A note on Hattori's theorems

By Manabu Harada

(Received June 30, 1958)

Recently Hattori [3] has given a characterization of Prüfer rings. In this short note we shall show that this characterization is valid for a commatative ring with a slightly weaker property than that of an integral domain.

Let Λ be a commutative ring and S be a set of non zero divisors which possesses the following properties:

1) $S \ni 1$; 2) S is closed under multiplication.

We shall denote Λ_{s} the ring of quotients of Λ with respect to S. We shall call an element a of a 1 -module A a torsion element if $s a=0$ for some $s \in S$. The torsion elements form a submodule $t A$ of A. We can define a torsion-free module, divisible element, etc. similarly to the case of an integral domain.

We can easily obtain the following results:

1) we have an exact sequence

$$
0 \rightarrow t A \rightarrow A \rightarrow A_{s}=A \otimes_{\Lambda} \Lambda_{s}
$$

for any 1 -module A,
2) Λ_{s} is 1 -flat,
3) $w . \operatorname{dim}_{A} A_{s}=w . \operatorname{dim}_{\Lambda_{s}} A_{s}$ for any 1 -module A,
4) we have

$$
\left\{\operatorname{Tor}_{n}^{1}(A, C)\right\}_{s} \approx \operatorname{Tor}_{n}^{1 s}\left(A_{s}, C_{s}\right)
$$

for any 1 -modules A and C. (See Cartan and Eilenberg [1], VII, Exer's 9 and 10).

From now on we shall always assume that Λ_{s} is regular.
For instance, an integral domain has this property. Let Λ be a complete direct sum of integral domains, then Λ_{s} is regular, where S is the set of non-zero divisors.

Proposition 1. Let A be a torsion-free, divisible 1 -module. Then w.dim ${ }_{A} A$ $=0$.

Proof. If A is torsion-free and divisible, we can regard A as a Λ_{s}-module by the following definition.

For $\frac{\mu}{\lambda} \epsilon \Lambda_{s}(\lambda \in s)$, and $a \in A$, there exists a unique element b in A such that $\lambda b=a$. We define $-\frac{\mu}{\lambda} \cdot a=\mu b$. From equalities: $-\frac{\mu}{\lambda} \cdot a=\mu\left(\frac{1}{\lambda} a\right)=\frac{1}{\lambda}(\mu a)$ we can prove that A is a Λ_{s}-module. By an inclusion mapping: $\Lambda \rightarrow \Lambda_{s}$ and 2) we have

$$
\mathrm{w} \cdot \operatorname{dim}_{A} A \leqq \mathrm{w} \cdot \operatorname{dim}_{A \varepsilon} A=0
$$

by the author [2], Th. 5.
Proposition 2. For any 1-modules A and $C \operatorname{Tor}_{n}^{1}(A, C)$ is a torsion module ($n \geqq 1$). (Cf. [3], Th. 1).

Proof. We obtain from 4)

$$
\left\{\operatorname{Tor}_{n}^{A}(A, C)\right\}_{s} \approx \operatorname{Tor}_{n}^{\Lambda_{s}}\left(A_{s}, C_{s}\right)=0 \quad n \geqq 1 .
$$

Hence we have $t\left\{\operatorname{Tor}_{n}^{A}(A, C)\right\}=\operatorname{Tor}_{n}^{A}(A, C)$ by 1$)$.
Theorem. If Λ_{s} is regular, we have the following equivalent properties:
a) Λ is semi-hereditary,
b) $\operatorname{Tor}_{2}^{A}(A, B)=0$ for any 1 -modules A and B,
c) $\operatorname{Tor}_{1}^{A}(X, A)=0$ for any 1 -module X, if A is torsion free,
d) $A \otimes_{A} B^{\prime}$ is torsion-free, if both A and B are torsion-free. (Cf. [3], Th. 2).

Proof. a) \rightarrow b). See [1], VI, Prop. 2.9.
b) \rightarrow c). If A is torsion-free, we have an exact sequence

$$
0 \rightarrow A \rightarrow A_{s} \rightarrow A_{s} / A \rightarrow 0
$$

from 1). From this sequence we obtain an exact sequence

$$
\operatorname{Tor}_{2}^{1}\left(X, A_{s} / A\right) \rightarrow \operatorname{Tor}_{1}^{1}(X, A) \rightarrow \operatorname{Tor}_{1}^{1}\left(X, A_{s}\right)
$$

for any 1 -module X. By b) and a fact: w. $\operatorname{dim}_{A} A_{s}=\mathrm{w} \cdot \operatorname{dim}_{4_{8}} A_{s}=0$ we obtain $\operatorname{Tor}_{1}^{\Lambda}(X, A)=0$.
c) \rightarrow d). See the proof of [1], VII, Prop. 4.5.

For the last two arguments we shall repeat the same ones of [3] in order to make the proof plainly.
d) $\rightarrow \mathrm{c}$). From an exact sequence: $0 \rightarrow R \rightarrow P \rightarrow X \rightarrow 0$, with P projective, of a Λ^{-} module X, we obtain an exact sequence:

$$
0 \rightarrow \operatorname{Tor}_{1}^{1}(X, A) \rightarrow R \otimes A .
$$

From d) and Proposition 2, we have $\operatorname{Tor}_{1}^{1}(X, A)=0$.
c) $\rightarrow \mathrm{a}$). We have a homomorphism σ :

$$
\operatorname{Hom}_{\Lambda}(B, C) \otimes_{A} A \rightarrow \operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{\Lambda}(A, B), C\right)
$$

by setting $\sigma(f \otimes a)(g)=f(g(a)), f \in \operatorname{Hom}(B, C), g \in \operatorname{Hom}(A, B)$ and $a \in A$, where A, B and C are A-modules.

Let F be a finitely generated Λ-projective module and C be a Λ-injective module. From an exact sequence: $0 \rightarrow M \rightarrow F \rightarrow A \rightarrow 0$, we have a commutative diagram

$$
\text { (*) } \begin{aligned}
& 0 \rightarrow \operatorname{Hom}(Q, C) \underset{\downarrow \sigma}{\otimes} M \rightarrow \operatorname{Hom}(Q, C) \underset{V \sigma}{\otimes} F \rightarrow \operatorname{Hom}(Q, C) \underset{V \sigma}{\otimes} A \rightarrow 0 \\
& 0 \rightarrow \operatorname{Hom}(\operatorname{Hom}(M, Q), C) \rightarrow \operatorname{Hom}(\operatorname{Hom}(F, Q), C) \rightarrow \operatorname{Hom}(\operatorname{Hom}(A, Q), C) \rightarrow 0
\end{aligned}
$$

for any Λ-module Q. Since the middle σ is isomorphic, the right hand σ is epimorphic. If further Q is injective, Q is divisible by [1], VII, Prop. 1.2, and hence $\operatorname{Hom}(Q, C)$ is torsion-free. Therefore, from c), the two rows of (*) are exact, and so the left hand σ is monomorphic. Let Y be any Λ-module and I be a finitely generated ideal of Λ. From exact sequences: $0 \rightarrow Y \rightarrow Q \rightarrow R \rightarrow 0$, with Q injective of Y and $0 \rightarrow I \rightarrow \Lambda \rightarrow \Lambda / I \rightarrow 0$, we have a commutative diagram

with exact rows and columns, by replacing A by I and then M by I in (*). Since I is torsion free, $\operatorname{Tor}_{1}(\operatorname{Hom}(Y, C), I)=0$. Hence $\operatorname{Hom}\left(\operatorname{Ext}^{1}(I, Y), C\right)=0$ for any injective module C. Since $\operatorname{Ext}^{1}(I, Y)=0$ for any A-module Y, I is projective.

Bibliography

[1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, (1956).
[2] M. Harada, Note on the dimension of modules and algebras, J. Inst. Polyt. Osaka City Univ., vol. 7 (1956) 17-27.
[3] A.Hattori, On prüfer rings, J. Math. Soc. Japan, vol. 9, (1957), 381-385.

