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Throughout this paper, we deaxote by &,, the symmetric group of degree m, K a
finite simplicial complex and p a fixed prime integer. The group &,, operates in a
natural way on the m—fold cartesian product X,,(K)=Kx Kx---xX K. The orbit space
&S, (K) over ¥, (K) relative to &, is called the m-fold symmetric product. We
study in the preseat paper the cohomology mod p of the symmetric product &, (S”)
of an m-sphere S”. However the method we use will be applicable for calculation of
cohomology of the symmetric product of more general complexes.

Let St! denote the iterated Steenrod reduced powers, and vy, m a generator of
H"(&,,(S"); Zp)~Zp. Then our main theorem is stated as follows® : If ¢< # and
pr<m<_ p"*1, the vector space H**(&,,(S");Z,) has a base formed by elements St'y o, ms
where I runs over the set of all admissible and special elements with degree ¢ and
leagth < k. (See $3 for the precise definitions.)

The method we use is as follows.

Let ©.(K) denote the infinite symmetric product of K. It follows from a result
in my paper [7] that the injection homomorphism ¢%: HY(&..(K) ; Z,,—>H!(&,,(K) ;
Zp) is an epimorphism. As was proved by Dold-Thom [4], ©.(K) is a product of
the Eileaberg-MacLane complexes. Therefore we can describe a set of generators for
HY(&,,(K); Zp) in virtue of the Cartan’s computation [2]. In order to examine if
these generators are linearly independent, we choose a particular p-Sylow subgroup
S, of &,,, and consider the orbit space &,,(K) over ¥,,(K) relative to &,,. The
natural projection defines a homomorphism o*: HY(€,,(K) ; Z»)— HY(G,,(K) ; Zs).
We prove it by using of the transfer homomorphism that o* is a monomorphism. Let
m=apP+a;p* + -« - - +ay, (0< a; < p) be the p-adic expansion of 7, and denote by 3,(K)
the p-fold cyclic product of K (i.e. the orbit space over X,(K) relative to the subgroup
BprC &p of cyclic permutations). Thea we have that &,,(K) is homeomorphic with
the space ¥ao(Bh(K)) X ¥a, (B 1(K)) X - -+ X Xa,(K), where 35 K) denotes the iterated
cyclic product 3,35 -3,(K) (r—times) of K. As for the cohomology structure of
B,(K), T have studied in the paper [6]. By making use of some results there, we

analyse the cohomology structure mod p of 33(K), and we determine the dependence
of the generators.

0) (Added April 14, 1958) I have recently succeeded in determination of the cohomology ring
H*(Gn(S"); Zp)-
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1. The orbit space &,»(K)

In this and next sections, we study the orbit space over the m-fold cartesian
product of K relative to a p-Sylow subgroup of &,,. The special case m=p" is
dealt in this section, and the general case in next section.

Let ¢ be an integer =~0. Denote by £, a set consisting of all sequences (¢, 7,,
«++,1q), wWhere each i; is an integer mod p. £, has p? elements. We shall associate

to an element (i1, %, -, iq) € £¢ an integer Aiy i, ..., iq defined as follows :

>

A ig = 0PI Fip? i - i+ 0L <p).

iy, 92, 00
This gives clearly a one-to-one correspondence of £, onto the set {1, 2, -- -, p?}.

We shall regard &, as the group of all transformations of m letters 1,2, ---, m.
For each ¢ (0<¢q<7) and each (ky, ky, -, ks €8,;, we define an element
TE by, -, kg € ©pr bY

1.1 g, oo kg (Aiy, oo iy)
=Ai1,"',iq,iq+1+1,iq+2y"',ir if (ll, ey Zq>:<k1, ey kq),
=A;, ..., otherwise.

Obviously we have
(1.2) (Th,, ... e)?=1.
We shall prove
LEmmMA 1. AR 0 i S
= Tz.l, "',qu}.l, "'yjm if miq and <j17 MY jm)#:<k17 ftts km>’
= T;Iy "’)km;km+1+17 km+27 AR qu-’i'ly Tty jm
if m<Zq and (ji, ==+, jm) = By, <+, k).
Proof. The following can be easily proved from the definition (1.1).
Case I: m=q and (ji,**, jm)=F ke, "+, k)
T;l’ ceey jmT};l’ ey, kq(Aih e, ir>
= T};h ""qu}‘l; ceny jm<Ai1; EEEIN ir)
Ail, ey gl ity iy if (il’ ) lm) = (jlr ) JM) ’
=1 Ai, e igut, ooy iy A Goyoe i) Z=(Gn, e ) and (i, oo o, i) = (R, -+ v, k),
Ail) ey iy if (ily ) im):%:(jly M im) ahd (il) ) iq)#:(kly ) kq)-
Case II: m< g and (fi, ", jm)=Cks, =+, k)

7 N r
le’ ey, ]m7 kyy coy kq(Ai1, ceey, "1’>

r . . . N
kyy ooey kppyatl, ooy qujl’ Ty ]m<A’1) Tty ir)

I

Aily AR IVER TS SIKIEINE FASES SUCELI 7 if <i1’ Tt iq) = <k1’ T kq) 4
Ail,---,z’m;1+l,---,ir if (ilv"'>iq):k:(kl7"'v kq) and (ilv"'» im)z(klv"': km>,
Ail,"‘,ir if (ilr"'yim)q:(kh"';km) Q.E.D.
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Let 7}, ..., 2, CSpr denote a cyclic subgroup generated by 77, v, kg- The
order of mj, ... x, is p. Since
, kg = T‘);l) ""qu;l> cey iq if (jl) Sty ]q>:‘: (kl» R kQ) ’
we may define pf,, CSpr (0 g<7) by

(1.3) T3, T, ...

e, g

0441 = i Lk
Chyy vy kg2 €Qg b e
the product of zf,, ..., x,’s as subgroups of ©pr. g, is the direct product of 7}, , ... &,’s,

and its order is the p%-th power of p.
Next, for ¢=1, 2, - -+, 7, define

Y T r
Oq = 0102 °° 0q

the product of op’s as subgroups of &,r. Since Lemma 1 yields that ploh=ohol,

ALm,n<gq), it follows that ¢} is a subgroup of S,r. Furthermore Lemma 1 shows
that pf is an invariant subgroup of ¢5. We have
(1.4) o5/ 0f =~ g§y.

Actually, o} is a split extension of of by ¢5_,, where ¢5_, operates non-trivially on pj.
From (1.4), we obtain by induction on ¢ that the order of ¢} is the (p9~1+p97 %4+ -+1)-
th power of p.

We write ®p»=07. The order of ®pr is the (p" 1+ p"?+-.-+1)-th power of p.
Since this is the highest order of p in p”!, the group ®pr is a p-Sylow subgroup of
Sy

We note here the following

Lemva 2. If 0<q<r—1 and Ti' .. p,(Ai, o iy )=Aj, o ip_y» Lhen
T”"l) Ty kq(Aily t ir):Ajlv AR jr—ly iy

This is clear from the definition (1.1).

Let ¥,7(K) be the p”—fold cartesian product of K. A point x of Xpr(K) is given

as a function x defined for each A and takes values in K. The symmetric

i1y 0ty iy

group &,r operates on X,7(K) in a natural manner :

(ax) (A, ey i) = x(@(Ayy, ey i,)), €Sy,

iy, o igy v

Define a map f: ¥,r(K)——> ¥pr-1(¥,(K)) by
(Fe) Ay, e iD= x(A,l, i, O X XA i, DX ‘Xx(Ail, ey ipety p—-l) € Xp(K) .

It is obvious that f is an onto-homeomorphism.
LemMa 3. If 0<q<r-—1, then

fT,fh v kg = T;’;;l’ -~-,kqf-

’

1) Such a subgroup for p=2 is studied in [1] by J. Adem.
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Proof. Let x€¥pr(K) and put Aj,, ..., 7, =Ti*, o, kg(Aiy, oo, ip_)- Then we
have

<fT’7;17"'ykqx> <Ai1r"')ir—1)
= (T7, oo k) Ay, o iy, ) X X (T e g (Aiy o iy, p=0)

=x(Ajy, e, dpg, 0) X0 X X(Ajy, e Gy, p-1) (cf. Lemma 2)
= (fx)(Aj,, -, ipy)
= ( ;1—1, kqfx)(Ail’ vy ir—l) . Q.E.D.

Denote by 3,(K) the p-fold cyclic product of K. Let 3, C ©, be the subgroup
of cyclic permutations. Then, by definition, 3,(K) is the orbit space O(X,(K), 3s)
over ¥,(K) relative to 3. Write I: ¥,(K)—>3,(K) for the identification map.

Let g: ¥pr-1(¥,(K))—> Xpr-1(3p(K)) be a continuous map defined by

g=1IxIx-.-xI (p'-fold),

namely
(gy) (A, oo i) =T Asy o i) s Y EXpr-1(Xp(KD) .

It follows immediately that

(1.5) Bg=gB (BEGpr-1).
LEMMA 4. gfTh,, ... k=81 for q=r—1,
=Tay, -, 1g8F for g<r—1.

Proof. The formula for 0<{g< 7r—1 is obvious from Lemma 3 and (1.5). We
shall prove gf T}, ..., k,_, =&/
For x € X,»K), we have

FTE, e by ®) Ay, oo iyy)
=(Th, o by (A o iy, )X X(TH sy ) (Ady e iy, p1)
x(A viper, DX XX (A iy, =) XX (A iy, )
if G, ooy dro) =y, =00, Rror),
X(Aiy, e i ) X XA Asy o iy, pe2) XE(Al ol pe1)
it (G, e L) = (hy,y o0y Bpmr)

i1, nr

Therefore it follows that

GSfTr, oo kyey®) (Aiy, e iyey)
=1((fTh, e k) (A, e i)
=T(Asy, vy igeg, ) X X8 (A o iy pe))
=102 (Aiy, n ) ipey))
= (gfx) (Aiy, e, ipy) - Q.E.D.

2) Let Y be a space on which a group I' operates. Then the orbit space O(Y, I') over Y
relative to I' is defined as a space obtained from Y by identifying each point y€ Y with
its image v(y) (veI').
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LemMA 5. If gf(x)=gf(x") for x, ¥ € Xpr(K), then ¥'=ax with a€ ol.

Proof. Since (gfx)(A D=Ix(Ayy, e ipoy, ) X XAy o iy, 1))

and (gfx)(A ipg, ) X X (A »-1)), it follows that

iy ey iy~

T /,
ily"':ir—1>_1(x(Ai17"'7 iy oy iyt

x,<Ai1, CEEINE PO ir) = x<Ai1, [EEI P ir-l—n) (ir = 0’ 1, .-, p_1> ’

where n=n(i;, -+, ir_,) is an integer mod p depending on (i, * -+, 7,-1).
Let a be an element of the abelian group o7 defined by

a= 7 (T7)s sy )0 5 R
Clyy vy By 1D€Qp g

Then it follows that
(ax) (Aiy, .o ip)

=x((T5,, .. 5, "0 10 (Ay o 3))

=x(Ai, o ipy, ipin) (m=n( o ).
Therefore x'(4;,, ..., :,)=(ax)(4;, ..., :,), and hence ' =ax. Q.E.D.

Write &,~(K) for the orbit space O(¥,+(K), &,r), and consider the ideatification

maps

¢: Xpr(K)—>Bpr(K),

¢ Xpr1(3p(K)) —> Opr-1(8p(K)) .

Then it follows from Lemma 4 that gf: Xpr(K)— Xpr-1(85(K)) defines a continuous
map 2: Gpr(K)—> Spr-1(35(K)) such that

(1.6) bgf=he.
ProrosITION 1. % is an onto-homeomorphism.

Proof. Since gf and ¢ are onto, it follows from (1.6) easily that % is onto. We
shall next prove that % is one-to-one. Since ¢ is onto, it is sufficient for this purpose
to prove that if he(x)=he(x") for x, ¥’ € X,»(K) then x'=yx with y € ®pr. Under this
assumption, it follows from (1.6) that ¢gf(x)=¢gf(x"). Therefore gf(x)=pgf(x)
with B€ Gpr-1. Let =T7*T*-- T ', where each I; € 2, (¢<(r—1). Put B=T% T3,
-++T7, €Gpr. Then it follows from Lemma 4 that g f(#) =gfB(x). Therefore Lemma 5
implies that ¥’ =afx with a € p7. Puty=aB. Since 7€ ®,», we obtain #’=7x (7 € ©»).

Since 7% is continuous and &,+(K) is compact, it follows that % is an onto-
homeomorphism. Q.E.D.

Define the iterated cyclic product 35(K)(r=0,1, -+-) by

Bp(K) = 3,(3;'(K)), 3yK)=K.
We have

THEOREM 1. The space Spr(K) is homeomorphic with the iterated cyclic product
7 (KD,

Proof. For r=0 the theorem is trivial. To establish the general case we proceed
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by induction. Assume that ®1(3,(K)) is homeomorphic with 3;7*(K) for every
K. Then ©pr-1(8p(K)) is homeomorphic with 3;~1(8,(K))=35(K). Therefore it
follows from Proposition 1 that &,~(K) is homeomorphic with 35(K). Q.E.D.

2. The orbit space &,,(K)

Let m be an integer, and let
h
m=3a-p"  (0=a;<p)

be the p-adic expansion of m. Denote by W(m) a set consisting of all pairs (7, j)
of integers such that 0<r<</h, 1 <j<a,_,. To each (#, j) € W(m), we shall associate
a monotone map f4: {1,2, .-, p"}——{1, 2, -+, m} defined by

BU) = 31 g+ (G-Dpr s A<s<p),

g=7+1

and define a monomorphism 0: &yr—> &,, by
(Ala) (1) = Bla(s) if #=0.(s) with 1<s<p",
=1 otherwise,
where @ € ©,» and 1 <t<m. Write /@,» for the image group #7(®,~), where &, is

the p-Sylow subgroup of ©&,r mentioned in §1. If (7, 7)== (¢, k), then af=pa for
a €i@yr, BE€ MSBpa. Therefore we may define a group &, CS,, by

®m = H j@p" )

,j>EWem)
the product of /&,+'s as subgroups of &,,. &,,is the direct product of /®&,»’s, and hence
its order is the (ﬁ an_ (P71 p" "%+ - -+1))-th power of p. This is the highest power
of p in m!, so tfz;t ®,, is a p-Sylow subgroup of &,,.

We shall represent points of X,,(K) as functions y defined on {1, 2, -+, m} and

take values in K. The operation of &,, on X,,(K) is written as follows:
(By) () = y(B) BEC,, yeX,(K), 1<t<m.
To each (7, j) € W(m), we shall associate two maps
El: Xpr(K)—%,(K), %}t %,(K)—> %K)
defined by

(Eix)(H) = x(s) if t=0Js, and =% otherwise,
@iy () = y(Bls),

where 1<s<p”, 1<t<m, x€ ¥XprK), y€¥,,(K) and *x is a base vertex of K. Itis

obvious that for any a € Syr
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Ela = (Fla)él,

() = ayl if (¢, k) = (r,j), and =7} otherwise.
Therefore the maps &/ and 7} yield respectively maps &.: &,r(K)—>8,,(K) and
771 G, (K)—> G,»(K). It follows immediately that

2.1 7t&1 = identity map it (r,7)=1(gk,
= constant map if (r,j)=F0@ k).
Define a map 7: 6, (K) —— X, (G (K)) < ¥, (Gpr-1(K)) X+ -+ X ¥a,(K) by
7(2) = (h(2) X+« - X 970(2)) X (751 (2) X+ - X gty (2)) X o+ o X (5(2) X+ + - X7 (2))
It is easily seen that % is an onto-homeomorphism. Therefore by Theorem 1 we have
TuroreM 1. The space &,,(K) is homeomorphic with the sj;ace X4, (BE(K)) X
Xy, (B5 M (K)) X e+ X Xa ), (K)®.
For ¢ >0, let
g% HY(S,(K); Zp)—>HY(Gpr(K) 5 Zp),
¥ HU(Gpr(K); Zp) —>HU (S (K) ; Zp)

be the homomorphisms induced by &} and %’ respectively. We have then by (2.1)

E1%pe* = identity if (r,)H)=(0g k),
=0 it (r, )=F(g k).

Therefore, by the Kiinneth relation, we have

COROLLARY. Assume that K is (n—1)-connected and q<2n. Then a set of the
homomorphisms EI* (resp. 9i*), (z, j) € W(m), provides a projective (resp. injective)
representation of HY(S,,(K); Zp) as a direct sum.

Let

01 Xy (Bp(E)) X Xy (B (K)) X+ - X X, (K) —> &, (K)
be the natural projection of &,,(K) onto €,,(K). Then we have
THEOREM 2. The homomorphism
o HU@,(K); Zp) — HI(X, (Bp(K)) x X (B (K)) X+ X Xa (KD 3 Zp)

induced by o is a monomorphism for any q.
More generally we have

THEOREM 2. Let Iy, I’y (I'\CI7,) be two subgroups of ©,, such that the index

3) Let &} be any p-Sylow subgroup of &,. By the well-known fact, &,, and &;, are con-
jugate. Therefore the space (,,(K) and &,,(K) are homeomorphic. In general the follow-
ing holds: Let Y be a space on which a group I" operates, and I/, I'”” be conjugate subgroups
of I'. Then the orbit space O(Y,I"”) and O(Y, I'"") are homeomorphic. In fact, if I/ =al"a~!
with @€ I', the map a:0(Y, I'")—>O(Y, I'”) induced by the transformation ¢:Y—>Y
gives a homeomorphism.
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(Ty: ') of I'yin Iy is prime to p.  Then the homomorphism o*: H'(O(%,,(K), I,);
Zp)—>HY(O(¥,,(K), I')) ; Zp) induced by the natural projection o is a monomorphism

for any q.
Since ®,, is a p-Sylow subgroup of &,,, the index (&,:6®,) is prime to p.
Therefore Theorem 2’ implies Theorem 2.

Proof of Theorem 2. As in the proof of Proposition 1 in [7], it is given by
means of the special cohomology groups and the transfer homomorphism.

Let C4(¥,,(K); Z,)Ts be the subgroup of the (alternative) cochain group C?(¥,,(K);
Z,) which consist of all cochains # such that y#=wu for all y€I7; (j=1,2). Then
{C1(¥,,(K); Zy)T, 6} is a cochain complex, where J denotes the coboundary operator
of the simplicial complex ¥,(K). The cohomology group of this complex is denoted
by T3 H(X,,(K) ; Z) (the special cohomology group). Let i: CY(¥,,(K) ; Zp)Ta—>
C!(¥,,(K) ; Zp)™1 be the inclusion, and ¢: C/(¥,,(K) ; Zp)T'1——> C¥(X,,(K) ; Zp)"2 the
transfer homomorphism (cf. p. 254 of [3]). We have then

ti(e) = Uy I')e, c€CXu(K) ;5 Zp)Te,

The cochain maps 7 and f induce the homomorphisms ¢*: FElH"(Xm(K); Zp)—>
THY(X,,(K) ; Zp) and £*: I‘TlH‘I(%m (K); Zp)——ﬂ‘?lHq(%m (K) ; Zp) respectively, and
we have
Py = (I 1) .

Since (I7,: I";) is prime to p, it follows that £** is an automorphism, and hence 7*
is a monomorphism. Denote by ¢;: X,,(K)—> O(¥%,,(K), I';) the natural projection
(7=1,2). Obviously ¢; induces an isomorphism ¢F: H?(O(X,,(K), I';); Zp)—>
1“71H"(3€m(K); Zp), and the commutativity %@y =¢70* holds. Consequently o* is a

monomorphism. Q.E.D.

3. Prerequisites : notations, cohomology of cyclic product

Let Z, denote the set of all non-negative integers. We denote by Z5 the set

consisting of all sequences
I=<Z.17 i2a"'>ik"'>v <ik‘€Z+)
such that ¢,=0 for sufficiently large k. In Z7, we shall consider the following rela-
tion of order < (lexicographic order from the left): For any two elements
I=(iy, 4y, ,ip, ) and J="7,, jo,**, jr,+++) of Z%, we write I<_J if and only if
Z.l = jl’ MY ik = jk s Z‘k—l—1<]‘k+1
for some k.

For any element I= (i, iy, -, i, ) € Z%, the length I(I), the height h(I) and
the degree d(I) are deficed as follows:
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I(I) = the least number of / such that ¢,=0 for all 2>/,
h(I) = number of the set {k|i,==0},

acn :k}; ip.

An element (iy, @5, "+, ig, +++) €ZY is called to be proper if i,=0 or 1 mod
2(p—1) for any k. A proper element (¢;, 7,,+++, %z, --) is called to be admissible if
ip=>pip.. is satisfied for any k>1. For an admissible element I, we have h(I)=/(I).
We say that an element (4, 4, -+, iz, ) is special if ir==1 for any k.

The element (0,0,---,0,---) € Z7 is denoted by O. This is a unique element
such that the leagth is 0. O is admissible and special.

For each € Z,, we define a subset ZI C Z? by

T={eZz I <7} .
For any complex K, the Steenrod operations are homomorphisms
Sq°: HY(K; Z,) —> H"(K; Z,) for p=2,
®°: H(K; Zp) —> H?>P-O(K; Zp) for p>2.
We shall denote by
4: HY(K; Zp) —> H"™ (K Zp)
the coboundary operation associated with the coefficient sequence 0——> Zp——> Zp2—>
Zp—> 0 (the Bockstein homomorphism).
Let i=2s(p—1)+e, where s€ Z, and ¢=0 or 1. Then, following H. Cartan [2],
we put
St = Sq*
=P° if ¢=0, =4®° if e=1
according as p=2 or p_>2, and we associate to each proper element I= (s, 7, ",
i, ** ) a homomorphism
St': HI(K; Zp) — H™HD(K; Zy)
defined by
St = StISt ... Stk

With J. Adem [1], we make the following convention on the binomial coefficient :
For any integers ¢ and j, we put
i\ _iG=1)---G—j+1) e .
(]’) - il it 7>0,
=1 if 7=0, and =0 if ;<0.
It should be noted that (;1) =(—1)/ if j€Z,. The definition implies directly

LEMMA 6. If (;Ho and i=0, then i>j.
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The cohomology of the p—fold cyclic product 3,(K) of K is studied by the
author in his paper [6]. In the study, the homomorphisms

¢o*: H'(X,(K) 3 Zp) —> HY(3p(K) , 25(K) 5 Zp)
En: HY(K; Zp) —>H""(3p(K), 2(K); Zs)
are fundamental. By using of these homomorphisms, we shall now define a homo-
morphism
3.1) O HU (K Zp) ——> H"™(35(K) 5 Zp)
for each m€ Z, as follows:

0y(c) = j¥g*((—e)x1x -+ x1),
0 (c) = j¥E, () (m>0),

where ¢ € H(K; Z,), 1 denotes the unit class of H*(K; Z,) and j¥*: H?""(3,(K),
0,(K); Zp) — H*™(35(K); Zp) is the injection homomorphism. @ =0 is a direct

consequence of the definition of E;.
Theorem (11.4) in [6] yields
ProPOSITION 2. Let B be a basis of the vector space H*(K; Zp). Then a set
O(B) ={0,,b) | beB, 0<m<L (p—1)dimb, m==1}

of elements of the vector space H*(3,(K); Zp) is independent. If K is (n—1)-
connected and q<_2n, then a base for the vector space H*(B,(K) ; Zp) can be formed
by a set {c€ ®(B) |dim c=g}.

Theorems (11.6) and (11.7) in [6] give

PROFOSITION 3. Letm, s€Zy and m=2t+y with t€ Z., =007 1. Then it holds
that

=fﬂm ) Ourisa™ for p=2,
j=0
é(t+w 1>@m+2i(1>—1)638_j for p>2,
A+ (=10 /2 Opis+ (1) D, 4.

Il

4. Cohomology of iterated cyclic products of spheres

Let S” denote an #n-sphere (#n>1), and ¢” be a fixed generator of H"(S"; Zp).
Let r€¢Z,, and M= (m,, m,, -++, my, ---) be an element of ZI. Then we shall as-
sociate to M an element [M1,=[m,, : -, m,] € H*+4M(B1(S") ; Z,) defined as the

image of ¢” by the composite homomorphism

0, -
H”(S” ZP (S") : Zp) 7 : Hn'*m"‘ﬁm"<82<sn> : Zp) — e

0,
5 Hre (S 5 Z,)
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It is clear that dim [M],>=#n for any M€ Z7, and that
4.1 D[y, -y my ] = [my, my, -+ ,m7], Op () =[m].

It follows from the fact @, =0 that [M ],=0 unless M€ Z is special.

From Proposition 2 we have immediately
ProproSITION 4. Put B, = {[M], | M€ ZI, M: special}. If qg<n, a basis for

the vector space H"t9(35(S™); Zp) can be formed by a set {c€%B,|dimc=n+gq}.
Especially H*(35(S™) ; Z,) is generated by the element [O],.

Throughout this section we assume that ‘every cohomology class has dimension
less than 2xn.
The following proposition can be proved from Proposition 3 and (4.1) by induc-

tion on 7. The proof is straightforward.
ProOPOSITION 5. We have in H¥(35(S™) ; Zp) the formulas:
(4.2) qu[ml y My, oo, mr]

ZS] (m;—l)(mz;l) cee (m’sjl) [my+s,, my+S8,,+-+,mp+s,] for p=2,

i

st[ml) My, 7"7]
M s e PN K T VR IS O
S Sy Sy
m2+282(p—_1) :"‘amr'f‘zsr(p—l)] fOr p>2’

where S=(8y, S2,+,8,0,0,--)€ZI, d(S)=s, and we put my,=2t,+v, with t,€ Z.,
7.=0 or 1.

(4.3) Admy, my, -, my]
ii? (1)t s (L4 (=18 /2 [my, -+, mp+1, oo, my ]
=1

Let MeZI, and let I€ ZY be proper. Then it follows from Propositions 4 and 5
that S#*[ M ], has a unique representation :

St'[M1], = %‘ an[N1l, (an€Zp),

where N is extended over all special elements of Z7 with d(N)=d(M)-+d{). If
any=F0 in this expression, we write

[N] C SI'[M],.
LEMMA 7. Let M, N€ ZI and i=0 or 1 mod 2(p—1). Then if
(p—DdM)Y<i, i>0, [N] < St'[M],,

we have
R(N)Z=h(M)+1.
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Proof. Since the result for p=2 are proved similarly, as an illustration we write
the proof for p>2. Let i=2s(p—1)+e (s€Z+, e=0 or 1).

Case 1: e=0. Let M=(my, my, -+, my, -++), N=(ny, #5,+++, 0, +++). Then, by
Proposition 5, we may assume that

np = mp+2s,(p—1) (k=1,2,--2),
S = (s, S,°**, S, -+ )EZL, d(S) =s.

Put # = h(M), and let m, >0 for k= a,, a&,, -+-, . The proposition is clear for
k=0, and hence we may assume 7 _>0.

Since np>my for any k, we have A(N)>h(M). Assume now A(N)=h(M).
Then we have n,=0 for k==a,, a,, + -+, s, and hence s,=0 for k=a,, a,, -, an,
Therefore if we put mp=2¢.+7, (k=1,2,-.-), it follows from (4.2) and the assump-
tion that

(tml+ vml‘_l)(taz'}_va’z—l) . (t‘”h+7709h_—1> EEO mod 5.

Say Sy Sap
Since f4,+74;,—1=0 for k=1, 2, --- , I, it follows from Lemma 6 that
ta,+Na,—1 =S, (k=1,2,---,h),
and hence
Mgy, = 2oy, + Nup =280 — Nap+2 > 28y, .
Therefore we have

h h
d(M) =k2 m‘”’>2k2 Sup = 25.
=1 =1
and so (p—1)d(M) >2s(p—1)=i, which contradicts with our assumption. Thus
h(N)=h(M)+1.

Case 2: e=1. Let i=1. Then M=O0, and hence the lemma is clear by (4.3).
Therefore we shall assume 7 _>1.

The assumption (p—1)d(M) <i=2s(p—1)+1 implies (p—1)d(M)<2s(p—1).
And, since i>>1, we have 2s(p—1)>0.

Since [N], C 4St#*#-Y[M7],, there exists an element L€ Z7 such that

(4.4) [L], C & M7,
(4.5) [N}, C 4L].

Since (p—1)d(M)<2s(p—1) and 2s(p—1)>0, it 'follows from (4.4) and the fact
just proved above that
h(L)=h(M)+1.

It follows from (4.3) and (4.5) that
h(N)=h(L).
Therefore we have h(N) =>=h(M) +1, Q.E.D,
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ProrosITION 6. Let 1€ ZS be admissible, and let

[N], C S/[0], (Nezp).
Then we have
hRN)YZ=ZRr(I) = I(T).

Proof. The proof is by induction on [/(I). If /(I)=0 the proposition is trivial.
Therefore we assume the proposition for I with /(I)==/—1, and shall prove it for I
with I(I)=I>>0.

Let I=(i, iy, *++, g, -+) and put I'=(,, 45, ***, iz, -++). Then we have
[N, C StisSH'TOT,. Therefore there is an element M€ ZI such that
(4.6) [M], C St'T0],,
4.7 [N, C St [M],.

Since I' € Z7 is admissible and I(I")=[—1, it follows from (4.6) and the hypothesis
of induction that

(4.8) MMY=hI) =1-1.
Since [ is admissible, we have by the definition
Ip=Pplpr, R=1,2,---.
Adding these inequalities, we have
= (p—1) (G tig+ -+ ) = (p—1)dT) .
Since /(1) >0, we have i, >0. Therefore, by Lemma 7, it follows from (4.7) that
4.9 RN)Zh(M)+1.
Together (4.8) with (4.9), we obtain A(N) =17 =h(I). Q.E.D.
A direct consequence of Propositions 5 and 8, we have
TuroreM 3. Let [€ Z7 be admissible and h(I)>r. Then it holds that
StL01, =0 in  HNB3(S™); Zy) .
Denote by a; € &, (1 <i<7) the permutation which interchanges { and 741, and

leaves fixed all the other letters. It is well known that &, is generated by «,, a,, -

’

a,_,; with the defining relations:

af=aj=-=a;=1, (gap)*=1 if i+1<j,
(aj;,1)° =1

(See Dickson: Linear groups p. 287). Therefore it follows that if we define
az[mh T My, Mgy, mr] = <‘1>mlm’+1 [mh ey My, My, e, mr]
(Z. = 1) 2y Tty 7’—1) y

then &, becomes an operator group on a vector space HF(35(S™); Z,) generated by
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the set B, (see Proposition 4). Let c€ H*(3;5(S"); Zp). If ac=c for any a€&,,

we call that ¢ is symmetric.

PROPOSITION 7. If c€ HE(B5(S™); Zp) is symmetric, then so is St'c for anmy
proper 1€ Z3. Especially St'[0], is symmetric.

Proof. By straightforward calculation, it follows from Proposition 5 that «; € &,
commutes with Sq°, ®° and 4 (i.e. @; S¢'[M],=Sq’a,[M], etc). Therefore we have
aSq’ =Sq’a, aP*=®*a and ad=da for any a € &,. This proves the proposition.

Q.E.D.

LEMMA 8' Let MZ(’”I)’”Z)"')mkw"'), N:(nl, nz,"',nk,"'>€Z.7|‘,, and i:_;_'o
or 1 mod 2(p—1). Assume now [N, C St'[M1,. Then, for q such that m, >0, we
have ng,< pmy.

Proof. Since the proof for p=2 is similar, we write only the proof for p >2.
Put i=2s(p—1)+e (s€Z4+, e=0 or 1).

Case 1: e=0. We may assume that np=mp+2s,(p—1), S=(s1, S, *+, Sp,**+)
€Zr, d(S)=s. Put m=2t,+v, (r€Z+, 7,=0 or 1). Then it follows from Pro-
position 5 and the assumption that

(tl+m~1 <tz+77r1 ...(tr“?r”l)f.co mod p
S1 > Sy ) S, - )

tg+7,—1 . .
( s ) =0. Since m, >0, we have f,+75,—12>0. Therefore it follows

Especially

from Lemma 6 that f,+79,—12>s,. From this, we have m,—2s,=2¢,+7,—25,>2
—754>0. Hence pmg—ng= (p—1ymg+ (mg—ng) =(p—1mg—25,(p—1)=(p—1) (my—
2s4) >0. Namely we have pmg, >n,.

Case 2: e=1. The lemma follows easily from the result for e=0 and (4. 3).
’ Q.E.D.

PROPOSITION 8. Let I€ Z] be admissible, and N Z1. Then if [N], C St'[0],,
we have N<I. Furthermore [I], C St'[0],.

Proof.> We write only the proof for p >2. The proof for p=2 is similar.

Since the statement is trivial if /(I)=0, we proceed by induction on /(I).

Assuming the statemeat for I with /(J)=/—1, we shall prove it for I with
IIH)=I[>1.

Let I=(i,, 6y, *+, ig, ), and put I’= (i, i3,+++, i, +-+). Theaif [N], C St'[0],,
there exists an element M€ ZJ such that

(4.10) [M] C st'To],,
(4.11) [N], C St'[M],.

4) I am indebted to my colleagues Mizuno and Toda for the improvement of this proof.
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Since I’ is admissible and /(I")=[—1, it follows from (4.10) and the hypothesis of
induction that M<I'. Let M= (m,, my, -+, mp,-+-) and N=(ny, #y,+, #p,***).

Case 1: m; >0. It follows from Lemma 8 and (4.11) that n,<pm,. Since

M<TI, we have m, <i,. Therefore we obtain
< pmy < pin < iy
Thus we have N<I.
Case 2: m;=0. It follows from Proposition 7 and (4.10) that
[my, my, -+, m,, O] = [my, m, -+, m,, m] C St'LO],.
Therefore, by the hypothesis of induction, we have
(Mg, Mg, ey My, 0,0,) < I = (4, ,;3,...) .
It follows from (4.11) and Proposition 5 that
N = (ny, ny, 3, ) < (my+dy, Mg, mg, - +) = (i, My, M, -+ *) .
Therefore we obtain
N Gyymy,my, o) <3y, d,000) = 1.
This completes the proof of the first part.
Assume that [I], C St'[M], with [M], C St'[O],. Then it follows from the

above argument that M= (0, i,, 45, -++). Thus, by the hypothesis of induction and Pro-
positions 5 and 8, we have the second part. Q.E.D.

As a direct consequence of Propositions 4 and 9, we obtain

THEOREM 4. A set of elements St[0], € H*9(35(S™) ; Zp) is linearly indepen-
dent, where 1¢ Z% is extended over all admissible and special elements such that
dI)=q<n and I(I)<r.

5. Proof of main theorem

A point of the m-fold symmetric product €,,(K) is represented by an unordered
set {t, f, -, tnt with ;€ K for j=1,2,-+-,m. Let %€ K be a fixed vertex. For
any integers m, n with m<n, define a map ¢, »: &, (K) —> &,(K) by

by Aty ts oty b} = (i, By oy By % %, o0}

Obviously ¢, , maps &,,(K) into ©,(K) homeomorphically. The inductive limit of
the sequence

Cmy m+1

81’
K= &(K) =% &,(K)—> = &, (K)

Gmia(K) = -+

is called the infinite symmetric product of K, and is denoted by &..(K).
The following theorem was established in [7] by the author.
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THEOREM 5. Let m=<n, then the injection homomorphism
tohont H(S,(K); Zp) —> HI(S,(K); Zp)

is an epimorphism for any q.

From this, we have

TuEOREM 6. Let ¢, : ©,,(K)—> &, (K) be the inclusion map, then the injection

homomor phism
tm: HY (G (K); Zp) —> H (S, (K); Zp)
is an epimovphism for any q.
Proof. 1t follows from Theorem 5 that the homomorphism of homology

(m, n*: Hq<@m<K) 5 ZP) — Hq<@n<K) 5 Zi’)

is a monomorphism for any n>m. Let a€ H,(&,,(K); Z») be an element such
that ¢5(a)=0, and ¢ a cocycle mod p in &,,(K) representing @. Then ¢ is a bound-
ing cycle in &,(K) for sufficiently large »n. Therefore we have ¢, (a)=0, and
hence a=0 by the fact above-mentioned. Thus it follows that the homomorphism of

homology
gt Hy (@ (K) 5 Zp) —> Hy(©.(K) 5 Zp)

is a monomorphism. From this we have immediately Theorem 6. Q. E.D.
The following theorem was established by A.Dold-R.Thom [4] and others.

TueorREM 7. ©&.(S™) is an Eilenberg-MacLane complex K(Z, n) (i.e. the homo-
topy group n;(S.(SM)~Z for i=n, and =0 for i==n), where Z denotes the addi-
tive group of integers.

The mod p cohomology group H*(Z, n; Zp) of K(Z, n) was calculated by H.
Cartan [2] (See also J-P. Serre [9] for p=2):

TueoreM 8. Denote by u, a fixed genevator of H"(Z, n; Zp)=~Zp. Then if
g<n the vector space H"*9(Z, n; Zp) has a base formed by elements St'u,, where
I¢ Z3 is extended over all admissible and special elements with d(I)=q.

We have

PROPOSITION 10. Put 0o u=tn(tho), then H"(&,,(S™); Zp) is a cyclic group of
order p whose generator is Vo . If m=p" then 0%vy m=alO0], with a==0 mod p,
where o* is the homomorphism in Theorem 2.

Proof. It is known [5, 7] that H"(&,(S"); Z») has a subgroup isomorphic
with H”(S®; Zp)=~Z,. Therefore the first part of Proposition 10 follows from
Theorems 6 and 7. The second part follows from Theorem 2 and Proposition 4.

Q.E.D.
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We shall now prove

MaiNn THEOREM. Let p"<m< p"+* and q<n. Then the vector space H" (&,
(S™); Zp) has a base formed by elements St’vo,m, where 1€ Z3 is extended over all
admissible and special elements with d(I)=q and I(I)<h.

Proof. It follows from Theorems 6, 7 and 8 using the naturality of St' that the
vector space H"+9(&,,(S"); Zp) is generated by elements St' Vo,m, wWhere I€ZT is
extended over all admissible and special elemeits with d(/)=¢q. Therefore, for the
proof of the theorem, it is sufficient to prove the following (A) and (B).

(A) If Iis an admissible element with /(J) >4, then St/ Vo, m=0.

B) It }'i_,‘a;Stlivo,m=O (a; € Zp) for admissible and special elements I; with
d(I;))=q and [(I;) <h, then we have a,=0.

h

For a proof of (A), let m=§_.‘oah_, p” (a,==0) be the p-adic expansion of m, and con-
=

sider the diagram

Jx
H"4(B5(S") 5 Zp) «— H" (8, (S") ;5 Zy)

ke

H1(@pr(S7) 3 Zp) <t H™9(8,,(S") ; Zp),

where o* and &% are the homomorphisms mentioned in §2. It follows from defini-
tions that the commutativity holds in this diagram. Therefore we have

I I I
EJ* p*St Vo, m = .‘fk‘}ﬁ",mSt Vo, m = o*St Vo, p7 -

Since »<h<I(I), Proposition 10 and Theorem 3 imply that p*St'vo,pr:aStIIOl,zO.
Namely we have

E7% p*St' v, ,, = 0 for every (7, 7)€ W(m) .

Thus it follows from Corollary of Theorem 1’ that p*StI vy, m=0. By Theorem 2, we
have St/ v, »=0. This completes the proof of (A).

From the assumption of (B), we have %ja" St’ivo, ﬁh:lﬂ;h,m<zi1d, St"’vo,m)=0.
Therefore we obtain by Proposition 10 that > izziStI‘[O]h—:O. Then Theorem 4 implies
that ¢;=0 for each 7, and we have (B). Q. E.D.

Together with Proposition 7, we have

CorOLLARY 1. If q<Un, the image of H" 9 (©pn(S™) Zp) by the monomorphism
o is contained in the subspace of H" 9(33S™); Zp) formed by all the symmetric
elements.

We have also

COROLLARY 2. If pr<m< p*** and q< n, then the homomorphism chn n 2 H"*9
(&,,(S*); Zp) ——> H"9(SpnS™) ; Zp) iS an isomorphism.
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