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Abstract
We consider the Wiener sausage up to timassociated with a closed ball. A
formula for the expected volume of the Wiener sausage isiredain odd dimen-
sions. In these cases, we also find that the formula leadstagymptotic expansion
for larget and each coefficient is represented by zeros of a modifiedeBaszction
of the second kind. Moreover we obtain a formula for the exgtcurface area of
the Wiener sausage.

1. Introduction

In connection with heat conduction problems, the volumehaf YWiener sausage
on the time interval [0t] for a Brownian motion associated with a non-polar compact
set has been investigated for a long time. The expected ehinthe Wiener sausage
is interpreted as the total energy flow from the non-polar Bet larget it is asymp-
totically equal to zZt/logt in the two dimensional case, which is given in [16], and
multiple of the capacity of the non-polar set in higher disiens, which can be found
in [4] and [16]. In addition, Le Gall [11] provided severaler terms and Port [13]
discussed the same problem for a stable sausage.

Some results on limit theorems for the volume of the Wienersage have been
established. The law of large numbers was proved by Whitmathiee or more di-
mensions, which is described in [8], and by Le Gall [9] in te tdimensional case.
Le Gall [11] also established the central limit theorem. Theults concerning large
deviations are given in [1], [3] and [6]. Especially, theukksn the Laplace transform
of the volume of the Wiener sausage given in [3] are very uskfuthe investiga-
tion on random Schrédinger operators and Brownian motiansaindom environments.
These are discussed in [15].

This article deals with the Wiener sausage associated witbsed ball with radius
r in odd dimensional cases. For= 0 let V; (t) be the expected volume of the Wiener
sausage up to time It is easy to evaluate it explicitly for dimension one. Theur
interest turns to higher dimensional cases. The compaot fafr V; (t) was given in
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[16] for dimension three. Recently Hamana [5] represented) by the complemen-
tary error function for dimensions five and seven. Sectiors 8dvoted to the formula
for V,(t) in other dimensional cases. We succeed in represeMiflg by zeros of a
modified Bessel function of the second kind.

Theorem 1.1. If d is odd and more than or equal to fivere have that

B sol@d=2t 2d—2y2 23 &
Vr (t) - Sﬁ*lr |: 2 + d(d 4) Z (ZN)S

N 00 r2x2 N
X exp(—— + z; x) dx
0 2t !

forr > 0 and t> 0, where §_; is the surface area of & 1 dimensional unit sphere
N = (d-3)/2and 3,2}, ..., 2\ are zeros of the modified Bessel function of the
second kind of order N-1/2.

j=1

The main tool is the decomposition of the Laplace transfofnviointo several rational
functions. We remark that, ifv is one of zeros oKy.1/2, the complex conjugate of
w is also a zero oKy.1/2. This fact yields that two summations in the statement of
Theorem 1.1 are real.

Section 4 deals with the asymptotic expansionVpft) ast — oo in five or more
dimensional cases. In addition, it can be proved that alfficdents are expressed by
zeros of the modified Bessel function. The explicit form\¢ft) given in Section 3
plays an important role for calculations. Hamana [5] alsovpd thatV(t) can be
represented as the absolutely convergent power seri¢§?ofor anyt > 0. The co-
efficients are given inductively in [5] and this implies thae can evaluate them ex-
plicitly in principle. Actually they have very complicateidrms. We obtain that the
coefficients in the power series expansion are also repegbséday zeros of the modified
Bessel function, which is also described in Section 4.

On the other hand, Rataj, Schmidt and Spodarev [14] provedtiie expected sur-
face area of the Wiener sausage coincides with the firstatemvof V; (T) with respect
to the radiusr for fixed T > 0. Similarly to the expected volume, we obtain the ex-
plicit form and the power series expansion of the expectethsel area in Section 5.
Unfortunately we could not succeed in giving the asymptetipansion for large.

2. Notation and preliminaries

Letr be a positive number anB = {B(t)}=o be a Brownian motion omRY. The
Wiener sausage foB with radiusr is the process defined as

C(t) = {x e RY; x 4+ B(s) € D, for somes € [0, t]}
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for t = 0, whereD; is the closed ball with center 0 and radiuslt is easy to see that
the expected volume df, (t), which was denoted by (t) in the previous section, is
represented as

Vi(t) = /R Rl =t dx

where i, = inf{t = 0; B(t) € D;} and Py is the probability measure of events related
to the Brownian motion starting from € RY. Fort > 0 let

L(t) = / Pn <t dx.
R\ D,

It is obvious that

d
2.1) Vi) = L+ 21

since the volume oD; is equal t0S;_1r9/d.
According to the result in [7]P«[z; = t] is the unique solution of the heat con-
duction problem

au 1
—(t, X) = zAu(t, x
(0 = SAu(t, %)

fort > 0 andx € RY\ D, subject to the initial conditioru(0, x) = 0 for x € R\ D,
and the boundary condition(t,y) = 1 fort > 0 andy € D,. Hence Pz, =1t] is
interpreted as the temperature at tiat the pointx € RY. Then L,(t) is the total
energy flow in timet from D; into RY\ D;.

If d =1, of course, we can evaluatg (t) with the help of the formula

t . 2
o < o [ X g 0XI=D)

exp| ————— | ds
- 0 /2rs3 p|: 2s i|

for |x| > r, which is given in [8]. Hence we obtain thaf (t) = 2./2t/7 + 2r. For
dimension three Spitzer [16] showed tha((t) = 2zrt + 4r2y/27t 4+ 47r3/3. This can
be also derived directly by the following well-known fornaul

Cr-n) ff1 (Xl =2
e == ) e = | ®

for ||x|| > r, which is described in [11] for example. The notatifpxi|| has been used
to denote the Euclidean norm afe RY.

In higher dimensions, we have no useful formula for the itistion of 7, except
for the Laplace transform. It follows that

X[ -2* K g/2-1 (X[ v22)

2.2 E[e "] =
(2.2) x[€77] (21K g 1(r 7/20)
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for A > 0 and||x|| = r, whereE, denotes the expectation under the probability measure
P, and K, is the modified Bessel function of the second kind of ordeiThis formula
can be found in [2] and [8].

Throughout this paper, for a suitable functidn the notationZ[ f] denotes the
Laplace transform off and the inverse Laplace transform bfis denoted byC [ f].
With the help of (2.2), Hamana [5] showed that

Si-ar 4t Kaja(r v21)

2.3) L[LJ(*) = V223 Kd/z—l(r\/Z)

for A > 0.

The remainder of this section is devoted to giving some piase of modified
Bessel functions. In generak, is the function defined o€ \ {0} for each complex
numberv. In this paper, however, it is sufficient to consider the dasev is a half in-
teger since we treat odd dimensional cases. In these cagesyell-known thatK,;1/2
has the following explicit form for each integer= O:

(2.4) Kni1/2(2) = zlze—Z[Z i’;’zg‘,‘n)},
m=0

where the branch of/z is principal and

(n+ m)! .
(n,m) = {m!(n—m)! it nzm,

0 if n <m.

In addition, the number of zeros df,.1> is n and each zero lies in the half plain
{ze C; Rez < 0}, denoted byC~. These are all described in [17]. Recall tH&f is
one of solutions of the modified Bessel differential equatio
d2w dw
2 2., .2
—+z2——(2z =0.
4z + 4z Zz°+v)w
Thus we obtain that all zeros d€, are of multiplicity one by the uniqueness of the
solution of ordinary differential equations. This immeeig implies thatK,;1,> has
exactly n zeros with multiplicity one inC~ for n = 1.

3. Formula for the mean volume of the Wiener sausage

We consider the case thdtis odd and not less than five. Our goal in this section
is to give a proof of Theorem 1.1. Recall thidt= (d — 3)/2 and thenN is a positive
integer. It follows from (2.3) that

Su—1r 41 Knsasa(r v/20)
V213 Knya2(rv24)

3.1 LIL(3) =
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Fort > 0 let T;(t) = L, (2r?t). SinceL[T,J(A) = (1/2r?)L[L,](r/2r?), then

Si-1r ¢ Kngaa(v/2)
Va? Kniaa(vVA)

We first intend to represent the right hand side of (3.2) asstira of several ra-
tional functions ofv/A. Forn=1 andz e C let

3-2) L[Tr)(2) =

n

(3.3) Ho@) = 3 (nn—k

K
e
Note thatH, is a monic polynomial of degree. It follows from (2.4) and (3.3) that

T e’

(3.4) Kni1/2(2) = 27 77 Hn(2)

for n = 1. This yields that the ratio of modified Bessel functions t&nrepresented
as that of polynomials. Namely we obtain that

Kn13/2(2) _ Hny1(2)
Knt1/2(2) ZH\(2)

(3.5)

Therefore it is sufficient to consider the partial fractioecdmposition of the right hand
side of (3.5) in the case that= N.

It follows from (3.4) that zeros oHy coincide with those ofKy.1/2 including
multiplicities. Recall that we have writter', z)', ..., zN for the zeros ofKn.1/2, and
these are, of course, zeros Bify. Since each zero is of multiplicity ond{y has the
following form:

N
Hv@ =T]@z-2).
j=1
In virtue of this factorization, we obtain that

Hn+1(2) 00 N~ O
3.6 N 4 20 o
(3.6) zHu(2) + z +Jz:;z—zj!\‘

for some suitable sequen«{:ej}g“zo of complex numbers. The following lemma is quite
useful for determining them.

Lemma 3.1. If w e C™ is a zero of H, then

(3.7) Huv41(w) = —w Hig(w).
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Proof. Note thatH,(z) = z+ 1 and Hy(z) = 2% + 3z + 3. Hence (3.7) is obvious
in the case thalN = 1.
We now prove (3.7) ifN = 2. It is sufficient to establish that

(3.8) Hn+1(2) — Z2Hn-1(2) = (2N + 1)Hn(2),
(3.9) Hy(2) + ZHn-1(2) = Hn(2).

It follows from (3.3) that the left hand side of (3.8) is equal

N+1
2:[(N+1,N—k+1) (N—LN—k+D}k

N—k+1 o N—k+1
= 2 2

(N+1,N)_  (N+1,N+1)
+ oN Z+ oN+1

It is obvious that the coefficient afN*1 is 0. For 2< k = N a simple calculation
shows that the coefficient & is (2N + 1)(N, N —k)/2N=%, which coincides with the
coefficient of corresponding term in K2+ 1)Hy(2). Moreover it is easy to see

N+1,N N,N—-1
<;—N> =(2N+1)%,
(N+LN+TD) (N N)

Therefore we can conclude (3.8).
The proof of (3.9) is similar to that of (3.8). It follows fron8.3) that the left
hand side of (3.9) is equal to

(kK+1)}(N,N—k—1) (N—1,N—-K7, (N,N-1)
z +Z|: ON—k-1 + 2N—k Z'+ ON-1

It is easy to obtain that the coefficient &f is (N, N —k)/2NK for Ok = N. [

By reduction of the fractions in the right hand side of (3.6)at common denom-
inator, we have that

Hni1(2) 14 o0 [Tj=a(z~ N)+ZZJ 1“1 Hl;él(z z )

ZH@) z[T)\Ly(z—
Then we may determineg, o1, . .., oy Satisfying that
N
(3.10) Hn1(2) = ZHn (D) + ooHN@ +2 ) o [[(2—2Y)

=1 i#
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We putz =0 in (3.10) and have that

(N+1,N+1) (N, N)
ON+1 G

which yields thatop = 2N + 1. For 1= k = N it follows from (3.10) that

(3.12) Hua@) =2 Y o [[@& —2Y).

=1 i#
It is easy to see that the right hand side of (3.11) is
Z ok l_[(zl'<\l -2z
i £k
Note that

[T -2 = fim 4% = W)

£k 72—z}
Then Lemma 3.1 shows that
—ZNH{ (2 = Z ok H(2D).

Since all zeros ofHy are of multiplicity one,H,’\,(zJN) # 0 for 1= j = N. Thus we
can conclude thaty = —1 for 1 < k = N. This implies that we have finished showing
the following lemma.

Lemma 3.2. We have that

KN+3/2(Z) 2N +1 N 1
=1+ =S
4

Knt1/2(2) z -z

j=1

For an integem = 1 let

N

1
(d) = .
n Z (ZJN)“

j=1

We have remarked in Section 1 that, uf is one of zeros ofKy.y1/2, the complex
conjugate ofw is also a zero ofKy12. Henceg@ is real for eachn = 1. We are
now ready to establish the following proposition.
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Proposition 3.3. We have that

2N +1 1 TSR 1
£IT0) = sm’[ FOEE

+ 523

2 _ 1/2 N3¢y 1/2
A 2N -1 AV et (zj B
for A > 0.

Proof. For simplicity, letky = S_1r¢. By (3.2) and Lemma 3.2, we obtain that

N
1 2N+1 1 1
(3.12) L[TI(») = kd[m T ek > A2 — z}“]
j=1
The equality
1 1 1 1 1
2(z—w) Zw  2w? w3 (z—wwd

yields that the right hand side of (3.12) is equal to

N

2N +1 1
|:<1 + Z ))\3/2 A2 + Z (ZJN)Z)L

=1

N

1
+ Z (ZN)WZ 2; m}

ThereforeL[T,](1) is expressed by

(d) (d) (d) N
o1y K+ kd[ZN“ g g ;ZN)}

3/2 2 312 N\3() 1/2 _
) A A A ~ @PRoey

It remains to evaluateg(d) and gz(d). The fact that—1 is the unique zero oH;
shows thatz(® = (—1)" for eachn = 1. This immediately implies the assertion of
Proposition 3.3 for dimension five. Thus we may concentrateansidering the higher
dimensional cases. Note thht = 2 in these cases. The formula

H(2 <& 1
3.14 N
(3.14) Hn(2) X:; z-2)
shows that

oL RO

: Z:\l HN(O)
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Since Hy(0) = (N, N)/2V and H{(0) = (N, N — 1)/2N1, we haver® = —1. This
implies that the first term of (3.13) vanishes. Applying @.kgain, we have that

Hi@ [H@T < 1
HN(z)‘[HN(z)] ‘_Z(z—zw’

i=1

which yields that

H{/(0) 1

(A _ rp(dq2 _ ANU)

& =14l HaO) 2N —1°

This completes the proof of Proposition 3.3. []

It is easy to give an explicit form o¥; (t). For » > 0 andw € C let

1

tW =gz

It is well-known that

1 00 X2
-1 _ -
L fI(t) = W /O X exp( 2 + wx) dx,

which can be found in [13] for example. It follows from Profmsn 3.3 that

(2N + 1)t 1 o
r@ Ten—yra T ra2nz

T (t) = Sd—lrd|:

N

! Z 1 /ooxex —X2+sz dx
e = @R L T\ T |

where I' is the gamma function. Recall that(t) = L,(2r%t). In virtue of (2.1), we
can immediately derive the assertion of Theorem 1.1.

4. Asymptotic expansion and power series expansion

In this section we again consider odd dimensional caseseShe compact forms
of V;(t) in one and three dimensions have been given in Section 3, sufficient to
consider higher dimensional cases.

One of our purpose in this section is to establish the folhgriheorem.
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Theorem 4.1. Let r > 0 be fixed and M be a given integer which is not less
than (d —5)/2. If d is odd and not less than fiveve have that

Lld=2t 2(d-2)y? 2r3 Vn§2n 3
Vr(t) = Sj—lrd 2|: + e :|
2 d(d —4) «/ . (dzs)/z

1
+ O|:tM+3/2i|

as t— oo, whereyy = 1 and y, = (—1)"r?"(2n — 1)!! for n = 1.
Before giving a proof of Theorem 4.1, we consider five and sedianensional

cases. Ifd =5, we have shown that(® = (—1)" for n = 1. Hence it follows from
Theorem 4.1 that, il =5,

3t 6r2 2(r3 > 37 159
Vf(‘)“&f{ 5 ‘\E(@‘@*@‘W"")}
If d =7, thenN = 2. SinceHy(2) = 22 + 3z + 3, both ¥z2 and ¥z3 are zeros of

322 + 3z + 1. Hence we have,r”’ —1 and ;‘7) = 1/3. The Newton formula yields
that {¢{"}5°, is the solution of

an
an+2+an+l+§=0 (n=1)

a=-1 a=-
In particular,z{” = ¢{” = 0. It follows from Theorem 4.1 that, ifl = 7,
5t 102 2( r5 r’ 351t 3513
s8]
2 21 a \ot¥2 ot52  guy2 2nlyz

We begin to prove Theorem 4.1. Recall that we have alreadyetkthe explicit
form of V,(t). According to Theorem 1.1, it is sufficient to consider

oo r2x2
expl ——— d
/0 X xp( o + zx) X
for z € C~, which is denoted byG,(t, ). If d = 5, we need to treat the case that
M = 0. Since|G(t, )| is dominated by

o0 1
[ xeRezx gy = ——
0 |Rez|?
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uniformly for t > 0, Theorem 4.1 can be immediately obtained by Theorem 1.1 if
d=5andM = 0.

We concentrate on considering the case thatis positive and not less than
(d —5)/2. The Taylor theorem implies that

<
-

_x B (_1)n

n!

X" + Rum(X)

I
o

n

for x > 0, whereRy (x) = xMe=?*/M! for some#@ € [0, 1]. Then it follows that

M-1 (_1)nr2n 00 il o) I‘2X2
— n ZX X
(4.1) Gi(z, t) = nE:O 20" /o X e dx+/0 Rwm (_Zt )xeZ dx.

Since Rez < 0, the integral in the first term of (4.1) can be evaluated dnd twe
obtain that the first term of (4.1) is equal to
“il (—=1)"r2(2n + 1)! Z L (=1 (@2n + 1!

n! (2t)”22n+2 tnz2n+2

n=0

The estimate of the second term of (4.1) is easy. Indeed, we that

[e's) r2X2
R X
/O M( ot )XeZ dx| =

by the fact that Ry (x)| = xM/M! for x = 0. Therefore it follows that

M m—1, 2m— _
Gz 1) = Z (=1)™1r2m=2(2m — )N n O[ii|,
m=1

tm—lzZm t M

2M

= M 0™

o0
/ 2M+1 —\Rez\x dx

which vyields that

r5

G (2), r3 (—1)™tr2meem— 1 9 . 1
Nezre 21 (ZN)3 - Z tm e O|:tM+3/2:|'
j

Hence we can conclude that(t) is equal to

(4.2) sdlr“[(d -t 2d-2y? 2’ Z yne“z(ﬁls} [ 1 }

2 dd—4) © V32 |°

It remains to see that the summation onn the right hand side of (4.2) begins
from (d —5)/2. However it has been already proved by Le Gall [11] undergdeeral
situation. This completes the proof of Theorem 4.1.
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REMARK 4.2. Recall thad = 2N + 3. The Newton formula implies that

“.3) @ 4 ac® + a4+ a1 =—na, ifL=n=N,

' £+ e +a P +rang®y =0 ifnzN+1,
wherea, = 2¢(N, N —k)/(N, N) for 1 =k = N. It is easy to see by (4.3) thaﬁd) is
equal to—1 if d=5and 0 ifd = 7. In seven or more dimensions, we expect to show
that ;z(ﬂ)ﬂ =0forl=n=N-1and that;z(?'il)+l # 0 by only (4.3) without using the
result by Le Gall. However we could not succeed in showingnthe

We now discuss the coefficients in the power series expardion (t). In virtue
of (2.1), we may concentrate on consideribg(t). If d is odd and not less than five,
Hamana [5] recently proved that

(4.4) Li(t) = Za(d)t“/z

for anyt > 0 and that the right hand side of (4.4) converges absolutétgre {«®}
is the sequence of real numbers defined as

(d)
@ _ n-1
(4-5) T 2y trng2 + 1)

and the sequencg8(®}% , is determined by

bRl

j=0

for k = 0.
Another purpose in this section is to represeff by zeros of a modified Bessel
function. Recall thatl, z), ..., z\ are zeros ofKy, 1. Let
4.6 Sy = max|zl|.
( ) N 1§j§N| j |

Sincez}\‘ # 0 for any 1= ] = N, we have thaty > 0. Lemma 3.2 shows that

Kn+s2(2) _ 14 ( )
Kn+1/2(2) 2o
N+l & @
=l+—- il

n=1
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for |z| > 8y, where
N
D=3
j=1

This implies that
1 d-1 K &9
_ d
LITe](A) = Sy-ar |:A3/2 + %2 Z )L(ni4)/2
n=1

for » > 82. Note thatg@ is real for eachn = 1. SinceL[L,](1) = 2r2L[T](2r2x),
we have that

T I R o R £,
4.7) LILc](») = T[W + 22 ; (\/ir)n—lk(n+2)/2

for » > 8% /2r2.
On the other hand, Hamana [5] proved that there is a constan® such that

(4.8) LIL ) =

&qﬂ*lfiaﬁﬁwv2+1)
2+1
ﬁ n=1 anz

for A > k. By the comparison of corresponding coefficient in (4.7) &h@), we obtain
the following theorem.

Theorem 4.3. Letr > 0 be fixed. If d is odd and not less than fivee have that

oo
(4.9) Vi(t) = Sar® Y /2
n=0

for any t> 0 and that the right hand side of4.9) converges absolutelyvhere

IR IR N R R
and
@ = — 5;@2
(vV2r)rn/2+1)
for n = 3.

We remark thatg@ = —&@ for n = 2, which can be derived by (4.5) and
Theorem 4.3.
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5. Expected surface area of the Wiener sausage

Let T > 0 be fixed. The notatiorg (T) is used to denote the expected surface area
of C/(T). Rataj, Schmidt and Spodarev [14] proved that
(5.1) S(T) = —Vr (T)

for anyr > 0 in two and three dimensions. In four or more dimensionaksashe
formula (5.1) holds at least for almost all> 0. In particular, ifd = 3, they remarked
that S(T) = 27T + 8 /27T + 4xr?. This can be also obtained by the formula for
V;(T) given in [16].

Theorem 5.1. If d is odd and more than or equal to fivere have that

§(M =S

L[d=2PT 2 -2y 2(d+1)r
”ds[ >t Td_a Z(zN)3

2(d + 3)°® r2x?
Nz Z < (2)? / exlo(_F i X) o

r2X2
JznTS Z < (2))? / § exlo(_F T X) dx}

at least for almost all r> 0.

Proof. Theorem 1.1 and (5.1) imply that it is sufficient to sider the deriva-
tive of G;(z, T) with respect tor. We can easily show this theorem with the help of
the formula

] ro[e r2x?
(5.2) gGr(z, t) = -7 /0 x3 exp(—F + zx) dx

for ze C~ andr > 0. This formula can be obtained by a standard argument fdi jus
fication of the interchange of differentiation and integmat Indeed, we have that

0 X ex X + zX
or a 2T

e7|Rez\x

for 0 <r < R with a given R > 0. The right hand side is an integrable function
which is independent of. This yields that (5.2) is valid for & r < R. SinceR > 0
is arbitrary, the formula (5.2) holds for amy> 0. ]

In addition, we can represet®(T) as the power series /2,
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Theorem 5.2. If d is odd and not less than fiveve have that
(5.3) S(T) =S ) (d—n)yOT"?
n=0

at least for almost all r> 0 and that the right hand side of5.3) converges absolutely.

Proof. Forn = 0 let na(r) = n@rd. Then it follows from (4.9) that
DTy = S 3 )T
ar ' Tor = '

We need to justify the interchange of differentiation andnswation. The definition of
nn(r) immediately shows that

no(r) =1t m(r) = \/g(d —reE () = Wrd*‘”

and
I &, d-1
(V2r)'r(n/2 + 1)

a(r) =
for n = 3. This yields thaty,(r) = (d —n)y@r9-1 for eachn = 0. Moreover it follows

from (4.6) that
) N(n—d) /sn)\" 1
OIS T 3 gs) o

for n = d. Hence the estimate

d-1 /<2 n/2
|,7/ (r)|Tn/2 < %(M)
n = r(n/2)\ 2rg

is valid forn = d andr > ro with a givenrg > 0. The sum of the right hand side on
n over [d, co) converges, which yields that

8 o0 o0
L3 OT" = Y T
n=0 n=0

00
— rdfl Z(d _ n)ngd)Tn/Z
n=0

(5.4)

for r > ro. Sincerg > 0 is arbitrary, the formula (5.4) holds for all> 0. This means
that we finished proving (5.3). [
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