Journal of the Institute of Polytechnics, Osaka City University, Vol. 9, No. 2, Series A

A note on Hattori's theorems

By Manabu HARADA

(Received June 30, 1958)

Recently Hattori [3] has given a characterization of Prüfer rings. In this short note we shall show that this characterization is valid for a commatative ring with a slightly weaker property than that of an integral domain.

Let Λ be a commutative ring and S be a set of non zero divisors which possesses the following properties:

1) $S \ge 1$; 2) S is closed under multiplication.

We shall denote Λ_s the ring of quotients of Λ with respect to S. We shall call an element a of a Λ -module A a torsion element if sa=0 for some $s \in S$. The torsion elements form a submodule tA of A. We can define a torsion-free module, divisible element, etc. similarly to the case of an integral domain.

We can easily obtain the following results:

1) we have an exact sequence

$$0 \to tA \to A \to A_s = A \otimes A_s$$

for any A-module A,

- 2) Λ_s is Λ -flat,
- 3) w. $dim_A A_s = w. dim_{A_s} A_s$ for any A-module A,
- 4) we have

$$\{Tor_n^A(A,C)\}_s \approx Tor_n^{A_s}(A_s,C_s)$$

for any A-modules A and C. (See Cartan and Eilenberg [1], VII, Exer's 9 and 10).

From now on we shall always assume that Λ_s is regular.

For instance, an integral domain has this property. Let Λ be a complete direct sum of integral domains, then Λ_s is regular, where S is the set of non-zero divisors.

PROPOSITION 1. Let A be a torsion-free, divisible A-module. Then w. dim $_{A}A = 0$.

Proof. If A is torsion-free and divisible, we can regard A as a Λ_s -module by the following definition.

For $\frac{\mu}{\lambda} \epsilon \Lambda_s(\lambda \epsilon s)$, and $a \epsilon A$, there exists a unique element b in A such that $\lambda b = a$. We define $-\frac{\mu}{\lambda} \cdot a = \mu b$. From equalities: $-\frac{\mu}{\lambda} \cdot a = \mu \left(-\frac{1}{\lambda}a\right) = -\frac{1}{\lambda}(\mu a)$ we can prove that A is a Λ_s -module. By an inclusion mapping: $\Lambda \to \Lambda_s$ and 2) we have

w. dim_A $A \leq w$. dim_A A=0

by the author [2], Th. 5.

PROPOSITION 2. For any A-modules A and C $Tor_n^A(A, C)$ is a torsion module $(n \ge 1)$. (Cf. [3], Th. 1).

Proof. We obtain from 4)

 $\operatorname{\{Tor}_n^A(A, C)\}_s \approx \operatorname{Tor}_n^{A_s}(A_s, C_s) = 0 \quad n \ge 1.$

Hence we have $t \{ \operatorname{Tor}_n^A(A, C) \} = \operatorname{Tor}_n^A(A, C)$ by 1).

THEOREM. If Λ_s is regular, we have the following equivalent properties:

- a) A is semi-hereditary,
- b) $Tor_2^{\Lambda}(A, B) = 0$ for any Λ -modules A and B,
- c) $Tor_1^A(X, A) = 0$ for any A-module X, if A is torsion free,
- d) $A \otimes B$ is torsion-free, if both A and B are torsion-free. (Cf. [3], Th. 2).

Proof. a) \rightarrow b). See [1], VI, Prop. 2.9.

b) \rightarrow c). If A is torsion-free, we have an exact sequence

 $0 \rightarrow A \rightarrow A_s \rightarrow A_s / A \rightarrow 0$

from 1). From this sequence we obtain an exact sequence

$$\operatorname{Tor}_{2}^{A}(X, A_{s}/A) \rightarrow \operatorname{Tor}_{1}^{A}(X, A) \rightarrow \operatorname{Tor}_{1}^{A}(X, A_{s})$$

for any A-module X. By b) and a fact: w. dim $A_s = w. \dim_{A_s} A_s = 0$ we obtain $\operatorname{Tor}_1^A(X, A) = 0$.

 $c) \rightarrow d$). See the proof of [1], VII, Prop. 4.5.

For the last two arguments we shall repeat the same ones of [3] in order to make the proof plainly.

d) \rightarrow c). From an exact sequence: $0 \rightarrow R \rightarrow P \rightarrow X \rightarrow 0$, with P projective, of a A-module X, we obtain an exact sequence:

 $0 \rightarrow \operatorname{Tor}_1^A(X, A) \rightarrow R \otimes A$.

From d) and Proposition 2, we have $Tor_1^4(X, A) = 0$.

c) \rightarrow a). We have a homomorphism σ :

 $\operatorname{Hom}_{A}(B, C) \bigotimes_{A} A \to \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(A, B), C)$

by setting $\sigma(f \otimes a)(g) = f(g(a))$, $f \in \text{Hom}(B, C)$, $g \in \text{Hom}(A, B)$ and $a \in A$, where A, B and C are Λ -modules.

Let F be a finitely generated Λ -projective module and C be a Λ -injective module. From an exact sequence: $0 \rightarrow M \rightarrow F \rightarrow A \rightarrow 0$, we have a commutative diagram

$$\begin{array}{c} 0 \rightarrow \operatorname{Hom} (Q, C) \underset{\downarrow \sigma}{\otimes} M \rightarrow \operatorname{Hom} (Q, C) \underset{\downarrow \sigma}{\otimes} F \rightarrow \operatorname{Hom} (Q, C) \underset{\downarrow \sigma}{\otimes} A \rightarrow 0 \\ (*) \\ 0 \rightarrow \operatorname{Hom} (\operatorname{Hom}(M, Q), C) \rightarrow \operatorname{Hom} (\operatorname{Hom}(F, Q), C) \rightarrow \operatorname{Hom} (\operatorname{Hom}(A, Q), C) \rightarrow 0 \end{array}$$

for any Λ -module Q. Since the middle σ is isomorphic, the right hand σ is epimorphic. If further Q is injective, Q is divisible by [1], VII, Prop. 1.2, and hence Hom (Q, C) is torsion-free. Therefore, from c), the two rows of (*) are exact, and so the left hand σ is monomorphic. Let Y be any Λ -module and I be a finitely generated ideal of Λ . From exact sequences: $0 \rightarrow Y \rightarrow Q \rightarrow R \rightarrow 0$, with Q injective of Y and $0 \rightarrow I \rightarrow \Lambda \rightarrow \Lambda/I \rightarrow 0$, we have a commutative diagram

with exact rows and columns, by replacing A by I and then M by I in (*). Since I is torsion free, Tor₁(Hom(Y, C), I)=0. Hence Hom(Ext¹(I, Y), C)=0 for any injective module C. Since Ext¹(I, Y)=0 for any Λ -module Y, I is projective.

Bibliography

- [1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, (1956).
- [2] M. Harada, Note on the dimension of modules and algebras, J. Inst. Polyt. Osaka City Univ., vol. 7 (1956) 17-27.
- [3] A.Hattori, On prüfer rings, J. Math. Soc. Japan, vol. 9, (1957), 381-385.