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Introduction

In this paper, we intend to show a new construction of the balayage (sweeping
out) of measures which is one of the central themes in the potential theory. Our
main tool used here is the noted theorem of Krein-Milman in the theory of general
linear topological spaces (see [2], [7], etc). Thus, we begin with some detailed
considerations about a linear normed space H(D) and its dual (H(D))*, especially
some compact convex subset M*(D) in (H(D))* generated by the collection of
positive measures of norm 1 distributed in the closure of considered open set
D (§1). The next paragraph (§2) is devoted to the general construction of balayage
for open sets, but the same method is also well applicable to the case of closed
sets, which is identical with the notion of so-called extremisation owing to M.
Brelot (§3).

Now, from a historical point of view, the balayage theory founded by H.
Poincaré has been recently reconstructed by means of projection method in the
theory of Hilbert space; the most important work of such a kind is appeared in
H. Cartan [4], and some interesting works of H. Cartan-J. Deny and of J. Deny
follow it. However, in our present work, it seems very interesting that we can
find some notable connection between the extreme points of ]_Wg(ﬁ) (or of IME(FY))
and regular (or resp. stable) boundary-points (§ 4), and as applications of this fact,
we shall offer an elementary criterion in order that a boundary-point be regular or
stable (Theorem 17).

§ 5 is devoted to the representation theory and application to Dirichlet’s problem
in the ordinary or extended form. To obtain the solution, we employ the Banach
space method here; thus, we are standing in some different position from the
others.

The same theme of this paper has appeared incompletely in the last half of
my previous note [10], and the present one is the precision and correction of
that. However, we leave the general notion of superharmonicity to be defined as
in the first half of [10].

Finally, the author wishes to express his gratitude to Professor Dr. M. Inoue

for his kind and precious guidance throughout the development of this work.
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§1. Preliminary Theorems

1.1. Preliminary notions and notations. Let E be a locally compact Hausdorff
space; we assume now that for any open set DCE' there corresponds the family
(D) of functions defined in D (called superharmonic in D) such that:

i) ¥+(D) forms a positive cdne; that is, af+Bg belongs to &+(D) together
with f and g for any positive numbers a« and B,

ii) every function of L+*(D) is lower semi-continuous in D,

iii) if DiCD:(CE), then & (D,)CL+(Dy),
and there exists a linear operator Ap from ¥+(D) into positive Radon measures
distributed in D which satisfies:

A1)  Ap is positively linear, i.e. Ap(af+Bg)=alAp(f)+BAp(g) for f, ge&+ (D)
and «, $=0,

Ax) if DiCD., Ap (f) coincides with the restriction of Ap,(f) in D: for
every feX+(Dy).D

If fe2+(D) and simultaneously —fe€L+(D), then f is said to be harmonic in D.
We shall abbreviate Az to A and call it generalized Laplacian. If E is #-dimen-
sional Euclidean space R" for =2, £(D) may be adopted as the collection of
superharmonic functions in D of the usual sense (e.g. of T. Radé [11]), in which
A(f) is defined in such a manner that its restriction in each compact domain

0f;

0x?
the #n-dimensional Lebesgue measure and f;e(B)NC?, f;,/'f on B2 Ap(f) is
naturally the restriction of A(f) in D.

BCE is the vague limit of the sequence of uj=—37_: dx, where dx means

We shall assume moreover that for every positive Radon measure g distributed
in E there cerresponds the potential function ¢(ux) which satisfies;

1) ¢(w) is the function identically infinite or otherwise ¢(u) € &+*(E) for which
A¢(p)=p and it is harmonic outside of the support of u®

2) Fubini’s formula; Jq&(u)dp:‘fgﬁ(u)du for another positive measure y in
E unless these integrals are meaningless.

3) Modulus (maximal) principle; if f=0 is superharmonic in £ and ¢(u)
has the following properties that i)Jqﬁ(@dn (the emergy of p) is finite and ii)
s(W=f on a kernel of u» then this inequality ii) takes place in the whole E.

4) If K is compact in E, we have a measure A distributed in £— K, whose

1) About these fact, refer to my previous paper [10] §2, p. 59~60.

2) C? designates the class of functions having continuous partial derivatives up to the order
2. About the assertion, see [10], ibid., 4. 6, p. 68~69, and N. Bourbaki [1], the article
on the localisation of measures, p. 67~69. (About the notation /', refer to the footnote 9).

3) We call such X that J‘E"dell/[ =0 a kernel of p, distinguishing from the support which

is the intersection of all closed kernels of y4; the support is always uniquely determined.
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potential ¢(1) is equal to 1 at least on K and 0=¢(1)=1 in E. For two distinct
points x,ye K, there exists such g distributed in £—K that ¢(u) (%) #¢() (3.

5) Let f=0 be a continuous function with compact support KC E; for given
>0 and a neighborhood U of K, there exists a Radon measure u of composed type
such that |f(x) —¢(w)| <e, 4(u) is continuous in E and vanishes in E—U.

As an example of such E, we can take primarily the #-dimensional Euclidean
space R*"(n=3) with Newtonian potential (cited as Example @)); denoting the
Euclidean distance by 7(x, ),

_ 2 __ I'n/2)
3D =N, [ r2s, du(y), No=t 88,
Another example of E is the open unit circle |z| <1 in the complex number plane

Z? with logarithmic potential (cited as Example b)), i.e.

¢(ﬂ>(x)=fj‘yl<1log HC}’_‘;’—‘ du(y) .

Next, we enumerate some linear topological spaces of measures and functions
whicth shall be made use of successively in the later discussions. For a given
measurable X in E, we define:

Co(X)=space of all continuous functions with compact support in X,

C(X)(or C,(X))=space of all bounded (resp. uniformly) continuous functions
defines in X,

L..(X)=space of all bounded functions defined in X, vanishing at the infinity;
that is, each f€L..(X) is characterized as such a function that for any given >0
there exists a compact FeC X outside of which |f(x)] <e,

Coa(XD)=L.(X)NC(X),

M+(X ) =collection of all positive Radon measure defined in X,

M(X)=space of all Radon measure defined in X; in other words, it is just
the linear envelope of M+(X) over the real field.

Assume always ¢(u)€L.(E) for any p with compact support.

The first three spaces Co(X), C(X) and C,(X) form Banach spaces with res-
pect to the uniform norm (simultaneously, they form Banach algebras, which in-
dicates some significance in regard to the functional representation). If X is
compact, these three coincide with each other.

As the topology of M(X), we adopt as is customarily done the so-called vague
topology, that is the topology of simple convergence in Co(X), then M(X) is the

toplogical dual of Co(X). Next Lemma shall be useful in our future work.
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Lemma 1. If KCE is compact, the collection W3 (K) of such peNt(K) that
llul|=1 is vaguely compact (abbrev. v-compact), and if FCE is closed, the collec-
tion ME(F) of such p€Mr(F) that ||p||<1 is also v-compact.®)

To see the first half, it is sufficient to remark that the unit function, 1(x)=1
on K, is contained in C(K); the latter half shall be refered to N. Bourbaki [1]9,
taking notice of the fact that M*(E) is complete for the uniform structure deduced
from the vague topology.

1.2. Linear normed space H(D) and its dual. In this section, we shall be
occupied to study the linear normed space H(D) defined below and its dual
(H(D))*, especially the unit sphere 5% of (H(D))*. These studies contribute us
simultaneously to construct the balayage, to criticize the regular boundary-points,
and to give a new method for Dirichlet problem: we shall start with the

DErFINITION 1. Let D be a given open set in E with the compact closure D and
boundary 0D. H(D) denotes a linear normed space consisting of the restrictions
in D of all bounded potentials ¢(p) for peM(E—D), in which the norm is defined
by
1. Hfllu=su£_)lf(x)l, FeH(D).

H,(D) denotes a linear subspace of H(D) consisting only of those which are
continuous in D, i.e. Hy(D)=H(D)NC(D).

We use sometimes the same letter ¢(u) e B(E) with ue M(E—D) for its re-
striction in D, that is, an element in H(D) so far as no confusion would occur,
where B(E) denotes the space of all bounded potentials in E.

Every function of H(D) is obviously harmonic in D.

DeriniTION 2. (H(D))* denotes the dual space of H(D), in which we shall
always take the weak topology as functionals, that is, topology of simple conver-
gence in H(D). .

The weak topology thus defined is called w*-fopology of (H(D))*, for which
every element.of H(D) acts as a continuous function on (H(D))*. The unit
sphere 5% of (H(D))* is w*-compact (S. Kakutani’s theorem), which is an easy
consequence of the fact that a product of compact spaces is compact.

Now, denoting by M;(D) the collection of measures eN+(D) with norm 1, we

define for each peMi(D) a linear functional x~ on H(D) in the following man-

ner;

1.2) P = j fdu, feHD).

) || denotes the norm of measure w, i.e. f ldul.

4) Prop. 7, Corollary 2 to Prop. 8, §2, Chap. III, and Prop. 6, §3, Chap. III.
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Owing to the property 4) of potential we see that H(D) has the unit function
1(x)(1(x)=1 for all xeD); the collection Mi(D) of such functionals ;" defined by
(1, 2) for peMG(D) forms a convex subset in the unit sphere Z* of (H(D))*,
hence its w*-closure M:(D) is also convex and w*-compact, that is, regularly con-
vex in the sense of Krein-Smulian. Thus, the Krein-Milman’s extreme points
thecrem is applicable to Mi(D); JT/I;(E) possesses sufficiently many extreme points
whose closed convex hull coincides with M3(D) itself.? Denoting the set of all
extreme points of M#(D) by Ext. Mi(D), we can translate the above result into
the following expression:

TureoreM 1. For any peMi(D), fe HD) and >0, we can select a finite
number of e Ext. Mi(D) such that

1.3 | [ran—samr]| <e,
where Sa;=1 and oa;>0.

Remark: We denote by 4 a general element of My (D), otherwise a limit
element of M$(D) which is not defined primitively by (1.2), distinguishing from
any other element x4~ just contained in Mi(D) itself.

An argument quite analogous to the one we discussed above shows that for
every measure pe W (D) (1.2) defines also a linear functional z#* of norm 1 on
Ho(D), i.e. pife (Hy(D))*, and the collection M#(D) of such g* is compact and
convex with respect to the w*-topology in (H,(D))*, where (H,(D))* means the
dual space of Hy(D). It is easily seen that the w*-topology of (Ho(D))* is com-
patible with the topology reduced from that of (H(D))*, considering (Ho(D))* as a
residue space of (H(D))*.

It remains us to prove the compactness of M, *D), but it follows easily from
the fact that Hy(D) is a subspace of C(D) and the application x—u* from Di;(D)
to M#(D) is uniformly continuous.

We see next that, according to the restriction from (H(D))* into (H,(D))%*,
to each element y~ of Mi(D) a certain u¥e M¥(D) corresponds uniquely (we shall
call such x* the projection of 4~ in M#(D)), and also to each u* there exist by defi-
nition some corresponding measures of N;(D); among those, we can find at least
one measure peNt;(D) which is a vague limit of some subsequence of {x,}, where
ux converges to p” in (H(D))*. Such p is called a basic measure of 4. But the
correspondence x4 —u is not unique, since so is u*—>u, and also the inverse cor-

respondence pu—" is naturally multi-valued.

5) Finite convex combinations of extreme points, Yaiu; with a;>>0 and Xa,=1, u; being
extreme in My(D), are dense in My(D) with respect to the w*-topology.
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MDD, My(D) M;i(D)

r projection ——l
\ + / "
yii ———— 2 > Y]

v T

basic measure

We can however prove that if 4 is an extreme point of Mi(D), uis uniquely
corresponding to 4~ (Theorem 2 below); before going to this, we shall prepare a
very important

LemMa 2. My(D) is characterized as such a collection of i e (H(D))* that

1) 4" is positive, that is, if fe H(D) is =0 in D, we have p~(f)=0,

i) la7l=1.

Proof. Since every u'e M;(D) satisfies evidently the conditions i) and ii)
above, it is sufficient to prove that, if 4 ¢ 5% has the property i), 4~ belongs neces-
sarily to Mi(D). To see this, suppose now it were not so, then since M:(D) is
regularly convex, there exists an element fe H(D) for which

sup_ v (f)=h<ux (f).
v eMs(D)

Putting fo=f—h, we have v"(fo)=v"(f)—h=0 for every y e M;(D) (hence
for veMi(D)), so that fo(x)<0 for all xeD; on the other hand, £ (fo)=x (f)
—h>0 (since pe5* implies ¢ (1)=1 and hence x (h)=hy (1)=h), which con-
tradicts with the condition ii). Thus, Lemma 2 is completely proved.

In passing, we shall make a slight remark that in above Lemma the condition
i) may be well replaced by that 4 (1)=1.

THEOREM 2. If u'e Ext. M{(D), then its basic measure u is uniquely deter-
mined and is equal to a point measure of total mass +1 (Dirac measure) placed
on a certain point of D.

Proof. 1° Let pi—u" in (H(D))* and ur—u vaguely;® suppose now that u
is not a point measure and the support K. of x4 contains at least two mutually
distinct points x; and x.. Then, owing to the property 4) of potential, there exists
certainly such a measure yveDt*(E—K) for a certain compact K containing D in
its interior that ¢(v)(x1) #¢()(x:). Since ¢(v) is continuous in D, we can take
such neighborhoods V (x;) of x;(i=1, 2) that

a.4 sup |¢(W @D -4 (x| >, xie€V(x),

for a sufficiently small e(e.g.e< *;‘IQS(V)(xl)“QS(V)(xZ) |); here, it is evident that
V(x)NV (x,) is void.

6) Assume that ps—4u” and a sub-sequence {ua} of {u:} converges to x (by definition); then
{ux} converges to p” also. A similar argument shows 6)bis essentially.
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2°) Denoting the restrictions of ux in V(x;) by (u); for i=1,2, we can
select sub-sequences {(u)7} of {(u)7} and {(w)3} of {(x)3} simultaneously,® bis
such that (ua’)7 converges to a certain x4 in F* for each i{. By hypothesis, basic
measures i of 41 and u» of 2 are not null; since uy— ((wa)7T+ (un)?) is positive
for every A/, the limit p”"—(ui+us) is also positive on H(D). Setting gi=ui/a,
fo=ps/as for a;=p;(1)(E=1,2), and gs=(u —(ui+p2))/as for as=1—(a1+as)
(but if 4" — (ui+uz)=0 and hence as=0, we should put 43=0), we have /i, %" and
FaeMi(D), and

1.5 Y=o i+ o fin+asfis, Thaai=1.

By (1.4) above, we have iﬁ(qﬁ(V)):jsé(b)d(ul/m)#Jqﬂ(v)d(m/wz):/ii(qi(u)).
so that fi#/:. Thus, i =(a:/(1—a)) i+ (as/(1—as)) i is an inner point of the
segment combining /1 and /2, therefore refering to (1.5) 4~ could not be extreme,
which is contradictory to the assumption.

3°) Suppose next g~ has at least two basic measures u; and u»; the result
just obtained above shows that both u and u, are point measures and, as is seen
in 1°), there exists such fe Hy(D) that f(x:.)+f(x.) for the supporting points x; of
r:(1=1,2), from which it follows that u"(f)= ffdﬂ1:f<xl> #f(x2)= jfdﬂz=ﬂ~<f);
this is absurd. Thus, the first half of Theorem is proved, which completes our proof.

Let I be the set CD such that for each xeI” there exists at least one element
of Ext. M&(D') having e, as its basic measure,” while Iy a subset of I" consisting
of all such x that ese Ext. Mi(D). Every point contained in I'y is called regular
(it should be noticed that xeI'’ does not mean ;e Ext. M, *(D) unless x is regular;
for instance, in the noted example given by H. Lebesgue the original point O€ I’
but not €7%).

COROLLARY. If xeI'—TI', it must be x€dD.

Proof. Let ¢, be a basic measure of y ¢Ext. Mi(D) and ui—x" (in (H(D)*®)
and ux—p vaguely; suppose now x to be an inner point of D and take a neigh-

borhood U(x) of x such that U (x)CD. By assumption, we see that (u\)z-irm—0
as 1—+oo, that is,j A a2 fll - rd(m)y—meo. Since every fe H(D) is

continuous in U(x), we have f(x):liAmJT)dm:IimJfd(m)-f(;=#”(f), so that
U(x A
ez=p", contradicting with the fact xeI"—TI".
Remark: Throughout this paragraph, it would be rather pertinent to use

directed systems than sequences, but still in later discussions we shall be content
with the latter so far as circumstances permit.

7) e denotes the point measure of total mass -1 placed on x.
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§2. Construction of Balayage.

2.1. General construction of balayage.. The method we actually use here for
constructing the balayage of measures seems peculiar in such a point that its prin-
ciple is essentially based upon the linear topological space theory. Especially, the
Krein-Milman’s theorem plays again an important réle concerning about the discus-
sion of regular boundary-points.

We have seen earlier (Thr. 1) that for any geMM+(D) there exists a collection
of finite linear convex aggregates of extreme points verifying (1.3) in accordance
with given fe H(D) and ¢>0; varying f and e, such collections constitute a base
of filter §. in M;(D). Since M:(D) is w*-compact, an ultrafilter (maximal filter)
s containing . converges to an element ur in M(D), for which it holds

@D w(fH)=pr(f) for all feH(D);

this implies directly that x4 =ure M(D), so that 47 coincides with x4 for a certain
ureMi(D), (it may be that u, is equal to u itself).

On the other hand, let {D,} be a family, countable or not, of open sets in D
with respect to the relative topology induced in D, such that D, DI'x for all  and
U,E.—D_i,:ﬁk,lr> where I'y=I"UAD. Denote next by M:(D,) the collection of z~ such
‘Ehat neM:(D,), then the w*-closure M-g(l—jp) of M;(D,) is evidently convex and
w¥-compact. We see easily Ext. Mg(ﬁ)cﬁg(ﬁp) and therefore all linear convex
aggregates of extreme points (a fortiori, those which appear in (1.3)) are con-
tained in M;(D,) for all p, so that in [T,M;(D,). Finally, u is considered as
contained T1,M%(D,)NM;(D), which implies that #r 1s necessarily distributed in
f %o

THEOREM 3. Such a ur satisfies

(2.1 ffduzjdup for all fe H(D).

We shall call such g, as verifies (2.1) or (2.1)! and is distributed in 7'y @ bala-
yaged measure of p, which is not necessarily unique since it depends upon the
selection of ultrafilter {2 which contains F.

The version of this Theorem appropriates to potentials takes the following

THEOREM 3.Pis  ¢(u) =¢(u,) eveywhere in E—D and excepting a set of capa-
city 0 on 0D. If p, is distributed on 0D and if ¢(uy) is bounded, then

2.2) ¢(u)=¢(ur) everywhere in E.

Here, a set X is called “of capacity 0” if X admits no positive measure v
such as ¢(v) would be bounded.

1) E completely regular, since it is locally compact.
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Proof of Theovem 3bis, The first part is somewhat trivial; in fact, for any
xe€E—D, ¢(e,) is bounded on D, i.e. ¢(e,)e H(D), therefore ¢(u)(x)=f.¢(em)du=
‘[¢<€m>dﬂp=¢(ﬂp)<x>. The second part is verified as follows; suppose first that
¢(u)>¢(ur) on a set XC 0D not of capacity 0, then there exists a positive mea-
sure y on X such that ¢(v)e H(D), so thatj¢(u)du= I¢(,u)du> J¢(up)du: I(i)(l/)ﬂp,

contradicting with (1.6).Pis This shows that ¢(u)=<¢(ur) on 9D excepting a set
of capacity 0. Suppose next that ¢(u)<<¢(ur) on a set YCOD not of capacity 0,
then an analogous arguments to above leads us also to a contradiction, which
guarantees the assertion. The last half is more briefly obtained; that is, from the
result just obtained above, we have ¢(u)=¢(u,) on a kernel of ur, from which we
conclude that ¢(u)=¢(ur) everywhere in E owing to the maximal principle of
potentials (see 1.1). Thus, Theorem 3bis is completely proved. V

As is noted before, a balayaged measure is in general not unique, but we
have two important cases where it is uniquely determined (as it is or under some
restrictions); we state the matters in the following form:

THEOREM 4. i) If xel, (en)r is uniqely determined and equal to e, itself.
ii) If pr and pr ave balayaged wmeasures of the same weM(D), both of which
are distributed in 0D and have bounded potentials ¢(ur) and ¢(ur), then it holds
that pr=us.

Proof. 1) (ey)r=cz€ Ext. Mi(D) by hypothesis, so that (e,)r is a point mea-
sure by Theorem 2, i.e. (¢,)r=¢y, for a certain ye D, therefore e;=¢, or equivalently
f(x)=f(y) for all feH(D). This implies x=y owing to the property 4) of
potential, 1.1. -

ii) By Theorem 3Pis, we have ¢(ur)=¢(u;) on 0D excepting a set of capacity
0, and so on kernels of both x4, and ur, from which it follows simultaneously
dCur)=¢(up) and ¢(ur)=¢(ur) eveywhere in E by means of the maximal principle,
therefore ¢(ur)=¢(u;) everywhere in E. This means pur=pr.9

2.2. The case in which I'C0D. More abundant results will be obtained

under some restricted situation: we assume first that

* I is contained in 0D.

In the case of Newtonian potential @) in R*(%#=3) or of logarithmic potential )
in the open unit circle in Z% cited in 1.1, the condition *) is evidently fulfiled. In
fact, let x be an inner point of D, 3, a sphere with center x such that >.CD,

and A, the spherical measure of total mass-+1 uniformly distributed on the sur-
face of >,. Now, if xeI", then it must be that x€ I, (since x € interior of D) by
Corollary to Theorem 2, that is eyeExt. M;(D); every fe H(D) being harmonic in

8) In fact, we haVeJ';b(lJ)d;l,F: r¢(pp)dv=f¢(p})du=j¢(u)dp} for all bounded potential
¢(v); refering to the property 5) of potential, we conclude that ur=gur.
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D in the ordinary sense, we have

flx)= Ifdlx for all fe H(D).

Take a point ze E—D and draw such a sphere 3, with center z as intersects
with 3, for which neither 3i=3,~3, nor¥2=31,—3, is of capacity 0. Denot-
ing the restrictions of A, in X% by AL (1=1,2), we see easily

= +1%,
in which AX(¢(e))> 22 (¢(e.)), t.e. " #5". This implies that e; is an inner point
of Mg(f)), contradicting with the assumption. Thus, *) is proved.

Now, under this assumption *) Theorem 3Pis and the last half of Theorem 4
are resumed as in the following

TuEOREM 5. If ¢(ur) is bounded, pr is uniquely determined and ¢(u)=¢(ur)
everywhere in E. If ¢(un) is bounded and u is distvibuted in 0D, then pu=pr.

From this Theorem, we have directly:

CoroLLARY. If ¢(ur) is bounded, (ur)r=pr.

2.3. Extension of balayage and proper balayage. Hereafter, we proceed in
adopting the assumption *) and, to develop the theory more finely, the further
conditions for potentials in addition to the five ones 1)~5) in 1.1, that:

6) For every potential ¢(u), neM+(E), there exists a sequence of continuous
potentials {$(1)}, A€ M+(E), such that ¢(1;) "¢(w).»

7) Conversely, if {$(1)}, ;e M+(E), is any increasing sequence of potentials
such that ¢(1;,)=<¢(u) for some peM+(E), then li'm #(A;) defines a potential of a
certain positive measure v, i.e. ¢(2;), o) (Zs(w)).

These conditions 6)~7) are well verified in Examples @) and b) cited in 1.1,
see e.g. H. Cartan [4] and also Appendix I at the end of this paper.

Now, at first, we shall restrict ourselves within the case where D is regularly
open, i.e. D=intD.! Then, we see at once 0D=0D and that if ¢(x), peM:(D),
is bounded, so is ¢(u;) also. Indeed, since the potential function of a positive
measure is lower semi-continuous (by the superharmonicity), we have ¢(ur)(x)
= lim ¢(p) (W =1lim ¢(W () =<K for every x€dD and ye E—D, so that ¢(u,) is

Y>z Y>>z

bounded on a kernel of ur and hence everywhere in E. Thus, we see in this case
#Cur) is uniquely determined and ¢(ur) Z¢(u) for every u with bounded ¢(u).

Next, we shall define belayage for measures in (D) and M(D). For every
neM+(D) with bounded ¢(x), we put

(2.3) ur=ap, for a=|glland h=uy/a,

9) The symbol g;/f indicates that gi=<gin=<-=<f and lim g;=f as a pointwise limit.
T
10) We denote hereafter by intX the interior of X.
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in which it is clear that ge M(D), and gy is uniquely determined since so is /i,
(see the above argument). Let pxeM(D), assuming p=gm—pu: for u;€e M+ (D)
with bounded ¢(u;) (i=1,2); then we define

2.3 /lr——-(,ul)F— (ﬂ2>r .

For thus extended balayaged measures, we have the linearity; (ap+PBv)r
=aur+Pyr for any real « and P so far as these are uniquely determined.

Next, let B+(E) be a convex cone in B(E) consisting of all such ¢(v)eB(E)
that ve M+*(E). For any ¢(v)e B*(E), put

@9 vr=0p)r +vz-5,
or
2.4 ¢ r=¢((vp)r) +9¢Wr-0),

where vy indicates the restrsition of v in X (compact or open). Clearly, ¢(v),
(=¢(vr)) is in B*(E) together with ¢(v) and moreover ¢(v), belongs to H(D).
According to the above argument about u,, we establish the fundamental relations
for such f, feB+*(E), as follows;

THEOREM 6. i) f=fr everywhere in E, ii) f=fr in E—D and on 0D except-
ing a set of capacity 0, and iii) if fe H(D), f coincides with fr.

We shall now consider the case of general (relatively compact) D: To do it,
we need to make another assumption, which is proved to be valid in Examples a),
b), cited in 1.1 (about the proof, see H. Cartan [3], p. 88) and plays an im-
portant rdle in the balayage theory of H. Cartan himself [4], such that;

) if pux—wo vaguely for u, o€ M*(E) with their energies uniformly bounded,

then we havej¢(y)duA—»j¢(u)dﬂo for any peM+(E) with finite energy.

For given D, take a sequence of such regularly open sets D,(D,=int D) as
D;CDjn and U;D;=D, and denote for any peM+*(D) with bounded ¢(z) the j-th
balayage of x with respect to D, in the sense of (2.4) by #} and the vague limit
of {¢3} by #r. Then we see immediately that such obtained u, is necessarily dis-
tributed in 0D and satisfies

ODELICHELICEVES 1Y)

in virtue of the lower semi-continuity of application u#—¢(x).! On the other hand,

11) The application ued*( E)—¢(u) is lower semi-continuous with respect to the vague topo-
logy; lim¢(u)=¢(»). This comes from the fact that every potential is lower semi-
B>y

continuous and represented as in an integral form;

#(w)= [ 002, 9)du(n), 002, 3)=4(e)(3) =68 ().
Refer to Theorem 3 in [10].
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owing to the above assumption **¥), we have‘[ fdu=fdu; (for each j)=I fdur
for every fe H(D), so that 4, is a balayaged measure of u# (if D is regularly open,
thus defined u, is identical with the preceeding one). As ¢(ur) is bouned (¢(ur)
<¢(w)), such u, is uniquely determined.

Using such sz, we can define also the balayage for any measure of N+(D)
and hence of M(D) under the bounded condition as analogically as in (2.3) and
(2.3). Also for any fe B*(E), an analogue as (2.4) and (2.4)’ is quite valid.

Thus, we are now ready to define the proper balayage, which is achieved in
the following manner; we begin with

LemMmA 3. Let f and g be in B+(E), then =g implies that fr=gr.

In fact, we have directly fr=f=g=g, in E—D and on 8D excepting a set
of capacity 0. Assume now g=¢(), then fr,=¢(v)r=¢(v;) on a kernel of y, and
hence in virtue of the maximal principle f,=g, in E, from which follows Lemma
3.

For a given peM*(D), put

(2.5) L f):f Fodp for all feB(E)

then L, is linearly prolonged to a linear positive functional on B(E); the positivity
may be assured in such a way that if f—g=0 for f, ge B*(E), then it yields that
fr—gr=0 (by Lemma 3) and so L.(f—g)=0. Refering to the property 5) of
potential, 1.1, such L. defines a uniquely determined positive Radon measure uf
in £ (we owe this fact to a Proposition of N. Bourbaki).®

Such w° is necessarily distributed in 0D; in fact, let first fo be in Co(D) with
compact support KoC D, then by the property 5) of potential, 1.1, for any neigh-
borhood U of K, such that UC D and positive number ¢ we can choose ge B(E)
vanishing at the outside of U and verifying | fo—g| <e in E, for which we have
Lu(®)= Igpdﬂ:() (let g=¢(s)—p(sa), v €MD) for i=1,2, then it vanishes at
the outside of U, so that y7=y7 and hence (v1),=(v2)r), therefore |L.(fo)|<e and,
¢ being arbitratry, L.(fo)=0. By the same reasoning, we have L.(f4x) =0 for all
Fu€Co(E—D).

LeEMMA 4. Let g;e B'(E) for i=1,2,--, and assume that g;/' fe B*(E), then
(gor/ fr.

Proof. Accorcing to the sequence {g.}, {(g)r} is also increasing by Lemma
3, so that owing to the assumption 7), 2.3, hzlilgn(gi)p is also in B+*(E). For
every ve M*(E—D) with ¢(v)e B+*(E) (more precisely, € H(D)), we have

12) Owing to the above argument, such functional L. is uniquely determined.
13) N. Bourbaki [1], Prop. 2, §2, Chap. III.
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f frav=| fdu=1§mfg;dv=li§nj (g)rdv

=Ihdv, so that fr=h in E—D excepting a set of capacity 0 and hence on a

kernel of fr; by the maximal principle, we conclude f,=<h everywhere in E,
but A< f, is evident, which proves Lemma 4 completely.

Now, for every feB*(E) there exists in B*(E) a sequence {gi}, each g;
being continuous, such that g;/'f, as quoted in the assumption 6), 2.3. Using the
above Lemma, we see

Lu(f)= jfrdu=1i5n j (g0 rdn=lim Lu(g)

—tim [ gidui= [ £ dut;
3
thus, we can formulate

2.6) Lu(f)= f Fdus for all fe B+(E),

and moreover (by Theorem 6, iii))

2.7 Ifd,u—-—jfd,u? for all fe H(D).

THEOREM 7. Such pu$ is one of balayaged measures of pueD+(D). Therefore,
if pr is unique, it must be pi=pr.

It is sufficient to prove the Theorem in the case where peMiE(D); indeed,
(2.7) shows g =pg” in M{(D), so that u? fulfils (2.3) as a matter of course; as
is noted before, ur is distributed in f* (which is just equal to 0D in the present
case). Thus, these two facts guarantee the assertion.

We call thus obtained u; properly balayaged measure of u, but hereafter if
we say merely the balayaged measure (with definite article), we shall always
mean such w7, while each u, is distinguished by calling a general balayaged mea-
sure if necessary. The operation u—u2 is called balayage.

The balayaged measure has the following properties;

THEOREM 8. Let pp be the balayaged measuve of peW(D), then we have

a) ¢ =¢(u) in E—D and on 0D except a set of capacity 0,
B ¢(w=s(u’) everywhere in E.

Proof. «) is clear from Theorem 3bis and Theorem 7. B) is proved as fol-
lows; according to the assumption for each re¢E there exists a sequence of con-
tinuous (and hence bounded) potentials ¢(1;), ;€ M+(E), such that ¢(4;),"¢(es), S0
that
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) ()= [ sCeodui=tim [ 40t
—tim [ (62)rd
<tim [ sadz

— f¢(ex)dﬂ= s (2,

which proves j3).

Finally, we observe a characterization property of uf, which is answered as
follows:

THEOREM 9. u? is chavacterized as a wmeasure of W+(0D) whose potential
¢(ur) is the minimum among all of ¢(v), veM+(0D), which fulfil the condition
) in Theorem 8. If ¢(u) is bounded, uf(=upr) is also characterized as a mea-
sure of M+(E—D), whose potential is the maximum among all other ¢(v) for
yeN(E—D) such that ¢()=<¢(u).

Proof. With the same notations in the proof of Theorem 9, we see that for

each ¢
[ #rd = [ wrrdu= [s0aan
- J’ $(IAGDr  (by @)
~ j <¢<zi>>pdu§j¢<ai>du,

from which ¢(u?)(x)=<¢(»)(x); since g itself satisfies the condition a), the first
half of the Theorem is proved. The last half is easily obtained by a simple fact
that ¢(W)=¢(w) =¢(u2) in E—D and on 8D excepting a set of capacity 0 and so

on a kernel of y.

2.4. The case of non relatively compact D. In this section, we shall in-
vestigate the balayage for an open D such that £—D is non-void and 9D is com-
pact. But, D itself is assumed not to be relatively compact. Then, we stand in
some different situation from the preceding section. Indeed, M (D) is not vaguely
compact (as is easily seen, the measure null is adherent to V{(D) if D extends
to the infinite; roughly speaking, if x;€D runs to the infinite as {—— oo, then
e; converges to 0 vaguely), and H(D), leaving its definition to Definition 1, con-
tains no constant function. These two are the most notable differences. Such
being the case, it would be convenient to make the one point compactification of
D Let D.. be such compactification of D, denoting the additional point by @,
and put D.=D“f. On the other hand, we adjoint the identity 1 to H(D) and

14) See, e.g. L. H. Loomis [8], §2, Chap. L
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denote by H(D..) a normed linear space generated from H(D) and the unit func-
tion 1 (1(x)=1 on D). It is easily seen that every function of H(D..) is well
prolonged up to 8, verifying §°(1)=1(#)=1 and

2.8 0~(fH)=f@)=0 for all feH(D),

since we have H(D)C Lo(D).
Now, M+(D.) is generated, taking vague limits, by +(D) and the point
measure e (of total mass-+1) placed on §, and M}(D..) is vaguely compact and

convex. The collection M;(D..), of such bounded linear functionals z~, peMtt (D),
as is defined by

.2y w = | fdm remD,

is convex, hence the w*-closure M t(Dw) in (H(DL))* is w¥*-compact and convex,
for which the Krein-Milman’s theorem is also applicable.
In order to have the analogical argument as before, we need to assume:

For arbitrary two points x and y¢ D.. distinct each other, there exists such
a peM(E—D) that ¢(um)(0)#¢(m) ()29

Then, replacing E, M;(D), H(D) and Mij(D) by E.=E"“6, W(D..), H(D..),
and M;(D.) respectively, we can see easily that the whole theory contained in

)

1.2 is well revised completely, and consequently we get also general balayaged
measures .. of xeMG(D) in the sense of 2.1, assuming I'CH-AD. Let ur be the
restriction of one of these s in 0D (u.. may be distributed in #~0D in general);
for such a ur, we see that Theorems 3bis~5 are all true, since fe H(D) vanishes

at § and hence
(2.9) f Fdp— j fap( = fﬁmfdpw> for all fe H(D).

This admits us to construct the properly balayaged measure z; of s, dis-
tributed in 0D, in the quite same manner as in 2.2~2.3. Theorems 7~8 are then

completely valid.
However we have

(2.10) fdu=j_ duwa_ dur=fdm°~,
Doo Doo

and if z is distributed in D, we have exactly

(2.10) jdp Idu? .

15) This assumption #) is well held in R*(#=3) with Newtomian potential (Example a));
the locus of equidistant points from x and y forms a hypersurface in R™, whose inter-
section with E—D is at least of Lebesgue measure null, while E— D itself is not so.
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In fact, let 1 be a measure distributed in a certain compact K DO0D, whose
intersection with the support of x is void, such that ¢(A)=1 on K and 0=g() =<1

in E—K; we have then h=1—(%) ¢ H(D..) and $(A2)eH(D), so0 thatJ‘ (du—dpug)

- J h(dp—dp)>0 sincej¢(l?)du= f $(ADdug by (2.9)and Ihdg>fhdﬂp=0.

Such phenomenon does not occur in the case of a relatively compact D, for

which we have always.[d,u= J‘d,a%, since H(D) contains the unit function.

§3. The Case of Compact Sets: Extremisation.

3.1. Balayage in the case of compact sets. Let K be a compact set in E.
By analogy to Definition 1, we define H(K) as a normed linear space consisting
of the restrictions in K of all such ¢(»)e B(E) that v is distributed in E—K, with
respect to the norm

3.1 Hfllx=ig£ | fCx)] .

If the interior of K, intK, is a non-trivial (open) set, we see easily that H(K)
is a linear subspace of H(D) for D=intK. An arguement exactly analogous to
that we used in the preceding sections allows us to define M3;(K) and Ext.
M;i;(K) again, for which by replacing the letter D by K Theorems 1,2 and Lem-
ma 2 remain valid. However, in order to avoid any confusion, we shall use the
notations V, Vo, and u» instead of I',I'c and ur respectively. Then, Theorem 3
is also valid and stated as follows:

TuEOREM 10. Let pbe in M+(K) and py a balayaged measure of p; we have
then

(3.2) J Fdp= J Fdu for all feH(K),

and moreover

3.3 ¢() =0(uy) outside of K.

It should be noticed that in the present case Theorem 3bis is not valid and
even if ¢(uy) is bounded; p is not uniquely determined in general, since ¢(uy)
does not belong to H(K).

We prepare a lemma for later use:

LemMA 5. Assume intK not to be void; if p has the support contained in
ntK, then ¢(u)=¢(uy) everywhere in E.

In fact, ¢(u) is continuous in E—intK and so bounded in 8K ; for every
x€0K it holds that
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¢(w (2)=lim ¢(ﬂ)(y)=1i_r)n B () (9D Z () ().
R =
Thus, ¢(u)=¢(uy) on a kernel of yp andqu(,u,y)d,uy must be finite so that by the

maximal principle for potentials it follows the assertion.

Take now a sequence of relatively compact open sets {D;} such that D C Dy
and ID;=K. For a given ueM;(K), considering xeM;(D;), let us denote a ba-
layaged measure of z in Dj by u; for each j. Since Mi(D,) is vaguely compact,
the sequence {u;} has such a sub-sequence {us} that uj; converges to a certain
measure up which is necessarily distributed in 0KX. An analogue of the proof of
Theorem 8 for u,r shows that up is also a balayaged measure of the present sense.

Let u# and v be arbitrary in MI(K); as ¢(u)=¢(u;) by Lemma 5, we see

J"qs(ﬂ;)duéh;j@qu(uj)du
=%@f¢(ﬂ1)dv;3 by @)= [ 6.
Replacing # and v mutually, we get
3.4 [ocuran=[ srass

On the other hand, one sees easily ¢(up)=lim ¢(u;)<=¢(p) everywhere in E.
. f]
Summarizing these, we have the following.

THEOREM 11. up is the balayaged measure, uniquely determined, of ueM5(K)
(or more generally, of peMt*(K)), whose potential ¢(ug) has the following pro-
perties;

¢(up) =¢(p) outside of K,

(3.5)
o) =o(up) everywhere in E.

It remains us to prove the uniqueness of u7; suppose now another u, verifies
the above conditions (3.4) and (3.5), and for an arbitrary ¢(v) € B+(E) decompose
it into ¢(¥)=¢(vx) +¢(vu-x), then we have

[e0rdne= [s00dui+ [stuprdvn
= [Coondut [sGoder
= s+ [siraves
= [s03d,

from which it follows thatJ faup= j fdyy for every fe B(E). Owing to the pro-
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perty 5) of potential, we conclude uy=gpy, completing the proof.

We call such y7 the balayaged measure or, according to M. Brelot’s terminology,
the extremal measure of u. Of course, by analogue to x4 we are enable to define
the extremal measure of any z of M+(K) and hence of M(K).

A characterization of u7, pueM+(K), is contained in:

THEOREM 12. puf is the measure whose potential ¢(up) realizes the minimum
among all such potentials ¢(v), veWM+(K), as satisfy the condition (3.5).

The proof is somewhat trivial, since y#7 is considered as the balayaged measure
of v.

3.2. Stable boundary points. A point x€V, (in other words, ¢;€ Ext. M{(K))
is said to be stable; that is, a stable boundary point of K is nothing but a regular
boundary point with respect to the balayage in the present sense.

THEOREM 13. A point xe0K is stable, if and only if (es)f=es. Thus, any
stable point is characterized by another simple condition;

(3.6) () () =¢(uz) (%) for every peM(K).

We show before beginning the proof a useful Lemma:
LEMMA 6. If p"=y" in Mi(K) and p is a basic measure of 1°, then we have
w=y".

In fact, ¢(v) (¥)=v"(6(ep)) =p"(¢(e)) =p"(4(e,)) =9() (), whatever y may be
in E—K, so that for any ¢(r) € H(K) it holds

[s@a=[s0rae=[s0de= [ sdn,

which comletes the proof of Lemma 6.

Proof of Theovem 13. 1) Let first x€Vo, i.e. ey¢ Ext. M{(K), then sinée
()" =(e}) € Ext. M;(K) the basic measure of (e,)2" is uniquely determined, hence
=(ey)r itself, and moreover it must be equal to a point measure ey, y€ K, which
is a direct consequence of Theorem 2. By the property 4) of potential, we obtain
x=y and thus (e)f=¢,.

2) Conversely, suppose that (e,)f=s, nevertheless ¢; were not an extreme
point of Mi(K), and set now E‘&'=*%*(,MN+V~> for 47, vV eMi(K), 4 +v°, with
basic measure u,veM;(K) respectively. Owing to the above Lemma, we have
egzé(/fﬂf), and since the balayage is unique, it must be that em:(em);=—;~
(pgp+v7), so that pur=yp=e, and consequently 4 =1 =¢,. Since ©##y” by hypo-
thesis, there must exist such a ¢(ue H(K)(neM+(E—K)) that

e (f)>e(fH>v" ()0 f=o(w,

16) In fact, suppose that for every ¢(v)eB*'(E)NH(K) £~ (p(1))=v"(p(1)), then it follows
w~(f)=v"(f) for every fe H(K); thus, p"+#»" yields the assertion.
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and hence &2(f)>v"(f)=v" (), which is a contradiction. Thus, ¢ is extreme
in M:(K).
3) (es)P=eyimplies directly that ¢(u) (%)= J $(d(e)p= J‘ () des= ¢ (up) (x).

Conversely, from (2.6) it follows that ¢<ﬂ><x>=¢<,&7°><x>=‘[¢<ﬂ>d(ew>; for all

peP(K); on the other hand, it is obvious that ¢()(x)= qu(y)dex:JﬂMV)d(e”);
for every ve*(E—K). Combining these, we have

f Fdes— j fd(e)s for every feB(E),

from which (e,);=¢e,. Thus, the proof of Theorem 13 is completed.
In the case of Newtonian potential in R*(#=3), we assert:
TaeoreMm 14. If K is a set of Lebesgue measuve null, all points of K are

stable.
Proof. For each yeE, consider the integral means of ¢(e,) and of 4((e,)f) on
the sphere Y, with center y and radius 7, then since 3, K is a null set for

n-dimensional Lebesgue measure and ¢(e,) =¢((e,)5) in E—K, we have

m

1 1 .
r ‘[Zy’r(é(ex)dv:erzyyr¢<(em>7)dv ’

where dv denotes the n-dimensional volume element and s, the total volume of
a sphere with radius ». Letting 7 —0, we have ¢(e.)(¥)=0¢((e,)7)(y) for every
ye E, so that it concludes e,=(e,)7, as desired.

3.3. The case of general closed sets. For a non compact closed set F with
the relatively compact complement E—K, we are able to define the balayage by
analogy to 2.4 and 3.1, in adding the unit to H(F") and compactifying F. The

most important difference from the compact case is that it may bejd,u> Id/,e;.
The case in which E—F is not open or 0F is not compact is of less interest,

so that omitted here.

§4. Regular Points and Stable Points.

4.1. Characterization of regular or stable points. We are now in a position
to investigate the regular or stable boundary points more critically: The next
theorem is a summarization of the properties of them (however, the assertion
about stable points is just only a version of Theorem 13). We treat here ex-
clusively either relatively compact D or compact K.

THEOREM 15. The following three conditions ave mutually equivalent;

17) If y3—>v™ in M§(K) and vy —» vaguely, we have ,,'“(f)=li)1\n VX(f)=li)\mJ’fdm2J'fdv-
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i) xels (resp.xeVo) or equivalently ;e Ext. M (D) (resp. eseExt. M:(K)),

i) (ex)r=es (resp. (ex)i=¢es)

i) fx)=fr(x) (vesp. f(x)=Ffr(x)) for every fe B(E)X*)

Before beginning the proof, we propose an important Lemma which will be
available to prove the Theorem itself.

LeMMA 7. If m3—u" in Mi(D), then (pu)f—(p)f vaguely.

In fact, for all continuous fe B(E) we have

[ 7= [ reau=tim  rrdim=tim [ racu.

Refering to the property 5) of potential, we conclude the assertion.
We shall now prove Theorem 15 in such a direction that i)<ii) and ii)siii).
i)sii): i)—ii) is clear by Theorem 4, i). The proof of ii) —i) is somewhat
complicated. Suppose first that (e,)f=e, nevertheless e;€Ext. M:(D); set then
e;-—-%(u”—l—u") for 4y e My(D), y°+yv", with basic measures s, v respectively.
For the sequences {ux} such that ux— 4~ and {y3} such that vi—v~ in M{(D), we
see by the above Lemma that %(,w\—i—m) converges vaguely to (e,)f=e, since %4

(un+vx) converges to e in Mi(D). Therefore, one concludes that
x=i(/l+V>?'=i(/J;+Vle) )
&= 2

from which uf=yf=e,. By the same way as in the second part 2) of the proof
for Theorem 13, we have finally # =y "=e¢;, which is contradictory with the as-
sumption.

ii)siii): ii)—iii) is an immediate consquence of (3.4), while iii)—ii) is also
clear, because iii) implies Ifd€m=j fd(e,)r for every fe B(E). Thus, Theorem

15 is completely proved.

THEOREM 16. If x€0D is stable with respect to D, then it is regular with
respect to D.

Proof. It holds always

4D O I LI IR
for all ueM+(D), so that ¢(u)(x)=¢(u)(x) implies ¢(x)(x)=¢(u2)(x), which
proves the Theorem.

4.2. Simple sufficient condition for stable or regular point. Hereafter on,
we shall restrict ourselves within the case of Newtonian potentials in R*(#=3).
From the property that x is stable if and only if ez € Ext. Mi(K), we get shortly
a simple criterion in order that x be a stable boundary point, as an application

*) 0(r=0((we)P) +o(vm-x)
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of Theorem 15; that is,
THEOREM 17. If we can dvaw in the outside of K an osculating sphere 3. to
0K at a point x€0K, then x is a stable boundary point of K.

In fact, let x¢ and #o be the center and radius of X respectively, and take

now an inner point z on the segment combining x and x.; suppose further eZ:é—

(W +v™), w+y~ for wyeMi(K), having the basic measures pu,v respectively,
then owing to Lemma 6 we have

4.2 (e =5 [ (3 +v (#(e)];

on the other hand, one sees ¢(e,)(¥)=N#>"(y, 2) SN 7" <Nr"(x,2) =¢(e,) (%)
whenever y(#x)€ K, so that (4.2) is held if and only if 4=y "=ez. By the same
fashion as in the second part 2) of the proof for Theorem 13, it must be x =y~
=¢5, from which follows a contradiction. Thus, Theorem 17 is proved.

Refering to Theorem 16, we assert also;

COROLLARY. If we can draw an outer osculating sphere 3 to 0D at any point
x€0D, then x is a regular boundary point of D.

4.3. Further characterization in R*(n=3). From the above Theorem 17, we
can deduce another characterization for stable or regular points, which will play
an important role in the next paragraph concerning to Dirichlet’s problem:

THEOREM 18. A necessary and sufficient condition that xe0D(0K) be regular
(stable) is that for any sequence of points y,ye D(eK), such that y — x we have
(en)? — ex((e))r — &) vaguely.

Proof. We shall prove the assertion only in the case of compact K, however
it is quite all the same to the case of open D.

1°). Assume x to be a stable point of K, then according to y — x one sees

£ =F ()= Lim £2(3)= lim ff d(e)?
Y>x y>x
= lim f(3)=f(x),

for any continuous fe B*(E), from which it comes that (e,)7 — e, vaguely owing
to the property 5) of potential.

2°). Conversely, we shall next show by using a selfcontradiction that, if x
is not stable, there exists such a sequence of points {¥},y —x, in K that (&)r
does not converge vaguely to e,. Suppose now it were not so; since x is not sta-
ble by assumpticn, we can take a measure ue V(K ) such that ¢(u)(x)>¢(u) (%),
and for such g it would hold that

Jim ¢(u2) (y)=lim | ¢(d(e)r=¢(p) () > () (%) ,

Y>>z y>%
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whatever {y} may be. For a suitable open sphere 3.3 with center x, we would
have ¢(ur)(2)>¢(ur)(x) for any ze 13~ K. On the other hand, ¢(u) being lower
semi-continuous, there exists a sphere X1 such that ¢(up)(2)=¢(n)(@)>¢(u)(x)
for all ze X1~ (E—K).® Then, for every sphere ¥, with center x contained in

Y85, we obtain
4.3 [gswa] [ o av=ocurco,

where dv denotes the volume element in E”, which however contradicts itself with
the fact that ¢(ur) is superharmonic in E. Thus, Theorem 18 is completely

proved.

Remark 1). The proof 1°) remains valid, as is easily seen, even if E is not
thus restricted in Euclidean space R”; that is, in general, we assert that ¢f x is
stable to K, (e,)p converges vaguely to e, for any sequence of points y, ye K, such
that y — x.

Remark 2). The condition in Theorem 18 for regular points is well strengthen-
ed by taking exclusively a sequence {y} consisting only of inner points, i.e. ye D.
Indeed, replacing 33~ K by 33~ D, all the proof remains valid; (4.3) is also as-
sured since 8D—TI"y is a null set for #-dimensional Lebesgue measure, and (g,)g=¢,

for every yell.

§5. Representation Theorems and Applications to Dirichlet’s Problem.

5.1. Linear space H(I:), and the representation. Though, considering H(D)
as an archimedian partially ordered vector space, we can represent H(D) onto a
linear subspace H(A) of C(Ay), Ao=Ext. Mi(D), under a linear order isomorphism
and isometry (see R.V.Kadison [6], Theorem 2.1), it is less fitted for our present
position to apply it to the Dirichlet’s problem, because H(4y) is not necessarily
dense in C(A).

Thus, we need to investigate the representation‘ of some normed linear sub-
space H(Io) of H(D), whose definition is given just below, and through this
representation theory we approach to a new solution of Dirichlet’s problem. For
the actual purpose, assume always that D is a relatively compact set in R*(n=3)
with Newtonian potential or in the unit circle |z|<1 in Z® with logarithmic
potential. In the case, H. Cartan has constructed such a continuous ¢(a)e B*(E)

(such « shall be called H. Cartan’s measure)'® thatqu(a)du:ans(a)du implies

18) In fact, choose £>0 as smaller than ¢(u)(x)—¢{u7)(x); then since #(u) is continuous
in E—- K, for a suitable 3 it holds ¢(u)(2)=>¢p(u)(x)—&>¢(u2)(x) for all zeX e (E
—K).

19) H. Cartan [4], »° 21.
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p=v for u,veM*(E). Using this measure «, we can state:
LeEmMmA 8. Every vegular (or stable) point in 0D is characterized by a single
condition;
5.1 pla) (x)=¢(ar)(x) (resp.=¢(az)(x)).
Moreover, any ur (or u7), ye?Dt*(—D_),‘ is distributed in I'o (resp. Vo), and 9D
—1TI' is of capacity 0. :
Indeed, ¢(a)(x)=¢(ap) (x):J‘¢(oz)d (e,)7 implies that e,=(e,)? and the converse
is trivial; this is all the same for (e.)7. Thus, one sees that
(¢(ae)>¢(af) in BD—Ty,
5.2 .
¢(a)>¢(af) in OD—V,.

If pr hasa portion (ur)4 distributed in 8D—T", then putting (u2)e=pf —(u)x
we have ‘

Joanani=[sanacuire+ [sanacan.
< [s@atuirn+ [ s

= (ot

which is absurd since pp is also the balayage of up itself. The same is true
for pu2. From the first inequality of (5.2) follows immediately the last assertion
since ¢(a)=¢(af) in 0D excepting a set of capacity 0. This completes the proof.

DEFINITION 3. H(D, I'v) (or H(D, Vo)) is a normed linear subspace of H(D)
(resp. H(D)) consisting of all such functions as are uniformly continuous in TI'y
(resp. Vo), and H(I'v) (or H(V,)) is a normed linear space of all the restrictions

f of fe H(D,T'v) (resp.e H(D, Vo)) on I'y (vesp. Vo) with respect to the norm
(5.3) 1 £l po=sup | G| (L fllpy=sup | £ () ].
x€I, x€V,

LemmA 9. H(D, T) is isometvically isomorphic to H(Ty) in an order preserv-
ing fashion, and so is H(D,V,) to H(V). '

In fact, owing to Lemma 8, one has
)= [faeor | =17,

for every zeD, so that HfllpéHpro- I}filpoéllfllu being clear, one concludes
W llo=1Ifllp,- It is all the same for || fllyo, and the rest is somewhat trivial.

THEOREM 19. H(I) is dense in Cu(Io).
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Proof. In fact, every heCy,(I"y) has a uniquely determined continuous exten-
sion I; up to To and a further arbitrary continuous extension 7 with compact sup-
port in E. For such I'Z, there exists a sequence of continuous f;e€ B(E) which
converges to i uniformly in E; for each j (f;)f is equal to f; on I, hence
uniformly continuous there since f; is continuous in Iy, that is, (f;)?e H(I,). As
is easily seen, such sequence {(f;)r} converges to h=h uniformly on I, in other
words, with respect to the norm of H(I"s). Thus, Theorem 19 is completely proved.

Now, C,(I'y) forms a commutative Banach algebra with respect to the point-
wise product, and as is well known, C,(I"y) is isomorphically isometric to C(A,),
where A, is compact and I'y is homeomorphic to a dense part A, of Ar. Thus
we can arrange these results into:

TueoreM 20 (Representation theorem). A linear subspace H(D, I'v) of H(D)
is isomorphic to a dense subspace of C(A;) under a norm- and order-preserving
fashion, where A, is compact and Ty is homeomorphic to a dense space Ar of it.

Remark 1. Here, A,=FExt. 5§ for the unit sphere in the dual space (C,(I"0))*
to Cu(I"o); in this case, since C,(I"0) is commutative, every functional in Ext. 5§
is multiplicative and hence positive, so that with the same notation as in §1 one

sees
Ext. E¥=FExt. Mi(T).2»

Remark 2. Since every fEH(Fo) is uniformly continuous in I, it is well

prolonged up to the closure 19 of I'o without raising the norm. Such prolonged
ones f of f} H(I'y) form a linear subspace H(J%,) of C(I"s). Obviously, we have
H(Ir)=H(T'y) and C,(I')=C(T')=C(4,),»

therefore, H(I"y) is dense in C(I"). But, it should be noticed that, for a point
x€To—T, f(x) is not generally equal to f(x); in order to avoid any confusion of
such a kind, we have adopted the representation of H(D, I'o) into C(4;) as in the
above Theorem, although the latter (that is, representation into C(I'y)) seems to

be more simple.

5.2. Application to Dirichlet’s problem. From Lemma 9 and Theorem 19,
we obtain the solution of Dirichlet’s problem as follows:

Tuareorem 21. For every feC(0D), there exists the unique solution f of
Dirichlet’s problem with respect to D, which satisfies;

20) About these matter, see e.g. R. V. Kadison [6], S. Matsushita [9], etc.
21) The symbol ~ indicates an isomorphism which preserves the order (and hence norm)
structures.
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@) f is harmonic in D and bounded in D,
b) xl_lgl f(x) =f(x0) for xeD and x.€I's, that is, exceplting a set of capacity
0
0, the boundary-values of fﬂcoincide with f(x).
Proof. Existence of the solution: For each point x€¢D and any sphere ¥,
with center x, included in D, the integral operators ey and 13, A, being the spheri-
cal measure on X.,%*? such that

.4 ex () = fﬁdcem , PO j [hacepsancy,

Sz I'o
are both bounded linear functionals (actually, of norm 1) on H(I"y), which coincide
with one another, since on H(D,I's) so are those that e2(h)=h(x) (=¢z(k)) and
2z(h) = .[Z h()dr.(¥)(=23(h)). Since H(I'o) is dense in C,(I"o), both &y and 23

are uniquely prolonged to C,(I'v), on which ey=1z, too. Thus, for feC(@D), the
restriction fr, of f in Iy is contained in C,(I"y) and

.5) o= | fratoi=[_ raco

is the desired one, because one has fszdlm=};( fro)=e5(fro= f’ix). The condi-
tion &) is an immediate consequence of Theorem 18, 4.3.

Uniqueness of the solution follows from the general property of harmonic func-
tions that if f"and gN are bounded harmonic in D and, excepting a set of capacity
0 in 6D, their boundary-values are identical, then f=§ in D (a proof of this fact,
however, shall be given in the later section independently from the present proof),
which completes the proof of Theorem 21.

The case of non relatively compact domain D with compact 8D is also ana-
logically treated, but it is needful in this case to set up a further condition for
f: in addition to @), &) in Theorem 21, such that

) . feL.(D), ie.  lim f(x)=0,

xDco
since (e;)7 converges vaguely to 0 as x runs to the infinite, as is easily seen.
An analogue of Theorem 21 for C,(V,) is easily obtained; employing the above
obtained results, we can prove

THEOREM 22. For every feCu.(Vo) (hence, for feC(0D)),
(5.6) f*(x)-:j fAED?

is a harmonic function in D, which has the property; lim f*(x)=f(x0) for xeD,
X=X

X0€Vo.

22) About the definition of A, (spherical distribution on ¥,), refer to 2.2.
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In fact, f has a continuous extension feC,(I"y), then owing to Theorem 19,
there exists a sequence of ge H(I"y) which converges to f uniformly on I, and
hence to f on Vo. The integral functionals (with the same notations as in (5,4)):

50N =raceos, 1CH = [ racepzancs

Sz Vo
are both bounded linear on C,(Io), and satisfy si(é):IV gd(em),;’:g;(x)r-fz
0 %

g5( y)dlga:/li(gﬁ) for every éEH(Fo), since g7 is harmonic in D. Thus, €£=21% on
Cu(I'y), so that f* is harmonic in D. The rest is clear by Theorem 18.

5.3. Extension of boundary functions in Divichlet’s problem: Here we con-
sider only #-dimensional Euclidean space R*(#=3) with Newtonian potentials and
assume always that D is relatively compact. Now, assume further 0D to be a
measure space with respect to a certain measure m such that 1°) m(X)=0 for
any set XC0D of capacity 0, 2°) every bounded potential is m-measurable on
oD.

THEOREM 23. For every essentially bounded m-measurable function f on 0D,
there corresponds a bounded harmonic function f in D such that; if f is con-
tinuous in a neighborhood U (%) of a regular boundary point x.(eI), then f(x)
— f(x0) as x€ D — xo, and if fis continuous excepting a set of capacity 0, such f is
uniquely determined. )

Let us denote by M(0D) the Banach space of all m-measurable essentially

bounded functions with respect to the norm || f ||,x=ess. max | f(x)| (i.e. essential
x€3D

maximum). All fe H(D) form a linear subspace H(0D) of M(3dD). Then we
see that H(AD) is dense in M(0D): in fact, suppose now this were not so, and
take a non-trivial functional &” on M(9D), which vanishes on H(0D). From a
general investigation about the conjugate space of M(9D), we conclude that such
&7 defines a Radon measure & on 0D, for which £€(X)=0 on every set of X of
capacity 0.

For H. cartan’s measure « cited in 5.1, we have by hypothesisfqﬁ(a)dé =

Iq&(wﬁ)d&zé”(gﬁ(u?)):(), since we have ¢(a)=¢(ar) on 0D excepting a set of
capacity 0; so that, £ itself must be null measure and &"=0, contradicting with
the hypothesis. Then, the bounded linear functionals A3 and e, xe€D, defined
similarly as in (5.4) on M(@D) are coincident, since so on H(9D), which implies
that f(x)zjabfd(em)ﬁ is harmonic in D. Owing to the fact that if x0€l0, (ex)r
converges vaguely to es as x€D — x, and hence so is the restriction of (e,)7 in

U(x0), and by the same reason appeared in the proof of uniqueness for Theorem
21, the rest is somewhat clear.
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We remark that this Theorem involves Theorem 21 entirely and yet its proof

is quite independent of the latter.
COROLLARY. With the same f as above, f*(x)zf fd(es)p is harmonic in D

and if f is continuous in a neighborhood U(xy) of a stable poini x:(€Vo), f*(x)—
F(x0) as xeD—>x,.

Appendix I. We consider exclusively R*(#=3) and Newtonian potentials. Sup-
pose first that peM+(E) has a compact support. Since ¢(u)eL.(E), for a suita-
ble positive number %, g=¢(u) ~ke B*(E) and f=¢(u)—g vanishes outside of a
relatively compact open set U. f being lower semi-continuous, there exists a se-
quence of continuous functions f, such that f; /' f; then, putting f4=(f;—e/27)**®
we see easily f4 7 f again and f has a compact support wholly contained in
U. Owing to the property 5) of potential, for each f) there exists a continuous

potential ¢(y;)=0 such that
l6Quy) —f5] <e/27+2,

and ¢(v;) vanishes clearly outside of U. Asis easily seen, ¢(v;)<¢(v;+1) for every
7 and ¢(yy) /' f, so that, putting ¢;=(g-+¢(v;)) which is continuous in E, ¢;,”"¢(1)
as desired.

If the support F' of peM+*(E) is not compact, we can take a sequence of
compact sets Kj; such that K;Cint. K, and UK, DF; denote now the restriction
of ¢ in K; by u; and for each ¢(u;) consider ¢; in the above sense, then ¢(u;),/
#(¢) and hence ¢;,"¢(u) as desired.

Appendix II. We shall prove next that if two harmonic functions f and g7 have
the same boundary-values excepting a set ® of capacity 0 in 0D, then fzg~ in D;
with the same notations as in 5.2, consider at fiirst the sequence of domains Dj
C D such that D;:D—USpj(x) for spheres Spj(x) with center x for all x€@,=
(@D—-T) U6, which being the set of capacity 0, and radius p,=1/2’. Clearly,
D;C Djy, lijm D;=D, and all the boundary points of each D; are regular (refer to

Theorem 17).2 For an arbitrarily fixed x€D, there exists an index 7, such that

23) (+)* means the positive part of (s), i.e. (+)UO.

24) Let us prove each xoe0D;j—0(1JSpj(x)) to be regular with respect to 8Dj; take now a
neighborhood U(x,) contained in 8D;—0o(USs;(x)). For fe Co(Ulxy)), we see that

DaDijd(em)g :ﬂx):,,j‘apfd@”)% — f(x0) as xeDy— x5,

since f is continuous in @D, so that ((6x)5)v,) —> &, and hence (&)5 —> &, vaguely, from
which the assertion.
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x€Dj for every j=jo. Denote by (e,)} the balayage of e, ¥€D; in 8D;and by (e,)i

J

(i=1,2) the restriction of (¢)} in 0D;~0D and that in 8D;—0D respectively; a

subsequence of {(e;)}} converges vaguely to a certain measure y on 0D and, as
#(e) = 1lim p((e)D=4(s) on 8D, p(») is bounded in E, while limfd(ex)§=jdu<
J 7

+ oo, Therefore, v must be distributed in dD—®, and we can see that | f—g~l ()3

converges to | fi—gNIxJ:O,zs) so that
|fEx>~g”<x>|§f |- £ ld(e:
oDnJj
=j |f”—g”1d<ew>;»f \f~gldv=0,
avj-ap ap

and, x€ D being arbitrary, f=g~ in D.
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