On Kronecker products of primitive algebras

By Manabu Harada and Teruo Kanzaki

(Received September 27, 1957)

In this note we shall prove some supplementary results of Jacobson [5] concerning Kronecker products of primitive algebras and those of P.M.I. algebras (that is, algebras with faithful minimal one sided ideals) and study their applications.

Let $A_{i}(i=1,2)$ be a primitive algebra over a field \mathscr{D} and Δ_{i} be the division algebra of all A_{i}-endomorphisms of a faithful irreducible A_{i}-module (if A_{i} is a P.M.I. algebra, Δ_{i} is uniquely determined up to isomorphisms, and we shall call it the associated division algebra (denoted by A.D.) of A_{i}).

In section 1 we consider relations between semi-simplicity and primitivity of $A_{1} \otimes A_{2}$ and those of $\Delta_{1} \otimes \Delta_{2}$. In section 2, using results of section 1, for P.M.I. algebra A_{i} we study properties of Δ_{i} when $A_{1} \otimes A_{2}$ is primitive or P.M.I., and give for a P.M.I. algebra A conditions under which $A \otimes A^{*}$ is primitive or P.M.I.. Further we prove that if B is central simple and $A \otimes B$ is P.M.I., then A is P.M.I. under special conditions. In section 3 we study the same problems as in section 2 in the case where primitivity is replaced by semi-simplicity. In section 4 we study Kronecker products of strongly dense algebras (see definition of section 4) and of closed irreducible algebras.

Throughout this note, we assume that algebras are all over a fixed ground field D, endomorphisms of right (left) A-module M act on the right (left) side of M, and that A^{*} means an anti-isomorphic algebra of an algebra A.

1. Lemma 1. Let A be a ring and e be an idempotent of A. If A is primitive (semi-simple in the sense of Jacobson [6]) then eAe is primitive (semi-simple). Further we assume that A is primitive, then A is a P.M.I. ring if and only if eAe is so.

Proof. The first half is well known (cf. [5], Ch. 3, Pr. 7.1). Let A be a P.M.I. ring with the non zero socle \mathfrak{C} and \mathfrak{r} be a minimal left ideal of A such that $\mathfrak{l} e \neq 0$ for $\mathfrak{S}_{e} \neq 0$, and $\mathfrak{l} e$ is a faithful minimal left ideal of A. For any non zero element exe of ele, eAe-exe=ele and ele is a faithful minimal left ideal of $e A e$, hence $e A e$ is a P.M.I. ring. Conversely if A is primitive and $e A e$ is a P.M.I. ring, then $e A e$ has an idempotent e_{0} such that $e_{0} A e_{0}$ is a division ring, hence A is a P.M.I. ring.

Proposition 1. Let A be a right primitive algebra with a faithful irreducible module M and Δ be the associated division algebra of M, and let B be an algebra
with unit element. If $\Delta \otimes B^{*}$ is left primitive then $A \otimes B$ is right primitive and the associated division algebra of any faithful irreducible $\Delta \otimes B^{*}$-module N is antiisomorphic to the one of a faithful irreducible $A \otimes B$-module depending on N. Further we assume that A is a P.M.I. algebra, then $A \otimes B$ is a P.M.I. algebra if and only if $\Delta \otimes B^{*}$ is a P.M.I. algebra.

Proof. Let $\left\{x_{\tau}\right\}_{\tau \in I}$ be a basis of M over Δ. Then $M \otimes B=\Sigma \oplus\left(x_{\tau} \otimes 1\right)\left(\Delta \otimes B^{*}\right)$ and we can easily see that $A \otimes B$ is a dense ring in the finite topology in the ring $\mathfrak{M}_{I}\left(\boldsymbol{\Delta}^{*} \otimes B\right)$ of $\Delta \otimes B^{*}$-endomorphisms of $M \otimes B$ (cf. Azumaya and Nakayama [2], Th. 8). Since $M \otimes B$ is $\Delta \otimes B^{*}$-free, the lattice of left ideals of $\Delta \otimes B^{*}$ is isomorphic to the lattice of $M_{I}\left(\Delta^{*} \otimes B\right)$-submodules of $M \otimes B$, hence of $A \otimes B$-submodules of $M \otimes B$, ([2], Lemma 1). If $\Delta \otimes B^{*}$ is left primitive, there exists a modular maximal left ideal \mathfrak{l} such that $\left(\mathfrak{r}: \Delta \otimes B^{*}\right)=0$. Hence $M \otimes B$ has a maximal $A \otimes B$-submodule $(M \otimes B)$ f. Then $M \otimes B /(M \otimes B) \mathfrak{I} \cong \Sigma \oplus(x \otimes 1)\left(\Delta \otimes B^{*} / \mathfrak{l}\right)$ is a faithful irreducible $\mathfrak{M}_{I}\left(\Delta^{*} \otimes B\right)$-module and $A \otimes B$ is a primitive algebra with a faithful irreducible module $M \otimes B /(M \otimes B)$ f. Therefore the associated division algebra of $\Delta \otimes B^{*} / \mathfrak{l}$ is anti-isomorphic to the one of $M \otimes B /(M \otimes B)$ I. The last statement is easily obtained from Lemma 1 and the first half statement.

We note that if A is a primitive algebra with a central associated division algebra Δ of a faithful irreducible module, Σ is a subalgebra of Δ, and if Γ is the ceatralizer of Σ in Δ, then observing that $\Delta Q \Sigma^{*}$ is a primitive algebra with the associated division algebra I^{*} of $\Delta \otimes \Sigma^{*}$-module $\Delta, A \otimes \Sigma$ is primitive with an associated division algebra Γ. In particular if we replace Σ by a maximal subfield of A, then Σ is a splitting field for A, (cf. [5], Ch. 5, Th.'s 12.2 and 3).

Theorem 1. Let $A_{\imath}(i=1,2)$ be a right primitive algebra and Δ_{i} be the associated division algebra of a faithful irreducible A_{i}-module M_{i}. Then we have

1) If $\Delta_{1} \otimes \Delta_{2}$ is left primitive, then $A_{1} \otimes A_{2}$ is right primitive and for any left faithful irreducible $\Delta_{1} \otimes \Delta_{2}$-module M there exists a right faithful irreducible $A_{1} \otimes A_{2}$-module M^{\prime} such that the associated division algebra of M^{\prime} is anti-isomorphic to the one of M.

Moreover we assume that A_{i} is a P.M.I. algebra. Then we have
2) $A_{1} \otimes A_{2}$ is primitive if and only if $\Delta_{1} \otimes \Delta_{2}$ is primitive,
3) $A_{1} \otimes A_{2}$ is a P.M.I. algebra if and only if $\Delta_{1} \otimes \Delta_{2}$ is a P.M.I. algebra.

Proof. 1) Let $A_{2}{ }^{\prime}$ be an algebra which is added the unit operator over M_{2} to A_{2}, and if $A_{1} \otimes A_{2}{ }^{\prime}$ is primitive, $A_{1} \otimes A_{2}$ is so for $A_{1} \otimes A_{2}$ is an ideal of $A_{1} \otimes A_{2}{ }^{\prime}$, and the associated division algebra of a faithful irreducible $A_{1} \otimes A_{2}{ }^{\prime}$-module M coincides with the one of the faithful irreducible $A_{1} \otimes A_{2}$-module M (Azumaya and Nakayama [1], Lemma 26.5). If $\Delta_{1} \otimes \Delta_{2}$ is left primitive, $\Delta_{1}^{*} \otimes \Delta_{2}{ }^{*}$ is right primitive. Hence $\Delta_{1} \otimes A_{2}^{*}$ is left primitive and $A_{1} \otimes A_{2}{ }^{\prime}$ is right primitive by Proposition 1.

We have the same argument for the associated division algebras. 2) and 3) are clear by 1$)$ and Lemma 1.

If we repeat the above argument to semi-simplicity, we have
Lemma 2. Let A be a primitive algebra and Δ be the associated division algebra of a faithful irreducible module M and let B be an algebra with unit element. If $\Delta \otimes B^{*}$ is semi-simple then $A \otimes B$ is so.

Proof. We use the notations in the proof of Proposition 1. Since $\Delta \otimes B^{*}$ has unit element, there exists a maximal left ideal \mathfrak{I} of $\Delta \otimes B^{*}$ and so a maximal right $A \otimes B$-module $\tilde{\mathfrak{l}}=\sum \oplus\left(x_{\tau} \otimes 1\right) \mathfrak{l}$ of $M \otimes B$ corresponds to $\mathfrak{f} . ~ M \otimes B \tilde{\mathfrak{l}}$ is an irreducible $A \otimes B$-module and if $\mathfrak{a}_{\mathfrak{r}}$ is the kernel of homomorphism of $A \otimes B$ to the ring of $\Delta \otimes B^{*}$-endomorphisms of $M \otimes B / \tilde{\mathfrak{I}}$, then $A \otimes B / \mathfrak{a}_{\mathfrak{l}}$ is primitive and $(M \otimes B)$. $\mathfrak{a}_{\mathfrak{l}} \subseteq \tilde{\mathfrak{I}}$. If $\Delta \otimes B^{*}$ is semi-simple, the intersection $\cap \mathfrak{l}$ of all maximal left ideals \mathfrak{l} is zero, hence $0=\Sigma \oplus\left(x_{\tau} \otimes 1\right) \cdot(\cap \mathfrak{l}) \supseteqq \bigcap_{\mathfrak{l}}(M \otimes B) \cdot \cdot \mathfrak{a}_{\mathfrak{l}} \supseteqq(M \otimes B) \cdot\left(\cap_{\mathfrak{l}} \mathfrak{a}_{\mathfrak{l}}\right)$ and $\cap_{\mathfrak{l}} \mathfrak{a}_{\mathfrak{l}}=0$, that is, $A \otimes B$ is semi-simple.

Theorem 2. Let A_{1}, A_{2} be primitive algebras and Δ_{1}, Δ_{2} be as in Theorem 1. If $\Delta_{1} \otimes \Delta_{2}$ is semi-simple, then $A_{1} \otimes A_{2}$ is so, and further if A_{1}, A_{2} are P.M.I. algebras, the converse holds.

We can prove the theorem by Lemma 2 and the same way as in the proof of Theorem 1.
2. We shall apply results in section 1 to Kronecker products of P.M.I. algebras. First we have the following theorem whose first half is the converse of [5], Ch. 5, Th. 10.1.

Theorem 3. Let $A_{i}(i=1,2)$ be a P.M.I. algebra and Δ_{i} be A.D. and let \sum_{i} be the center of Δ_{i}. If $A_{1} \otimes A_{2}$ is a P.M.I. algebra, then we have

1) Σ_{1} or Σ_{2} is algebraic over \varnothing,
2) $\Delta_{1} \otimes \Delta_{2}$ satisfies the minimum condition,
3) there are isomorphisms φ_{1}, φ_{2} such that $\sum_{1}^{\varphi_{1}}, \sum_{2}^{\varphi_{2}}$ are linearly disjoint over D.
Concersely if 2) and 3) hold, then $A_{1} \otimes A_{2}$ is a P.M.I. algebra.
Proof. If $A_{1} \otimes A_{2}$ is a P.M.I. algebra, $\Delta_{1} \otimes \Delta_{2}$ is a P.M.I. algebra by Theorem 1. Since $\Sigma_{1} \otimes \Sigma_{2}$ is the center of $\Delta_{1} \otimes \Delta_{2}$ and $\Delta_{1} \otimes \Delta_{2}$ has the unique minimal ideal, $\Sigma_{1} \otimes \Sigma_{2}$ is integral and has a minimal ideal, herce $\Sigma_{1} \otimes \Sigma_{2}$ is a field. If Σ_{1} and Σ_{2} are not algebraic, they contain transcendental fields isomorphic to $\mathscr{D}(X)$, hence $\Sigma_{1} \otimes \Sigma_{2}$ is not a field by [1], Lemma 36.4. Since $\Sigma_{1} \otimes \Sigma_{2}$ is a field, $\boldsymbol{A}_{1} \otimes \boldsymbol{A}_{2}$ is a simple ring, hence $\Delta_{1} \otimes \Delta_{2}$ satisfies the minimum condition. From 1) we may assume
Σ_{1} is algebraic and we can find an isomorphism φ of Σ_{1} into an algebric closure of Σ_{2} and $\Sigma_{1}^{\varphi}, \Sigma_{2}$ are linearly disjoint over \mathscr{D} for $\Sigma_{1} \otimes \Sigma_{2} \simeq \Sigma_{1}^{\varphi} \otimes \Sigma_{2}$. Conversely if 3) holds, $\Sigma_{1} \otimes \Sigma_{2}$ is integral, hence $\Delta_{1} \otimes \Delta_{2}$ is simple by 2) and [5], Ch. 5, Th. 9.1 and $\Delta_{1} \otimes \Delta_{2}$ is a P.M.I. algebra. From Theorem $1 A_{1} \otimes A_{2}$ is P.M.I..

By using the same argument as in Theorem 3 we obtain,
Corollary 1. Let A_{1}, Σ_{1} be as in Theorem 3 and further we assume Σ_{1} is a algebraic over \mathscr{D}, then $A_{1} \otimes A_{2}$ is primitive if and only if 3) holds.

Corollary 2. Let $A_{i}(i=1,2)$ be a P.M.I. algebra and \mathbb{S}_{i} be its socle. If $A_{1} \otimes A_{2}$ is a P.M.I. algebra, then $\mathfrak{S}_{1} \otimes \mathbb{S}_{2}$ is its socle. If $\mathfrak{S}_{1} \otimes \mathbb{S}_{2}$ is a P.M.I. algebra then $A_{1} \otimes A_{2}$ is a P.M.I. algebra with socle $\mathfrak{S}_{1} \otimes \mathfrak{S}_{2}$.

We can easily obtain Corollary 2 from 2) of Theorem 3, 3) of Theorem 2 and [5], Ch. 5, Th. 10.1.

We shall remark that corditions 2) and 3) of Theorem 3 are independent each other and they coincide with a condition that $\Delta_{1} \otimes \Delta_{2}$ is a simple algebra with the minimum condition.

Theorem 4. Let A be a P.M.I. algebra and Δ be A.D. with center Σ. The following properties are equivalent.
a) Δ is a central division algebra with finite rank over \mathscr{D}.
b) $A \otimes A^{*}$ is a P.M.I. algebra.
c) $A \otimes B$ is a P.M.I. algebra for any P.M.I. algebra B.

In this case if C contains unit element and $A \otimes C$ is a P.M.I. algebra, then C is P.M.I.. Further we assume, Σ is algebraic over \mathbb{D}, then the following properties are equivalent.
a') Δ is central.
b') $A \otimes A^{*}$ is primitive.
c) $A \otimes B$ is primitive for any primitive algebra B.
$\left.\mathrm{d}^{\prime}\right) A^{\Sigma}$ is primitive.
Proof. a) $\rightarrow \mathrm{b}$), c) are clear from Theorem 1 and c$) \rightarrow \mathrm{b}$) is obvious. If $A \otimes A^{*}$ is a P.M.I. algebra, $\Delta \otimes \Delta^{*}$ is so, and $\Sigma \otimes \Sigma$ is a field by the remark of Theorem 3, hence $\Sigma=\mathscr{D}$ by [1], Lemma 34.6. Further $\Delta \otimes \Delta^{*}$ satisfies the minimum condition, hence $[\Delta: \mathscr{D}]<\infty$ by [1], Th. 34.9. If $A \otimes C$ is a P.M.I. algebra, and C contains unit element, $\Delta \otimes C^{*}$ is so by Proposition 1. Since Δ is central and $[\Delta: \varnothing]<\infty, C$ is P.M.I. from Proposition 2 below. If A^{Σ} is primitive, then Δ^{Σ} is so by Theorem 1 and as above $\Sigma \otimes \Sigma$ is a field, therefore Δ is central. The remaining statements are clear by Theorem 1.

Next we shall study some properties of A_{i} when $A_{1} \otimes A_{2}$ is P.M.I. and A_{1} is central simple.

Lemma 3. Let A be an algebra without unit element and B be a central simple
algebra with unit element, and let A^{\prime} be an algebra which is added unit element by the natural way. If $A \otimes B$ is a P.M.I. algebra then $A^{\prime} \otimes B$ is so.

Proof. We can easily see that if A has no unit element, any non zero ideal a of A^{\prime} has non zero intersection with A^{11}. If $A \otimes B$ is a P.M.I. algebra, $A \otimes B$ has a faithful irreducible right ideal \mathfrak{r} and further \mathfrak{r} is a faithful irreducible $A^{\prime} \otimes B$ module, as $\mathfrak{r}\left(A^{\prime} \otimes B\right) \subseteq \mathfrak{r}$ and the annihilator ideal (of $A^{\prime} \otimes B$ over \mathfrak{r}) $=\mathfrak{a}_{0} \otimes B$ where \mathfrak{a}_{0} is the annihilator ideal of A^{\prime} over \mathfrak{r} and if $\mathfrak{a}_{0} \neq(0), \mathfrak{a}_{0} \cap A \neq(0)$ by the above remark, and it is a contradiction. Hence $A^{\prime} \otimes B$ is a P.M.I. algebra.

Profosition 2. Let B be a central simple algebra with $[B: \oplus]<\infty$. A is a P.M.I. algebra if and only if $A \otimes B$ is so.

Proof. "Only if" part is clear by Theorem 1. By Lemma 3 and $[B: \mathscr{O}]<\infty$ we may assume that A has unit element and B is a central division algebra. If we regard $A \otimes B$ as a right $A \otimes B$ - and left B-module, that is, a right $(A \otimes B) \otimes B^{*}-$ module, $A \otimes B$ is a faithful $(A \otimes B) \otimes B^{*}$-module as in the proof of Lemma 3. By the assumption and Theorem $1(A \otimes B) \otimes B^{*}$ is a P.M.I. algebra and $A \otimes B$ has a faithful irreducible $(A \otimes B) \otimes B^{*}$-module \mathfrak{r}. \mathfrak{r} is a right ideal of $A \otimes B$ and a left B-module. $A \otimes B$ is a completely reducible two sided B-module with B-basis $\left\{u_{i}\right\} ; u_{i} \cdot b=b \cdot u_{i}$ for all $b \in B$, hence $\mathfrak{r}=\sum_{i} \oplus v_{i} B, v_{i} \in A$ and $\mathfrak{r}=\mathfrak{r}_{0} \otimes B$ where \mathfrak{r}_{0} is the right ideal generated by $\left\{v_{i}\right\}$ of A. Therefore \mathfrak{r}_{0} is a faithful irreducible right ideal of A and A is a P.M.I. algebra.

Corollary. Let B be as in Proposition 2. If $A \otimes B$ is a semi-simple algebra all whose primitive images are P.M.I. algebras, then A is so. Conversely if B^{\prime} is central simple with unit element and A is semi-simple, then $A \otimes B^{\prime}$ is semi-simple.

We note that we may assume A contains unit element by the remark in the proof of Lemma 3 and if B^{\prime} is a central algebra with unit element, the radical of $A \otimes B^{\prime}$ is contained in the Kronecker products of the radicals of A and B^{\prime}.

Proposition 3. Let A be I_{1}-algebra (see Levitzki [7]) and B be a central simple algebra with unit element. If $A \otimes B$ is a P.M.I. algebra, then A and B are matrix algebras of finite degree over division algebras.

Proof. First we assume A has unit element. If $A \otimes B$ is a P.M.I. algebra, its socle $\mathbb{S}={ }_{z} \otimes B$ where \bar{z} is the unique minimal ideal of A. By the assumption z is I_{1}-algebra and has no non zero nilpotent ideal, hence z is primitive. Further A is prime by the assumption, hence A is primitive by Goldie [3], Th. 1. If A has no

[^0]unit element, $A^{\prime} \otimes B$ is P.M.I. by Lemma 3 and its socle is contained in $A \otimes B$, hence A is primitive in this case, too. Therefore A is a matrix algebra of finite degree over a divition algebra Δ by [7], Coro. in p. 391 and $\Delta \otimes B^{*}$ is a simple P.M.I. algebra, hence $\Delta \otimes B^{*}$ satisfies the minimum condition, which proves the proposition.
3. We now consider a semi-simplicity of Kronecker products of P.M.I. algebras.

Lemma 4. Let $A_{i}(i=1,2)$ be a simple algebra with unit element and \sum_{i} be its center. If $\Sigma_{1} \otimes \Sigma_{2}$ is semi-simple then $A_{1} \otimes A_{2}$ is so.

Proof. Let N be the radical of $A_{1} \otimes A_{2}$, then $N=\left(A_{1} \otimes A_{2}\right) \cdot$ a. by [5], Ch. 5 Th. 9.1 where \mathfrak{a} is a ideal of $\Sigma_{1} \otimes \Sigma_{2} .\left(\Sigma_{1} \otimes \Sigma_{2}\right) \cap N$ is a quasi-regular ideal of $\Sigma_{1} \otimes \Sigma_{2}$ since for any element x of $\left(\Sigma_{1} \otimes \Sigma_{2}\right) \cap N$ there exists an element y in N such that $(1-x) \cdot(1=y)=(1-y) \cdot(1-x)=1$ and as $(1-x) \in \Sigma_{1} \otimes \Sigma_{2},(1-y) \in \Sigma_{1} \otimes \Sigma_{2}$, and $y \in\left(\Sigma_{1} \otimes \Sigma_{2}\right) \cap N$. Since (0) $=\left(\Sigma_{1} \otimes \Sigma_{2}\right) \cap N \supseteqq \mathfrak{a}, N=(0)$.

Lemma 5. Let A be primitive and Δ be the associated division algebra of a faithful irreducible A-module. If the center Σ of Δ is algebraic separable over \mathscr{G}, then $A \otimes B$ is semi-simple for any semi-simple algebra B.

Proof. Let B be primitive and Δ^{\prime} be the associated division algebra of a faithful irreducible B-module and let Σ^{\prime} be the center of Δ^{\prime}. Since Σ is separable, $\Sigma \otimes \Sigma^{\prime}$ is regular (in the sense of Neumann [8]) by [4], Pro. 3 and so semi-simple, hence $\Delta \otimes \boldsymbol{\Delta}^{\prime}$ is semi-simple and $A \otimes B$ is so by Lemma 4 and Theorem 2. If B is semisimple, there exist primitive ideals \mathfrak{r}_{α} with $\cap \mathfrak{r}_{\alpha}=(0)$ and $(A \otimes B) /\left(A \otimes \mathfrak{r}_{\alpha}\right) \cong A \otimes B / \mathfrak{r}_{\alpha}$ are semi-simple, hence $A \otimes B$ is semi-simple.

Theorem 5. Let A be a P.M.I. algebra and Δ be A.D., and let Σ be the center of Δ. We assume Σ is algebraic over \mathscr{D}, then A^{Σ} is semi-simple if and only if $A \otimes A^{*}$ is semi-simple. In this case $A \otimes B$ is semi-simple for any semi-simple algebra B.

Proof. If A^{Σ} is semi-simple, Δ^{Σ} is so and since $\Sigma \otimes \Sigma$ is the center of Δ^{Σ}, it has no non zero nilpotent element, hence Σ is separable and $A \otimes B$ is semi-simple for any semi-simple algebra B by Lemma 5 . Conversely if $A \otimes A^{*}$ is semi-simple, $\Delta \otimes \Delta^{*}$ is so by Theorem 2 and $\Sigma \otimes \Sigma$ is the center of $\Delta \otimes \Delta^{*}$, hence Σ is separable as above.
4. We shall prove some results of Krenecker products of endomorphism rings. Let A be an algebra and M be a faithful A-module. We shall call " A is strongly dense over $M^{\prime \prime}$, if A is dense in the finite topology in the endomorphism ring \bar{A} of A-endomorphism ring of M and any non zero ideal of \bar{A} has the non zero intersection with A.

From the definition and the structure theorem of [5], Ch. 4 if A is primitive
algebra with a faithful module M, A is strongly dense over M if and only lf A is a P.M.I. ring.

Proposition 4. Let $A_{i}(i=1,2)$ be primitive. A_{i} is strongly dense over a faithful irreducible A_{i}-module M_{i} if and only if $A_{1} \otimes A_{2}$ is strongly dense over $M_{1} \otimes M_{2}$.

Proof. Let A_{i} be strongly dense over M_{i} and Δ_{i} be a centralizer of M_{i} and let $\left\{x_{\tau}\right\}_{\tau \in I}$ be Δ_{1}-basis of M_{1} and $\left\{y_{\mu}\right\}_{\mu \in I^{\prime}}$ be Δ_{2}-basis of M_{2}. Then $M_{1} \otimes M_{2}$ $=\Sigma \oplus\left(x_{\tau} \otimes y_{\mu}\right)\left(\Delta_{1} \otimes \Delta_{2}\right)$ and by [2], Th. 8 we know that the ring of $A_{1} \otimes A_{2}-$ endomorphisms of $M_{1} \otimes M_{2}$ is equal to $\Delta_{1} \otimes \boldsymbol{\Lambda}_{2}$ and $A_{1} \otimes A_{2}$ is dense in the finite topology in the ring $\overline{A_{1} \otimes A_{2}}$ of $\Delta_{1} \otimes \Delta_{2}$-endomorphisms of $M_{1} \otimes M_{2}$. Now let $\mathfrak{a}(\neq 0)$ be an ideal of $\overline{A_{1} \otimes A_{2}}$ and $\sigma(\neq 0) \in \mathfrak{a}$, then there exists $x_{\tau} \otimes y_{\mu}$ such that $\left(x_{\tau} \otimes y_{\mu}\right) \sigma \neq 0$. Since A is a P.M.I. algebra, we have the following projections: $\varepsilon_{\tau}\left(\in A_{1}\right)$ and $\varepsilon_{\mu}{ }^{\prime}\left(\in A_{2}\right), \quad M_{1} \cdot \varepsilon_{\tau}=x_{\tau} \Delta_{1}, \quad x_{\tau} \varepsilon_{\tau}=x_{\tau}, \quad M_{2} \cdot \varepsilon_{\mu}{ }^{\prime}=y_{\mu} \Delta_{2}, \quad y_{\mu} \varepsilon_{\mu}=y_{\mu}$. If we set ($x_{\tau} \otimes y_{\tau}$) $\sigma=\sum_{j=1}^{n} x_{\tau_{j}} \otimes z_{\tau_{j}}, z_{\tau_{j}}(\neq 0) \in M_{2}$, we can find $\rho_{\tau} \in A_{1}$ and $\rho_{\mu}{ }^{\prime} \in A_{2}$ such that $x_{\tau_{1}} \cdot \rho_{\tau}=x_{\tau_{1}}$, $x_{\tau_{j}} \cdot \rho_{\mu}=0(j \neq 1) \quad$ and $\quad z_{\tau_{1}} \rho_{\mu}{ }^{\prime}=y_{\mu}$. Then $\left(x_{\tau} \otimes y_{\mu}\right) \cdot\left(\varepsilon_{\tau} \otimes \varepsilon_{\mu}{ }^{\prime}\right) \cdot \sigma \cdot\left(\rho_{\tau} \otimes \rho_{\mu}{ }^{\prime}\right)=x_{\tau} \otimes y_{\mu}$ $=\left(x_{\tau} \otimes y_{\mu}\right)\left(\varepsilon_{\tau} \otimes \varepsilon_{\mu^{\prime}}\right)$. From the properties of ε^{\prime} s and ρ^{\prime} s, $\left(\varepsilon_{\tau} \otimes \varepsilon_{\mu}{ }^{\prime}\right) \cdot \sigma \cdot\left(\rho_{\tau} \otimes \rho_{\mu^{\prime}}\right)$ $=\varepsilon_{\tau} \otimes \varepsilon_{\mu^{\prime}} \in\left(A_{1} \otimes A_{2}\right) \cap \mathfrak{a}$ and $A_{1} \otimes A_{2}$ is strongly dense over $M_{1} \otimes M_{2}$. Conversely let $A_{1} \otimes A_{2}$ be strongly dense over $M_{1} \otimes M_{2}$. The set $\mathfrak{F}\left(M_{1} \otimes M_{2}\right)$ of elements σ of $\overline{A_{1} \otimes A_{2}}$ such that $\left(M_{1} \otimes M_{2}\right) \cdot \sigma$ is contained in a sum of submodules $\left(x_{\tau} \otimes y_{\mu}\right) \cdot\left(\Delta_{1} \otimes \boldsymbol{\Delta}_{2}\right)$, finite in number, is a two sided ideal of $\overline{A_{1} \otimes A_{2}}$, hence $A_{1} \otimes A_{2} \cap \mathfrak{F}\left(M_{1} \otimes M_{2}\right) \ni \sigma \neq 0$, $\sigma=\sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}, a_{i}^{(j)} \in A_{j}$ and $\left(M_{1} \otimes M_{2}\right) \cdot \sigma \leqq \sum_{i=1}^{n} \otimes\left(x_{i} \otimes y_{i}\right)\left(\boldsymbol{A}_{1} \otimes \boldsymbol{A}_{2}\right)$. There exists $\varepsilon^{(i)}$ in the set $\mathfrak{F}\left(M_{i}\right)$ of linear transformations of finite rank of M_{i} such that $x_{j \varepsilon}{ }^{(1)}=x_{j}$ $y_{j} \varepsilon^{(2)}=y_{j} j=1, \cdots, n . \quad$ Then $\quad \sigma=\sigma\left(\varepsilon^{(1)} \otimes \varepsilon^{(2)}\right)=\sum a_{i}^{(1)} \varepsilon^{(1)} \otimes a_{i}^{(1)} \varepsilon^{(2)} \in \mathscr{F}\left(M_{1}\right) \otimes \mathfrak{F}\left(M_{2}\right) \cap$ ($A_{1} \otimes A_{2}$), hence $A_{i} \cap \mathfrak{F}\left(M_{i}\right) \neq 0$ and A_{i} is strongly dense over M_{i}.

Corollary. Let $A_{i}(i=1,2)$ be primitive and Δ_{i} be the associated division algebra of a faithful irreducible A_{i}-module M_{i}. If Δ_{1} is central and $A_{1} \otimes A_{2}$ is a P.M.I. algebra, then A_{i} is a P.M.I. algebra.

Proof. By the assumptions $\Delta_{1} \otimes \Delta_{2}$ is simple and $M_{1} \otimes M_{2}$ has a faithful irreducible $A_{1} \otimes A_{2}$ submodule, hence $\Delta_{1} \otimes \Delta_{2}$ has a minimal left ideal and satisfies the minimum condition. By the same method as in the proof of [5] Ch. 5, Th. 10.1 $M_{1} \otimes M_{2}=\sum_{i=1}^{n} \oplus N_{i}$ where N_{i} is isomorphic to a faithful irreducible $\mathfrak{M}\left(\boldsymbol{J}_{1} * \otimes \boldsymbol{\Delta}_{2}{ }^{*}\right)$ module N_{1}. Let Δ be the division ring of $\mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)$-endomorphisms of N_{1} then $\mathfrak{M}\left(\boldsymbol{\Lambda}_{1}{ }^{*} \otimes \Delta_{2}{ }^{*}\right)$ is the ring of Δ-endomorphisms of N_{1}, hence $A_{1} \otimes A_{2}$ is strongly dense over $M_{1} \otimes M_{2}$. Therefore we obtain Corollary by Proposition 4 and the remark above.

The following proposition is a generalization of [5] Ch. 5, Th. 3.1, (3) and the method of proof is quite analogous.

Lemma 6. Let $\Delta_{i}(i=1,2)$ be an algebra with unit element and M_{i} be a right
Δ_{i}-module with Δ_{i}-basis. We may regard $M_{1} \otimes M_{2}$ as right $\Delta_{1} \otimes \Delta_{2}$-module. Then $\mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)=\mathfrak{M}\left(\Delta_{1}^{*}\right) \otimes \mathfrak{M}\left(\Delta_{2}^{*}\right)$ if and only if there exists i such that $\left[M_{\imath}: \Phi\right]<\infty$ or $\left[M_{j}: \Delta_{j}\right]<\infty \quad(j=1,2)$.

Proof. $\quad M_{1} \otimes_{\Phi} M_{2} \approx M_{1} \otimes_{\Lambda_{1}}\left(\Delta_{1} \otimes_{\Phi} M_{2}\right)=M_{1} \otimes_{\Delta_{1}} \bar{M}_{2}$, where $\bar{M}_{2}=\Delta_{1} \otimes M_{2}$. We may regard \bar{M}_{2} as a left Δ_{1}, right $\Delta_{1} \otimes \Lambda_{2}$-module by the natural way. Clearly we have a $\Delta_{1} \otimes \Delta_{2}$-isomorphism φ of $M_{1} \otimes M_{2}$ to $M_{1} \otimes \bar{M}_{1}$. Let $\left\{x_{\alpha}\right\}_{\alpha \in I}$ be a Δ_{1}-basis of M_{1}. We may identify $\mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)$ with the ring of $\Delta_{1} \otimes \Delta_{2}$-endomorphisms of $M_{1} \otimes \bar{M}_{2}$. For any element σ of $\mathfrak{M}\left(\boldsymbol{\Delta}_{1}^{*} \otimes \boldsymbol{\Delta}_{2}^{*}\right)\left(x_{i} \otimes \bar{m}_{2}\right) \cdot \sigma=\sum x_{j} \otimes f_{j, i}\left(\bar{m}_{2}\right)$ where $\bar{m}_{2}, f_{j, i}\left(\bar{m}_{2}\right) \in \bar{M}_{2}$, we can easily examine that mapping $f_{j, i}: \bar{m}_{2} \rightarrow f_{j, i}\left(\bar{m}_{2}\right)$ are $\Delta_{1} \otimes A_{2}$-endomorphisms of \bar{M}_{2} and $\sum_{l} f_{i, j}$ is summable and that conversely if $\sum_{l} f_{i, j}$ is summable for each j, then $\left(x_{i} \otimes \bar{m}_{2}\right) \cdot \sigma^{*}=\sum x_{j} f_{j, i}\left(\bar{m}_{2}\right)$ is a $\Delta_{1} \otimes \Delta_{2}$-endomorphism of $M_{1} \otimes \bar{M}_{2}$. Hence we can represent any element of $\mathfrak{M}\left(\Lambda_{1}^{*} \otimes \Delta_{2}^{*}\right)$ by a matrix ($f_{i, j}$), where $f_{i, j}$'s are elements of the ring $\bar{M}\left(\boldsymbol{\Lambda}_{1} \otimes \Delta_{2}\right)$ of $\Delta_{1} \otimes \Delta_{2}$-endomorphisms of \bar{M}_{2} and $\sum_{i} f_{i, j}$ is summable for each j. If $a=\left(\hat{o}_{k, l}\right) \in \mathfrak{M}\left(\boldsymbol{\Lambda}_{1}^{*}\right), b \in \mathfrak{M}\left(\boldsymbol{\Lambda}_{2}^{*}\right),\left(x_{2} \otimes \bar{m}_{2}\right)(a \otimes b)=\sum_{j} x_{j} \otimes$ ($\left.\bar{m}_{2}\left(\delta_{i, j}\right)_{l} \otimes b\right)$ hence $a \otimes b=\left(\left(\delta_{i, j}\right)_{l} \otimes b\right)$ and the matrix of $\sum_{\imath} a_{\imath} \otimes b_{\imath}$ has a property that the dimensionality of the space spanned by the linear transformations $f_{i, j}$ is finite over Δ_{1}. If $\mathfrak{M}\left(\Delta_{1}^{*}\right) \otimes \mathfrak{M}\left(\Delta_{2}^{*}\right)=\mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)$, there exist the following two cases,

1) $\left[M_{1}: \Delta_{1}\right]<\infty$ then $\Delta_{1 l} \otimes \mathfrak{M}\left(\Delta_{2}^{*}\right)=\bar{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)$, or
2) $\left[M_{1}: \Delta_{1}\right]=\infty$ then $\left[\mathfrak{M}\left(\Delta_{2}^{*}\right): \mathscr{D}\right]<\infty$, hence $\left[M_{2}: \mathscr{D}\right]<\infty,\left[\Delta_{2}: \mathscr{D}\right]<\infty$. In case 1 if we replace $M_{1} \otimes M_{2}$ by $\Delta_{1} \otimes M_{2}$, we obtain as above either $\left[M_{2}: \Delta_{2}\right]<\infty$, or $\left[\Delta_{1}: \varnothing\right]<\infty$. The converse is clear.

Corollary. Let $A_{i}(i=1,2)$ be a closed irreducible algebra. If $A_{1} \otimes A_{2}$ is closed irreducible, then each of them satisfies the minimum condition or one of them is of finite rank over \emptyset.

Proof. Let M_{i} be an irreducible A_{i}-module and Δ_{i} be A.D.. If $A_{1} \otimes A_{2}$ is closed irreducible, $\Delta_{1} \otimes \Delta_{2}$ is a simple ring with minimum condition by Theorem 3 and the remark following it. Using the same notations as in the proof of Corollary of Propositlon 4, we can obtain $A_{1} \otimes A_{2} \subseteq \mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right) \subseteq \mathfrak{M}\left(\Delta^{*}\right)$ and by the assump. tion $A_{1} \otimes A_{2}=\mathfrak{M}\left(\Delta^{*}\right)$, hence $A_{1} \otimes A_{2}=\mathfrak{M}\left(\Delta_{1}^{*} \otimes \Delta_{2}^{*}\right)$, which proves the corollary.

Theorem 6. Let M, N be vector spaces over a field \mathscr{O} and $\mathfrak{a}, \mathfrak{b}$ be distinguished homogeneous algebras of linear transformations in M and N, respectively. Then $\mathfrak{a} \otimes \mathfrak{b}$ is a distinguished homogeneous of linear transfcrmations in $M \otimes N$ if and only if the Kronecker product of the centers of \mathfrak{a} and \mathfrak{b} is a field, and either of the following conditions holds.

1) $[\mathfrak{a}: \mathscr{D}]<\infty$ or $[\mathfrak{b}: \mathscr{D}]<\infty$,
2) $\mathfrak{a} \otimes \mathfrak{b}$ has a minimum condition, (cf. [5], Ch. 6 Th. 5.1).

Proof. Let $\mathfrak{a} \otimes \mathfrak{b}$ be a distirguished homogeneous ring in $M \otimes N$, then from [5], Ch. 5, Th. $6.2 \mathfrak{a} \otimes \mathfrak{b}$ is a closed irreducible ring of a module. If the condition 1) of the theorem holds, we have immediately the first part. If the condition 1) dces not hold, we obtain that \mathfrak{a} and \mathfrak{b} satisfy minimum conditions from Corollary of Lemma 6 . In this case we have $\mathfrak{a}=\Delta_{n}, \mathfrak{b}=\Gamma_{m}$ where Δ, Γ are division algebras over \mathscr{D}. Since $\Delta \otimes \Gamma$ has the minimum condition by Theorem $3, \mathfrak{a} \otimes \mathfrak{b}$ has it and its center is a field. Conversely we may assume that M (resp. N) is irreducible \mathfrak{a} - (resp. \mathfrak{b}-) module. Let Γ (resp. Δ) be the centralizer of \mathfrak{a} (resp. b) in M (resp. N). Then by the assumptions the centralizer of Γ (resp. Δ) in M (resp. N) is \mathfrak{a} (resp. b) and $\Gamma \otimes \Delta$ is simple. If either of conditions 1) and 2) holds, $\Gamma \otimes \Delta$ has the minimum condition, heace $\Gamma \otimes \Delta$ is distinguished homogeneous in $M \otimes N$. On the other hand the centralizer of $\Gamma \otimes \Delta$ in $M \otimes N$ is $\mathfrak{a} \otimes \mathfrak{b}$ by Lemma 6. Therefore $\mathfrak{a} \otimes \mathfrak{b}$ is distinguished homogeneous from [5], Ch. 6, Th. 2.2.

Proposition 5. Let A be a ring. Then A is distinguished homogeneous if and only if so is A_{n} where A_{n} is the total matrix ring over A.
("Only if" part is readily obtained from Th. 6, but we shall give a direct proof.)
Proof. Let A be a distinguished homogeneous ring of a commutative group M, then A has unit element. We can easily show that $M^{n}=M \otimes A^{\prime}$ is a faithful compeletely reducible A_{n}-module (cf. [1], Th. 47.1) where $A^{\prime}=A e_{11}+A e_{12}+\cdots+A e_{1 n}$ and $e_{i j}$ are matrix units. We can represent the endomorphism ring of M^{n} by the total matrix ring over the endomorphism ring of M. Let $\varphi=\left(\varphi_{i}\right) \in c l A_{n}$, and $x_{i}(i=1, \cdots, m)$ be arbitrary elements of M and $\tilde{x}_{2}=x_{i} \otimes e_{1 k}$. Then there exists an eleme.nt $a=\left(a_{i J}\right)$ of A_{n} such that $\tilde{x}_{i} \varphi=\tilde{x}_{i} a$, i.e. $x_{i} \varphi_{k_{j}}=x_{i} a_{k}$. Since $\varphi_{k}, \in c l A=A, A_{n}$ is closed. Conversely if A_{n} is distinguished homogeneous in M, then A_{n} has unit element. Hence A has also unit element. M has the following decomposition:

$$
\begin{equation*}
M=M e_{11} \oplus \cdots \oplus M e_{1 n} \approx M e_{11} \otimes A^{\prime} \tag{*}
\end{equation*}
$$

$M e_{11}$ is obviously a faithful completely reducible A-module. We define an endomorphism $\bar{\varphi}$ of M from an endomorphism φ of $M e_{11}$ by setting ($\left.\sum m_{i} e_{1 i}\right) \bar{\varphi}=\sum\left(m_{i} e_{11} \varphi\right) e_{1,}$. Let $\varphi \in \operatorname{cl} A$ and let $x_{i}(i=1, \cdots, m)$ be arbitrary elements of M. In virtue of the decomposition (*) $x_{i}=\sum x_{j} e_{1}$. From the assumption there exists $a \in A$ such that $x_{i j} e_{11} \varphi=x_{i j} e_{11} a$. Then $x_{i} \bar{\varphi}=\sum_{j}\left(x_{i,} e_{11}\right) a e_{1,}=\sum_{j}\left(x_{i,}, e_{11} a\right) e_{1,}=x_{i} \check{a}, \quad\left(\tilde{a}=a e_{11}+\cdots+a e_{n n}\right)$, $\bar{\varphi} \in A_{n}$ and so $\varphi \in A$, which proves the proposition.

Bibliography

[1] G. Azumaya and T. Nakayama, Algebra II, Press in Japan (1954).
[2] —, On irreducible rings, Ann. of Math., vol. 48 (1947), 949-965.
[3] A. W. Goldie, Decompositions of semi-simple rings, J. London Math. Soc., vol. 31 (1956), 40-48.
[4] M. Harada, The weak dimension of algebras and its applications, to appear in this journal, vol. 9.
[5] N. Jacobson, Structure of rings, Amer. Math. Soc. Press. (1956)
[6] , The radical and semi-simplicity for arbitrary rings, Amer. J. Math., vol. 67 (1945) 300-320.
[7] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., vol. 74 (1953) 384-409.
[8] J. von Neumann, On the regular rings, Proc. Nat. Acad. Sci., vol. 22 (1936), 707-713.

[^0]: 1) Let \mathfrak{a} be an ideal of $A^{\prime}=A+1 \cdot K$ and $a^{\prime}=a+1 \cdot k$ be a non zero element of a. If $a b+b k=0$ for all $b \in A,-k a^{-1}$ is a left unit of A, similarly if $b a+b k=0$ for all $b \in A,-k a^{-1}$ is a right unit.
