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Introduction 

In a series of papers which starts with the present one, we are concerned 

with the problem of invariance of the Pontrjagin classes of differentiable mani

folds. W e prove first, in the present paper, a main theorem whose application 

will be made in the sequel. The main theorem is stated in terms of Riemannian 

metrics of manifolds. 

Throughout the present paper, a compact orientable n-dimensional differenti

able manifold M is fixed. Given a differentiable structure .fi) on M, we denote 

by P (g)) the Pontrjagin classes of (M, g)). For two differetiable structures g), 

g]' on M, we write .f1)~ g]' if the re are a metric function d on M, d' on M and 

an onto-homeomorphism h : M ~ M such that 

i ) d, d' are induced from Riemannian me trics g, g' on (M, g)), (M, g)') 

respectively. 

ii) with 1 ~s<3 we have 

d 2 (x, y)/s~d' 2 (h(x), h(y))~sd2 (x, y) 

for any (x, y) E U, a neighborhood of the diagonal of Mx M. 

MAIN THEOREM If g)~>g)', then p(g))=p(g)'). 

The author wishes to express his hearty thanks to Professor M. Nakaoka for 

his encouragement and valuable suggestions given during the preparation of this 

paper. 

§ 1. Notations and Method 

Given topological spaces X and Y on which a group H operates to the left, 

we denote by !JH(X, Y) the totality of continuons maps of X to Y which are 

compatible with the H-operations. We topologize !JH(X, Y) by the compact open 

topology. If His the identity group the notation !JH(X, Y) is simplified to SJ(X, Y). 

Let 93= {Y, n, B) be a bundle with structure group H. (By bundle we under

stand the E-F bundle in [3]). We then consider the subspace JJH' (X, Y) c !JH 

(X, Y) consisting of ali cp E JJH(X, Y) such that no cp are constant maps, and 

define a map n': JJs' (X, Y)~B by attaching of cp E !JI/ (X, Y) to point which is 

the image of no cp. It follows that { Sh/ (X, Y), n', B) is a bundle with structure 

group H. This bundle is denoted !Jn(X, i]3). 

Let :=r = ( T, p, B) be a principal bundle with structure group G, and Y a 
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topological space on which G operates to the right. Then we consider the space 
Y xe T obtained from Y x T by the identification 

(y, t)=(y·g, g-1 ·t), yE Y, tET, gEG, 

and define a map P': YxeT---'>B by P'(y, t)=P(t). Then it follows that Yxest 

= (Y xe T, p, B) is a fiber space. 

Assume now that Y has a right G-operation and a left H-operation which are 
compatible. Then we cau regard naturally Y x est a bundle with structure group 

H. It follows moreover that, for any topological space X havimr a left H-opera

tion, the natural map defines a fibre-preserving homeomorphism 

(1. 1)) SJH(X, Y)xest-?SJH(X, Yxest). 

Hereafter st will exclusively denote the principal tangent bundle of the mani

fold CM, g)), and G the real general linear group GL(n, R) of degree n=dim M. 

W e shall sketch in what follows our method to prove the main theorem. 

Let Cq denote the complex q-space on which the norm is defined as usual. 

and consider the subspace L(C"', C")c SJ(C"', C") consisting of ali non-degenerate 

complex linear map cp: C"'-?C", where m ~ n. Since G opera tes on C" as linear 
transformations, we cau define a right G-operation on L (Cm, C") by 

(cp·g)(y)=g- 1 ·(cp(y)), gEG, yEC"'. 

It follows then that the Pontrjagin classes p (g)) are given the characteristic 

classes of the bundle 
(I) 

Let S 1 denote the group of complex numbers with norm 1. Then the scalar 

multiplication on the left vector space Cq define a left 5 1 -operation on Cq-0, where 

0 is the origin of Cq. Together with the right G-operation on C", this defines 

the bundle 
(II) S2s 1 (Cm-o, C"-0) x est 

We prove in Theorem 1 that p(!J)) are the characteristic classes of the 

bundle (Il). 

Let R" denote the Euclidean n-space, and consider the space JJ(S1 , R"). We 

define a continuons map 
(1. 2) 

by 

(1. 3) J" Jrr p (cp)=( -~-ifcp1(t)dt, ···, -~-il cp"(t)dt), 

where for cp E JJ(S1 , R") we put 

(1. 4) cp(ei1)=(cp1 (t), ···, cp"(t)). 

Define a left S 1 - and right G-operation on JJ(S1 , R") by 

(z ·cp )(z') = cp(zz'), ( cp• g)(z') = g-1. cp(z' ), 

where z, z' E S1 , gE G and G operates on R" as linear transformations. Then it 
follows that p is compatible with the S1 - and G-operations. 
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Therefore, putting 

we can consider the bundle 

(III) Q 5 1 (Cm-o, Q(Sl, R")-N)xc'ir 

=.!Js'(Cm-o, (Q(Sl, R")-N)xc'ir) 

(see (1. 1)). We prove in Theorem 2 that p induces a fiber homotopy equiva

lence (III) to the bundle (Il). 

In connection with a Riemannian metric g introduced on (M, .fi)) we define 

for any positive number rand ka subbundle 'ir(r, k) of (Q(S1 , Rn)-N)Xc'ir (see 

§ § 3 and 4), and prove in Theorem 3 that there is a fibre homotopy equivalence 

between the bundles (III) and 
(IV) 

if 1/2~k<3/2. 
The above arguments show that p(!J)) are given as the characteristic clas

ses of the bundle (IV). On the other hand we show that if ris sufficiently small 

there is a homeomorphism À of the total space of 'ir(r, k) onto a subspace of Q 

(Si, M) x M. The proof of the main theorem consists in comparing the bundle 

(IV) for g) andg)' by making use of the homeomorphism À and h: M ....... M (see 

the final part of § 4). 

§ 2 Reduction to S-operation 

Let 

l: L ccm, C")Xc'ir ....... Jds 1(Cm-o, C"-O)Xc'ir 

denote the map induced by the inclusion 

t.: L(Cm, C") ....... .!Js1 (Cm-o, C"-0). 

We have 

THEOREM 1. Let n>m and put q0 =2(n-m)+1, then 

n; CL (Cm, C"))= 0 

=Z 

the homomorphism 

if i<qo 

if i=qo; 

1.*: n; (L(Cm, C")) ....... n; ( .!Js'(C"'-0, C"-0)) 

is an isomorphism for i~2(q 0 -1): the isomorphism 

t.*: Hqo+ 1(M, nq,(L(Cm, C"))) ....... 

Hqo+1(M, 7rq 0 (Q 5 1 (Cm-o, C"-0))) 

maps the characteristic class of L( cm, C") x (,"'ir to that of 
.!Js•(C'",-0, C"-0) >< c'ir 

Proof Since L(C"', C") is the complex Stiefel manifold, the first part of the 

theorem is the well-known fact. The last part of the theorem follows quickly 

from the naturality of the characteristic classes and the second part of the 
\ 
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theorem. The proof of the second part is as follows.* 

Regarding the sphere szk-1 of odd dimension as the set of ali elements of Ck 
with norm 1, we denote by v m, n the set of ali linear maps which send szm-1 to 

5 2"-1 , and by Wm," the set of ali maps rp: szm-1 ---;. 5 2 "-1 compatible with the 5 1 -

operation. Then it follows that the natural maps Vm., __,. L(C"', C") and Wm,n -> 

.Q 5 •(Cm-o, C"-0) are homotopy equivalences. 

Therefore the problem is to prove that the homomorphism 

Km*: 7Tq ( Vm, n) ---;. 7Tq ( Wm, n) 

induced by the inclusion Km: Vm, n ---;. Wm, n is an isomorphism for q ~ 4 (n-m). 

Regard cm-l as a subspace of cm by identifying (c1,"',Cm-1) with (cl,"'• Cm-1, 

0), and define continuons maps p: Vm, n---;. Vm-1,. and q: Wm,. __,. Wm-1, n to be the 

duals to the inclusion cm-1 ccm. Then it foliows that ( Vm, "' p, V,._ 1, ,) and ( W,., "' 
q, Wm-1, .) are fibre spaces. In fact, the former is well known, and the covering 

homotopy property for the latter follows directly from the homotopy extension if 

we notice the following : the classified space of szm-1 by the action of 5 1 is homeo

morphic with the space E'tm-z of all elements y=(c1, "',Cm) E cm with norm 1 and 

real c,.~o. and the boundary of E'tm-z is szm-a. 

Let v E Vm-1, n be a point, and put W=K(V) E Wm-1, n• Then it follows that p-l 
(v) is homeomorphic with szn-zm-l and that q-1(w) is homotopy equivalent to the 

iterated loop space .Q zm-z (52"-1 ). Furthermore it follows that the homomorphism 

K2,*: 7r;(p-1(v)) __,. 7[; (q-1 (w)) induced by the restriction K2,=Km 1 cp-1 (v)) is the 

iterated suspension homomorphism 
Ezm-z: rr; cszn-zm+1) ---;. rr;(,gzm-zcszn-1 )) =n;+zm-z(szn-1) 

under the identifications p-1 (v)=sz•-zm- 1 and q-1 (w)=,gzm- 2(52"-1). Therefore 

K2,* is isomorphic onto if i < 2 (2n-2m+ 1) -1 =4 (n-m) + 1. Consider now the 

commutative diagram 

7ri+1( Vm-1, .) ---;. 7r;(p-1(V)) ---;. 7r;( Vm, n) 

lKm-h lK2,* lKm-1* 

---;. n;+1 ( Wm-1, .) ---;. n;(q-1 (w) )-..,.n;( Wm, n) 

---;. 7r;( Vm-1, n) 

l Km-1* 

__,. 7r;( Wm-1, n) 

---;. 7r;_t(P-1 (v)) -> 

l K2,* 

---;. n;_1(q-1(w)) __,. 

in which the rows are exact. Then, in virtue of the five lemma, the induction 

on m proves that Km* is an isomorphism if i~4(n-m). This completes the proof 

of Theorem 1. 

CoROLLARY. The Pontrjagin classes p(g)) are the characteristic classes of 
the bundle .!Js•(Cm-o, cn-0) x est. 

Define a map 

by 

*This is a complex analogue to the proof of the fundamental !emma (1. 1) in Haefliger.Hirsch [1]. 
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(2.1) (a(c 1 , ···,C11 ))(z)=(1/n !](e(c1 z), ···, 1/n !Re (enz)), 

where !Re (c;z) denotes the real part of the complex number c,z. As is easily 

seen, a is continuons and is compatible with the S1 -and G-operations. By a direct 

calculation from (1. 3) and (2. 1) we see 

(2. 2) poa=the identity. 

Define a homotopy flt: g (Si, R") .....,. g (51 , R") by 

(flt (ço)) (z)=(l-t)((aop) (ço)) (z)+t ço(z). 

Then flt is compatible with the S1 -and G-operations, and it holds that 

H 1 =the identity, 

Thus we obtain 
PROPOSITION 1. The maps 

p: g (S1,(R")-N.....,. C"-0, 

a: C"-0 .....,. JJ(S1 , R")-N 

are homotopy equivalences which are compatible with the 5 1-and G-operations 

This Proposition shows 

THEOREM 2. The map p induces a fibre homotopy equivalence 

p: SJs 1 ccm-o, JJ(S1 , R")-N)xG'5r->-SJs 1(cm-o, C"-0)XG5r 

Together this theorem with Corollary to Theorem 1, we have 
CoROLLARY. The Pontrjagin classes p(g)) are the characteristic classes of the 

bundle SJs 1 (C'"-0, (JJ(S1 , R")-N)xG5r). 

§ 3. The space L (r, k; X, x 0 ) 

Let X be a metric space, and d its metric function. Then we associate each 

element çoEJJ (S1 , X) with sequences {S.(ço)} and {s.(ço)} of real numbers defin

ed as follows : 

(3. 1) 

where 

v.=exp(ni/2"-1 ). 

Since a function r(t) =d2 (ço( -e;1) ), is continuons, it follows that for any ço E g 

(S1 , X) the sequence (S.(ço)} converges and we have 

(3. 2) J1T 

S(ço)=limn·)OO s.(rp)= -1Td2 (rp(CÎ1), rp( -ei1)) dt. 

We say that rp E g (51 , X) is a Lipschitz map if the following condition is 

satisfied : The re exists a constant K = K( rp) such that 

(3. 3) d (rp(CÎ1), rp(eil'))/ 1 t-t' 1 ~ K, 

for any distinct real numbers t and t'. 
LEMMA 1. If rp E SJ (5 1, X) is a Lipschitz map, then {s 11 (rp)} is a convegent 
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sequence. 

Proof. The triangle inequality implies 

d2 (x, z) ~ 2 (d2 (x, y) +d2 (y, z)). 

By making use this and ))~+1 = lJ,, it foliows that 

s,(ço) ~ s.+l(ço). 

On the other band, (3. 3) implies d(ço(lJ/), ço(lJ/- 1 ))~nK/2"-1 , and hence we have 

s,(ço) ~ 2nK2 

Th us the sequence \ s,( ço) l converges, and the lemma is proved. 

For each Lipschitz map ço E JJ(S1 , X) we put 

(3. 4) s(ço)=lim s,(ço). 
n-)CO 

Given positive numbers r, k and a point Xo EX, we denote by L(r, k; X, x) the 

totality of ali Lipschitz maps ço E ,Q(S1 , X) satisfying the foliowing two conditions: 

(L 1) d 2 ( ço(z), x0 ) ~ r for ali z E Si, 

CL 2) o < s(ço)/k ~ kS(ço). 

We shali next consider the case X is a real n-space R" in which a metric 

function d is given by 
(3. 5) d 2 (x, y)= ~u gu(x; -yi) (xj- yj) 

in terms of a symmetric positive definite quadratic form g. 

Given a function f(t) defined on [ -n, n], we denote as usual by ak(j), bk(/) 

the Fourier coefficients of f(t): 

ak(j) = 1/n J:JCt) cos kt dt, bk(/)= 1/n [,/Ct) sin kt dt. 

For ço E ,Q(S1, R"), we put 

(3. 6) Ak(ço)=~gu (ak(ço;) ak(<Pj)+bk(<Pi) bk(<Pj)) 

(See (1. 4) for the definition of çoi). 

PRoPOSITION 2. For any ço E JJ(S1, R") we have 

S(<P)= ~~1 4A2k-1(ço); 

If cp is a Lipschitz map we have 

s(cp)=~'f- 1 k 2 Ak(cp). 

(Proof is given in § 5.) 

The foliowing Lemma is fundamental. 

LEMMA 2 For any Lipschitz map <P E JJ(Si, R") satisfying 
O<s(cp) ~ cS(ço) 

with a constant c (O<c<9/4), we have p(cp)=/=0. 

Proof. Suppose that p( cp)= O. Then we have 

J:.,. e-it cpj (t)dt = a1 ( cpj)- ib1 ( cpj) = 0 

for any j, and bence A1 (cp)= O. Therefore, in virtue of Proposition 2, it foliows 

from s( ço) ~ cS( cp) that 
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0 ~ :L:'f~ 24k 2 A2h( Ç?) + '.L'f~ 1 ( (2k + 1) 2 -4c)Azk+1 ( Ç? ). 

Since (gu) is positive definite, Ak( Ç?) ~ O. Consequently we obtain 

A2(!f')=Aa(Ç?)=···=O or s(Ç?)=O 

which contradicts with the assumption 0 < s( Ç?). 

REMARK 1 Let cp : 51 __. 5" be a Lipschitz map, then 

s(Ç?) = 0 

if and only if Ç? is a constant map. 

(See § 5 for the proof). 

PROPOSITION 3 For O<k<3/2 and any r>O, we have 

L (r, k; R", 0) c .Q(51 , R") =N; 

L (r, k : R", 0) is invariant under the 51 -operation. 

79 

Proof. The former is a direct consequence of Lemma 2. If Ç? is a Lipschitz map 

then Ç? ·a (a E 5 1 ) is also a Lipschitz map and we have 

Max d(Ç?(z), 0) Max d(Ç?•a(z), 0). 
z(S 1 zES 1 

Furthermore direct calculations show 

Ak ( Ç? • a) = Ak ( Ç?) 

and hence by Proposition 2 we have 

(3. 7) 5(Ç?•a)=5(Ç?), s(Ç?•a)=s(Ç?). 

Therefore the latter is obtained, and the proof completes. 

For any element y E C", put 

(3. 8) Il y Il= Max d(o( y)(z), 0). 
z r~S 1 

Th en by direct calcula ti on we can prove that Il y Il is a nor rn in C" . i ) Il y i 1 = 0 if 

and only îf y=O, ii) Il cy Il= 1 c 1 Il y Il for any cE C1 • iii) 1! Yt -1 h Il;;: Il Y1 Il+ 1! Yzll. 
For any r>O, put 

(3. 9) S(r; R", 0)= {o(y) !yE C", l!y li=t' rl 
LEMMA 3. There is a deformation retraction of .Q(51 , R") -- N to 5(r; R", 0) 

which is compatible with the 5Loperation. 

Proof. Define a homotopy q1 : C"-0->C"-0 by 

qtCY) = o-t+vr.t/11 Y Il) Y 

Then qt is compatible with the 5 1-operation and we have 

qo=l, q1(C"-O)=®(r), qt 1 ®(r)=l, 

where ®(r) =, 1 y E C" 1 Il y Il =,/r}. Therefore if we put 

Qt=aoqtop: JJ(51, R")-N __. .Q(51 , R")-N 

then Qt is a homotopy which is compatible with the 5Loperation, and we have 

Qo=aop, Q1UJ(51 , R")-N)=5(r; R", 0), Q1 15(r; R", 0)=1. 

Consequently, together this with Proposition 1, we obtain the desired result. 

LEMMA 4 If l/2 ;;: k < 3/2 there exists a deformation retraction of L (r, k ; R" 

0) to 5(r; R", 0) which is compatible with the 51 -operation. 
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Proof Define a homotopy H1 : .Q(Si, R")- N --c> g(S1 , R") by 

Ht(<p)(z)=(1-t)<p(z)+t(Q1(<p)))z), zE S 1 . 

Then HtC <p) is compatible with the SLoperation, and we have 

H 0 =1, H 1(.Q(S1, R")-N)=S(r;R", 0), HtiS(r; R", 0)=1. 

Therefore, in virtue of Proposition 3, the problem is to prove 

(3. 10) H 1(L(r, k; R", O))CL(r, k; R", 0). 

This is proved as follows. 

If we notice that sin (}, cos (} satisfy the Lipschitz condition, it is easily 

proved that 6(y) is a Lipschitz map for any y E C". From this it follows that if <p 

is a Lipschitz map then sois H 1(<p). Let If! satisfy d 2 (1f!(z), 0) ~ r for any zE S1 , 

then it holds that 

Hence we have 

d(H1(<p)(z), 0)~(1-t)d(lf!(z), O)+t d(Q1(<p(z)), 0) 

~(1-t)vr +tvr/11 P(lf!)ll d((6oo(lf!)(z), o) 

~0-t)vr +tvr =vr. 

d 2 (HtCif!)(z), O)~r 

for any z E S1 and tE [0, 1]. 

Observe next that 

A 1(6(y))>O, Aj(6(y))=O (f;;;;;2) 

for any O+y E C". Then, it follows that 

A1(Ht(<p) );;;;,(1-t) 2 A1(ço ), 

Aj(H1 (~p))=(1-t) 2Aj(lf!) (j;;;;;2). 

Therefore, in virtue of Proposition 2, direct calcula ti ons show that if 0 < r ( <p) 1 k 

~kS(<p) with 1/2~k<3/2, then O<s(H1 (1f!))/k~ks(HtCif!)). Thus we have (3.10), 

and the proof is completed. 

Together with Lemmas 3 and 4, we obtain 

PROPOSITION 4 For 1/2 ~ k < 3/2 and 0 < r, there is a hmnotopy equivalence of 

L(r, k; R", O) to .Q(S1, R")-N which is compatible with the 5 1-operation. 

PROPOSITION 5 Let 1/2~k<3/2, 1<u<3/2k, then the homomorphism 

i*: n(.Q5 1 (Cm-o, L(r, k; R", O)))_,.nq(.Q(Cm-o, L(ur, uk; R", O))) 

induced by the inclusion i: L(r, k; R", O)_,.L(ur, uk; R", 0) is an isomorphism. 

Proof. It is easily seen that a homotopy 

ft: S(r; R", 0) __,. L(ur, uk; R", O) 

can be defined by 

ft(lf!)=((l-t)+ut)lf!, <pES(r; R", 0). 

It follows that / 1 is compatible with the SLoperation, and that 

/o(lf!)=lf!, /1Cif!) E S(ur; R", 0). 

Therefore the diagram 
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!2s'(cm-o, S(r; R",O)) ~!2s'(Cm-o, S(ur; W, O)) 

1i li 
!2s 1 (Cm-o, L(r, k; R", 0))~!2s 1 (Cm-o, L(ur; uk; R", O)) 

is commutative, where i are the inclusions. Obviously f 1 is an onto-homeomor

phism. Therefore the proposition is a direct consequence of Lemma 4. 

§ 4. Proof of the main theorem. 

Take a Riemannian metric g on M. Then g determines a metric function dp 

on each fibre Tp=n- 1 (p) of the tangent bundle R"xc':i. Therefore Tp is a real 

linear n-space having a metric function defined in terms of a symmetric positive 

defini te matrix gu(P ), so that we can apply the arguments in § 3 with Tp instead 

of R". 
As is weil known, g defines also a metric function on M. W e denote this by 

dM. Consider a system of normal coordinates (x1 , ···,x") in a neighborhood Up 

of p E M. Then the correspondence of points q = (x1 , ···, x") E Up to points 2.:;7~ 1 
x;L;(p), L;(P)=('à/'àx1)p, defines a homeomorphism of Up into Tp. This homeo

morphism is denoted by ).p 

LEMMA 5 For any sutjiciently small &>0, there exists o(E)~O such that 

i) o(é)~ké 

ii) for any p, q, q'EM with dM(q, p)~E, dM(q', p)~E we have 

d~ (q, q_')/Cl+o(é)) ~dk(q, q')~Cl+o(é))d'j,(q_, q') 

where we put q=).p(q) and q'=).p(q'). 

Proof Let x= (xi), x'= (x' 1) be normal coordinates of q, q' in Up. Then it 

follows that there are functions a11 (x, x', p) such that 

d'ir(q, q')='L;uau(x, x', p)(x1-x'1)(xj-x'1 ) 

d'f, (q, q')=~ijaij(O, 0, p)(x;-x'1)(xj-x0 ) 

if q, q' E Up. W e can take au( x, y, p) in such a way that they are continuous on 

p and are differentiable on x and y. Consider now a quadratic form 

Ac x, y, p)(!;) = L..;,jau(x, y, P) ~~~j. 

Then we have 

Acx,y,p)(x-x')=d'ir(q,q'), Aco,o,p)(x-x')=d; (q, q'). 

It follows that there is a function c (p, 0 which is upper semi-continuous on p 
and ~ and which satisfy 

Put 
1 Acx, x', P) co- Ac o. o, p)(O 1 ~c(p, OCdM(q, p) +dM(q', p) ). 

c(P)=Max c(p, n 
~ E@5 
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where 15= {UAco, o, p)(~)=l}. Since, 

Cx-x')/v Aco, o, p)(x-x') E 15. 

if dM(q, p);?,ê and dM(q', p);?,ê then we have 

1 Ac x, x', p)(x- x')- Ac o. o, p)(x- x') 1 ;?,2êc(p )Ac o. o, p)(x-x'), 

nam ely, 

(l-2Ec(p))d;(q, q');;;,d'1r(q, q')2(1+2Ec(p))d; (q, q'). 

Therefore, putting 
o(ê) = 2êc/(l-2êc) with c=Max c ( p), 

PEM 

we have the desired result. 

PROPOSITION 6 For sufficiently small E>o, ).p induces maps 

Àp: L(ê, k; M, p) --4 L((l+ o(ê))ê, (1+ o(ê))k; Tp, 0) 

,.lp 1 : L(ê, k; Tp, 0)---+ L((l+o(ê))ê, (l+o(é))k; M, p) 

Proof Obvions from Lemma 5 and the definition of L(r, k; X, xo). 

For any r>o and k>·o, we define a subspace T(r, k) by 

T(r, k)= U L(r, k: Tp, O)C.Q(Sl, R")xc'l: 
PéM 

and a continuons map n 0 : T(r, k) -• M by 

no(r, k; Tp, O))=P. 

PROPOSITION 7 'l:(r, k) = { T(r, k), n 0 , M} is a bundle with structure group 

Proof Let (x') be a system of normal coordinates in Up, and let x= (x1 ) be 

the coordinate of xE U1,. Then there is a matrix (/j(x)) such that 

g",v (X)~~ ~gi ;( 0 )/;" (x)f/ (X) 

and fj(x) are continuons on x. We have a homeomorphism 

r;: 1'1, ;~ U1) - • n 1 ( Up) 

defined by 

~(L.,1x1L,(p), q) ~L.;;;X1 f'rL,(q), 

It follows that dp(x, x')=dp(Hx, q), nx', q)) for any x, x'E T 1,. Therefore if we 

define 

by 

then it follows that''l is a homeomorphismsuchthat 7To 0 'iJ(ifJ, q)=q, andthat'tJ(L 

(r, k; Tp, 0) x Up) = U L(r, k; Tq, 0) =n01 ( Up). Thus we have the lemma. 
qEU p 

THEO REM 3 For l/2 ;;;, k < 3/2 and r > o, there is a fibre homotopy equivalence 

of the bundle '1: (r, k) to the bundle ( Q (51 , R")- N) x c'l: which is compatible 

with the SLoperation. 

Proof. We mean by Np the set N defined for Rn= Tp. Then the fibre on P 
of the bundle ( .Q (51 , R")-N) xc% is .Q (Si, Tp)- Np. On the other hand, the 
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fibre space ~(r, k) is L(r, k; Tp, 0). Therefore the desired result follows from 

Proposition 4. Here it is to be noticed that the fibre homotopy equivalence ~ P : 

L(r, k; Tp, O) -> ü(S1 , Tp)-Np can be taken in such a way that ~Pis continuous 

on p. (See the proof of Lemmas 3 and 4). 

Together this theorem with Corollary to Theorem 2, we have 

CoROLLARY The Pontrjagin classes p (g)) are characteristic classes of the 

hundle .Q 5 ,(C"'-0, ~(r, k)), where 1/2;;;k<3/2 and rc.O. 

W e now proceed to proving the main theo rem. 

In the following, the notations with ' denote the corresponding notions defined 

for (M, fi)'). We assume that E>O is sufficiently small. 

In virtue of the condition ii) of Introduction, h induces a map 

hp: L(é, k; M, p) -'? L (sE, sk; M, h(p)). 

Therefore, by Proposition 6, the composition 

f; p= Àh(p)hJ,.j;1: L(E, k; Tp, O) -'? L(Esil, ksil; Th' (Pl• 0) 

can be deflned, where 

Li=Cl+ilo')(l+oo) 

with o 0 =o(E), o 0'=((1+oo)Es). lt follows that the maps i;p for ali PEM give 

rise to a map E;: T(s, k) -'? T'(Esil, ksil) such that n 0' of;=hon0 . By Proposition 

7, E; is a bundle map of ~(é, k) to ~'(Esil, ksLl), so that E; induces a bundle map 

f;: .Qst(C'"-0, ~(é, k)) -'? Üst (Cm-0, ~'(Es.Q, ks/1)) 

such that n 0' of;=hon0 . Therefore, in virtue of Corollary to Theorem 3 and the 

fa ct 

the main theo rem is a direct consequence of the following : If 1;::.; s 2 < 3 then the 

homomorphism 

E;*: nzcn-m)+1CQs1(Cm-0, L(é, 1/2; Tp, 0)))-'? nz(n-m)+1 

(Üs1 (Cm-0, L(Esil, 1/2sil; T,' (Pl• O))) 

induced by E; is an isomorphism. To prove this we consider the composition 

E;~CPJ =J,.poh- 1 oJ,./,(~J: L 1 =L(Esil, sil/2; T/,cpJ 0) ·~ L 2 =L(Es 2 L1Ll', s 2 L1Ll'/ 2: Tp, 0), 

where we put 

Ll'=Cl+ il1) Cl+ ot'J 
with 01 1 =o'(Esil), Ot=à((1+àt')Es2 L1). Then the composition 

t~cpJ 0 f;p: Lo=L(E, 1/2; Tp, 0) -'? Lz 

is the inclusion. Since 

lim LiLl' c= 1 
E~O 

it follows from Proposition 5 that, if l;:;s 2 <3, then 

i;),cp) o'çP*: nq,( ü.,,(C"'--0, Lo)) _, nq"(.Q(C"' -0, Lz)) 

is an isomorphism. Th us for 1 ;:;s<.J/ s, è;j,r Pl* is an epimorphism. On the other 
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hand, by Theorem 1, Propositions 2 and 4, we have 

nq,(.!Js'ccm-o, L;));:::::,Z 

(i=O, 1, 2). Therefore thCPl*• and hence {;P*, is an isomorphism if 1~s<3. This 

completes the proof of the main theorem. 

§ 5 Proof of Proposition 2 

W e first prepare from theory of real functions sorne theorems whose proofs 

are referred to, for example, the book of Natanson [2]. 

Let f(t) be a (real valued) function defined on a closed interval [a, b], and 

let 
a=tS<t~ .. <t~=b, t%=a+k(b-a)/n, 

be a partition of [a, b]. Then we define a function Dnf(t) by 

{n(f(t~+1)-f(tV)/(b-a) for tZ<t<t%+1, 
(5.1) Dnf(t)= Q 

for t=t~ 

THEOREM A ([2, p. 257]). Let j(t) be a function defined on [a, b], and assume 

that there exists a constant K=K(f) which depends only on f and 

~r::5UCtk+1) -tctk)) 2/Ctk+1 -tk)~K 
for any partition a=to<tl < .. ·<tn=b of [a, b]. The sequence of the functions 

{DnfCt)} converges almost everywhere, and for the limit fuction 

Df( t )=lim Dnf(t) 
n..;co 

it holds that 

Df(t) E L2[a, b], f(t) =const. + J: Df(s)ds. 

where L 2 [a, b] stands for the totality of measurable function f(t) defined on 

[a, b] such that 

J:J(t)2dt<oo. 

REMARK 2 If /(t) satisfies the Lipschitz condition, namely if there is a con

stant c=c(f) such that 

1/(t)-j(t')l/lt-t'l ~ c 

for any t, t' E [a, b] (t=/=t'), then the assumption in Theorem A is satisfied. In fact, 

~%=6Cf(tk+1) -j(tk)) 2/(tk+1-tk) ~ 2....:Z='lic 2(tk+l-tk) = (b-a)c 2 

THEOREM B ([2, p. 266]). Let j(t) be an integrable function detined OJ'l [a, b], 

and put 

F(t)= Jjcs)ds. 

Then, for a dijferentiable function h (t) defined on [a, b], the following formula 

holds: 

J: h(t)j(t) dt= [h(t)F(t)]: - J: h' (t)F(t)dt. 

THEOREM C (Lebesgue's theorem, [2, p. 127]) Let fn (t) be a sequence of 

functions which converges al most everywhere to f, and such that 1 fn(t) 1 ~ K < oo for 
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al! n and t. Then we have 

lim J!n(t) dt= fJ(t) dt. 
n-7oo 

THEOREM D (Parseval formula, [2, p. 179]). For any f(t), g(t) E L2[ -n, n] 

it holds that 

[,/Ct)g(t)dt =4aoCf)ao(g) + ~~1ak(f)ak(g) +bk( f)bk(g). 

W e shall prove 

LEMMA 6 Let f(t) be function defined on [ -n, n] which satisfies the Lips
chitz condition, and such that f( -n) = f(n). Then, for the function Df(t), we have 

ak(Df)=kbk(f), bk(Df)= -kak(f). 

Proof. By Theorem A and Remark 2 we have 

f(t)=c+ r"D(f(s))ds. 

Therefore the assumption /(- n) = f( n) implies 

naoCf)= L:Df(s)ds=o. 

Bence, in virtue of Theorem B, we have 

ak(D1 ) =1/n [,p!Cs) cos ks ds 

=1/n {CCcos kt) r"Df(s)ds]="+kr"(sin kt) cf,ptCs)ds) dt 

=k/n J:/sin kt)Cf,ptCs)ds) dt 

=kin [/sin kt)(j(t) -c)dt 

=k/n [/Cf) sin kt dt=kMf). 

Similarly we have bk(Df) = -kak( f), and the proof completes. 

LEMMA 7 If cp: 5 1 ---é> Rn is a Lipschitz map, then each function rp;(t) satis

fies the Lipschitz condition. 

Proof. It follows that there is a constant c; such that 

1 x;-yi 1 ~ c;d(x, y) 

for any x, y E Rn. Therefore we have 

1 !p1(t) -rp1(t') 1/1 t-t' 1 ~ C; d(rp(e 11 ), rp(e11')) /1 t-t' 1 ~ C;K (cp) 

W e now proceed to 

Proof of Proposition 2. By (3. 2) we have 

sc(/!)= r7T d 2 ( rp( -ei1), rp(e11)) dt. 

It follows that 

r7TL;ug;j( rp' Ct+ n) --cp' (t)) C epi Ct+ n)- epi (t) )dt 

ak( qi(t + n)) = C -1)kak( cp1(t) ), 

bk(rp1(t+n))=( -1)kbk(rp1(t)). 
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Therefeore, in virtue of Theorem D, we obtain 

=l:::~t A2k-1C<P) 

Next, assume <P is a Lipschitz map, then it follows from (3. 1) and (5. 1) that 

Sn(<P) =2"-1 /n .Z::l~-=-:n-2 d 2 (<P(v/), <'f'(7J~-l )) 

= L:ugij L:D.<PiDn<Pjdt. 

Sin ce <P; (t) satisfies the Lipschitz condition by Lemma 7, it follows from Theo rem 

A and Remark 2 that the sequence D.<P' (t) converges almost everywhere to D<P; 

(t) E L 2 [ -n, n]. Furthermore, in the notation of the proof of Lemma 7, we have 

1 Dn<Pi(t)Dn<P1(t) 1 ~ C;CjK2 (<P) < oo. 

Therefore, in virtue of Theorems C, D and Lemma 6, we obtain 

= l:::ugij 2:::~1 (k2bk( <P 1)bk( <P1 ) + k 2ak( <Pi)ak( <Pj)) 

=2.::~ 1 k 2 Ak(<P) 

This completes the proof of Proposition 2. 

W e shall here prove Remark 1. 

Proof of Remark 1. If s(<P)=O then Ak(<P)=O for all k~1, so that ak(<Pj)= 

bk(<Pj)=O for all k~1 and j. Therefore, by Lemma 6 and Theorem D, we have 

frr (D<Pj(t)) 2 dt=O. 

This implies D <Pj(t)=O almost everywhere. Therefore, by Theorem A, we obtain 

<P 1 (t)=c + rrrD<Pj(s)ds=c. 
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