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In this note we shall prove some supplementary results of Jacobson [5] concerning
Kronecker products of primitive algebras and those of P.M.I. algebras (that is, alge-
bras with faithful minimal one sided ideals) and study their applications.

Let A; (i=1, 2) be a primitive algebra over a field @ and 4; be the division algebra
of all A;-endomorphisms of a faithful irreducible A;,—module (if A; is a P.M.I. algebra,
4; is uniquely determired up to isomorphisms, and we shall call it the associated
division algebra (denoted by A.D.) of A;).

In section 1 we consider relations betweea semi-simplicity and primitivity of
A QA, and those of 4, 4,. In section 2, using results of section 1, for P.M.L
algebra A; we study properties of 4; when A; ®A, is primitive or P.M.I, and give
for a P.MLL. algebra A conditions under which A R A* is primitive or P.M.I.. Further
we prove that if B is central simple and A®B is P.M.I, then A is P.M.I. under
special conditions. In section 3 we study the same problems as in section 2 in the
case where primitivity is replaced by semi-simplicity. In section 4 we study Kro-
necker products of strongly dense algebras (see definition of section 4) and of closed
irreducible algebras.

Throughout this note, we assume that algebras are all over a fixed ground field
@, endomorphisms of right (left) A-module M act on the right (left) side of M, and
that A* means an anti-isomorphic algebra of an algebra A.

1. LEMMA 1. Let A be a ring and e be an idempotent of A. If A is primitive
(semi-simple in the sense of Jacobson [6]) them eAe is primitive (semi-simple).
Further we assume that A is primitive, then A is a P.M.I. ring if and only if eAe
is so.

Proof. The first half is well known (cf. [5], Ch. 3, Pr. 7.1). Let A be a P.M.L.
ring with the non zero socle © and | be a minimal left ideal of A such that le=F0
for @e==0, and (e is a faithful minimal left ideal of A. For any non zero element
exe of ele, eAe-exe=ele and ele is a faithful minimal left ideal of eAe, hence ede is
a P.M.L ring. Conversely if A is primitive and eAe is a P.M.L. ring, then eAe has
an idempotent e, such that e¢,Ae, is a division ring, heace A is a P.M.L ring.

ProprosIiTION 1. Let A be a right primitive algebra with a faithful irreducible
module M and 4 be the associated division algebra of M, and let B be an algebra
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with unit element. If 4R B* is left primitive then AR B is right primitive and the
associated division algebra of any faithful irreducible 4R B*-module N is anti-
isomorphic to the ome of a faithful irreducible A Q B-module depending on N.
Further we assume that A is a P.M.I. algebra, then AQRB is a P.M.I. algebra if and
only if ARQB* is a P.M.I. algebra.

Proof. Let{x.}.cr be a basis of M over 4. Then MR B=> D (x.X1) (4R B*)
and we can easily see that A(X B is a dense ring in the finite topology in the ring
Mi(4¥*RB) of 4R B*-endomorphisms of M®B (cf. Azumaya and Nakayama [2],
Th. 8). Since MR B is 4 B*-free, the lattice of left ideals of 4 B* is isomorphic
to the lattice of Ms(4*R B)-submodules of M& B, hence of A& B-submodules of
M®B, ([2], Lemma 1). If 4QB* is left primitive, there exists a modular maximal
left ideal [ such that ({: 4&X B*)=0. Hence MX B has a maximal A ) B-submodule
(M&B){. Then MRXB/(MKRB) =3P (xR1)(4RB*/1) is a faithful irreducible
M(4*R B)-module and AXB is a primitive algebra with a faithful irreducible
module M B/ (MK B){. Therefore the associated division algebra of 4XB*/l is
anti-isomorphic to the one of M B/(MK B)[. The last statement is easily obtained
from Lemma 1 and the first half statement.

We note that if A is a primitive algebra with a ceatral associated division
algebra 4 of a faithful irreducible module, >3 is a subalgebra of 4, and if I is the
ceatralizer of Y in 4, then observing that 4@ > * is a primitive algebra with the
associated division algebra I™* of 4® > *-module 4, AR Y] is primitive with an
associated division algebra /. In particular if we replace > by a maximal subfield
of 4, then 3 is a splitting field for A, (cf. [5], Ch. 5, Th.’s 12.2 and 3).

TueoreM 1. Let A, (i=1,2) be a right primitive algebra and 4; be the as-
sociated division algebra of a faithful irveducible A,~module M;. Then we have

1) If 4,R4, is left primitive, then A, R A, is vight primitive and for any
left faithful irvrveducible 4,R 4,-module M there exists a vight faithful irreducible
A, QR Ay-module M’ such that the associated division algebra of M is anti-isomorphic
to the one of M.

Moreover we assume that A; is a P.M.I. algebra. Then we have

2) A, RA, is primitive if and only if 4,XR 4, is primitive,

3) AiRA, is a PMI algebra if and only if 4,4, is a P.M.I. algebra.

Proof. 1) Let A,’ be an algebra which is added the unit operator over M, to
A,, and if A, ®A, is primitive, A, R A4, is so for A, QR A, is an ideal of A, R A,
and the associated division algebra of a faithful irreducible A, R A,’~module M
coincides with the one of the faithful irreducible A, () A,~module M (Azumaya and
Nakayama [17], Lemma 26.5). If 4,4, is left primitive, 4% 4,* is right primitive.
Hence 4, QA* is left primitive and A, @A, is right primitive by Proposition 1.
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We have the same argument for the associated division algebras. 2) and 3) are clear
by 1) and Lemma 1.

If we repeat the above argument to semi-simplicity, we have

LemMA 2. Let A be a primitive algebra and 4 be the associated division algebra
of a faithful irreducible module M and let B be an algebra with unit element. If
AR B* is semi-simple then AR B is so.

Proof. We use the notations in the proof of Proposition 1. Since 4X B* has
unit element, there exists a maximal left ideal { of 4 X B* and so a maximal right
A& B-module T=Z€B(x7®1)1 of M®B corresponds to I. MQ®B/l is an irre-
ducible A B-module and if Q, is the kernel of homomorphism of A B to the ring
of 41 & B*-endomorphisms of M® B/I, then A@B/a{ is primitive and (M B)-
aIgI. If 4 B* is semi-simple, the intersection (! of all maximal left ideals { is
zero, hence 0= D (2, QR 1)-(N D) 2(? (M®B).-a12 (M®B)-((IW a[) and (ga[=0, that

is, AQ B is semi-simple.

THEOREM 2. Let A,, A, be primitive algebras and 4, 4, be as in Theorem 1.
If 4, K4, is semi-simple, then A,Q A, is so, and further if A,, A, ave P.M.I. alge-

bras, the converse holds.

We can prove the theorem by Lemma 2 and the same way as in the proof of

Theorem 1.

2. We shall apply results in section 1 to Kronecker products of P.M.I. algebras.
First we have the following theorem whose first half is the converse of [5], Ch. 5,
Th. 10.1.

THEOREM 3. Let A; (i=1,2) be a P.M.I. algebra and 4; be A.D. and let 3; be
the center of 4;.
If A\QA, is a P.M.I. algebra, then we have

1) > or X, is algebraic over O,

2) 4,R4d, satisfies the minimum condition,

3) theve are isomorphisms ¢, ¢, Such that > %1, >%2 ave linearly disjoint
over .
Concersely if 2) and 3) hold, then A,Q A, is a P.M.I. algebra.

Proof. If A,®Q A, is a P.M.I. algebra, 4,X 4, is a P.M.I. algebra by Theorem 1.
Since > X3, is the center of 4,Q 4, and 4,@Q 4, has the unique minimal ideal,
S, Q3 is integral and has a minimal ideal, herce Y, XD, is a field. If 33, and >,
are not algebraic, they contain transcendental fields isomorphic to @(X), hence
Su&®>7, is not a field by [1], Lemma 36.4. Since X, ®>), is a field, 4,4, is a

simple ring, hence 4, 4, satisfies the minimum condition. From 1) we may assume
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> is algebraic and we can find an isomorphism ¢ of >3, into an algebric closure of Y,
and X3¢, >, are linearly disjoint over @ for >, & >,=>W&>,. Conversely if 3)
holds, >, @ >, is integral, hence 4, 4, is simple by 2) and [5], Ch. 5, Th. 9.1 and
4,R 4, is a P.M.L. algebra. From Theorem 1 A;® A4, is P.M.L.

By using the same argument as in Theorem 3 we obtain,

CoroLLAaRY 1. Let Ay, Y, be as in Theorem 3 and further we assume 3., is a
algebraic over @, then A, Q A, is primitive if and only if 3) holds.

CoroLLARY 2. Let A; (i=1,2) be a P.M.I algebra and ©; be its socle. If
AR A, isa PMI. algebra, then ©,KQ &, isils socle. 1f ©,Q&, is a P.M.I. algebra
then A\ A, is a P.M.I. algebra with socle ©,Q &,.

We can easily obtain Corollary 2 from 2) of Theorem 3, 3) of Theorem 2 and
[5], Ch. 5, Th. 10.1.

We shall remark that corditions 2) and 3) of Theorem 3 are independent each
other and they coincide with a condition that 4,& 4, is a simple algebra with the

minimum condition.

THEOREM 4. Let A be a P.M.I. algebra and 4 be A.D. with center >.. The
following properties are equivalent.

a) 4 is a central division algebra with finite rank over @.

b) AR A* is a P.M.I algebra.

c) AQB is a P.M.I. algebra for any P.M.I. algebra B.
In this case if C contains unit element and AQC is a P.M.I. algebra, then C is P.M.I.
Further we assume, 3 is algebraic over @, then the following properties are equivalent.

a’) 4 is central.

b)) ARA* is primitive.

¢ AQB is primitive for any primitive algebra B.

a’) A= is primitive.

Proof. a)—b), c) are clear from Theorem 1 and ¢)—Db) is obvious. If AR A*
is a P.ML.L. algebra, 4@ 4* is so, and >J® > is a field by the remark of Theorem 3,
hence >1=@ by [1], Lemma 34.6. Further 4Q 4* satisfies the minimum condition,
hence [4: @]< e by [1], Th. 349. If AQC isa P.M.I. algebra, and C contains unit
element, 4QC* is so by Proposition 1. Since 4 is central and [4: @]< co, C
is P.M.I. from Proposition 2 below. If A> is primitive, then 4% is so by Theorem 1
and as above >3 >" is a field, therefore 4 is ceniral. The remaining statements are
clear by Theorem 1.

Next we shall study some properties of A; when A4, ®A4, is PM.I and A, is

central simple.

Lemma 3. Let A be an algebra without unit element and B be a central simple
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algebra with unit element, and let A’ be an algebra which is added unit element by
the natural way. 1f AQRB is a P.M.I. algebra then A’ X B is so.

Proof. We can easily see that if A has no unit element, any non zero ideal a
of A’ has non zero intersection with A®. If AXB is a P.M.I. algebra, AX B has a
faithful irreducible right ideal v and further t is a faithful irreducible A’ B-
module, as 1(A’(XB) <t and the annihilator ideal (of A’(X) B over t)=0a,(X) B where
0, is the annihilator ideal of A’ over t and if a,==(0), a,M A==(0) by the above
remark, and it is a contradiction. Hence A’® B is a P.M.L. algebra.

ProrosiTiON 2. Let B be a central simple algebra with [B: @]< . A is a
P.M.I. algebra if and only if AQB is so.

Proof. “Only if” part is clear by Theorem 1. By Lemma 3 and [B: @< co we
may assume that A has unit element and B is a central division algebra. If we
regard AXB as a right AR B- and left B-module, that is, a right (A® B) R B*-
module, AR B is a faithful (A® B) B*-moedule as in the proof of Lemma 3. By
the assumption and Theorem 1 (A®XB) ®B* is a P.M.I algebra and AXB has a
faithful irreducible (A& B) Q) B*-module t. t is a right ideal of AXB and a left
B-module. AXB is a completely reducible two sided B-module with B-basis
{u;}; u;*b=>b-u; for all b€ B, hence 1=20v;B, v;€ A and r=1,&) B where 1, is the
right ideal generated by {v;} of A. T helrefore T, is a faithful irreducible right ideal
of A and A is a P.M.L. algebra.

CoroLLARY. Let B be as in Proposition 2. If AR B is a semi-simple algebra
all whose primitive images are P.M.I. algebras, then A is so. Conversely if B’ is
central simple with unit element and A is semi-simple, then AR B’ is semi-simple.

We note that we may assume A contains unit element by the remark in the proof
of Lemma 3 and if B’ is a central algebra with unit element, the radical of AR B’
is contained in the Kronecker products of the radicals of A and B’

ProposiTiON 3. Let A be I~algebra (see Levitzki [77]) and B be a central simple
algebra with unit element. If AQB is a P.M.I. algebra, then A and B are matrix
algebras of finite degree over division algebras.

Proof. First we assume A has unit element. If AQB is a P.M.IL algebra, its
socle ©=3X B where 3 is the unique minimal ideal of A. By the assumption 3 is
I,~algebra and has no non zero nilpotent ideal, hence 3 is primitive. Further A is
prime by the assumption, hence A is primitive by Goldie [3], Th. 1. If A has no

1) Let a be an ideal of A’=A+1-K and @’=a-+1-k be a non zero element of a. If ab-+bk=0
for all b€ A, —ka! is a left unit of A, similarly if ba-+bk=0 for all b€ A, —ka~ ! is a
right unit.
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unit element, A’&® B is P.M.I. by Lemma 3 and its socle is contained in A () B, hence
A is primitive in this case, too. Therefore A is a matrix algebra of finite degree
over a divition algebra 4 by [7], Coro. in p. 391 and 4R B* is a simple P.M.L

algebra, hence 4 B* satisfies the minimum condition, which proves the proposition.
3. We now consider a semi-simplicity of Kronecker products of P.M.I. algebras.

LemmA 4. Let A; (i=1,2) be a simple algebra with unit element and 3; be its
center. If 3, R3, is semi-simple then A, R A, is so.

Proof. Let N be the radical of A;(QA,, then N=(A;®A,)-a. by [5], Ch. 5
Th. 9.1 where a is a ideal of X2, ®>%,. CL®XL)NN is a quasi-regular ideal of
MR, since for any element x of (3;&®>3,) M N there exists an element y in N
such that (1—x)-(1=y»)=1-»)-(1—x)=1andas (1—2x) €33QR>,, 1—») € 1R,
and y€ (25, Q2%) N N. Since (0) =25 ®2%) N N=2a, N=(0).

LEMMA 5. Let A be primitive and 4 be the associated division algebra of a
Sfaithful irveducible A-module. If the center 33 of 4 is algebraic separable over @,
then AR B is semi-simple for any semi-simple algebra B.

Proof. Let B be primitive and 4’ be the associated division algebra of a faithful
irreducible B-module and let >} be the center of 4. Since Y is separable, > 1X >V
is regular (in the sense of Neumann [8]) by [4], Pro. 3 and so semi-simple, hence
4R 4" is semi-simple and AR B is so by Lemma 4 and Theorem 2. If B is semi-
simple, there exist primitive ideals {, with N{,=(0) and (AR B)/(AR(,) =ARB/{,

are semi-simple, hence A B is semi-simple.

THEOREM 5. Let A be a P.MI algebra and 4 be A.D., and let Y be the
center of 4. We assume X is algebraic over @, then A> is semi-simple if and only
if AQA* is semi-simple. In this case ARQB is semi-simple for any semi-simple

algebra B.

Proof. If A® is semi-simple, 4% is so and since D1®>" is the center of 4%, it
has no non zero nilpotent element, hence >} is separable and A B is semi-simple
for any semi-simple algebra B by Lemma 5. Conversely if A® A* is semi-simple,
4 4* is so by Theorem 2 and > &> is the center of 4 4% hence > is separable

as above.

4. We shall prove some results of Krenecker products of endomorphism rings.
Let A be an algebra and M be a faithful A-module. We shall call “A is strongly
dense over M”, if A is dense in the finite topology in the endomorphism ring A of
A-endomorphism ring of M and any non zero ideal of A has the non zero intersection
with A.

From the definition and the structure theorem of [5], Ch. 4 if A is primitive
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algebra with a faithful module M, A is strongly dense over M if and only If A is a
P.M.L ring.

ProposiTION 4. Let A; (i=1,2) be primitive. A; is strongly dense over a
faithful irveducible A,-module M; if and only if A, QA, is strongly dense over
M&M,.

Proof. Let A; be strongly dense over M; and 4; be a centralizer of M; and let
{%:}:er be d~basis of M, and {y,.jucr be d,-basis of M,. Then M, QQM,
=21P*Ryu) (4, R4,) and by [2], Th. 8 we know that the ring of A, RA,
endomorphisms of M; XM, is equal to 4,® 4, and A, R A, is dense in the finite
topology in the ring 4, @A, of 4, d,~endomorphisms of M, QM,. Now let a(==0)
be an ideal of A; @ A, and ¢(==0) € q, then there exists 2. @y, such that (x.Qy,) 0==0.
Since A is a P.M.I. algebra, we have the following projections: e.(€A4,) and
e (€Ay), My-er=2x.4, Xeer=2%, Mye) =yuds, Yuep=2yu. I we set (% Qy.)
02]2:_]1 xT].®zT], sz(:%- 0) € M,, we can find o, € A, and o,/ € A, such that x.-0.=x.,
%r,-0u=0(j=F1) and 2z 0. /=y.. Then (X Ryu)-(e:Qeu)-0+(0:Q0u) =% QI
=4 Ryu)(e:Qey). From the properties of ¢’s and p's, (e:Qeu)0-(0-Q ou")
=&, Qe € (A RQA)Na and A, R A, is strongly dense over M, M,. Conversely
let A,®A, be strongly dense over M, XQM,. The set F(M,RQM,) of elements o of
A, ® A, such that (M, QM,)-¢ is contained in a sum of submodules (% ®Qy,) (4 R 4y),
finite in number, is a two sided ideal of 4, X A,, hence A, A, N FM, QM,) d5=E0,
a:};] aPRa?, aP € A; and (M1®M2)~a;i‘i®(x,-®y,~) (4, 4,). There exists
in the set F(M;) of linear transformationslof finite rank of M; such that x;eV=ux;
;e® =y; j=1,--,n. Then o= (P Re®) = S1aPe® R aPe® € F(M,) QF(M,) N
(A; R A, hence A; N\ TF(M;)=F0 and A; is strongly dense over M;.

CorOLLARY. Let A;(i=1, 2) be primitive and 4; be the associated division algebra
of a faithful irveducible A;module M;. If 4, is central and A, A, is a P.M.I.
algebra, then A; is a P.M.I. algebra.

Proof. By the assumptions 4,& 4, is simple and M, @M, has a faithful irre-
ducible A; ® A, submodule, hence 4, Q 4, has a minimal left ideal and satisfies the
minimum condition. By the same method as in the proof of [5] Ch. 5, Th. 10.1
M1®M2=12;69N,- where N; is isomorphic to a faithful irreducible M (4,*R 4,%)-

module N;. Let 4 be the division ring of M(4,*Q 4,%)-endomorphisms of N, then
M(4*Q 4,%) is the ring of d-endomorphisms of N;, hence A; R A, is strongly dense
over M; X M,. Therefore we obtain Corollary by Proposition 4 and the remark above.

The following proposition is a generalization of [5] Ch. 5, Th. 3.1, (3) and the

method of proof is quite analogous.

LEMMA 6. Let 4; (i=1,2) be an algebra with unit element and M; be a right



26 Manabu HARADA and Teruo KANZAKI

d;-module with d;-basis. We may regard M,QM, as right 4, d,-module. Then
M(LFR 4,%) =ML QML) if and only if there exists i such that [M,: @< o
or [Ms: 4;]1< e (j=1,2).

Proof. Ml@Mzlegi)(Al(%)Mz):Ml@Mz, where M,=4,QM,. We may re-
1 Ay

gard M, as a left 4,, right 4, dr-module by the natural way. Clearly we have a
4, d;-isomorphism ¢ of M,Q@M, to M,QM,. Let {x,},er be a 4;-basis of M.
4y

We may identify M(4* R 4*) with the ring of 4, ® d,—endomorphisms of M, ®M,.
For any element ¢ of M(4* R 4,%) (2, @m,) -6=>x; R f;,:(m,) where my, f;,;(m,) € M,
we can easily examine that mapping fj,;: m,—f;,;(m,) are 4, d,-endomorphisms of
M, and 3)f;; is summable and that conversely if > fi,; is summable for each j,
then (xi(é)ﬁz)-a*=2xj,fj,i(ﬁz) is a Al®Az—endomor;;hism of M, QM,. Hence we
can represent any element of M(L*R 4*) by a matrix (f; ), where f; ;s are
elements of the ring M(4, D 4L) of 4, dy—endomorphisms of M, and 2. fi; is sum-
mable for each j. If a= (8, € M4L™), beM(L®), (x, dm,) (a ® D =>%
(n_/lg(ﬁ,-,j)1®b) hence a@b=((0;,7):Qb) and the matrix of 21 @, Xb, has a pr]operty
that the dimensionality of the space spanned by the linear translforrnations fi,; is finite
over 4;. If M4 QML) =MU4*R 4,%), there exist the following two cases,

1) [M,: 4]<oo then 4,;Q@M(4L*) =M(4F¥& 4,5, or

2) [M;: 4] = oo then [M(4,*): @]< o, hence [M,: @]< oo, [4y: @]<oo.
In case 1 if we replace M, @M, by 4,QM,, we obtain as above either [M,: 4,]< oo,
or [4,: @]<oo. The converse is clear.

CoroLLARY. Let A;(i=1,2) be a closed irreducible algebra. If A, QA, is
closed irreducible, then each of them satisfies the minimum condition or one of them
is of finite rank over O.

Proof. Let M; be an irreducible A;,~module and 4; be AD.. If A,®A, is
closed irreducible, 4, 4, is a simple ring with minimum condition by Theorem 3
and the remark following it. Using the same notations as in the proof of Corollary
of Propositlon 4, we can obtain A;® A, M(4*¥R 4,%) SM(4*) and by the assump-
tion A; @A, =M(4*), hence A, R A,=M(4*& 4,%), which proves the corollary.

THEOREM 6. Let M, N be vector spaces over a field @ and o, b be distinguished
homogeneous algebras of linear transformations in M and N, respectively. Then
a@b is a distinguished homogeneous of linear transformations in MQQN if and only
if the Kronecker product of the centers of a and b is a field, and either of the
Sfollowing conditions holds.

1) [a: @1<oo or [b: 0]<co,

2) a®b has a minimum condition, (cf. [5], Ch. 6 Th. 5.1).
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Proof. Let a®Xb be a distirguished homogeneous ring in M®N, then from [5],
Ch. 5, Th. 6.2 a®b is a closed irreducible ring of a module. If the condition 1) of
the theorem holds, we have immediately the first part. If the condition 1) dces not
hold, we obtain that a and b satisfy minimum conditions from Corollary of Lemma 6.
In this case we have a=4,, 6=1",, where 4, I' are division algebras over @. Since
4RI has the minimum condition by Theorem 3, a®b has it and its center is a
field. Conversely we may assume that M (resp. N) is irreducible a- (resp. 6—) module.
Let I” (resp. 4) be the centralizer of a (resp. ) in M (resp. N). Then by the as-
sumptions the centralizer of I" (resp. 4) in M (resp. N) is a (resp. b) and I'® 4
is simple. If either of conditions 1) and 2) holds, 7’ 4 has the minimum condition,
heace I'X 4 is distinguished homogeneous in M@ N. On the other hand the cen-
tralizer of "4 in MQN is a®b6 by Lemma 6. Therefore a®b is distinguished
homogeneous from [5], Ch. 6, Th. 2. 2.

ProposiTioN 5. Let A be a ring. Then A is distinguished homogeneous if and
only if so is A, where A, is the total matrix ring over A.
(“Only if” part is readily obtained from Th. 6, but we shall give a direct proof.)

Proof. Let A be a distinguished homogeneous ring of a commutative group M,
then A has unit element. We can easily show that M"=M® A’ is a faithful com-
A

peletely reducible A,-module (cf. [1], Th. 47.1) where A’'=Ae,+Aep+ - +Ae;,
and e;; are matrix units. We can represent the endomorphism ring of M” by the
total matrix ring over the endomorphism ring of M. Let ¢=(¢; )€c/ A,, and
x; (i=1,---,m) be arbitrary elements of M and X,=x;Xe;. Then there exists an
elemeat a=(a;,) of A, such that %;0="%;a, i.e. %;05,=x;a, . Since ¢, €clA=A, A,
is closed. Conversely if A, is distinguished homogeneous in M, then A, has unit
element. Hence A has also unit element. M has the following decomposition :
(%) M= Me,,P - DMe,, = Me;; QA"

Me,, is obviously a faithful completely reducible A-module. We define an endomor-
phism ¢ of M from an endomorphism ¢ of Me,, by setting (3] m;ey;) o=>. (m;e,¢) €y,.
Let ¢€c¢l A and let x; ({=1,---,m) be arbitrary elements of M. In virtue of the
decomposition (k) x;=21x,e;,. From the assumption there exists @€ A such that
x;,61:9=%;e,,a. Then x,-g"a:; (%;. €11 ael'=; (%; ena) e, =%;d, (d=aey,~+ - +aeun),

@€ A, and so ¢ € A, which proves the proposition.
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