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Introduction

In a series of papers which starts with the present one, we are concerned
with the problem of invariance of the Pontrjagin classes of differentiable mani-
folds. We prove first, in the present paper, a main theorem whose application
will be made in the sequel. The main theorem is stated in terms of Riemannian
metrics of manifolds.

Throughout the present paper, a compact orientable n-dimensional differenti-
able manifold M is fixed. Given a differentiable structure ¢) on M, we denote
by p((g)) the Pontrjagin classes of (M, ). For two differetiable structures ),
g’ on M, we write ()~()’ if there are a metric function d on M, d’ on M and
an onto-homeomorphism %: M—M such that

i) d, d’ are induced from Riemannian metrics g, g’ on (M, ), (M, §)’)
respectively.

ii) with 1=s<3 we have

dz(x, y)/s=d’*(h(x), h(y))=sd(x, y)
for any (x, ¥) € U, a neighborhood of the diagonal of Mx M.

MaIiN TuaeoreM If )~ @), then p(9)=p(g)").

The author wishes to express his hearty thanks to Professor M. Nakaoka for
his encouragement and valuable suggestions given during the preparation of this
paper.

§1. Notations and Method

Given topological spaces X and Y on which a group H operates to the left,
we denote by 9y(X, Y) the totality of continuous maps of X to Y which are
compatible with the H-operations. We topologize 24(X, Y) by the compact open
topology. If H is the identity group the notation 2,(X, Y) is simplified to 2(X, Y).

Let B=1{Y, 7, B} be a bundle with structure group H. (By bundle we under-
stand the E-F bundle in [3]). We then consider the subspace Q25" (X, Y) C 2x
(X, Y) consisting of all ¢ € 25(X, Y) such that 7w-¢ are constant maps, and
define a map 7z’: 924 (X, Y)—B by attaching of ¢ € 25 (X, Y) to point which is
the image of zo¢. It follows that {2y (X, Y), 7, B} is a bundle with structure
group H. This bundle is denoted 24(X, 4.

Let = (T, p, B) be a principal bundle with structure group G, and Y a
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topological space on which G operates to the right. Then we consider the space
Y < ¢T obtained from Yx T by the identification

(y, H)=(y-g, g71+1), yeY, teT, g€qG,
and define a map p’: YxcT—>B by p’(y, t)=p(t). Then it follows that ¥XZT
=(Yx¢T, p, B) is a fiber space.

Assume now that Y has a right G-operation and a left H-operation which are
compatible. Then we can regard naturally Yx¥ a bundle with structure group
H. Tt follows moreover that, for any topological space X havine a left H-opera-
tion, the natural map defines a fibre-preserving homeomorphism

(1. 1) 21X, Y)XcZ—25(X, Y XcT).

Hereafter ¥ will exclusively denote the principal tangent bundle of the mani-
fold (M, (), and G the real general linear group GL(n, R) of degree n=dim M.
We shall sketch in what follows our method to prove the main theorem.

Let C? denote the complex g-space on which the norm is defined as usual,
and consider the subspace L(C™", C")C 2(C™ C") consisting of all non-degenerate
complex linear map ¢: C™—C" where m=#n. Since G operates on C” as linear
transformations, we can define a right G-operation on L (C”, C") by

(p-)(P)=g1-(e(y)), g€G, yeC™
It follows then that the Pontrjagin classes p({)) are given the characteristic
classes of the bundle
(D L(C™ C")XcZ

Let St denote the group of complex numbers with norm 1. Then the scalar
multiplication on the left vector space C? define a left S-operation on C?-0, where
0 is the origin of C% Together with the right G-operation on C”, this defines
the bundle

an 251(C™-0, C"-0) X T

We prove in Theorem 1 that p(g)) are the characteristic classes of the
bundle (II).

Let R" denote the Euclidean n-space, and consider the space £(S®, R"). We
define a continuous map

(1. 2) p: (S, R - C”
by
(1. 3) o) =("etortrat, -, ("t ortran),

where for ¢ € 2(S?, R*) we put
a4 @ (@) =(p1(D), -, ¢" (1)).
Define a left S*- and right G-operation on 2(St, R*) by
(z-@)(2")=0(22"), (¢ D(")=g"1+0(2"),
where z, z’ € S1, g € G and G operates on R” as linear transformations, Then it
follows that p is compatible with the S'- and G-operations. '
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Therefore, putting
N=p71(0)
we can consider the bundle

(IID) 251(C"—=0, (S, R")—N) X%
=02s(C"—0, (2(S', R")—N)x¢%)

(see (1. 1)). We prove in Theorem 2 that p induces a fiber homotopy equiva-
lence (III) to the bundle (II).

In connection with a Riemannian metric g introduced on (M, {)) we define
for any positive number » and % a subbundle (7, &) of (2(S:, R")—N)X T (see
§§3 and 4), and prove in Theorem 3 that there is a fibre homotopy equivalence
between the bundles (III) and

(Iv) 2s:(C"=0, T(r, k)
if 1/2=k<<3/2.

The above arguments show that p({)) are given as the characteristic clas-
ses of the bundle (IV). On the other hand we show that if 7 is sufficiently small
there is a homeomorphism 1 of the total space of (7, k) onto a subspace of 2
(S, M)xM. The proof of the main theorem consists in comparing the bundle
(IV) for ¢g) andg)’ by making use of the homeomorphism 2 and %: M —> M. (see
the final part of §4).

§2 Reduction to S-operation

Let
¢ L(C" CMXeZ — 25(C"—0, C"—0) X%
denote the map induced by the inclusion
¢ L(C™ CY) — 2s(C"—0, C"—0).

We have
THEOREM 1. Let n>m and put qo=2(n—m)+1, then
7 (L (C", C")=0 if i<qo
=Z if i=qo;

the homomorphism
e 17 (L(C™, CM) — 7 (2s2(C"—0, C"—0))
1s an isomorphism for i=2(qo—1): the isomorphism
et HO# (M, 7, (L(C™, C™)) —
Ho" Y (M, m,,(2s(C"—0, C*—0)))
maps the characteristic class of L(C™, C")X (T to that of
2s(C" =0, C"=0) X T
Proof Since L(C™, C*) is the complex Stiefel manifold, the first part of the
theorem is the well-known fact. The last part of the theorem follows quickly
from the naturality of the characteristic classes and the second part of the
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theorem. The proof of the second part is as follows.*

Regarding the sphere S2*~1 of odd dimension as the set of all elements of C*
with norm 1, we denote by V, , the set of all linear maps which send S2”* to
S27=1 and by W,, . the set of all maps ¢: 52" 1— 5271 compatible with the S?-
operation. Then it follows that the natural maps V,,.,— L(C”, C*) and W, , -
2s1(C™—0, C*—0) are homotopy equivalences.

Therefore the problem is to prove that the homomorphism

£ 27y (Vi n) = g (Wi, )
induced by the inclusion «,: V,, » = W,, . is an isomorphism for ¢ = 4 (n—m).

Regard C™ 1 as a subspace of C” by identifying (cq,**,cm—1) With (c4,'*, Cm_1,
0), and define continuous maps p: Vi, v~ Vi-1,» and q: Wy, ,— W,_q,, to be the
duals to the inclusion C”"1CC™ Thenit follows that ( Vo, ., 2, V-1, ) and (W, ,,
q, Wu-1,.) are fibre spaces. In fact, the former is well known, and the covering
homotopy property for the latter follows directly from the homotopy extension if
we notice the following : the classified space of S2”~1 by the action of S? is homeo-
morphic with the space E£%3*72 of all elements y=(c1,*,¢») € C” with norm 1 and
real ¢,=0, and the boundary of E%"2 is S2m~3,

Let v€ V,_1,, be a point, and put w=«(®) € W,_4,,. Then it follows that p~1
(v) is homeomorphic with S2”72”1 and that ¢ *(w) is homotopy equivalent to the
iterated loop space 22" 2(S2"1), Furthermore it follows that the homomorphism
ks i (p7H(0)) — 7; (¢ (w)) induced by the restriction «£%==«,|(p 1(v)) is the
iterated suspension homomorphism

E2m2 gy (S22 > (022 (S)) =T 2 m-2(S2771)
under the identifications p~1 (¢)=S2""2""1 and ¢~1 (w)=02""2(S2""1), Therefore
k% 1s isomorphic onto if (<2 (2n—2m+1)—1=4(n—m)+1. Consider now the
commutative diagram

= Tip1(Ve1, ) = mi(p72(0)) = (Vi w) = Ti( Vi1, n) — mia(p71(0)) —

0 0
i Em—1 l Kmsx l Em—1% \L KEm—1% l Kmx

g 7Zi+1(Wm—~1, n) —> 77-'i<q_1(w>)“'>7ri( Wm, w) — 7 Wm—l,n) - ni~1<q_1(w)) -

in which the rows are exact. Then, in virtue of the five lemma, the induction
on m proves that «,. is an isomorphism if i<4(n—m). This completes the proof
of Theorem 1.

CoroLLARY. The Pontrjagin classes p({)) are the characteristic classes of
the bundle Qs1(C"—0, C*—0) X 3.
Define a map
6:C" — £ (S, R")
by

+ This is a complex analogue to the proof of the fundamental lemma (1.1) in Haefliger-Hirsch [1].
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@n (a(cq, e 2)=(1/m Reler2), -+, 1/m Re (cn2)),
where QRe (¢;z) denotes the real part of the complex number c,z. As is easily
seen, ¢ is continuous and is compatible with the Si-and G-operations. By a direct
calculation from (1. 3) and (2. 1) we see
(2. 2) poo=the identity.
Define a homotopy H,: £ (S, R") — 2(S', R") by
(H, (¢)) (2)=(1~1)((s0p) (¢)) (2)+1 ¢(2).
Then H, is compatible with the S'-and G-operations, and it holds that
Ho=a°p H; =the identity, poHy=p

Thus we obtain

ProrosiTion 1. The maps

p: (ST (R"H—-N — C"—0,
¢:C"—0 — (S' R")-N

are homotopy equivalences which are compatible with the St-and G-operations

This Proposition shows

THEOREM 2. The map p induces a fibre homotopy equivalence

P st (C"—0, £(S1, R")—N)XeZT — 2s1(C"—0, C"—0) X T

Together this theorem with Corollary to Theorem 1, we have

CoroLLARY. The Pontrjagin classes p({)) are the characteristic classes of the
bundle 95:(C"—0, (2(S*, R")—N)x¢e3).

§3. The space L (r, k; X, xo)

Let X be a metric space, and d its metric function. Then we associate each
element ¢ € £ (S, X) with sequences {S,(¢)} and {s,(¢)} of real numbers defin-
ed as follows:

n—1
3. 1) Se)=m/2 a2 (o), e(=wb),

on

1

(=2 1/m S e, el ),

ot
where
v,=exp(mi/2" 1),
Since a function 7(#)=d2(¢(—e™)), is continuous, it follows that for any ¢ € @
(S, X) the sequence {S,(¢)} converges and we have

(3. 2) S(¢)=Timy o Su(9)= [ d2(p(e™), p(—e)) dt.
We say that ¢€ 9 (SY, X) is a Lipschitz map if the following condition is
satisfied : There exists a constant K=K(¢) such that
3. 3) d(p(e), e/ | t—t"| = K,
for any distinct real numbers ¢ and #’.
Lemma 1. If o€ 2(SY, X) is a Lipschitz map, then {s,(¢)} is a convegent
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sequence.
Proof. The triangle inequality implies
d*(x, z2) = 2(d%(x, y)+d*(y, 2)).
By making use this and »2,,=v,, it follows that
$:(¢) = Su42(0).
On the other hand, (3. 3) implies d(¢(v,"), ¢(v,*"1))=7zK/2""1, and hence we have
s.(¢) = 2nK?
Thus the sequence is,(¢)} converges, and the lemma is proved.
For each Lipschitz map ¢ € 2(S1, X) we put

(3. 4) S<"’)=},ir£ $u(@).

Given positive numbers 7, £ and a point x¢€ X, we denote by L(7, k; X, x) the
totality of all Lipschitz maps ¢ € 2(S?, X) satisfying the following two conditions:
Y az(¢(2), x0) = r for all z€ St,
L2 0 < s(p)/k = kS(e).
We shall next consider the case X is a real n-space R” in which a metric
function d is given by
(3. 5) d2(x, y)=21; ;% —y") (' —y7)
in terms of a symmetric positive definite quadratic form g.
Given a function f(¢) defined on [—7, 7], we denote as usual by a.(f), b, (f)
the Fourier coefficients of f(#):

a(f)=1/z [ ft) cos kt dt, bi(H)=1/z[" f@) sin Bt dt.

For ¢€ 2(St, R"), we put
(8. 6) A(e)=22gi; (@(¢) ar(e?) +bi(@") br(9?))
(See (1. 4) for the definition of ¢?).
ProrosiTION 2. For any ¢ € (S, R") we have

S(e)= 2121 4425-1(9);
If ¢ is a Lipschitz map we have
s(o)=22 k% A(o).
(Proof is given in §5.)
The following Lemma is fundamental.
Lemma 2 For any Lipschitz map ¢ € 2(S1, R") satisfying
0<<s(@) = cS(e)
with a constant ¢ (0<<c<<9/4), we have p(¢) 0.
Proof. Suppose that p(¢)=0. Then we have
" eoitvat=aion—its (e =0

for any j, and hence A;(¢)=0. Therefore, in virtue of Proposition 2, it follows
from s(¢) = cS(¢) that
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0= 292,42 A,,(0) +2 51 ((2k+1)2 —4c) Agrr1 (9).
Since (g;;) is positive definite, A,(¢) = 0. Consequently we obtain
Az (0)=As(¢)="=0 or s(¢)=0
which contradicts with the assumption 0 << s(¢).
REMARK 1 Let ¢: S'— S" be a Lipschitz map, then
s(¢) =0
if and only if ¢ is a constant map.
(See §5 for the proof).
Prorosition 3 For 0<<k<<3/2 and any r>0, we have
L(r, k; R", 0) C 9(S, R")=N;
L (r, k: R", 0) is invariant under the S-operation.
Proof. The former is a direct consequence of Lemma 2. If ¢ is a Lipschitz map
then ¢-a (¢ € S1) is also a Lipschitz map and we have
Max d(¢(z), 0) = M:;)lc d(e-a(z), 0).

ze St
Furthermore direct calculations show
Ap (@ra)=A, (¢)

and hence by Proposition 2 we have

3.7 S(e-a)=5(¢), s(¢+a)=s(®).
Therefore the latter is obtained, and the proof completes.

For any element y € C*, put
(3.8) hyll= 1\3/12}931( d(s(y)(2), 0).

Then by direct calculation we can prove that ||y |l is a norm in C". i) ||y ||=0 if
and only if y=0, ii) [ley |l = |c| llyll for any c€ C*, iii) [lys + y2 [ =y | + | y21l.
For any >0, put
(3.9) S(r; R", 0)={a(p) |yeC", llyli=v r}
Lemma 3. There is a deformation retraction of (S, R")— N to S(r; R”, 0)
which is compatible with the Si-operation.
Proof. Define a homotopy ¢;: C*—0—C"—0 by
a(N=A—t+v/rt/lyIDy
Then ¢; is compatible with the S'-operation and we have
go=1, ¢1(C"=0)=6(r), ¢: &) =1,
where S(»)=1y€C" /|ly|l=v/ 7 }. Therefore if we put
Qi=0oqop: (S, R")—N — (S, R")—N
then @, is a homotopy which is compatible with the S'-operation, and we have
Qo=0°p, Q:1(Q(SY, R")—N)=S(r; R*, 0), Q:|S(r; R", 0)=1.
Consequently, together this with Proposition 1, we obtain the desired result.
LeMma 4 If 1/2=<Fk<<3/2 there exists a deformation retraction of L(r, k; R"
0) to S(r; R", 0) which is compatible with the Si-operation.
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Proof Define a homotopy H;: 2(S*, R")—N — 2(S1, R") by
H(p)(2)=1-De(2) +t(Q1(¢)))2), z€ S™.
Then H,(¢) is compatible with the Si-operation, and we have
Hy=1, Hi(2(S*, R")—N)=S(r; R", 0), H,|S(r; R", 0)=1.
Therefore, in virtue of Proposition 3, the problem is to prove
(3.10) H,(L(r, k; R", 0))CL(r, k; R*, 0).
This is proved as follows.

If we notice that sin 6§, cos § satisfy the Lipschitz condition, it is easily
proved that ¢(y) is a Lipschitz map for any y€ C*. From this it follows that if ¢
is a Lipschitz map then so is H;(¢). Let ¢ satisfy d2(¢(z), 0) =7 for any z€ S%,
then it holds that

d(H(¢)(2), 0)=(1-t)d(e(z), 0)+t d(Q1(¥(2)), 0)
==V r +ty/ 7/l p(@)ld((a°0(@)(2), 0)
s=(-DV 7+ 7r=y7r.

Hence we have
a*(H(¢)(z), O)=r
for any z€ S* and #€[0, 1].
Observe next that

A1(a(9))=>0, A;(a(y))=0 (j=2)
for any 0s4y€ C". Then, it follows that

A1(H(@))=1-1)2A1(¢),

Ai(H())=(1-1)2A;(¢) (j=2).
Therefore, in virtue of Proposition 2, direct calculations show that if 0<<r(¢)/%
=kS(¢) with 1/2=k<3/2, then 0<<s(H,(¢))/k=ks(H;,(¢)). Thus we have (3. 10),
and the proof is completed.

Together with Lemmas 3 and 4, we obtain

ProrosiTiON 4 For 1/2=k<3/2 and 0<r, there is a homotopy equivalence of
L(r, k; R*, 0) to 2(S*, R")—N which is compatible with the S1-operation.

ProrosiTioNn 5 Let 1/2=k<<3/2, 1<<u<<3/2k, then the homomorphism

ie (s (C™—=0, L(r, k; R", 0)))—>m,(2(C"—0, L(ur, uk; R*, 0)))
induced by the inclusion i: L(r, k; R", 0)—>L(ur, uk; R", 0) is an isomorphism.

Proof. 1t is easily seen that a homotopy

fi: S(r; R*, 0) — L(ur, uk; R", 0)
can be defined by
file)=(1—t)+ut)e, ¢€S(r; R, 0).
It follows that f, is compatible with the S'-operation, and that
fole)=0, f1(¢) € S(ur; R", 0).
Therefore the diagram
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26(C"—0, S(r; R"0)) 1, 00(C"—0, SCur; R", 0))

li lz
2s(C"—0, L(r, k; R", 0))_1 5 25:(C"—0, L(ur; uk; R", 0))

is commutative, where 7 are the inclusions. Obviously f; is an onto-homeomor-
phism. Therefore the proposition is a direct consequence of Lemma 4.

§4. Proof of the main theorem.

Take a Riemannian metric g on M. Then g determines a metric function d,
on each fibre T,=7z"1(p) of the tangent bundle R*xsZT. Therefore T, is a real
linear #-space having a metric function defined in terms of a symmetric positive
definite matrix g;;(p), so that we can apply the arguments in §3 with T, instead
of R".

As is well known, g defines also a metric function on M. We denote this by
dy. Consider a system of normal coordinates (x%, -+, x”) in a neighborhood U,
of p€ M. Then the correspondence of points ¢ = (x1, -, ") € U, to points > %_4
2 Li(p), L;(p)=(8/8x"),, defines a homeomorphism of U, into T, This homeo-
morphism is denoted by 2,

LemMmA 5 For any sufficiently small €0, there exists 6(e)=0 such that

i) d(e)=ske

ii) for any p, q, ¢’ M with du(q, p)=e¢, du(q’, p)=¢ we have

d% (g, q/)/(1+68(e)) =dj(q, ¢)=1+48(e))d;(q, q")
where we put q=2,(q) and q’ =21,(q").

Proof Let x= (x%), x’=(x’") be normal coordinates of ¢, ¢’ in U,. Then it
follows that there are functions a;,(x, x’, p) such that

i (a, aH=20aii(x, &, p)(x'—x'") (27— x'7)

3 (q, ¢)=201a:;(0, 0, p)(x' —x") (27 —x"7)
if ¢, ¢’ € U,. We can take a;;(x, y, p) in such a way that they are continuous on
p and are differentiable on x and y. Consider now a quadratic form

Ais, 5, y(E)=215a:ii(x, 3, p) &¢.
Then we have
Ay, ¥y ﬁ)(x_x’)=d1%4(q, q"), Ao, o, (x—2") = dﬁ (g, 9").

It follows that there is a function ¢(p, €) which is upper semi-continuous on p
and ¢ and which satisfy

[ A, o, 0y (E)—Aco, 0, (&) | =c(p, £)(dulq, P) +dulq’, D)).
Put

c(p)=Max c(p, &),
£¢
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where &= {£/A, ., n(§)=1}. Since,
=2V Ay o 7 ES.

if dulq, p)=e¢ and dy(q’, p)=e then we have

[ A, +, y(x—2")—=Aco, 0, pn(x—2") | =2ec(p)Aco, 0, n(x—x"),
namely,

(1—2ec(p)d? (q, ¢H)=d%(q, q") = (1+2ec(p))d; (g, 9.
Therefore, putting

(&) = 2ec/(1—2¢c) with c=l\£IEa}3( c(p),

we have the desired result.
Prorosition 6 For sufficiently small e>o0, 1, induces maps
Api L(e, by M, p) — L((A+8(&))e, (A+a(e)k; Ty 0)
At L(e, Ry Ty 0) — L((1+46(e)e, (1+6(e)k; M, p)
Proof Obvious from Lemma 5 and the definition of L(r, &; X, %o).
For any r>o0 and k>0, we define a subspace T(», k) by
T(r, k):ngMM”’ k. T, 0)C2(St, R")xs%

and a continuous map uy: 7(r, k) — M by
o7, k; Ty 0))=p.
ProrositioN 7 (v, k) ={T(r, k), mo, M} is a bundle with structure group
St
Proof Let (x') be a system of normal coordinates in U,, and let x=(x*) be
the coordinate of x¢ U,. Then there is a matrix (f%(x)) such that
G () =281 (0)fu(x)f (%)
and fj(x) are continuous on x. We have a homeomorphism
Ty -» w1 (U,
defined by
QA L,(p), @) =20, % [ Li(q).
It follows that d,(x, &)=d,(¢(%, @), (%', q)) for any x, "€ T),. Therefore if we
define
7. 9(SY, Ty xU, - 132 (U,) C 2(S*, R")XcZ
by
(e, g (2)=£&(e(2), @), z€ S, € 2(S*, T)p),

then it follows that # is a homeomorphism such that 7¢°7 (¢, ¢)=¢q, and that n(L
(r, k; Ty, )X Uy)= EL{} L(r, k; T, 0)=7n%(U,). Thus we have the lemma.
7€V

THEOREM 3 For 1/2 =k <<3/2 and r>o, there is a fibve homotopy equivalence
of the bundle T (r, k) to the bundle (2(S*, R")—N)XZ which is compatible
with the Si-operation.

Proof. We mean by N, the set N defined for R"=T, Then the fibre on p
of the bundle (£(St, R")—N)x:Z is £(St, T,)—N,. On the other hand, the
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fibre space (7, k) is L(r, k; T4, 0). Therefore the desired result follows from
Proposition 4. Here it is to be noticed that the fibre homotopy equivalence ¢&,:
L(r, k; Ty, 0) > (S, T,)—N, can be taken in such a way that £, is continuous
on p. (See the proof of Lemmas 3 and 4).

Together this theorem with Corollary to Theorem 2, we have

CoroLrLARY The Pontrjagin classes p(()) are characteristic classes of the
bundle 2s:(C"—0, T(r, k)), where 1/2=k<3/2 and r 0.

We now proceed to proving the main theorem.

In the following, the notations with 7 denote the corresponding notions defined
for (M, g)"). We assume that ¢>0 is sufficiently small.

In virtue of the condition ii) of Introduction, # induces a map

hy: L(e, k; M, p) — L (se, sk; M, h(p)).
Therefore, by Proposition 6, the composition
Co=dumhdzt L(e, k; Ty 0) — L(esd, ksd; T p, 0)
can be deflned, where
A=14+8¢ )1+ d60)
with 6o=0(¢), 8¢ =((1+do)€es). It follows that the maps {, for all p € M give
rise to a map &: T(s, k) — T'(esd, ksd) such that 7y c{=hoxy. By Proposition
7, ¢ is a bundle map of (e, k) to T'(esd, ksd), so that ¢ induces a bundle map
C: Rs1(C"—0, (e, k) — 21 (C™—0, ' (esf, ksd))

such that 7y ol=homy. Therefore, in virtue of Corollary to Theorem 3 and the
fact

lim 4 =1,
&0

the main theorem is a direct consequence of the following : If 1=s2<3 then the
homomorphism
Cw T2 (n-m)+1(2st (C"—0, L(e, 1/2; Ty, 0))) — T2 (n—m)+1
(2s1(C™—0, L(esd, 1/2s4; Ty 5, 0)))
induced by ¢ is an isomorphism. To prove this we consider the composition
Chem=2pol o iy Li=L(esd, s4/2; T} 0) — Ly=L(es244’, s244"/2: T, 0),
where we put
A=1+61)A+064)
with 61"=08"(esd), 61=06((1+61")es24). Then the composition
Chpoly: Lo=L(e, 1/2; Ty, 0) — Ly
is the inclusion. Since
lim 44"=1

&0
it follows from Proposition 5 that, if 1=s2<23, then
Chiem ol 71'40(95‘(0'"—0, Lo)) — 7, (2(C"—0, Ly))

is an isomorphism. Thus for 1=s5<\1/3, {}(,« is an epimorphism. On the other



84 Yoshihiro SHIKATA

hand, by Theorem 1, Propositions 2 and 4, we have
74,(2s1(C"—0, L))~Z
(i=0, 1, 2). Therefore {4 and hence &,y is an isomorphism if 1=s<<3. This
completes the proof of the main theorem.
§5 Proof of Proposition 2
We first prepare from theory of real functions some theorems whose proofs
are referred to, for example, the book of Natanson [2].
Let f(¢#) be a (real valued) function defined on a closed interval [a, 5], and
let
a=0<t--<t'=b, ti=a+k(b—a)/n,
be a partition of [, b]. Then we define a function D, f(¢#) by
5. 1) D, f(t)= {n(f(tﬁﬂ) —f)/(b—a)  for tp<<t<t},s,
0 for t=17
THEOREM A ([2, p. 257]). Let f(¢) be a function defined on [a, b], and assume
that there exists a constant K=K(f) which depends only on f and
> P25 () —fE)E/ e —t) =K
for any partition a=to<t1<<---<<t,=b of [a,b]. The sequence of the functions
{D, f(t)} converges almost everywhere, and for the limit fuction
Df(t)=lim D,f(®
it holds that
Df(t) € L*[a, b], f()=const. + Jin(s)ds.

where L2 [a, b] stands for the totality of measurable function f(t) defined on
[a, b] such that

| Zf(t)2dt<oo.

RemaARrRk 2 If f(#) satisfies the Lipschitz condition, namely if there is a con-

stant ¢=c(f) such that
[fO=fAN1/1t—-t"] = ¢
for any ¢, t" € [a, b] (i5~t"), then the assumption in Theorem A is satisfied. In fact,
P =6 (trer) —F @) 2/ r — 1) = 252862 (byr —t) = (b—a)c?

Tueorem B ([2, p. 266]). Let f(t) be an integrable function defined on [a, b],

and put

F(t)= faf(s) ds.

Then, for a differentiable function h(t) defined on [a, b], the following formula
holds :

jih(t)f(t) dt:[h(t)F(t)]: _ J Zh’(t)F(t)dt.

TreoreM C (Lebesgue’s theorem, [2, p. 127]) Let f,(t) be a sequence of
Sfunctions which converges almost everywhere to f, and such that | f,(#) |= K<<oo for
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all n and t. Then we have
lim an(t) at = [ o at.
700
TureoreM D (Parseval formula, [2, p. 179]). For any f(t), g(t) € L2[—x, 7]
it holds that

f :f (Hgt)dt=1a,( fa, () + 2 an( ar() + b Hbi(Q).
We shall prove

Lemma 6 Let f(t) be function defined on [—x, 7] which satisfies the Lips-
chitz condition, and such that f(—n)=f(x). Then, for the function Df(t), we have
ar(Df ) =kbp(f), bp(Df ) =—kar(f).

Proof. By Theorem A and Remark 2 we have
¢
s =c+ [ D(f(s)ds.

Therefore the assumption f(—7z)=f(x) implies

nao(f)= JH:Df(s)ds=o.

Hence, in virtue of Theorem B, we have

a(D;) =1/7 j :TDf(s) cos ks ds
=1/7 {[(cos k) [ Dfts)asT + k[ (sin k) (| Dfts)ds) at
—t/z " sin k([ _Dfts)ds) ai
—k/7 J:(sin kD (F(B) —c)dt

=k/nf () sin kt di=kby( f).

Similarly we have b.(Df)=—ka:(f), and the proof completes.

Lemma 7 If ¢: St — R* is a Lipschitz map, then each function ¢'(t) satis-
fies the Lipschitz condition.

Proof. 1t follows that there is a constant ¢; such that

| 2" —y'| = cid(x, ¥)
for any x, y€ R*. Therefore we have
L' B =" @) |/ 1t—t'| = c;d(e(e"), e(e”) /|t—t"| = ;K (¢)
We now proceed to
Proof of Proposition 2. By (3.2) we have

S~ |7 axe=en, ¢(e) at.

= |7 Sugse t m - ) (@t ) 0 ()t
It follows that
a(¢'(t+ 7)) = (=Dra(¢' (1),
b (t+ 1)) = (—=DFoa(9* ().
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Therefeore, in virtue of Theorem D, we obtain
S(0) =278 21, 4(as-1(0)a2s 1(¢07) +b2r-1(¢)bas 1(¢7))

=2ﬁ1 Agp-1(@)
Next, assume ¢ is a Lipschitz map, then it follows from (3.1) and (5.1) that

$,(0) =21/ Y n-2 d2(9(v,}), e(vE1))

= 2 %igij J_:DnﬁﬂiDnﬁojdt.
Since ¢’(¢) satisfies the Lipschitz condition by Lemma 7, it follows from Theorem
A and Remark 2 that the sequence D,¢'(¢) converges almost everywhere to D¢’
(¢)€ L2[—, m]. Furthermore, in the notation of the proof of Lemma 7, we have
| D" ()D, ¢’ (1) | = cic;K2(p) < oo.
Therefore, in virtue of Theorems C, D and Lemma 6, we obtain

s(o)=lim 5,(0) =3 & | Do’ (1D (1)t
=2 7815 2521 (R20r (00 (97) +k2ar (¢ ) ar(¢7))
=32, kA
This completes the proof of Proposition 2.
We shall here prove Remark 1.
Proof of Remark 1. If s(¢)=0 then A,(¢)=0 for all k=1, so that a,(¢?)=
b,(¢?)=0 for all k=1 and j. Therefore, by Lemma 6 and Theorem D, we have
| eiza-o.

This implies D ¢7(¢)=0 almost everywhere. Therefore, by Theorem A, we obtain

4 .
o =c+[ Del(s)ds=c.
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