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In this note we shall prove sorne supple;nentary results of Jacobson [5] concerning 

Kronecker products of primitive algebras and those of P.M.I. algebras ( that is, alge

bras with faithful minimal one sided ideals) and study their applications. 

Let A; (i =1, 2) be a primitive algebra over a field (/) and LI; be the division algebra 

of ail A;-endomorphisms of a faithful irreducible A;-module (if A; is a P.M.I. algebra, 

Ll1 is uniquely determir:ed up to isomorphisms, and we shaH call it the associated 

division algebra (denoted by A.D.) of A;). 

In section 1 we consider relatio::1s betwee~1 semi-simplicity and primitivity of 

A, Q9 A2 and those of LI, Q9 Ll2 • ln se~tion 2, using results of section 1, for P.M.I. 

algebra A; we study properties of LI; when A, Q9A2 is primitive or P.M.I., and give 

for a P.M.I. algebra A conditions under which AQ9A* is primitive or P.M.I.. Further 

we prove that if B is central simple and A Q9 B is P.M.I., th en A is P.M.I. under 

special conditions. ln section 3 we study the same problems as in section 2 in the 

case where primitivity is replaced by semi-simplicity. ln section 4 we study Kro

necker products of strongly dense algebras (see definition of section 4) and of c~osed 

irreduci ble alge bras. 

Throughout this note, we assume that algebras are ail over a fixed ground field 

(/), e:1domorphisms of right (left) A-module M act on the right (left) side of M, and 

that A* means an anti-isomorphic algebra of an algebra A. 

1. LEMMA 1. Let A be a ring and e be an idempotent of A. If A is primitive 

(semi-simp!e in the sense of Jacobson [6]) then eAe is primitive (semi-simple). 

Further we assume that A is primitive, then A is a P.M.I. ring if and only if eAe 

is so. 

Prooj. The first half is weil known (cf. [5], Ch. 3, Pr. 7.1). Let A be a P.M.I. 

ring with the non zero socle @5 and f be a minimal left ideal of A such that fe =1= 0 

for @Je =1= 0, and fe is a faithful minimal left ideal of A. For any non zero element 

exe of efe, eAe-exe=efe and efe is a faiihful minimal left ideal of eAe, hence eAe is 

a P.M.I. ring. Conversely if A is primitive and eAe is a P.M.I. ring, then eAe has 

an idempotent e0 such that e0Ae0 is a division ring, he:1ce A is a P.M.I. ring. 

PROPOSITION 1. Let A be a right primitive algebra with a faith/ut irreducible 

module M and LI be the associated division algebra of M, and let B be an algebra 
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with unit element. If LJ tg) B* is le ft primitive then A tg) B is right primitive and the 

associated division algebra of any faith fu! irreducible LJ tg) B*-module N is anti

isomorphic to the one of a faithful irreducible A &JE-module depending on N. 

Further we assume that A is a P.M.I. algebra, then Atg)B is a P.M.I. algebra if and 

only if LJ 0 B* is a P.M.I. algebra. 

Proof. Let{xT}TEI be a basis of M over LJ. Then M&;iB=1.:JBCxTQ91)(LJ&;iB*) 

and we can easily see that A Q9 B is a dense ring in the fini te topology in the ring 

1JJir(LJ*@B) of LJ@B*-endomorphisms of M@B (cf. Azumaya and Nakayama [2], 

Th. 8). Si nee M tg) B is LJ tg) B*-free, the lattice of left ideals of LJ 0 B* is isomorphic 

to the lattice of Wèr(LJ*@B)-submodules of M&;iB, hence of A0B-submodules of 

M@B, ([2], Lemma 1). If LJ(;!)B* is left primitive, there exists a modular maximal 

left ideal ( su ch that (( : LJ tg) B*) =O. Renee M tg) B has a maximal A 0 B-submodule 

(Mtg)B) f. Then M&;iB/(Mtg)B) r~I.;EB(x@1)(LJ@B*/O is a faithful irreducible 

1JJ1r(LJ*Q9B)-module and Atg)B is a primitive algebra with a faithful irreducible 

module M&;iB/(Mtg)B) (. Therefore the associated division algebra of LJ@B'1'/( is 

anti-isomorphic to the one of M&;iB/(Mtg)B) (. The last statement is easily obtained 

from Lemma 1 and the first half stateme.:lt. 

We note that if A is a primitive algebra with a central associated division 

algebra LJ of a faithful irreducible module, 2.: is a subalgebra of LJ, and if r is the 

ce"1tralizer of 1...: in LJ, then observing that LJ tg) 2.::* is a primitive algebra with the 

associated division algebra I'* of LJ tg) 1...:*-module LI, A 0 2.: is primitive with an 

associated division algebra r. In particular if we replace 1...: by a maximal subfield 

of LJ, then 1...: is a splitting field for A, (cf. [5], Ch. 5, Th.'s 12.2 and 3). 

THEO REM 1. Let A, Ci= 1, 2) be a right primitive algebra and LI; be the as

sociated division algebra of a faithful irreducible A;-module M;. Then we have 

1) If .::11 tg) 42 is left primitive, then A1 Q9A2 is right primitive and for any 

le ft faithful irreducible .::11 0 42-module M the re exists a right faithful irreducible 

A, tg)A2-module M' such that the associated division algebra of M' is anti-isomorphic 

to the one of M. 

Moreover we assume that A; is a P.M.I. algebra. Then we have 

2) A, &JAz is primitive if and only if .::11 tg) 42 is primitive, 

3) A, &JAz is a P.M.I. algebra if and only if LJ, 0 4z is a P.M.I. algebra. 

Proof. 1) Let A 2' be an algebra which is added the unit oçerator over M2 to 

Az, and if A,tg)Az' is primitive, A,&JAz is so for A,&;iA2 is an ideal of A 1 @A2', 

and the associated division algebra of a faithful irreducible A 1 @A2'-module M 

coïncides with the one of the faithful irreducible A1 @A2-module M (Azumaya and 

Nakayama [1], Lemma 26.5). If LJ, @.::12 is left primitive, LI,*Q9LI2* is right primitive. 

Renee LJ, @A~* is left primitive and A1 @A/ is right primitive by Proposition 1. 
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We have the same argume:1t for the associated division algebras. 2) and 3) are clear 

by 1) and Lemma 1. 

If we repeat the above argument to semi-simplicity, we have 

LEMMA 2. Let A be a primitive algebra and A be the associated division algebra 

of a faithful irreducible module M and let B be an algebra with unit element. If 

A 69 B* is semi-simple th en A 69 B is so. 

Prao/. W e use the notations in the proof of Proposition 1. Sin ce A 69 B* has 

unit element, there exists a maximal left ideal f of A 69 B* and so a maximal right 

A 69 B-module l = 2:.: EEl (X7 691) { of M69 B corresponds to L M69 B/l is an irre

ducible A 69 B-module and if ar is the_ kemel of homomorphism of A 69 B to the ring 

of L169B*-endomorphisms of M69B/(, then A69B!a1 is primitive and (M69B)· 

a1 Çf. If LI 69 B* is semi-simple, the intersection nf of all maximal left ideals f is 

zero, hence 0= 2:.: EB (xr691). en f) ~ n (M69B). ·ar 2 (M®B). en af) and n al =0, that 
r r 1 

is, A 69 B is semi-simple. 

THEOREM 2. Let A 1 , A 2 be primitive algebras and A1 , A2 be as in Theorem 1. 

If LI, 69 A2 is semi-simple, th en A,® A2 is so, and further if A 1 , A2 are P.M.I. al ge

bras, the converse holds. 

W e can prove the theo rem by Lemma 2 and the same way as in the proof of 

Theorem 1. 

2. We shall apply results in section 1 to Kronecker products of P.M.I. algebras. 

First we have the following theorem whose first half is the converse of [5], Ch. 5, 

Th. 10.1. 

THEOREM 3. Let A; (i =1, 2) be a P.M.I. algebra and A; be A.D. and let I.;; be 

the center of A;. 

If A,® A 2 is a P.M.I. algebra, then we have 

1) 2:.:1 or I.;2 is algebraic over (/), 

2) A1 ® A2 satisfies the minimum condition, 

3) the re are isomorphisms <p1 , <p2 such that I.:i', :Efz are linearly disjoint 

over @. 

Concersely if 2) and 3) hold, then A,® A 2 is a P.M.I. algebra. 

Prao/. If A, 69 A 2 is a P.M.I. algebra, d, 69 A2 is a P.M.I. algebra by Theorem 1. 

Since I.;, 69 2:.:2 is the center of A1 69 L/2 and LI, 69 A2 has the unique minimal ideal, 

2:.:1 69 2:.:2 is integral and has a minimal ideal, her:ce 2:.:1 69 2:.:2 is a field. If 2:.:1 and 2:.:2 

are not algebraic, they con tain transcendental fields isomorphic to (/)(X), hence 

I.;1 69 2:.:2 is not a field by [1 ], Lemma 36.4. Sin ce 2:.:1 69 2:.:2 is a field, A1 69 A2 is a 

simple ring, bence L/1 69 A2 satisfies the minimum condition. From 1) we may assume 
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2.::1 is algebraic and we can find an isomorphism cp of 2.::1 into an algebric closure of 2.::2 

and I:i, 2.::2 are linear ly disjoint over {j) for 2.::1 Q9 2.::2~ I:i Q9 2.::2 • Converse! y if 3) 

holds, 2.::1 é>9 2.::2 is integral, hence tl1 é>9 tl2 is simple by 2) and [5], Ch. 5, Th. 9.1 and 

tl1 é>9 tl2 is a P.M.I. algebra. From Theorem 1 A1 Q9 A2 is P.M.I.. 

By using the same argument as in Theorem 3 we obtain, 

CoROLLARY 1. Let A,, 2.:: 1 be as in Theorem 3 and further we assume 2.::1 is a 

algebraic over @, then A 1 é>9 A2 is primitive if and only if 3) holds. 

CoROLLARY 2. Let A; (i =1, 2) be a P.M.I. algebra and ®; be its socle. If 

A, Q9 Az is a P.M.I. algebra, then ®1 é>9 1232 is its socle. If ® 1 Q9 ® 2 is a P.M.I. algebra 

then A, é>9 A 2 is a P.M.I. algebra with socle ®1 é>9 ®2 • 

We can easily obtain Corollary 2 from 2) of Theorem 3, 3) of Theorem 2 and 

[5], Ch. 5, Th. 10.1. 

W e shall remark that cor:ditions 2) and 3) of Theorem 3 are independent each 

other and they coïncide with a condition that 4 1 Q9 42 is a simple algebra with the 

minimum condition. 

THEOREM 4. Let A be a P.M.I. algebra and 4 be A.D. with center I:. The 

following properties are equivalent. 

a) tl is a central division algebra with finite rank over @. 

b) Aé>9A* is a P.M.I. algebra. 

c) A é>9 B is a P.M.I. algebra for any P.M.I. al ge br a B. 

In this case if C contains unit element and A é>9 C is a P.M.I. algebra, th en C is P.M.I.. 

Further we assume, :I: is algebraic over @, then the following properties are equivalent. 

a') 4 is central. 

b') A é>9 A* is Primitive. 

c') A é>9 B is primitive for any primitive algebra B. 

d') A::;; is primitive. 

Proof. a)->-b), c) are clear from Theorem 1 and c)-•b) is obvious. If AQ9A* 
is a P.M.I. algebra, tl Q9 tl"' is so, and :I: é>9 I: is a field by the rcmark of Theorem 3, 

hence :I: = {j) by [1 ], Lemma 34.6. Further 4 é>9 tl* satisfies the minimum condition, 

hence [tl : @] < oo by [1 ], Th. 34.9. If A é>9 C is a P.M.I. algebra, and C con tains unit 

element, 4 Q9C* is so by Proposition 1. Sin ce 4 is central and [4: ID]< co, C 

is P.M.I. from Proposition 2 below. If A:> is primitive, then 4::> is so by Theorem 1 

and as above :I: Q9 2.:: is a field, therefore 4 is central. The remaining statements are 

clear by Theorem 1. 

Next we shall study sorne properties of A; when A 1 Q9A2 is P.M.I. and A, is 

central simple. 

LEMMA 3. Let A be an algebra without unit element and B be a central simple 
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algebra with unit element, and let A' be an algebra which is added unit element by 

the natural way. If AQ<)B is a P.M.I. algebra then A'Q<)B is so. 

Proof. We can easily see that if A has no unit element, any non zero ideal a 
of A' has non zero intersection with A 1 J. If A()<) B is a P.M.I. algebra, A()<) B has a 

faithful irreducible right ideal r and further r is a faithful irreducible A'()<) B

module, as r CA'()<) B) Cr and the annihilator ideal (of A'()<) B over r) = a0 ()<) B where 

Cto is the annihilator ideal of A' over r and if a0 cc\= (0), a0 n A=F (0) by the above 

remark, and it is a contradiction. Renee A' 0 B is a P.M.I. algebra. 

PROPOSITION 2. Let B be a central simple algebra with [B: fll] < oo. A is a 

P.M.I. algebra if and on! y if A (:!)B is so. 

Proof. "Only if" part is clear by Theorem 1. By Lemma 3 and [B: @] < oo we 

may assume that A has unit element and B is a central division algebra. If we 

regard A()<) B as a right A(;)!) B- and left B-module, that is, a right (A(;)!) B) (;)!) B*

module, A(;)!) B is a faithful (A(;)!) B)@ B'!-mcduie as in the proof of Lemma 3. By 

the assumption and Theorem 1 (A@B) @B* is a P.M.I. algebra and A@B has a 

faithful irreducible (A()<) B) @ B*-module r. r is a right ideal of A@ B and a left 

B-module. A@B is a completely reducible two sided B-module with B-basis 

{u,.}; u,.-b=b·u; for ali bEE, hence r=L:EBv;B, V;EA and r=t:0 @B where t:0 is the 
i 

right ideal generated by {v;} of A. Therefore r0 is a faithful irreducible right ideal 

of A and A is a P.M.I. algebra. 

CoROLLARY. Let B be as in Proposition 2. If A (:!)B is a semi-simple algebra 

all whose primitive images are P.M.I. algebras, then A is so. Converse/y if B' is 

central simple with unit element and A is semi-simple, then A Q<)B' is semi-simple. 

We note that we may assume A contains unit element by the remark in the proof 

of Lemma 3 and if B' is a central algebra with unit element, the radical of A@ B' 

is contained in the Kronecker products of the radicals of A and B'. 

PROPOSITION 3. Let A be I1-algebra (see Levitzki [7]) and B be a central simple 

algebra with unit element. If A@ B is a P.M.I. algebra, then A and B are matrix 

algebras of finite degree over division algebras. 

Proof. First we assume A has unit element. If A(:!)B is a P.M.I. a!gebra, its 

socle CS= 3@ B where a is the unique minimal ideal of A. By the assumption a is 

I,-algebra and has no non zero nilpotent ideal, bence 3 is primitive. Further A is 

prime by the assumption, bence A is primitive by Goldie [3], Th. 1. If A has no 

1) Let a be an ideal of A'=A+l·K and a'=a+l·k be a non zero element of a. If ab-[-bk=O 
for ali bE A, - ka- 1 is a left unit of A, similarly if ba+bk=O for ali bE A, - ka- 1 is a 
right unit. 
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unit element, A'(59B is P.M.I. by Lemma 3 and its socle is contained in A(59B, hence 

A is primitive in this case, too. Therefore A is a matrix algebra of finite degree 

over a divition algebra A by [7], Coro. in p. 391 and ,:1(59 B* is a simple P.M.I. 

algebra, hence J® B* satisfies the minimum condition, which proves the proposition. 

3. W e now cons id er a semi-simplicity of Kronecker products of P.M.I. algebras. 

LEMMA 4. Let A; Ci= 1, 2) be a simple algebra with unit element and 2.:; be ifs 

center. If 2.:1 (59 2.:::2 is semi-simple then A 1 ® A 2 is so. 

Proof. Let N be the radical of A1<59Az, then N=CA1(59A2)•a, by [5], Ch. 5 

Th. 9.1 where a is a ideal of 2.:::1 (59 2.:::2 • (~1 (59 2.:::2) n N is a q uasi-regular ideal of 

~1 (59 ~2 sin ce for any element x of (~1 (59 ~2) n N there exists an element y in N 

such that (1-x) · C1 =y)= C1- y)· (1-x) =1 and as (1-x) E 2.::: 1®~2 , C1-y) E ~1®~2, 

and yE O::l®:Ez)nN. Since (0) =(~l®~z)nN~a. N=CO). 

LEMMA 5. Let A be primitive and A be the associated division algebra of a 

faithful irreducible A-module. If the center :E of A is algebraic separable over f/J, 

then A (59 B is semi-simple for any semi-simple algebra B. 

Proof. Let B be primitive and ,d' be the associated division algebra of a faithful 

irreducible B-module and let ~~ be the center of A'. Sin ce :E is separable, 2::: ® :E' 

is regular (in the sense of Neumann [8]) by [4], Pro. 3 and so semi-simple, hence 

A (59 A' is semi-simple and A (59 B is so by Lemma 4 and Theorem 2. If B is semi

simple, there exist primitive ideals f"' with n !"' = (0) and (A® B) 1 CA (59 fa;)~ A (59 B/f"' 

are semi-simple, hence A (59 B is semi-simple. 

THEOREM 5. Let A be a P.M.I. algebra and A be A.D., and let :E be the 

center of A. We assume 2::: is algebraic over !]), then A;;; is semi-simple if and only 

if A@A* is semi-simple. In this case A®B is semi-simple for any semi-simple 

algebra B. 

Proof. If A;;; is semi-simple, A;;; is so and since 2:::®::8 is the center of A;;;, it 

has no non zero nilpotent element, hence 2::: is separable and A (59 B is semi-simple 

for any semi-simple algebra B by Lemma 5. Converse! y if A (59 A* is semi-simple, 

J®J* is so by Theorem 2 and 2:::@2::: is the center of J®J*, hence 2::: is separable 

as above. 

4. We shall prove sorne results of Krenecker products of endomorphism rings. 

Let A be an algebra and M be a faithful A-module. We shall call "A is strongly 

dense over M", if A is dense in the finite topology in the endomorphism ring A of 

A-endomorphism ring of M and any non zero ideal of A has the non zero intersection 

with A. 

From the definition and the structure the::>rem of [5], Ch. 4 if A is primitive 
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algebra with a faithful module M, A is strongly dense over M if and only lf A is a 

P.M.I. ring. 

PROPOSITION 4. Let A; (i=1, 2) be primitive. A; is strongly dense over a 

faithful irreducible A;-module M; if and only if A, ®A2 is strongly dense over 

M,®M2 • 

Proof. Let A; be strongly dense over M; and Ll; be a centralizer of M; and let 

{xT}TEI be Ll,-basis of M1 and {yf'}MEI' be Ll2-basis of M2 • Then M,®M2 

=~ffi(xT®Y;t)(Ll,®Llz) and by [2], Th. 8 we know that the ring of A 1 ®A2-

endomorphisms of M, ®M2 is equal to LlJB)Ll2 and A1 ®A2 is dense in the finite 

topology in the ring A1 ® A2 of Ll1 ® Ll2-endomorphisms of M1 ® M 2 • Now let aC=F 0) 

be an ideal of A,® A2 and a( -1- 0) E a, th en there exists X 7 ®y~' such that (X7 ®y~") a=\= O. 

Since A is a P.M.I. algebra, we have the following projections: e7 ( E A,) and 

e/(EAz), M,.eT=xTLl,, xTe:T=xT, M2 -e;t'=y~'L12 , yl'eM=YM· If we set (xT®yT) 

a=~xT.®zT, zT (o=jcc0)EM2 , we can find .nTEA1 and .o/EA2 such that XT 1 ·pT=XT1 , 
j =1 J J J 

xT)Pp.=O(j="f'1) and ZT 1p/=Yp.· Then (xTQ9yp.)·(eTQ9ep.')·a·(pTQ9p/)=xT®YM 

=(xTQ<)yp.)(eT®e/). From the properties of e's and p's, (eTQ<)ep.')·a·(pTQ<)p,/) 

=eTQ<)ep.'E (A1 Q9A2)na and A1 ®A2 is strongly dense over M,Q9M2 • Conversely 

let A,Q9A2 be strongly dense over M,Q9M2 • The set '{J(M1 Q9M2 ) of elements a of 

A, ®A2 such that (M1 ®M2 ) ·ais contained in a sum of submodules (xTQ<)yp.) • (Ll1®Llz), 

finite in number. is a twosidedidealof A®A2 , hence A,®A2 nfJ(M,®M2)::Ja="f'O, 

a=Lja\ll®a\21, a;J1 EAJ and (M1 ®M2)-aÇ'f'.jQ9(x;®Y;)(Ll1 Q9Ll2 ). There exists é;1 

i t=l 

in the set '{J(M;) of linear transformations of finite rank of M; such that Xjêm=Xj 

y je<21 = YJ j = 1, · · · , n. Th en a= a(em ® e<21 ) = Lj a\11ec11 ® a\11 e<21 E '{J(M,) ® '{J(M2) n 

(A,®A2), hence A;nfJ(M;)="t='O and A; is strongly dense over M;. 

CoROLLARY. Let A;(i=1, 2) be primitive and Ll; be the associated division algebra 

of a faithful irreducible A;-module M;. If L11 is central and A, ®A2 is a P.M.I. 

algebra, then A; is a P.M.I. algebra. 

Proof. By the assumptions Ll,Q9Ll2 is simple and M,Q9M2 has a faithful irre

ducible A 1 ® A 2 submodule, hence Ll1 ® Ll2 has a minimal left ideal and satisfies the 

minimum condition. By the same method as in the proof of [5] Ch. 5, Th. 10.1 

M,®Mz= ~ffiN; where N; is isomorphic to a faithful irreducible IJJ1(J,*®Ll2*)-
z=I 

module N,. Let J be the division ring of IJJ1(J,*®J2*)-endomorphisms of N1 then 

IJJ1(J,*®J2*) is the ring of J-endomorphisms of N,, hence A,Q9A2 is strongly dense 

over M, ®M2 • Therefore we obtain Corollary by Proposition 4 and the remark above. 

The following proposition is a generalization of [5] Ch. 5, Th. 3.1, (3) and the 

method of proof is quite analogous. 

LEMMA 6. Let Ji (i = 1, 2) be an algebra with unit element and Mi be a right 
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.d;-module with .d;-basis. We may regard M 1 {59M2 as right J, ® .d2-module. Then 

IJJ1(J,* ® J,*) = 9J1(J,*) ® IJJ1(J2 *) if and only if the re exists i such that [M, : @] < oo 

or [Mj: .djJ< oo (j=1, 2). 

Proof. M,{)<)Mz=M1 ®(J,®M2)=M1 ®M2 , where M2 =J,®M2 • We may re-
<I> .r, <1> "'' 

gard M2 as a left J,, right J, ® J 2-mod'..,le by the natural way. Clearly we have a 

J,®Jz-isomorphism cp of M,®M2 to M,®M2 • Let {xœLEI be a J,-basis of M, . 
.r, 

We may identify IJJ1(.d,*®Jz*) with the ring of J 1 {59.d2-endomorphisms of M,®lVÏz. 

For any eleme'lt (J of IJJ1(J,* ® .dz*) (x;® mz) •(J = 2J Xj ® fj.i Ciiiz) where mz ,fj.;(mz) E Mz' 
we can eJsi!y examine that mapping fj.i: mz-+ fj.;(mz) are .d, ® Jz-endomorphisms of 

Mz and 2Jfi.j is summable and that conversely if 2...~fi,j is summable for each j, 
1 1 

then (x;®mz)·a*=Ljxjfj,;(m2 ) is a .d,®J2-endomorphism of M,®M2 • Renee we 

can represent any element of 9J1(J,* ® J 2*) by a matrix (f;.j), where f;,/s are 

elements of the ring 9J1(J1 ® J 2 ) of J, ® J 2-endomorphisms of M2 and 2.j fi.j is sum-
i 

mable for each j. If a= (ôk.t)E 9J1(J,*), bE IJJ1(J2*), (x, (59m2 ) (a (59 b) = "2:, Xj (59 
J 

Ciiiz(Ô;,j)t®b) hence a®b= ((ô;,j) 1 (59b) and the matrix of 2J a, ®b, has a property 
1 

that the dimensionality of the space spanned by the linear transformations f;,j is finite 

over J,. If IJJ1(J,*)®9JI(J2*)=9J1(J/®.d2*), there exist the following two cases, 

1) [M,: J,J<oo then .d1t®IJJ1(J2*)=9Jè(J,*®.d2*), or 

2) [M1 : J,] = oo then [9Jè(Jz*): @]< oo, hence [M2 : @]< oo, [J2 : @]< oo. 

In case 1 if we replace M1 {59M2 by J 1 {59M2 , we obtain as above either [M2 : J2 ] < oo, 

or [J,: @]< oo. The converse is clear. 

CoROLLARY. Let A;(i=1, 2) be a closed irreducible algebra. If A,®A2 is 

closed irreducible, then each of them satisfies the minimum condition or one of them 

is of finite rank over @. 

Proof. Let M; be an irreducible A;-module and .d; be A.D.. If A, ®A2 is 

closed irreducible, J, ® .d2 is a simple ring with minimum condition by Theorem 3 

and the remark following it. Using the same notations as in the proof of Corollary 

of Proposition 4, we can obtain A,®A2 <;::1JJ((J,*®J2*)CIJJ((J*) and by the assump

tion A,®A2 =1JJ1(J*), hence A1 ®A2 =9Jl(J,*®.d2*), which proves the corollary. 

THEO!'EM 6. Let M, N be vector spaces over a field (J) and a, o be distinguished 

homogeneous algebras of linear transformations in M and N, respectively. Then 

a®o is a distinguished homogeneous of linear transfcrmations in M®N if and only 

if the Kronecker product of the centers of a and o is a field, and either of the 

following conditions holds. 

1) [a: @]<oo or [o: @]<=, 

2) a® o has a minimum condition, (cf. [5], Ch. 6 Th. 5. 1). 
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Proof. Let aQ<Jli be a distirguished homogeneous ring in MQ<JN, then from [5], 

Ch. 5, Th. 6. 2 a Q<)li is a closed irreducible ring of a module. If the condition 1) of 

the theorem holds, we have imrr_ediately the first part. If the condition 1) dces not 

hold, we obtain that a and li satisfy minimum conditions from Corollary of Lemma 6. 

In this case we have a= LIn, li= r m where LI, T are division algebras over (f). Si nee 

LI Q9 T has the minimum condition by Theorem 3, a Q<)li has i t and its center is a 

field. Conversely we may assume that M (resp. N) is irreducible a- (resp. li-) module. 

Let r (resp. LI) be the centralizer of a (resp. li) in M (resp. N). Then by the as

sumptions the centralizer of r (res p. LI) in M (res p. N) is a (res p. li) and r Q9 LI 

is simple. If either of conditions 1) and 2) holds, TQ<)LI has the minimum condition, 

he:1ce r@ LI is distinguished homogeneous in M Q9 N. On the other hand the cen

tralizer of Fêi9LI in MQ<JN is a®o by Lemma 6. Therefore aQ<)li is distinguished 

homogene::ms from [5], Ch. 6, Th. 2. 2. 

PROPOSITION 5. Let A be a ring. Then A is distinguished homogeneous if and 

only if sa is An where An is the total matrix ring over A. 

("Only if" part is readily obtained from Th. 6, but we shall give a direct proof.) 

Proof. Let A be a distinguished homogeneous ring of a commutative group M, 

then A has unit elerr:ent. We can easily show that Mn=MQ<)A' is a faithful com-
d 

peletely reducible An-module (cf. [1], Th. 47.1) where A'=Ae11 +Ae,2 + ··· +Ae,n 

and e;j are matrix units. We can represent the endomorphism ring of Mn by tl:;e 

total matrix ring over the endomorphism ring of M. Let cp= (cp; ) E cl An, and 

X; (i=1, ··· ,m) be arbitrary elements of M and x,=x;@e,k. Then there exists an 

eleme_lt a=(a;1 ) of An suchthat X;({J=X;a, i.e. X;'Pk 1 =X;ak. Since 'Pk, EclA=A,An 

is closed. Conversely if An is distinguished homogeneous in M, then An has unit 

element. Renee A has also unit element. M has the following decomposition: 

M = Me 11 EB ··· EBMe,n"""' Me 11 Q<)A'. 

Me 11 is obviously a faithful completely reducible A-module. We define an endomor

phism (jj of M from an endomorphism cp of Me 11 by setting C:E m;e 1;) (j; = 2::; ( m;e 11 cp) e 11 • 

Let cp E cl A and let X; Ci= 1, ··· , m) be arbitrary elements of M. In virtue of the 

decomposition ( *) X;= 2::; x1e1 ,. From the assumption there exists a E A such that 

X; 1euifJ=X;1eua. Then X;(i;=.L; (x;,e 11) ae 1_ =2::; (x;,e 11a) e11 =X;à, (à=ae 11 + ··· +aenn). 
J J 

(j; E An and so cp E A, which proves the proposition. 
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