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Throughout this paper, we de:1ote by ®m the symmetric group of degree m, K a 

finite simplicial complex and p a fixed prime integer. The group ®m operates in a 

natural way on the m-fold cartesian product ?Xm(K) =KX Kx ···X K. The orbit space 

®m(K) over 'fm(K) relative to ®m is called the m-fold symmetric product. We 

study in the prese:1t paper the cohomology mod p of the symmetric product ®m(Sn) 

of an n-sphere sn. However the method we use will be applicable for calculation of 

cohomology of the symmetric product of more 'general complexes. 

Let Str de:1ote the iterated Steemod reduced powers, and v0 m a generator of , 
H"\®m(Sn); Zp)=Zp. Then our main theorem is stated as follows0l: If q<n and 

ph<m<ph+l, the vec:tor space Hn+qC®mCSn) ;Zp) has a base formed by elements St1v 0 , m, 

where I runs over the set of all admissible and special elements with degree q and 

le:1gth <h. (See ~ 3 for the precise definitions.) 

The method we use is as follows. 

Let ®w(K) de:1ote the infinite symmetric product of K. It follows from a result 

in my paper [7] that the injection homomorphism c;i;: Hq(®w(K); Zp)->-HqC®m(K); 

Zp) is an epimorphism. As was proved by Dold-Thom [4], ®=(K) is a product of 

the Eile:1berg-MacLane complexes. Therefore we can describe a set of generators for 

Hq(®mCK); Zp) in virtue of the Cartan's computation [2]. In order to examine if 

these ge:1erators are linearly independent, we choose a particular p-Sylow subgroup 

®m of ®m, and consider the orbit space ®m(K) over ?Xm (K) relative to ®m. The 

natural proje::tion defines a hom:>morphism p*:Hq(®m(K); Zp)--+Hq(@m(K); Zp). 

We prove it by using of the transfer homomorphism that p* is a monomorphism. Let 

m=aoPh+a,ph-I -1- • • • +ah (O< a; <P) be the p-adic expansion of m, and denote by I)p(K) 

the P-fold cyclic product of K (i.e. the orbit space over ?Xp(K) relative to the subgroup 

I)p C ®p of cyclic permutations). The1 we have that ®mCK) is homeomorphic with 

the space Xa0 (3;(K)) X Xa1 (3;:-'(K)) X··· x ?fah(K), where 3;:K) denotes the iterated 

cyclic product :St>:SP · · · I)p(K) (r-times) of K. As for the cohomology structure of 

,8p(K), I have studied in the paper [6]. By making use of some results there, we 

analyse the cohomology structure mod p of 3[,(K), and we determine the dependence 

of the generators. 

0) (Added April 14, 1958) I have recently succeeded in determination of the cohomology ring 
H*(@m(S"); Zp). 
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1. The orbit space ®p~(K) 

In this and next sections, we study the orbit space over the m-fold cartesian 

product of K relative to a p-Sylow subgroup of ®m. The special case m= F is 

dealt in this section, and the general case in next section. 

Let q be an integer > 0. Denote by .Q q a set consisting of all sequences ( i 1 , i 2 , 

• · ·, iq), where each ij is an integer mod p. SJq has pq elements. We shall associate 

to an element (i,, i2 , • • ·, iq) E S2q an integer Ai1 , i2 , ••• , iq defined as follows : 

This gives clearly a one-to-one correspondence of SJq onto the set {1, 2, · · ·, pq}. 

We shall regard ®m as the group of all transformations of m letters 1, 2, · · ·, m. 

For each q (O<q<r) and each (k,, k2 , • • ·, kq) E S2q, we define an element 

Tr,, kz, ... , kq E ®pr by 

(1. 1) T;,, ... ,kq (A;,, ... ,;,) 

= A;1 , ... , iq, iq+l+l, ;H2 , ... , ir if (i,, "·, iq) = (k1 , kq), 

otherwise. 

Obviously we have 

(1. 2) c rr,, ... , kq)P = 1 . 

We shall prove 

LEMMA 1. T'j1 , ... , jmT';,, ... , kq 

=T';,, ... ,kqT'j,, ... ,jm ijm<q and (j,, ... , jm)~~(k,, km). 

Proof. The following can be easily proved from the definition (1. 1). 

T'j,, ... , jmT';,, ... , kq(A;,, ... , ;r) 

= T';,, ... , kqT},, ... , jm(A;,, ... , ;r) 

I A;1 , ... , im+l+l, ... , ir if (i,, · · ·, im) = (j,, ' ' ', jm) , 

= A;1 , ... , iH1+1, ... , ir ~f (~,, · · ·, ~m)i=(~,, · · ·, ~m) and (~1 , • • ·, ~q) = (k1 , • • ·, kq), 

A;1 , ... , ir 1f (z,, · · ·, Zm)i=()!, ···,1m) ahd (z 1 , • • ·, Zq)=f=(k1 , • • ·, kq). 

T'j,, ... , jmTr,, ... , kq(A;1 , ... , 1r) 

= Tkr, ... 'km+t+t, ... , kqTil, ... , im(Ail, ... 'ir) 

Ai1 , ···,im+t+l, ... ,iq+r+I, ... ,ir if (ir, ···, iq) = (kl, ···, kq), 

A;,, ... , im: ,+,, ... , ir if (i,, · · ·, iq)cf;(k1 , • • ·, kq) and (i,, · · ·, im) = (k,, · · ·, km) , 

A;,, ... , ir if (i,, · · ·, im) =F (k,, · · ·, km) Q.E.D. 



Cohomology mod P of symmetric products of spheres 3 

Let ni1 , •.. , kq C f:5pr denote a cyclic subgroup generated by Tr1 , ... , kq· The 

order of ni1 , •.. , kq is p. Since 

(1. 3) 

the product of nr1' ... ' hq's as subgroups of fi!5p>'. .0~+1 is the direct product of nr1' ... ' kq's, 

and its order is the pcth power of p. 

Next, for q = 1, 2, · · ·, r, define 

a~ = pLo~ · · · p~, 

the product of p.';,'s as subgroups of fi!5pr. Since Lemma 1 yields that p~,p~ = p'{,p:;, 

(1 <m, n<q), it follows that tJ; is a subgroup of fi!5pr. Furthermore Lemma 1 shows 

that p~ is an invariant subgroup of tJ~. We have 

(1. 4) 

Actually, tJ~ is a split extension of p~ by tJ~_1 , where tJ~-1 operates non-trivially on pq. 

From (1. 4), we obtain by induction on q that the order of tJ~ is the (pq- 1 + pq- 2 + · · · -1-1)

th power of p. 

We write @p,·=tJ~. The order of @pr is the (pr- 1 -1-pr- 2 +· · ·+1)-th power of p. 

Since this is the highest order of p in pr !, the group @pr is a p-Sylow subgroup of 

f:5pr.') 

We note here the following 

LEMMA 2. If 0 < q < r-1 and TT,-;\ ... , kq(A;1 , ... , ir_,) = Aj1 , ... , jr-r, then 

TT.l, ···, kq(Ail, ... , ir)=Ajl, ···, jr-1, ir· 

This is clear from the definition (1. 1). 

Let Xpr(K) be the pr -fold cartesian product of K. A point x of XprCK) is given 

as a function x defined for each A;1 , ... , ir and takes values in K. The symmetric 

group fi!5pr operates on Xpr(K) in a natural manner: 

Define a map f: ?Kp<K)--->?fpr-r(xp(K)) by 

(/x) (A;1 , ... , ir_,) = x(A, 1 , ... , ir-, 0) X x(A;1 , ... , ;,_1 , ,) X· · ·X x(A;1 , ... , ir_1 , p- 1) E Xp(K). 

It is obvious that f is an onto-homeomorphism. 

LEMMA 3. If O~q<r-1, then 

1) Such a subgroup for P=2 is studied in [1] by J. Adem. 
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Proof. LetxEXpr(K) and put Aj1, ... ,j,._ 1 =Tr~\· .. ,kq(A;1, ... ,;,._1). Then we 

have 

(fT[,1, .. · , kqX) (A;1, · · ·, ir-1) 

= (T!;1, ... , kqx)(A; 1 , ... , ;,._1,o)X···X (T;1, ... kqx)(A;1 , ... , ;"_1, p-1) 

= x(Ah, ... , j,._1, 0) X··· X x(Aj1, ... , j,._1, p-1) (cf. Lemma 2) 

= (fx) (Aj1' ... , j,._l) 
Q.E.D. 

Denote by 8p(K) the p-fold cyclic product of K. Let 8P C !bp be the subgroup 

of cyclic permutations. Then, by definition, Jjp(K) is the orbit space O(Xp(K), ,8p) 

over xp(K) relative to 8p2 ). Write I: Xp(K)-?>Jjp(K) for the identification map. 

Let g: xpr-1(xp(K))-xpr-1(8p(K)) be a continuous map defined by 

namely 

It follows immediately that 

(1. 5) 

LEMMA 4. 

g = I X I x · · ·X I (pr-1-fold) , 

(3g = g{3 

gfTkl, ... ,kq=gf 

= Tk 1 , ••• , kqgf 

for q = r-1, 

for q<r-1. 

Proof, The formula for O<q<r-1 is obvious from Lemma 3 and (1. 5). We 

shall prove gfTk1 , ... , k,._ 1 =gf. 

For X E xp<K), we have 

CfTr1, ... , kr-1x) (A;1, ... , ;,._1) 

= (Tk1, ... , kr-1x) (A;1, ... , ir-1, o) X··· X (T;;l, ... , k,._lx) (A;1, ... , ir-1. p-1) 

{ 

x(A;1' ... 'ir-1' 1) X .•. X x(A;1' ... ' ir-1' p-1) X x(A;1' ... 'ir-1' J>) 

if (i1' ... ' i,._1) = (k1' ... ' k,._,) ' 

= x(A;1 , •.. , ;,._1 , o) ~ · · · ~ x:~~1 , .' •. , ;,._1 , p-z~ .~ x(A;, ... , ;,._1 , p-1) 

1f (t1 , , t,.-1) =t= (k1, , k,._,) . 

Therefore it follows that 

(g fTk1, · .. , kr-1x) (A;1, ... , ;,._1) 

=I( C!Tk1 , ... , k,._1x) (A;,, ... , ;,._,)) 

= I(x(A;1, ... , ;,._1 , 0) X··· X x(A;1 , ... , ;,._1 , p-1)) 

=I( (fx) (A;,, ... , ;,._1)) 

= (gfx) (A;,, ... , ;,._1). Q.E.D. 

2) Let Y be a space on which a group r operates. Then the orbit space O(Y, r) over Y 
relative to r is defined as a space obtained from Y by identifying each point y E Y with 
its image 'Y(y) ('Y E r). 
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LEMMA 5. If gf(x) = gf(x') for x, x' Cxpr(K), then x'=ax with a E p~. 

Proof. Since (gfx)(A;1 , ... , ;,_,)=l(x(A;1 , ···,ir_1 , 0) X··· xx(A;1 , .•. , ;,._1 , p-1)) 

and (g fx') (A;1 , •.. , ; r-,) = l(x'(A;1 , ... , ir-l, 0) X· · ·X x'(A;1 , ... , ir-l, p-1)), it follows that 

where n= n(i,, · · ·, ir_1) is an integer mod p depending on (i,, · · ·, ir_1). 

Let a be an element of the abelian group p~ define:l by 

Then it follows that 

(ax) (A;1 , •.. , ;r) 

= x((Ti,, ... 'ir_,)nc;,, ···, ir>(A;,, ... ';,.)). 

= x(A;1 , ••• , ir_ 1 , ir+n) (n = n(i1 , • • ·, ir_1 )) • 

Therefore x'(A;1 , ••. , ;,.) =(ax) (A;1 , ••. , ir), and hence x' =ax. Q.E.D. 

Write ®po'(K) for the orbit space O(~prCK), ®pr), and consider the ide_1tification 

maps 

<p: ?fpr(K)----+®pr(K), 

¢: ?fpr-1(3p(K))----+®pH(3p(K)). 

Then it follows from Lemma 4 that gf: ?fpr(K)-> "&.pr-1(3p(K)) defines a continuous 

map h: ®pr(K)----+ ®pr-I(3p(K)) such that 

(1. 6) ¢gf=hrp. 

PROPOSITION 1. h is an onto-homeomorphism. 

Proof. Since gf and <p are onto, it follows from (1. 6) easily that his onto. We 

shall next prove that h is one-to-one. Since rp is onto, it is sufficient for this purpose 

to prove that if hrp(x) = hrp(x') for X, X 1 E Xpr(K) then x' =rx with r E ®pr 0 Under this 

assumption, it follows from (1.6) that ¢gf(x)=¢gf(x'). Therefore gf(x')={jgf(x) 

with {3 E Gpr-t. Let {3= T[;-'Ti;' .. · T[,:', where each lj E SJq (q< r-1). Put~= T[J[2 

· · ·T]w E Gpr. Then it follows from Lemma 4 that gf(x') = gf~(x). Therefore Lemma 5 

implies that x'=a~x with a E p~. Put y=a(J. Since y E ®pr, we obtain x'=yx (/ E ®pr). 

Since h is continuous and ®pr(K) is compact, it follows that h is an onto-

homeomorphism. Q.E.D. 

Define the iterated cyclic product 30(K)(r=O, 1, · · ·) by 

30(K) =3p(3;:-'(K)), 3g(K)=K. 

We have 

THEOREM 1. The space ®pr(K) is homeomorphic with the iterated cyclic product 

30(K). 

Proof. For r= 0 the theorem is trivial. To establish the general case we proceed 
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by induction. Assume that @ pr-1 (3p (K)) is homeomorphic with 3;-1 (K) for every 

K. Then @pH(,3p(K)) is homeomorphic with 3;- 1 (,3p(K))=3;(K). Therefore it 

follows from Proposition 1 that ®pr(K) is homeomorphic with 3;(K). Q.E.D. 

2. The orbit space ®m (K) 

Let m be an integer, and let 

h 

m = '2:: ah-rPr 
r=o 

be the P-adic expansion of m. Denote by W(m) a set consisting of all pairs (r, j) 

of integers such that O< rS,h, 1 <j S,ah-r· To each (r, j) E W(m), we shall associate 

a monotone map IJ?: {1,2,···,Pr}-{1,2,···,m} defined by 

and define a monomorphism i[?: ®pr---'7 ®m by 

(1}?a)(t) = fJ?a(s) 

=t 

if t = fJ?(s) with 1 < s<pr, 

otherwise, 

where a E ®pr and 1 < t< m. Write j@pr for the image group fJ?(®pr), where ®pr is 

the p-Sylow subgroup of ®pr mentioned in ~1. If (r, j)='F (q, k), then a{3={3a for 

a E j@pr, {3 E k@pq. Therefore we may define a group ®m C ®m by 

®m = IT j@pr, 
cr,j; E Wcm) 

the product of j@pr's as subgroups of ®m. ®m is the direct product of j@pr's, and hence 
"' its order is the C'L: ah-r(pr- 1+pr- 2+· · ·+ 1))-th power of p. This is the highest power 

r=l 

of p in m !, so that ®m is a p-Sylow subgroup of ®m. 

We shall represent points of Xm (K) as functions y defined on { 1, 2, · · ·, m} and 

take values in K. The operation of ®m on Xm(K) is written as follows: 

({3y) (t) = y ({3t) 

To each (r, j) E W(m), we shall associate two maps 

defined by 

c€?x)(t) = x(s) if t = fJ?s, and=* otherwise, 

('l;~y) (s) = y(fJ?s) , 

where 1<s<pr, 1<t<m, xExp<K), yExm(K) and* is a base vertex ofK. Itis 

obvious that for any a E ® 1,r 
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~1a = (if?a){f., 

Y;?(if~a) = arj? if (q, k) = (r, j), and = '!;? otherwise. 

Therefore the maps ~? and Y;? yield respectively maps ~?: @pr(K)- ®m (K) and 

r;?: ®m (K)-@pr(K). It follows immediately that 

(2. 1) r;~~? = identity map 

= constant map 

if (r, j) = (q, k), 

if (r, j) =F (q, k) . 

Define a map r;: ®m(K)---?>-Xa0 (@ph(K))Xxa,C®ph-I(K))X·· ·Xxah(K) by 

r;(z) = (r;~(z) x · · · x r;~o(z)) x (r;k_,(z) x · · · x 'll~'-' (z)) x · · · x (r;a(z) x · · · x r;3" (z)) . 

It is easily seen that r; is an onto-homeomorphism. Therefore by Theorem 1 we have 

THEOREM 1'. The space @m(K) is homeomorphic with the space Xa0 (3~(K)) X 

Xa 1 (3fl-'(K)) X • • • X Xah(K) 3 l. 

For q>O, let 

~?*: HqC®m(K); Zp)-.,_Hq(@pr(K); Zp), 

r;?*: Hq(@p<K); Zp)-HQ(@m(K); Zp) 

be the homomorphisms induced by ~? and r;? respectively. We have then by (2.1) 

~?*r;~* = identity 

=0 

Therefore, by the Ktinneth relation, we have 

if (r,j)=(q,k), 

if (r, j) =F (q, k) . 

CoROLLARY. Assume that K is (n -1)-connected and q < 2n. Then a set of the 

homomorphisms ~?* (resp. r;?*), (r, j) E W(m), provides a projective (resp. injective) 

representation of Hq C®m (K) ; Zp) as a direct sum. 

Let 

p: Xa0 (3~(K)) X 'Xa,C3~-'(K)) X·· ·X xah(K)- ISm(K) 

be the natural projection of ®m(K) onto ISm(K). Then we have 

THEOREM 2. The homomorphism 

induced by p is a monomorphism for any q. 

More generally we have 

THEOREM 2'. Let r,' r2 cr, c r2) be two subgroups of ISm such that the index 

3) Let ®;n be any P-Sylow subgroup of ISm. By the well-known fact, ®m and @;', are con
jugate. Ther;cfore the space ®mCK) and @;',(K) are homeomorphic. In general the follow
ing holds: Let Y be a space on which a group r operates, and T', T" be conjugate subgroups 
of r. Then the orbit space O(Y, T') and O(Y, T'') are homeomorphic. In fact, if T" =ctT'ct- 1 

with a E r, the map a : 0( Y, T') _.,. O( Y, T") induced by the transformation a: Y-* Y 
gives a homeomorphism. 
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(I'2 : I\) of I', in I'2 is prime to p. Then the homomorphism .o*: Hq(O('Xm(K), I'z); 

Zp)~Hq(OC'Xm(K), I'1); Zp) induced by the natural projection pis a monomorphism 

for any q. 

Since ®m is a p-Sylow subgroup of ®m, the index (®m: ®m) is prime to p. 
Therefore Theorem 2' implies Theorem 2. 

Proof of Theorem 2'. As in the proof of Proposition 1 in [7], it is given by 

means of the special cohomology groups and the transfer homomorphism. 

Let CqC'XmCK); Zp)I'J be the subgroup of the (alternative) cochain group CqC'Xm(K); 

Zp) which consist of all cochains u such that ru=u for all yEI'j (j=l, 2). Then 

{CqC'Xm(K); Zp)I', o} is a cochain complex, where o denotes the coboundary operator 

of the simplicial complex Xm(K). The cohomology group of this complex is denoted 

by r}1HqCxmCK); Zp) (the special cohomology group). Let i: Cq(Xm(K); Zp)I'z~ 
CqC?tmCK); Zp)I'' be the inclusion, and t: CqC?tmCK); Zp)I',~CqCxmCK); Zp)I'z the 

transfer homomorphism (cf. p. 254 of [3]). We have then 

The cochain maps i and t induce the homomorphisms i*: r21HqC?tmCK); Zp)------* 
-1 -1 

T'i 1Hq('Xm(K); Zp) and t*: r1 Hq(Xm(K); Zp)~r2 HqC'Xm(K); Zp) respectively, and 

we have 

t*i* = (I'2 : I',) . 

Since (I'2 : I',) is prime to p, it follows that t*i* is an automorphism, and hence i* 

is a monomorphism. Denote by Cf'j: ?tmCK)~OC?tm(K), I'j) the natural projection 

(j=l, 2). Obviously Cf'j induces an isomorphism cpj: Hq(O(xm(K), I'j); Zp)-------* 

r}1Hq("&mCK); Zp), and the commutativity i*cpj:=cp~p* holds. Consequently .n* is a 

monomorphism. Q.E.D. 

3. Prerequisites : notations, cohomology of cyclic product 

Let Z+ denote the set of all non-negative integers. We denote by Zc; the set 

consisting of all sequences 

such that i k = 0 for sufficiently large k. In Zc;, we shall consider the following rela

tion of order < (lexicographic order from the left) : For any two elements 

l=(i,, iz,···,ik,···) and ]='j,, jz,···,jk>···) of Z';, we writel<J if and only if 

for some k. 

For any element l= (i,, i2 , • • ·, ik> · · ·) E Z';, the length l(I), the height h(I) and 

the degree d(I) are defir:ed as follows: 
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!(!) =the least number of l such that ik=O for all k>l, 

h(I) =number of the set {k I iki=O}, 

d(I) = 2_j ik. 
k~l 

9 

An element (i1 , i 2 , • • ·, ik, · · ·) E Z"; is called to be proper if ik= 0 or 1 mod 

2(p-1) for any k. A proper element (i1 , i 2 , • • ·, ik> · · ·) is called to be admissible if 

ik;:;;pik+l is satisfied for any k:2;1. For an admissible element I, we have h(I) =l(I). 

We say that an element (i1 , i2 ,···,ik,···) is special if ik=F1 for any k. 

The element (0, 0, · · ·, 0, · · ·) E Z"; is denoted by 0. This is a unique element 

such that the le:1gth is 0. 0 is admissible and special. 

For each r E Z+, we define a subset Z_[' C Z:;o by 

Z_[' = {IEZ";jl(l)<r}. 

For any complex K, the Steenrod operations are homomorphisms 

Sqs: Hq(K; Z2 ) ~ Hq+s(K; Z2 ) for p = 2, 

crs: Hq(K; Zp) ~Hq+2S(P-lJ(K; Zp) for P>2. 

We shall denote by 

L1: Hq(K; Zp) -~ Hq+1(K; Zp) 

the coboundary operation associated with the coefficient sequence O---*Zp~Zp2--+ 

Z p---* 0 (the Bockstein homomorphism). 

Let i = 2s( p -1) + E, where s E z+ and e = 0 or 1. Then, following H. Cartan [2], 

we put 

St; = Si, 

=CPs if e=O, = LJ(Ps if E = 1 

according as p = 2 or p > 2, and we associate to each proper element I= (i1 , z2 , • • ·, 

ik, · · ·) a homomorphism 

defined by 

With J. Adem [1], we make the following convention on the binomial coefficient: 

For any integers i and j, we put 

( ~) = i(i-1) .. ·(i-j+1) 
J 'l J. 

= 1 if j = 0 , and = 0 if j < 0 . 

It should be noted that ( J 1) = ( -1 )j if j E Z+. The definition implies directly 

LEMMA 6. If (; ) =\= 0 and i ;;>, 0, then i ?;j. 
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The cohomology of the p-fold cyclic product 3p(K) of K is studied by the 

author in his paper [6]. In the study, the homomorphisms 

<Po*: Hq(xp(K); Zp) ~ Hq(3p(K), bp(K); Zp), 

Em: Hq(K; Zp) -i>Hq+m(:8p(K) , bp(K) ; Zp) 

are fundamental. By using of these homomorphisms, we shall now define a homo

morphism 

(3. 1) 

for each mE Z+ as follows: 

f])o(c) =j*¢o*((-c)x1x ... x1), 

f])m(c) = j*Em(c) (m>O), 

where cEHq(K; Zp), 1 denotes the unit class of H*(K; Zp) and j*: Hq+m(3p(K), 

bp(K); Zp)---;. HHm(3p(K); Zp) is the injection homomorphism. f])1 =0 is a direct 

consequence of the definition of E1 • 

Theorem (11. 4) in [6] yields 

PROPOSITION 2. Let B be a basis of the vector space H* (K; Z p). Then a set 

f])(B) = {([)m(b) I bEB, O<m~(p-1)dimb, m=\=o1} 

of elements of the vector space H*(3p(K); Zp) is independent. If K is (n-1)

connected and q<2n, then a base for the vector space Hq(3p(K); Zp) can be formed 

by a set {c E (})(B) I dim c=q}. 

Theorems (11. 6) and (11. 7) in [6] give 

PROPOSITION 3. Let m, s E z+ and m = 2t -+-r; with t E Z-1-, r; = 0 or 1. Then it holds 

that 

for p = 2, 

for P>2, 

4. Cohomology of iterated cyclic products of spheres 

Let sn denote an n-sphere (n21), and en be a fixe::l generator of Hn(sn; Zp). 

Let rE Z+, and M= (m1 , m2, • • ·, mk, · · ·) be an element of zr. Then we shall as

sociate to M an element [M],=[m1 , • • ·, m,] E Hn+dCMJ(3i,(Sn); Zp) defined as the 

image of en by the composite homomorphism 
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It is clear that dim [M]r :;::> n for any ME zr, and that 

(4.1) 

It follows from the fact (.I),= 0 that [M ]r=O unless ME zr is special. 

From Proposition 2 we have immediately 

PROPOSITION 4. Put ~r = {[M]r I ME zr, M: special}. If q<n, a basis for 

the vector space Hn-;-q($(Sn); Zp) can be formed by a set {cE~rldimc=n+q}. 

Especially Hn(:8[,(Sn); Zp) is generated by the element [O]r. 

Throughout this section we assume that :every cohomology class has dimension 

less than 2n. 

The following proposition can be proved from Proposition 3 and (4.1) by induc

tion 0:1 r. The proof is straightforward. 

PROPOSITION 5. We have in H*(:8[,(Sn); Zp) the formulas: 

(4.2) Sqs[m1 , m2 ,···,mr] 

..._, (m,-1)(m2 -1) (mr-1) [ J =LJ ... m1 +s1 ,m2 +s2 , .. •,mr+Sr 
s S1 S2 Sr 

for P=2, 

CPs[ m, , m2 , ... , mr J 

where S=(s1 ,s2 ,···,sr,O,O,···)EZ_(",d(S)=s, and we put mk=2tk+'llk with tkEZ+, 

1Jk=O or 1. 

(4.3) .:l[m1 , m2 , .. ·,mr] 
r 

= 2.j ( -l)m,+ ... +mk-1(1 + ( -l)mk)/2 [m,, ... , mk+1, ... , mr]. 
k~l 

Let ME zr, and let IE Z:; be proper. Then it follows from Propositions 4 and 5 

that Sl[M]r has a unique representation: 

where N is extended over all special elements of zr with d(N) =d(M) +d(I). If 

aN =p 0 in this expression, we write 

LEMMA 7. Let M, NEZ_(" and i-0 or 1 mod 2(P-1). Then if 

(P-1)d(M) <i, [N]r c SttMJr , 

we have 

h(N) 2h(M) +1. 
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Proof. Since the result for P=2 are proved similarly, as an illustration we write 

the proof for P>2. Let i=2s(p-1)+e (sEZ+, e=O or 1). 

Case1: e=O. LetM=(m1,m2,···,mk,···),N=(n1,n2,···,nk,"""). Then,by 

Proposition 5, we may assume that 

(k = 1, 2, .. ·)' 

S= Cs1, s2,···,sk,···)EZL d(S) =s. 

Put h = h(M), and let mk>O fork= a 1 , a2, · · ·, ah. The proposition is clear for 

h = 0, and hence we may assume h > 0. 

Since nk>mk for any k, we have h(N) ?_h(M). Assume now h(N) =h(M). 

Then we have n"=O for k=f=a1, l¥2, · · ·, ah, and hence s"=O for k=f=a1, a2, · · ·, ah, 

Therefore if we put mk=2tk+"1Jk (k=1, 2, · · ·), it follows from (4. 2) and the assump

tion that 

Since t,.k+"l},.k-1~0 for k=1, 2, ··· ,h, it follows from Lemma 6 that 

(k = 1, 2, ... 'h) ' 

and hence 

Therefore we have 
h h 

d(M) = 2.:.: m,.k>2 2.:.: s,.k = 2s. 
k=l k=l 

and so (p-1)d(M) >2s(p-1) =i, which contradicts with our assumption. Thus 

h(N) ;;:,h(M) +1. 

Case 2: e=l. Let i=l. Then M=O, and hence the lemma is clear by (4. 3). 

Therefore we shall assume i>l. 

The assumption (p-1)d(M) < i=2s(p-1) +1 implies (p-1)d(M) <2s(p-1). 

And, since i>·1, we have 2s(p-1) >O. 

Since [N]r c L/St2S(P-l) [M]r' there exists an element L E z.r such that 

(4. 4) 

(4. 5) 

[L]r C srcP-l) [M]r, 

[N]r C A[L]r. 

Since (P-1)d(M) <2s(p-1) and 2s(p-1) >O, it follows from (4. 4) and the fact 

just proved above that 

h(L) :?:h(M) + 1 . 

It follows from ( 4. 3) and ( 4. 5) that 

h(N) >h(L). 

Therefore we have h (N) > h (M) + 1. Q.E.D. 
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PROPOSITION 6. Let IE Z': be admissible, and let 

[N]r C Sl[O]r (NEZ.f). 

Then we have 

h(N) ?>_h(I) = l(I). 

Proof. The proof is by induction on l(l). If l(I) = 0 the proposition is trivial. 

Therefore we assume the proposition for I with l(I)==l-1, and shall prove it for I 

with l(I) =l>O. 

Let I=(i1 , i2, ···, ik, ···) and put I'=(i2 , i3 , ···, ik, ···). The::1 we have 

[N]r C ShSt1'[0]r. Therefore there is an element ME ZJ such that 

(4.6) 

(4. 7) 

[M]r C st''[O]r, 

[N]r C St;t[M]r. 

Since I' E Z': is admissible and l(I') =l-1, it follows from (4. 6) and the hypothesis 

of induction that 

(4.8) h(M) ~h(I') = l--1 . 

Since I is admissible, we have by the definition 

ik~Pik+t, k = 1, 2, · · ·. 

Adding these inequalities, we have 

i,;;;;(p-1)(i2+i3+ .. ·) = (p-1)d(I'). 

Since l (I)> 0, we have i 1 > 0. Therefore, by Lemma 7, it follows from ( 4. 7) that 

(4.9) h(N) >h(M) +1. 

Together (4. 8) with (4. 9), we obtain h(N)?: l =h(I). Q.E.D. 

A direct consequence of Propositions 5 and 8, we have 

THEOREM 3. Let IE Z+ be admissible and h(I) > r. Then it holds that 

Denote by a; E ®r (1 < i<r) the permutation which interchanges i and i+1, and 

leaves fixed all the other letters. It is well known that ®r is generated by a 1 , a 2 , ••• , 

ar- 1 with the defining relations : 

ar =a~ = ... = a;_l = 1' (a;aj) 2 = 1 

(a;ai+1)3 = 1 
if i+1<j' 

(See Dickson: Linear groups p. 287). Therefore it follows that if we define 

(i = 1, 2, ···, r-1), 

then ®r becomes an operator group on a vector space HtC3£(Sn); Zp) generated by 
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the set lBr (see Proposition 4). Let cEHa*C:8£(Sn); Zp). If ac=c for any aE@Sy, 

we call that c is symmetric. 

PROPOSITION 7. If c E H~C.S;csn) ; Zp) zs symmetric, then so is Str c for any 

proper IE Z':. Especially Str[ O]r is symmetric. 

Proof. By straightforward calculation, it follows from Proposition 5 that a; E C5r 

commutes with Sq5
, CPs and .d (i.e. a; Sq5 [MJr=Sq5 a;[M]r etc). Therefore we have 

aSq5 =Sq5 a, a(P 5 =(P 5a and a.d=.da for any aE C5r. This proves the proposition. 

Q.E.D. 

LEMMA 8. Let M= (m,, mz, ... ' mk, .. ·), N= (n,' nz, ... ' nk, .. ·) E z~, and ioo~o 

or 1 mod 2(P-1). Assume now [N]r C SttMJr· Then, for q such that mq>O, we 

have nq < pmq. 

Proof. Since the proof for P=2 is similar, we write only the proof for P>2. 

Put i=2s(P-1) +e: (s E Z+, e:=O or 1). 

Case 1: e:=O. We may assume that nk=mk+Zs,(p-1), S= (s1 , s2 , • • ·, sk, · · ·) 

EZJ, d(S)=s. Put m"=2tk+7Jk (tkEZt-. 7Jk=O or 1). Then it follows from Pro

position 5 and the assumption that 

Ct+:,,-1)Cz+;:-1)···Cr+;:-1)*o mod p. 

( tq-1-Y}q-1) 
Especially Sq =F 0. Since mq > 0, we have tq + Y}q -1 ;;;-; 0. Therefore it follows 

from Lemma 6 that fq-1-Y}q-1 Sq. From this, we have mq-2Sq=2tq-1-Y}q-2sq;;;,2 

-r;q>O. Hence pmq-nq= (p-1)mq+ (mq-nq) = (P-1)mq-2Sq(p-1) = (p-1) (mq-

2sq) >O. Namely we have pmq>nq. 

Case 2: e:=l. The lemma follows easily from the result for e:=O and (4. 3). 

Q.E.D. 

PROPOSITION 8. Let IEZJ be admissible, and NEZ_:". Then if[N]r C Str[O]n 

we have N<I. Furthermore UJr C Str[OJr· 

Proof.4 ) We write only the proof for P>2. The proof for P=2 is similar. 

Since the statement is trivial if l (I) = 0, we proceed by induction on l (I). 

Assuming the stateme:J.t for I with l(I) =l-1, we shall prove it for I with 

l(I) =l>l. 

Let I= (i,, i2 , • • ·, ik, ···),and put I'= (i2 , i3 , • • ·, ik, · · ·). The:J. if [NJr C Stf[OJn 

there exists an element ME ZJ such that 

(4. 10) 

(4. 11) 

[M] C St1'[0Jr, 

[N]r C St;'[M]r. 

4) I am indebted to my colleagues Mizuno and Toda for the improvement of this proof. 
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Since I' is admissible and l(I') = l-1, it follows from ( 4.10) and the hypothesis of 

induction that M <I'. Let M= (m1 , m2 , • • ·, mk, · • ·) and N= (n1, n2 , • • ·, nk> · • ·). 

Case 1 : m1 > 0. It follows from Lemma 8 and ( 4.11) that n1 <Pm1 • Since 

M <I', we have m1 < i2 • Therefore we obtain 

Thus we have N <I. 
Case 2: m1 = 0. It follows from Proposition 7 and ( 4.10) that 

Therefore, by the hypothesis of induction, we have 

It follows from ( 4. 11) and Proposition 5 that 

Therefore we obtain 

This completes the proof of the first part. 

. I' 
Assume that [IJr C St'l[MJr with [MJr C St [OJr. Then it follows from the 

above argument that M= (0, i 2 , i 3 , • • ·). Thus, by the hypothesis of induction and Pro-

positions 5 and 8, we have the second part. Q.E.D. 

As a direct consequence of Propositions 4 and 9, we obtain 

THEOREM 4. A set of elements StlOJrEHnH(30(Sn); Zp) is linearly indepen

dent, where IE Z";' is extended over all admissible and special elements such that 

d(I) =q<n and l(I) < r. 

5. Proof of main theorem 

A point of the m-fold symmetric product (iSm (K) is represented by an unordered 

set {t1, t2 , • • ·, tm} with tj E K for j =1, 2, · · ·, m. Let * E K be a fixed vertex. For 

any integers m, n with m < n, define a map 1m, n: (iSm (K) ~ (5n(K) by 

Obviously 1m, n maps (5m(K) into (5n(K) homeomorphically. The inductive limit of 

the sequence 

C1, 2 'm, m+1 
K = (51 (K) ~ €2 (K) ~ · · ·-~ISm (K) ~ (5m+l (K) ~ · · · 

is called the infinite symmetric product of K, and is denoted by (5=(K). 

The following theorem was established in [7] by the author. 
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THEOREM 5. Let m < n, then the injection homomorphism 

is an epimorphism for any q. 

From this, we have 

THEOREM 6. Let em : ®m (K) ~ ®= (K) be the inclusion map, then the injection 

homomorphism 

is an epimorphism for any q. 

Proof. It follows from Theorem 5 thai the homomorphism of homology 

is a monomorphism for any n~m. Let aEHq(®mCK); Zp) be an e~ement such 

that c.;i;(a) =0, and c a cocycle mod p in ®m (K) representing a. Then c is a bound

ing cycle in ®n(K) for sufficiently large n. Therefore we have 'm'n*Ca)=O, and 

hence a=O by the fact above-mentioned. Thus it follows that the homomorphism of 

homology 

is a monomorphism. From this we have immediately Theorem 6. Q. E. D. 

The following theorem was established by A.Dold-R.Thom [ 4] and others. 

THEOREM 7. ®=(S") is an Eilenberg-MacLane complex K(Z, n) (i.e. the homo

topy group rr;(®=(S"))=Z for i=n, and =0 for i=l=n), where Z denotes the addi

tive group of integers. 

The mod p cohomology group H*(Z, n; Zp) of K(Z, n) was calculated by H. 

Cartan [2] (See also J-P. Serre [9] for P=2): 

THEOREM 8. Denote by u0 a fixed generator of H"(Z, n; Zp) = Zp. Then if 

q<n the vector space HnH(Z, n; Zp) has a base formed by elements Stru0 , where 

IE Zo;. is extended over all admissible and special elements with d(I) =q. 

We have 

PROPOSITION 10. Put Vo,m=c;Cuo), then H"C®m(S"); Zp) is a cyclic group of 

order P whose generator is Vo,m· lfm=pr then p*Vo,m=a[OJr with a$0 modp, 

where p* is the homomorphism in Theorem 2. 

Proof. It is known [5, 7] that H"C®mCS"); Zp) has a subgroup isomorphic 

with H"(S"; Zp) = Zp. Therefore the first part of Proposition 10 follows from 

Theorems 6 and 7. The second part follows from Theorem 2 and Proposition 4. 

Q.E.D. 
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We shall now prove 

MAIN THEOREM. Let ph:Sm<Ph+' and q<n. Then the vector space HnH(®m 

csn) ; z p) has a base formed by elements Stl Vo, m' where IE Z'.'; is extended over all 

admissible and special elements with d(I) =q and l(I) <h. 

Proof. It follows from TheJrems 6, 7 and 8 using the naturality of St' that the 

vector space HnH(®m (Sn) ; Zp) is generate:l by elements Stl Vo, m, where IE Z'.'; is 

extended over all admissib~e and special eleme1ts with d(I) =q. Therefore, for the 

proof of the theorem, it is sufficie:1t to prove the following (A) and (B). 

(A) If I is an admissible element with l(I) >h, then Stl v0 m=O. 
' 

(B) If :2ja;Stl;V0,m=O (a;EZp) for admissible and special e~ements I; with 
i 

d (I;) = q and l (!;) < h, then we have a;= 0. 

" For a proof of (A), let m=).:jah-rPr (a0 =\=0) be the p-adic expansion of m, and con-

sider the diagram 
r=o 

~?* 
HnH(:8J,(Sn); Zp) ~ HnH((S)m(Sn); Zp) 

t * jP 

where .o* and ~~ ~ are the homomorphisms me;1tioned in ;; 2. It follows from defini

tions that the commutativity holds in this diagram. Therefore we have 

Since r5ch<l(I), Proposition 10 and Theorem 3 imply that p*Stlvo,P'·~aStiiOir~O. 

Namely we have 

~?*.n*Stl Vo,m = 0 for every (r, j) E W(m). 

Thus it follows from Corollary of Theorem 1' that p*Stlvo,m=O. By Theorem 2, we 

have si Vo, m = 0. This completes the proof of (A). 

From the assumption of (B), we have ~a;Seiv0 ph=cj,h mC~a,Siiv0 m)=O. 
i ' ' i ' 

Therefore we obtain by Proposition 10 that ~a;St1'[0]h=O. Then Theorem 4 implies 
i 

that a;=O for each i, and we have (B). Q.E.D. 

Together with Proposition 7, we have 

CoROLLARY 1. If q<n, the image of HnH(®ph(Sn); Zp) by the monomorphism 

.o* is contained zn the subspace of Hn-;q($~~Sn) ; Zp) formed by all the symmetric 

elements. 

We have also 

CoROLLARY 2. If ph~m<phil and q n, then the homomorphism cth,m: sn_,q 

C®m(Sn); Zp)-------+ Hn+q(®ph(Sn); Zp) is an isomorphism. 
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