water
formal change of metric:

(2.11) o — O‘i/ = e“/’(oi —17).

Observe that these computations also show that the confdemdamental forms
and Wang'’s Mobius curvature are indeed conformal invariand; in particular, do not
depend on a choice of ambient space form of a hypersurfacmeNaas long as we
work with a principal frame so thaj; = aw; with the “principal curvatures’s; of f
with respect tos as a unit normal field—note that if = § takes values in a space form
Q* ands =t, t L Q, is its tangent plane congruence, than= «; are the principal
curvatures off in Q*—we learn from (2.8) that a renormalizatidn— f’ =e" f does
neither affect the conformal fundamental forms

v = Vlas — & las — aglwy,
(2.12) v2 = Va1 — & |ax — aglw,

vs = V|a — ag| |ag — a1|ws
nor Wang'’s Mdébius curvature

(2.13) w=2"%
—a
asw| = e’w; anda = e Va. Moreover, as the; and W only depend on the differ-
ences of theg;, a changes — s + af of the enveloped sphere congruence does not
change these invariants either as— a — a.
Starting from the structure equations (2.3), we hence obtai

(2.14)
wy =€’ cospdx, n,=sinpdx, o),= (Yycoty—py)dx— (Yxtang + ¢y)dy,
1 1 12 y y
wy =€’ singdy, 1y =—cospdy, why= (¥;SiNg+ ¢, Ccosyp)dy— s;//Tyga dz,
wy=e"dz, ny=0, wy= clop_;p dz— (Y, cosg — ¢, sing) dx
and
(2.15) x = eV {—yytang dx + ¥, cote dy + ¢, dz}.

Now the principal curvaturek;; of the coordinate surfaces; = 0 in directiond; are
given by

(2.16) kj = —=1"(V3 9, 9]) = —(3}s, 8j) = wj; (3)),
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that is, of; = kjj@| — kjjo{ as expected from Dupin's theorem. Hence, in particular
(cf. [6, p.314]):

surface x-direction y-direction z-direction
X = const k’lzz_e—w(ﬂ + &) kisz_e—wﬂ
cosy sing COS@
y = const| ky; = -7 (ﬂ _ ﬂ) b= —6V Yy
sing cosg Sing
z=const| k; = —e 7V (Y, — ¢, tang) kao = —e 7 (Y2 + ¢, Coty)

Finally observe that, using the relation betwegnand the Schouten forms; from
(2.3), the Ricci equations read

0= Y Axf =Y wjre] and 0=y + Y ax = dx' + X Ao
j i j i

showing that the normal bundle df as an immersion int®$ becomes flatdx’ = 0,
if and only if the Schouten tensor becomes diagonal: writijg= &/w; as before and
o/ =), 5@}, these two equations yield

/

s;=s; and dy'=0% 0= (& —a))s]

for i, j € {1, 2, 3. Hence the claim follows since the hypersurface was assumed
be generic.

3. A special solution

Let a,b,c e R andg a real function. With the ansatz

(X, Y, 2) :=g(ax+ by + c2)

the integrability conditions (2.6) reduce to eithee= 0 anda® = b? or to

B g// 4
0= (sin Zg) '

The first case leads to a particular class of conformally fjgtehsurfaces with cyc-
lic Guichard net: ax = 0 the coordinate surfaces= const become totally umbilic
in the intrinsic geometry of the hypersurface which is tfene a “conformal product
hypersurface”, see [5, §2.4.12].
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The second case is the one of interest to us: here
g’ =Asing & g?=C— Acos

with suitable constant#\, C € R, that is,g satisfies a pendulum equation and hence is
an elliptic function:

g(t) = ¢p(v/(C— A)t), where p*= AZTAC

and ¢, denotes the Jacobi Amplitude function; in particular,
sing(t) = smy(vC — At) and cog(t) = cny(vC — At).

Our aim is to investigate the intrinsic geometry of the lift

fr= é f
of the generic conformally flat hypersurface obtained froraia Lemma 1: it will turn
out that the intrinsic structure induced by this lift leadsthe Bianchi-type Guichard
nets with constant ambient curvature that we seek.
First note that we can expect the intrinsic geometry to bepeddent of our initial
distinction of thez-direction as the induced metric of this lift is independenftthat
choice in the following sense: lélp denote any directional derivative @f and rewrite

B 1

 (99)?
_cogy
— (09)?

by choosingp so that coskh = 1/cosg and sintp = tang; thendg = d¢p/cosyg so that

!

{cog ¢ dx? + sirf ¢ dy? + d 7}

{dx? + sinl? @ dy? + costt § dZ}

1

"= Gor

{dx? + sint? @ dy? + cosit ¢ d 7},

leading to an alternative representation of the inducedimef f’, but now distin-
guishing thex-direction, cf. [6, (2.3)]. Clearly, with cogh= 1/sing and sintp = coty
a similar argument holds for a distinction of tlyedirection.

Thus, in particular, we can expect the surfaegs= 0 of the Guichard net and
their orthogonal lines to share similar geometric propstti
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3.1. Sectional curvature and normal connection. Thus we sety(x, Yy, z) =
—Ing'(ax+by+c2) and employ the transformation formulas of the last sectfostly,
we obtain from (2.14)

1
w; = —cosgdx, ny=singdx, o), = —i{b(AJr C)dx—a(A—C)dy},
1 g 1 12 g

(3.1) wh= ésing dy, n,=—cosgdy, wh= —C(;ﬁ{c(A— C)dy—2bAd3z,
W) = é dz 7, =0, Wy = —S'gﬁ{zaA dz— c(A+ C) dx).

It is now much simpler to directly determine the Schouterm®w; of the induced
metric I' from the curvature forms,

/

/ ’ ’ A ’ ’
; AUJ +UI /\a)] —Q” —da)” +Cl)|k/\a)kj

than to employ the transformation formulas (2.11).
The computation can be further facilitated by the followitgservation: from (2.15)
we learn that the normal connection

x' = 2aAsinf gdx—2bAcog gdy+ ¢(C — Acos 3)) dz
=a(A-C)dx—Db(A+C)dy+ g?(adx+bdy+cd2.

Hence the normal bundle sp@nf’, f'} is flat as, clearlydyx’ = 0. As a consequence,
the Schouten tensor is diagonal,

o/ Ao =0

so that only the diagonal terms need to be computed: we findttiegaabove curva-
ture forms

0 =Kol A} with k = —{2a”A(A—C) 4 2b*A(A + C) 4 ¢*(A* — C?)}

so that

Q
I

and the induced metric¢ has constant sectional curvature
3.2. Geometry of the Guichard net. From (3.1) we read off the principal curva-

tures of the coordinate surfaces (as codimension 1 subaldsiin the conformally flat
hypersurface):
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surface x-direction y-direction z-direction
a(A-0_C) .
X = const ki, = ———— ki, = 2aAsin
12 sing 13 g
, _b(A+C)

y=const| kj = ks = 2bAcosg

cosg
z=const| k3; =c(A+ C)tang k;, = ¢(A—C)cotg

Clearly, the coordinate surfaces= const,y = const andz = const have constant (ex-
trinsic) Gauss curvaturesa2A(A — C), 20°A(A + C) and c?(A? — C?), respectively.
Note that the Gauss curvature does not change within eaché lfamily, x = const,
y = const orz = const, respectively.

Thus, the triply orthogonal system is a special type of dytrRianchi system, see
[8, 822].

Since, by Dupin’s theorem, the surfaces of a triply orth@mystem intersect in
curvature lines the dual frame field;(05, 95) of the orthonormal co-framew(, w5, })
yields a parallel frame along each coordinate curve, thahis frames are torsion free
and their respective curvatures are

line normal 9} normal 9, normal d;
. b(A+C)
x-lines kKyy=—— ki =c(A+C)tan
21 cosg 31 = C(A+ C)tang
. a(A-C)
-lines | ky, = —— ks, = c(A— C) cot
y 12 sing 32 = C( ) cotg
z-lines | ky; = 2aAsing 5 = 2bAcosg

Thus the (Frenet) curvatures and torsionsr; of the coordinate curves are given by

Ko191kay — Ka191Ky

KP=kZ+ki and 1 =

kKa+ka
and cyclic permutations of the indices, so that
,  (A+C)?(b? + c?sir? g) . abcg?
K = 1 = . ;
! cog g 'T b2t c2sig
, (A—=C)%a?+ c?co¥ g) . abcg?
Ky = , = —’
2 sirt g T @+ c2cog g
—abcg?

2 — 4N%(a? sir’ g + b? cog g), = :
3 ( 9 9. a2 sirf g + b2 cog g
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Consequently our coordinate lines satisfy the conditidatireg curvature and torsion
of a Kirchhoff rod, see [7, (3.10)]:

) abqA+C)\ ) b?A—c2C
Kl(fl—w —-abdA-’-C) A+W ’

) abgA—C)\ 5 a?A+c?C
KZ(T2+W —aqu—C) A+a2—_’_02 y

2abcA a® + b?
2 — .
K5 (‘L’g + - bz) = —4abcA@{c AT }

note that for the third equation to make sense we need to dxdlie case? = b?,
where the curves have constant curvatagebut non-constant torsioms.

The elliptic differential equation [7, (3.11)] for the sqed curvature of a Kirchhoff
rod is, however, not satisfied in our case—though the squeuedhturesc? clearly are
elliptic functions, as algebraic expressions irp smd cr.

We summarize the properties relevant to our main classicaesult:

Proposition 2. Let ¢(X, Y, z) = g(ax + by + c2), where g b, c € R and the real
function g satisfies

g?=C—Acos

for some AC € R. Theng defines a conformally flat hypersurface f so that its canon-
ical principal Guichard net consists of constant Gauss atuxe surfaces for a suitable
choice of constant sectional curvature metric in the comfalr structure induced by f
as their ambient geometry.

This proposition provides the first part of our Main Theorem.

4. Conformally flat hypersurfaces with Bianchi-type Guichad net

In this section we aim to convince ourselves of the conveifse: is a conform-
ally flat hypersurface for which we can choose a constanisedtcurvature represen-
tative of the induced conformal structure so that all (cowatk) surfaces of its canon-
ical Guichard net have constant Gauss curvature, then thersiyrface comes from the
construction discussed in the previous section. In factshall see that it is sufficient
to assume that we can choose a light coneflifwith flat normal bundle for the hyper-
surface, that is, so that the Schouten tensor of the inducgtdarbecomes diagonal.

Thus we start with an undetermined lift (2.7) of a conformdlat hypersurface
and assume flatness of its normal bundle,

0 = Yxy — Ux¥ry + Yxopy tang — Yyex Cotop,
(4.1) 0= dX/ & (0= l/fyz_’pyl//z_’py@zcow’_@yztanfp.
0 = Yxz — ¥x¥z + Yxp, tang + gy, cote
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from (2.15); then the derivatives of the principal curvati(2.16) simplify to

eV , eV
(k 2y = _SIT((ny oxpy cote), (Kig)y = _Sin(p(ﬂx‘ﬂyi
k e’ k e’
¢ = cotgp), / = —¥xz
(k12)z Sinwfpx(‘ﬂz + ¢z coty), (Kya): Slngo(pxz
k e’ k e’
)z = — — g tang), (Ky3), = ———o¢yz
( 21)2 cosg (Py(‘ﬁz (%4 ®), ( 23)z cosg Pyz
k e’ k e’
x = —— tan ho)x = —— N
( 21)x cosg (‘ny + oxpy ®), ( 23)X cosg 1ﬂx‘ﬂy
, 2eV 2 —V
(k31)x = sin 2{/) ———(oxz + oxpz tang), ( 32)X = 2‘p§0z(¢x + ¢y COty);
, 2e” , eV
(kgp)y = “sin ZP‘PZ(‘//y pytang), (ky)y = “sin 2% ———(¢yz — @yp; COty).

Hence the coordinate surfaces have constant Gauss cawvghot necessarily the same
in each Lamé family) if and only if

0= Ilfx{<pxy - W} + ox{¥x¥y — Yxpy tang + ¢xiy coty}
= (Yx + ¥x Cotw){wxz + ;flxg;} + wx{wxl/fz — Yx, tang — %},
0= wy{wxy - %} + oy{Yx ¥y — Yxpy tang + xy cotyp}
(4.2)
= (Yy — oy tanw){wyz - ;(f]—y;;} + goy{tlfyt/fz + Yy, Coty — ngysf; }
= W2+ cotw){wxz + ;‘f}gﬁ} + wz{wxwz Yz tang — ‘fnfw}
=Wz— ¢z tan(ﬂ){(/)yz - j‘:\y;{;} + wz{lﬁytﬂz + Yyg, COtp — %}.

Eliminating the quadratic expressions of the derivativésyowe then arrive at three
equations

0 = (Yxpy — Px¥y)(¢xy COSP SiNY — Py (COS ¢ — SiN? @),
(4.3) 0= (nyﬁﬂz — Qﬂywz)((/)yz cosy sing — §9y§02),

0 = (Yz¢x — p2¥x)(@xz COSQ SINY + 92¢0x)

that will govern our analysis.
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4.1. The case study. Clearly, (4.3) yields eight cases to consider.

First note that, ifp only depends on two variables, then the corresponding €oord
nate surfaces become totally umbilic and our hypersurfaca ¢onformally flat “con-
formal product hypersurface”, see [5, §2.4.12]. Henceredisrding this case in our
analysis, we shall assume that everywhere

PxPyPz # 0.

Secondly, we disregard the case of cyclic Guichard nets¢hwhias fully analysed
in [6]: as already mentioned above (see Section 2.1),

(4-4) 0= ¢y, = Pyz

leads to a cyclic system formed by the (then circulat)nes; thex- or y-lines form
a cyclic system ifgxy = @x, = 0, where tantp = sing so thatdx? + sini? ¢ dy? +
coslt ¢ dZ gives the induced conformal structure, that is,

(4.5) 0= pxy + oxpy tang = ¢xz + pxp; tany;

or dxy = Py, = 0, where tanip = cosp so that sinf@ dx? + dy? + coslt ¢ dZ yields
the induced conformal structure, that is,

(4.6) 0= ¢xy — oxpy COty = @y, — pye; COty,

respectively. Thus the equations (4.4)—(4.6) charadesanformally flat hypersurfaces
with cyclic Guichard nets.

Now, from (4.3), we have the following cases to consider:
(i) At least two of the quantitiegyy — 2¢xpy COS 2/siN 2p, @y, — 2¢pyp,/Sin 2p and
¥xz + 20:0x/sin 2p do not vanish. In this case, singgeyp, # 0,

Vx _ ¥y _ ¥z

4.7)
Px Py Pz

We will see in Section 4.3 that this case leads to the classonfocmally flat hyper-
surfaces discussed in the previous section.

(i) At least two of the quantitiespxy — 2¢x@y COS 20/SiN 2p, @y, — 2¢py¢,/Sin 2p and
Oxz + 2020x/Sin 2p vanish identically. We shall see below, by algebra, that thiplies
that the third vanishes as well,

2(;Dxﬁl)y Cos 2 2‘/’y§02 20,0
T 5 = Pyz— = P¥xz .
sin 2p sin 2p sin 2p
This case will not lead to conformally flat hypersurfaceshvilie sought intrinsic struc-
ture but it will provide a new class of conformally flat hyperfaces, see Section 4.2.

(4.8) Pxy 0.
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To convince ourselves of the first claim in (ii) note that, twihe ansatz

21,

Yx = =gy Coty, Yy = loytang, ¥, = w,

our original six equations (4.2) yield

2¢xpy COS 2p
————— =0=>0=— ;
Pxy sin 2 = Ec+E+C
20yp
yz_sinng: =0=0=¢(u+cosg)—1
2 .
wxz+si“r’f‘;; — 0= 0=¢&(u—site) + 1.

The three right hand side equations are not independentyift@o of them are sat-
isfied then so is the third; hence one of the functions, gayemains free while the
other two are determined:

E=— 1 and ¢ = =
T p—sirfy C pu4coe’

Now consider case (ii): twWo opyxy — 2¢x@y COS 2p/SIN 2p, @y, — 2¢yp,/sin Zp and
¥xz + 20,0x/SIN 2p vanish identically, say

_ 20y¢7 _ 202¢x _
$yz sin 2p 2T §in 2
Then, from (4.2), either
2¢xpy COS Zp
———— =0 or £§¢=¢=0;
Pxy sin 2p §=¢

however, we have £ —&(u—sirf¢) = ¢(u+cog¢) so that the casé = ¢ = 0 cannot
occur. Similar arguments show that the vanishing of anyrotive of the considered
guantities implies the vanishing of all three.

Thus we are left to consider the consequences of (4.7) ad)l &bove.

4.2. A new class of conformally flat hypersurfaces. We start by considering
case (ii): the equations (4.8) can be reformulated as

(4.9) (In tang)xy = (In sing)y, = (In cosg),x = 0,

showing that

b2 and cosp(x, Y, 2) = oy, 2)

SIﬂ(p(X, y, Z) = J/(Xn y) )/(X, y)
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with suitable functionsx, g and y. The Pythagorean law then yields
v2(x, y) = B%(x, 2 + &(y, 2)
so that there are functionX, Y and Z of one variable with
Y2%,y) = X() = YY), BHx, 2) = X(X) ~ Z(2), «*(y,2) = Z(2) - Y(y)

and, consequentlyX > Z > Y and

. X—-Z Y-Z X-Z
Sing = ﬁ, COsp = m, tango = ﬁ

It is now a laborious but straightforward computation to Hest the first of the equa-
tions (2.6) fory to define a conformally flat hypersurface is identically Sf&d whereas
the remaining three become

X" 2X'X" X(XZ-Y?) X" 2X'X" X(X2 427
X—Y (X-=Y)2 (X-Y® ~ X-zZ (X-202 (X—2)3

Y YY" Y(Y2-X?) Y 2YY" Y(Y2 4+ 77
Y-X (Y-X)? (Y=-X® ~Y-Z (Y-2)0? (Y -2)3

z" 27'7" 7/(272+Y? 7V 22'7"  Z/(Z?%+ X?)

Y—Z+(Y—Z)2 (Y=2Z2B3 ~ X—-Z (X-2)7? (X —2)3

Again, we obtain separation of variables: writing both side each equation as
—2AX, —2BY’ and —2C Z’ with functions A = A(x), B = B(y) and C = C(2), re-
spectively, these equations become

"

X
0=Y?24+2A(Y — X)° - 7(Y — X)? = 2X"(Y = X) = X,

X///
0=27-2AZ - X)® + 7(z — X)? +2X"(Z = X) + X%,
Y///
0=X?+2B(X-Y)3— 7(x —Y)2-2Y"(X =Y)-Y?
(4.10)

"

Y/
g

Z
0=Y?%2+2C(Y-2)°%+ 7(Y — 2% 4+22"(Y - 2)+ 27,

0=27-2B(Z-Y)P* + —(Z-Y)?+2Y(Z-Y)+ Y%

Z///
0=X?4+2C(X -2+ 7(x — 22 4+22'(X-2Z)+ 2"

Taking second derivatives with respect yoand x, respectively, of the last two equa-
tions we find

X/// Z/// Y/// Z///
= 46CX| 4+ 12 —6CZ{ =1~ +6CY{+ 1= —6CZ},
0 {X,+6c }+{Z/ ec} {Y/+GC}+{Z/ 6c}
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which shows that 8= C'(X —Y) so thatC is constant and hence
0=X"4+BCX+ L)X =Y"4+(BCY+L)Y =2"—-(6CZ+L)Z

with someL € R. Thus integrating the equation f& we learn thatZ satisfies an
elliptic equation

2% =p(2):=2CZ*+LZ?+2MZ + N,

whereM, N € R are suitable coefficients; re-inserting this result inte tast two equa-
tions yields similar elliptic equations foX andY:

0= X2+ p(X)=Y?+ p(Y).
The first and third of the equations (4.10) then read
0=Y?+p(Y)—2(A—C)(X —Y)% = X? + p(X) + 2(B — C)(X — Y)3,
implying that A = B = C; the remaining two equations then just recover the elliptic
equation forZ. Thus the equations (4.10) are equivalent to a set of thraasielliptic

equations forX, Y and Z, respectively:

Lemma 3. Given three functions XY, Z of one variable with X> Z > Y and
non-vanishing derivatives

Y-Z X-Z
= dx? +

l_Y—X X—-Y

dy? +dZ

represents the induced conformal structure of a conforynféidlt hypersurface in terms
of its canonical principal Guichard nefx, y, z) if and only if

0= X%+ p(X) =Y?+ p(Y) = 2% - p(2),
where [{t) is a cubic polynomial that changes sign at least twice.
Here, the last assertion follows from the observation that Z < X while
p(X) = —=X"2,p(Y) = -Y? <0< Z? = p(2).

Note that, as a consequenqg#t) has degree 2 or 3.

Next we wish to convince ourselves that these conformally Higpersurfaces do
not have the intrinsic structure sought, that is, that tleituced conformal structure
does not have a constant sectional curvature representivthat all coordinate sur-
faces of the Guichard net have constant Gauss curvature.
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To this end, observe that equations (4.2) now read

0= Yxy — Yxpy tang + gy Cotop,
PyPz
cog g’

(23%
0 = Y, — Yxp, tang — .X 2 ;
Sirt ¢

(4.11) 0 = Yy + Yy, cotp —

using these, flatnessy’ = 0 of the normal bundle (4.1) simplifies to

0 = Yy = Yyz + (INCOSY)y; = Yz + (IN SiN ).
Together with the equations (4.9) these vyield

0= (¥ + Intang)xy = (¥ + Intang)xz,
0= (¢ —Intang)xy = (¥ —Intang)y,

implying that
v=a+B+y—-Iny(X=2Z)(Z-Y)

with three functionsy = «(x), 8 = B(y) and y = y(2) of one variable. Hence

p—w L Xl 27
=0 — ——, = -, = o U—— _—
x 2x—z" " 2v—z TV T A\x—zT Y=z
and equations (4.11) read

(Y =28Y) = B/(X —2a'X),

B (Z' =2y'Z) = y'(Y = 28Y),

Y (X' —2d'X) =d'(Z2' — 2y’ 2).
Consequentlyy’ = g’ = y’ = 0 or, with someA € R,

o = X B = v and y' = z
“2x—A Y Ta2v—n V' = 2z-A

so that (up to an irrelevant constant of integration)

3 1 3 (X = A(Y — A)(Z — A)
T2 B *”—'”\/ X-2Z-v)

We consider the two corresponding representatives of tdeced conformal structure
in turn.
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Firstly, suppose that’ = g’ = y’ = 0 so that we arrive at

dx?2 d dZ2
+ y +

I= X—VX=-2) Y=X(=-2) " (Z-Y)X-2)

as a representative of the induced conformal structure.
In this case the Gauss curvatures of the coordinate surtaees
1 1 1
kioKig = ZX/Z, ka1Kas = ZY/Zv KaiKsz = _ZZ/Z-

Hence, all coordinate surfaces have constant Gauss crevatowever observe that, in
contrast to the conformally flat hypersurfaces studied englevious section, the Gauss
curvatures are now not constant in each Lamé family. On therdtand, the sectional
curvatures of | are

’

_1 2 2 2 X Y
K12_4{x +HY2+2%42( S X(x NX=2)+2( 3—

7

) (X—Y)(Y—Z)},
y

Y/ 4
Y-Z

!’

1
I _X/2 Y/2_z/2_2
K23 4{ + Y_7

!’

) (X—Y)(Y—Z)—|—2( z )(X—Z)(Y—Z)},
y z

K31 = %{X’Z—Y’Z—z%z( )X(X—Y)(X—Z)+2( )Z(X—Z)(Y—Z)}.

X-Z X-Z

Assuming that these are constant we find

0= (r12); = P'(Z) = 2(X — Y){(XT/Y)X " (XYY)y}'

0= (k23)x = p'(X) = 2(Y — Z){(YI/Z)y_ (Yi/z)z}'

0=y = 0 =20~ 2f (25) - (x52) )

where we used the elliptic differential equatio¥ = —p(X), Y? = —p(Y) and 2% =
p(Z) that X, Y and Z satisfy. Hencep'(t) must be constant, contradicting the fact that
p has to be a polynomial of degree at least 2: for example, ga&ifurtherz-derivative
of p’(Z) we obtainp”’(Z) = 0 sinceZ’ # 0.

Hence we cannot have constant sectional curvatures of tthecél metric in
this case.

Secondly, suppose that

dx? dy? dz
| = (X—A)(Y—A)(Z_A){(x_y)(x_z) Tvoov—2 " (Z—Y)(X—Z)}
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is the sought representative of the induced conformal ttrec

In this case, the Gauss curvatures of the coordinate ssriaeeome
o1 x? S 1Y7 o172
kiokys = Z(X NER ko1Kos = 4(Y A)3' Kg1Ks, = _Zm3

while the sectional curvatures of our representative of itfttiiced conformal struc-
ture are

2= 2 7 A\ (X=A2 T (Y=AE T (Z=A)

X/ (X_Z) Y’ (Y_Z)
+2(X_Y){((x_A)(x—Y))x(x—A)+((Y—A)(X—Y))y(Y—A)}}’

1 1 x/2 N Y/2 Z/Z
(X=A2 " (Y=-A)Z (Z-A)

+2(Y_Z){_((Y—A;((/Y—Z))y8((::; =n=s).n) )

11 X2 Y2 yi
ZY—A{(X—A)Z_(Y—A)Z_(Z—A)Z

+2(X_Z){ ((X—A;((,X—Z))x &j\; +((Z—A)Z(/X—Z))Z?z(:i; } }

Following the same procedure as in the simpler first casea#isamption of the sec-
tional curvatures to be constant leads to a differentialaign for the polynomialp(t)
of the elliptic equations forX, Y and Z:

, p(Z)
= ((Z—A)Z)
—2(X—Y){( ) 1 +( A ) 1 }z’,
(X— A)(X Y) Y—AX-Y) ), Y-A

(e
asX ‘((x A))

1 z 1.,
202 (y=ae Z)) i (@me ) za"

p(Y)
(Y—A)?

y
_2(X_Z){((x A Z)) xiA_((Z—A)Z(/X—a)ZziA}Y/'

1 1 { X/Z Y/Z Z/2

K31=

4K31Y/ = (
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pt) '\
((t — A)Z) = const

so thatp(t) has a perfect square factor; on the other haod) has degree at most 3
so that, in particular, it cannot change sign twice as reguior the functionsX, Y
and Z to define a conformally flat hypersurface.

Thus, again, we cannot have constant sectional curvatdrdgsorepresentative of
the induced conformal structure either.

Consequently, the conformally flat hypersurfaces chariaetgin the previous lemma
do not have the desired intrinsic structure and we can sajelyre them in our classifi-
cation. Although the geometry of their Guichard nets mayreresting—for example,
it is easy to see that all surfaces of the canonical Guichatdare isothermic—a more
detailed analysis will be left for another time.

Hence

4.3. Conformally flat hypersurfaces with Bianchi-type Guicard net. We now
turn to our main case (i): thus we assume now that the equatiéry) hold, that
is, that

dy = 1 dg

with a suitable multiplierr. Using the linear dependence of the gradients/oénd ¢,
the equations (4.2) governing our analysis become

0 = Yxloxy + exty) = ¥xloxy + ¥xey),

0 = Yyloxy + exty) = Yyloxy + ¥xey):

0= (Yy — ¢y tang)(@yz + oy¥2) = (Yy — ¢y tang)(eyz + Yye,),
0= (Y2 — gz tang)(pyz + oy¥z) = (Y2 — oz tane)(pyz + Yyez);

0= (¥ + ¢z cotp)(@xz + x¥z) = (V2 + ¢z COtY)(@xz + VYx2),
0= (¥x + @x COtY)(pxz + ox¥z) = (VUx + ¢x COtY)(@xz + ¥x@2).

(4.12)

Now, if L = 0, A = tang or A = —cote, the remaining four equations yield (4.4),
(4.5) or (4.6), respectively—that is, the Guichard net islicy Hence, ignoring this
case, (4.12) further simplify to

0= (‘/’xellj)y = (px€’);,
0= (‘Pyew)z = (‘Pyew)w
0= (p, ") = (‘Pze¢l)y,

which imply that

do = eV dt, where t(x,y,2) =aX)+ B(Y)+ v
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with suitable functionsy, g andy of one variable. In particulay andt are function-
ally dependent so that there is a functigrof one variable withg' ot = e ¥ and

9(X, ¥, 2) = (got)(x, ¥, 2) = gla(x) + A(Y) + (2).

Now the first of the differential equations (2.6) ferto define a conformally flat
hypersurface reads

0 = @xyz + oxpyz tang — pypx; Cotyp
g// /
=o'By'| —— ) (t)sin
v (Gag ) Osin2
so thatg is an elliptic function,
g’ =Asiny and ¢g?=C— Acos3
with suitable constant®\ and C. Note that

p 0 if
A:—g—otz —cotgp if

tang if

> > >
[
I OC°
o

so that we can assume that# 0, C, —C.
The remaining three equations of (2.6) then take the form

—_ g/ a/// 4 _ V4 4
0= Sin ZQ(t)_a’ + (A+ M)" + (A= M)B" + (A+ N)y”,
_ g/ B" _ 7 1" _ ”
0= sin2g(t)_/3’ + (A=M)a" + (A+ M)B" + (A—N)y",
_ g/ y/// VA _ VA "
0= sn 29(t)_)/’ +(A+ N)ad" + (A= N)B"+ (A+ M)y”,

where M := 2(A — C cos 3y)/sir? 2g and N := 2(C — A cos &))/sir? 2g. Hence

" " 2As|n

0= (4 +5) + 225 B0 v g1,
" " 2 A_C COt

0= (% - 1)+ HD gy,
nr n 2 A+C tan ,

°7 (% B yy—) $ HAEENEG gy

and taking derivatives with respect I y and x, respectively, and using the original
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equations to eliminate third order derivatives we arrive at

(M +N) (M =N) 2M
0= —(M+N) 2A+(M+N) 2A B’
2A+(M—-N) —(M—N) 2A v

IS

so thate” = B” = —y” = const sinceA+ M = 0 on any open set; the original equa-
tions then imply that

Consequently, up to a coordinate translatipnis of the sought form:

Proposition 4. Let f be a conformally flat hypersurface with canonical Gaich
net(x,y,z) and induced conformal structure given pysatisfying(2.5). If the Guichard
net is not cyclic and consists of constant Gauss curvaturtases for a suitable con-
stant sectional curvature representative of the inducedfawmnal structure then there
are constants ab, ¢, A, C € R with abc# 0 and A# 0, +C so thaf up to a coordi-
nate translation

(X, y,2) = g(@ax+by+cz), where ¢ =C— Acosa3.

This proposition yields the second statement of our Main Tém@o thus complet-
ing its proof.

5. The associated family

Conformally flat hypersurfaces give rise to cyclic systemthwhe original con-
formally flat hypersurface as an orthogonal hypersurfaad sm that all other orthog-
onal hypersurfaces of the cyclic system are conformally d&twell, see [5, §2.2.15]:
choosing a lift f’ = e¥ f of the conformally flat hypersurface, given in terms of its
canonical lift

f: M3 = LSCRS

of Section 2.1, so that the induced metric becomes flat, itenabbundle as an im-
mersion into the Minkowski spacR® becomes flat as well [5, §2.1.4], hence defining
a curved flat in the symmetric spa¢2(5, 1)/(O(3) x O(2, 1)) of circles in the con-
formal 4-sphere which, geometrically, is an orthogonallicysystem, see [5, §2.2.3].
Note that this cyclic system depends on the choice of a fongfi, that is, on a choice
of a flat lift f” of f.

Writing the structure equations for an adapted Mdbius frarhesuzh a flat lift
f’ as

dF = F'®’ with @ =&, + @,
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where @,: TM — 0(3) @ o(2, 1) takes values in the isotropy algebra of the symmet-
ric space of circles an®), encodes the derivative of the Gauss map> d,, f'(Tp M)

of f’ with values in the Grassmannian of spacelike 3-planes, timepatibility condi-
tions decouple:

1
0= dq)/e + E[(D,E A q)/g];
0= ddD;3 + [P A GD;],
0=[d, AD,],

where the last equation encodes the simultaneous flatheige adingent and normal
bundles of f’. As a consequence,

(5.1) ™ 1= @} + 1D, A€ (0,00),

defines a loop of flat connections: this yields the curved ftspeiated family of the
Gauss map off’, that is, an associated family of the cyclic system assedi&t a con-
formally flat hypersurface. Note that we restrictito- O here: a change of sign @#;,
is realized by a simple gauge transformation and does trerefot affect the geom-
etry; using ar-dependent gauge transformation to blow up the limitingengprface in
the limiting casex = 0, reveals that the hypersurface obtained cannot be generic

We shall see that this associated family of the cyclic systiscends to an asso-
ciated family for the conformally flat hypersurface, cf..[2]

To this end, we start with our original structure equatio2s8) and investigate the
effect of changing the light cone lift as in (2.7) so that theticed metridd f’|?> be-
comes flat. In particular, the Schouten forms (2.11) of the neetric

0=o0/ =eV(0i — )
so thatry = oj; as a consequence the transformation formulas (2.8) a®)l (@ad
wi — o =,
ni =0 =i,

Wjj —>a)i’]- = wjj +311ﬁwi —8i1//a)j,

x—>x = e‘”{x —Zajwrzj},
i
xi— x =e€V{x—o).

Now the curved flat associated family is obtained by intéggathe structure equa-
tions with

a)i’j, x' and Ao, Anj, Ay,
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where A > 0, to obtain a 1-parameter family of framé&s* for the corresponding as-
sociated family of cyclic systems. In particular,

F/A ~ (Si)", Sg", Sé)“, S)L, f’)‘, fA/A)

providing a 1-parameter family of conformally flat hyperfsiwes f’*. A priori, this
family of conformally flat hypersurfaces depends on ouriearthoice of flat lift f';
we shall see that it does not by providing a lift-independaethod to define the hyper-
surfaces.

To this end, we undo the earlier change of lift by letting

7 fr =V 7

so that, in particularf’ = f* — f! = f. Employing the transformation formulas (2.8)
and (2.9) again, witd* = (e7V/1)9;, we find

/A A

W = o = Ao,
0t — = A,
a)l/j\—>a),’\l = wjj,
Xt =t =x

1
Xt = x = — ()» - X)Ui-

Thus, the 1-parameter family — f* of conformally flat hypersurfaces obtained from
the curved flat associated family of an associated orthdgoywdic system can be de-
fined using any light cone lift of the hypersurface (see aBpfpr a more general

statement and different proof):

Theorem 5. Let f: U — L% (U simply connectedbe a light cone lift of a con-
formally flat hypersurface and let

(s 8.8, f, f) ~ F: U — 04(6)

denote an adapted Mo6bius geometric frame for f with strectaguations dF=
F®, where

0 w2 —w31 —N1 w1 X1
—w12 0 w3 —M2 w2 X2
w31 —w3 0 —m3 w3 x3

n1 n2 n3 0 0 x
-x1 —x2 —-x3 —-x 0 O
—w1 —w?7 —w3 0 O O
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Then thel-parameter family of structure equations 4 & F*®* obtained by changing
1
wp —> Awj, ni —> Ani and xi — Axi — ()»— X)Gi’

where o; denote the Schouten forms of the induced metwigile leavingw;; and x
unchangedis integrable.

Moreover the FP- are adapted Mobius geometric frames for the conformally flat
hypersurfaces ¥ obtained from the curved flat associated family given by aatyliiht
cone lift of f.

In particular, the curved flat associated family for the Gaosap of a flat light
cone lift of a conformally flat hypersurface descends to aspeiated family for the
conformally flat hypersurface, as sought.

From (2.12) and (2.13) we learn that the effect of the assedtidamily on the
conformal fundamental forms is a rescaling

yi— ¥ =y

while Wang's Mobius curvatur&V does not change, as! = Awj andn} = An;. As
these form a complete set of invariants for a hypersurfacthénconformal 4-sphere
the hypersurfaces of the family are not Mobius equivalent dd] and [5, 8§2.3.5],
see also [9, Corollaries 3.1.1 and 3.2.1].

The coordinate functions of the canonical Guichard net ofeaegic conformally
flat hypersurface are given by integrating its conformaldamental forms. Hence
these become

(x*, y*, Z) = (Ax, ry, A2).

Assuming that the original liftf of the conformally flat hypersurface was the canonical
lift of Section 2.1 the induced metric of* is

I = |df*|? = cog p(dx*)? + sir? p(dy*)? + (dZ2*)?
so that all f* are canonical lifts and
X)" yA Z)‘
e A A\ — - I
Py 2 = ey =o( 5 50 %)
Note that the structure equations (2.3) now hold foraall

. 1
wi2=—(¢p} dX* 95, dy), i =cose* dx', 5y =sing* dx, Xf:af+§w’},

. 1
a)23=(p;} cosg” dy*, w%zsmgo)‘dyk, n%z—COS(p’\ dy*, Xé‘:a;—i—éa)%,
. 1
ws1 =gy, sing* dx*, wj=dZ", n;=0, Xézaé}—éwg,

X :QOQA dz
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since x* = Mxi — oi) + (1/X)oi and o = (1/A)o;.

In particular, we learn that for a conformally flat hyperswd f with Bianchi-
type canonical Guichard net all conformally flat hypersceaf* of the family have
Bianchi-type Guichard net:

aigh b oy B EA C.

Hence the induced metric of the constant curvature liftg)if* become

‘(5" (3)
and the (constant) Gauss curvatures as well as their amb@mional curvature are
scaled by 1)2.

However, the canonical Guichard nets are, in general, notiddobquivalent as
parametrizedtriply orthogonal systems (cf. [5, §2.4.6]): for examplee tsurfacex =
const andx* = Ax = const are not Mobius equivalent even if they have the same con-

stant Gauss curvature after rescaling. In fact, the lifis.¢1) f* induce the same metric
for all &, but the principal curvatures of the surfagke= « are

2

- C—Acos 3y

2
{cog g(dx*)? +sir? g(dy*)? + (dZ")%} = A2

a(A—-C)
sing(aa + by + c2)

kio(y, 2) = and Kkj5(y, z2) = 2aAsing(ax + by + c2)

while the principal curvatures of the surfagé = « are

a(A-0C)
sing(aa/A + by + c2)

a
kix(y, 2) = and ki(y, 2 = 2aAsing(Ta +by+ cz)
showing that these surfaces are not congruent in general.

Thus we conclude with the following

Theorem 6. The associated family of a conformally flat hypersurfacesh wi
Bianchi-type Gui-chard net consists of conformally flat éngurfaces with Bianchi-
type Guichard net.
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