Journal of the Institute of Polytechnics, Osaka City University, Vol. 9, No. 1, Series A

Cohomology mod p of symmetric products of spheres

By Minoru NAKAOKA

(Received September 28, 1957) (Revised December 14, 1957)

Throughout this paper, we denote by \mathfrak{S}_m the symmetric group of degree m, K a finite simplicial complex and p a fixed prime integer. The group \mathfrak{S}_m operates in a natural way on the *m*-fold cartesian product $\mathfrak{X}_m(K) = K \times K \times \cdots \times K$. The orbit space $\mathfrak{S}_m(K)$ over $\mathfrak{X}_m(K)$ relative to \mathfrak{S}_m is called the *m*-fold symmetric product. We study in the present paper the cohomology mod p of the symmetric product $\mathfrak{S}_m(S^n)$ of an *n*-sphere S^n . However the method we use will be applicable for calculation of cohomology of the symmetric product of more general complexes.

Let St^{I} denote the iterated Steenrod reduced powers, and $v_{0,m}$ a generator of $H^{n}(\mathfrak{S}_{m}(S^{n}); Z_{p}) \approx Z_{p}$. Then our main theorem is stated as follows⁰: If q < n and $p^{h} \leq m < p^{h+1}$, the vector space $H^{n+q}(\mathfrak{S}_{m}(S^{n}); Z_{p})$ has a base formed by elements $\operatorname{St}^{I}v_{0,m}$, where I runs over the set of all admissible and special elements with degree q and length $\leq h$. (See §3 for the precise definitions.)

The method we use is as follows.

Let $\mathfrak{S}_{\infty}(K)$ denote the infinite symmetric product of K. It follows from a result in my paper [7] that the injection homomorphism $\iota_m^* \colon H^q(\mathfrak{S}_{\infty}(K); \mathbb{Z}_p) \longrightarrow H^q(\mathfrak{S}_m(K); \mathbb{Z}_p)$ Z_p) is an epimorphism. As was proved by Dold-Thom [4], $\mathfrak{S}_{\infty}(K)$ is a product of the Eilenberg-MacLane complexes. Therefore we can describe a set of generators for $H^q(\mathfrak{S}_m(K); \mathbb{Z}_p)$ in virtue of the Cartan's computation [2]. In order to examine if these generators are linearly independent, we choose a particular p-Sylow subgroup \mathfrak{G}_m of \mathfrak{S}_m , and consider the orbit space $\mathfrak{G}_m(K)$ over $\mathfrak{X}_m(K)$ relative to \mathfrak{G}_m . The natural projection defines a homomorphism $\rho^*: H^q(\mathfrak{S}_m(K); Z_p) \to H^q(\mathfrak{S}_m(K); Z_p).$ We prove it by using of the transfer homomorphism that ρ^* is a monomorphism. Let $m = a_0 p^h + a_1 p^{h-1} + \cdots + a_h \ (0 \le a_i < p)$ be the *p*-adic expansion of *m*, and denote by $\mathfrak{Z}_p(K)$ the p-fold cyclic product of K (i.e. the orbit space over $\mathfrak{X}_{p}(K)$ relative to the subgroup $\mathfrak{Z}_p \subset \mathfrak{S}_p$ of cyclic permutations). Then we have that $\mathfrak{G}_m(K)$ is homeomorphic with the space $\mathfrak{X}_{a_0}(\mathfrak{Z}_p^h(K)) \times \mathfrak{X}_{a_1}(\mathfrak{Z}_p^{h-1}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K)$, where $\mathfrak{Z}_p^r(K)$ denotes the iterated cyclic product $\mathfrak{Z}_p\mathfrak{Z}_p\cdots\mathfrak{Z}_p(K)$ (r-times) of K. As for the cohomology structure of $\mathfrak{Z}_p(K)$, I have studied in the paper [6]. By making use of some results there, we analyse the cohomology structure mod p of $\mathfrak{Z}_p^{p}(K)$, and we determine the dependence of the generators.

^{0) (}Added April 14, 1958) I have recently succeeded in determination of the cohomology ring $H^*(\mathfrak{G}_m(S^n); \mathbb{Z}_p).$

1. The orbit space $\mathfrak{G}_{p^r}(\mathbf{K})$

In this and next sections, we study the orbit space over the *m*-fold cartesian product of K relative to a *p*-Sylow subgroup of \mathfrak{S}_m . The special case $m=p^r$ is dealt in this section, and the general case in next section.

Let q be an integer ≥ 0 . Denote by \mathcal{Q}_q a set consisting of all sequences (i_1, i_2, \dots, i_q) , where each i_j is an integer mod p. \mathcal{Q}_q has p^q elements. We shall associate to an element $(i_1, i_2, \dots, i_q) \in \mathcal{Q}_q$ an integer A_{i_1, i_2, \dots, i_q} defined as follows:

$$A_{i_1, i_2, \dots, i_q} = i_1 p^{q-1} + i_2 p^{q-2} + \dots + i_q + 1 \qquad (0 \leq i_j < p) \,.$$

This gives clearly a one-to-one correspondence of Ω_q onto the set $\{1, 2, \dots, p^q\}$.

We shall regard \mathfrak{S}_m as the group of all transformations of m letters 1, 2, \cdots , m. For each q $(0 \leq q < r)$ and each $(k_1, k_2, \cdots, k_q) \in \mathcal{Q}_q$, we define an element $T^r_{k_1, k_2, \cdots, k_q} \in \mathfrak{S}_{p^r}$ by

(1.1)
$$T_{k_{1}}^{r}, \dots, k_{q} \ (A_{i_{1}}, \dots, i_{r})$$
$$= A_{i_{1}}, \dots, i_{q}, i_{q+1}+1, i_{q+2}, \dots, i_{r} \quad \text{if} \ (i_{1}, \dots, i_{q}) = (k_{1}, \dots, k_{q}),$$
$$= A_{i_{1}}, \dots, i_{r} \qquad \text{otherwise.}$$

Obviously we have

(1.2)
$$(T_{k_1}^r, \dots, k_q)^p = 1.$$

We shall prove

LEMMA 1.
$$T_{j_1}^r, \dots, j_m T_{k_1}^r, \dots, k_q$$

= $T_{k_1}^r, \dots, k_q T_{j_1}^r, \dots, j_m$ if $m \leq q$ and $(j_1, \dots, j_m) \neq (k_1, \dots, k_m)$,
= $T_{k_1}^r, \dots, k_m, k_{m+1}+1, k_{m+2}, \dots, k_q T_{j_1}^r, \dots, j_m$
if $m < q$ and $(j_1, \dots, j_m) = (k_1, \dots, k_m)$.

Proof. The following can be easily proved from the definition (1, 1).

Case I:
$$m \leq q$$
 and $(j_1, \dots, j_m) \neq (k_1, \dots, k_m)$
 $T_{j_1}^r, \dots, j_m T_{k_1}^r, \dots, k_q (A_{i_1}, \dots, i_r)$
 $= T_{k_1}^r, \dots, k_q T_{j_1}^r, \dots, j_m (A_{i_1}, \dots, i_r)$
 $= \begin{cases} A_{i_1}, \dots, i_{m+1+1}, \dots, i_r & \text{if } (i_1, \dots, i_m) = (j_1, \dots, j_m) , \\ A_{i_1}, \dots, i_{q+1+1}, \dots, i_r & \text{if } (i_1, \dots, i_m) \neq (j_1, \dots, j_m) \text{ and } (i_1, \dots, i_q) = (k_1, \dots, k_q), \\ A_{i_1}, \dots, i_r & \text{if } (i_1, \dots, i_m) \neq (j_1, \dots, j_m) \text{ and } (i_1, \dots, i_q) \neq (k_1, \dots, k_q).$
Case II: $m < q$ and $(j_1, \dots, j_m) = (k_1, \dots, k_m)$

$$\begin{split} T_{j_1}^r, \dots, j_m T_{k_1}^r, \dots, k_q (A_{i_1}, \dots, i_r) \\ &= T_{k_1}^r, \dots, k_{m+1^{i_1}}, \dots, k_q T_{j_1}, \dots, j_m (A_{i_1}, \dots, i_r) \\ &= \begin{cases} A_{i_1}, \dots, i_{m+1^{i_1}}, \dots, i_{q+1^{i_1}}, \dots, i_r & \text{if } (i_1, \dots, i_q) = (k_1, \dots, k_q) , \\ A_{i_1}, \dots, i_{m^{i_1 1^{i_1}}}, \dots, i_r & \text{if } (i_1, \dots, i_q) \neq (k_1, \dots, k_q) \text{ and } (i_1, \dots, i_m) = (k_1, \dots, k_m) , \\ A_{i_1}, \dots, i_r & \text{if } (i_1, \dots, i_m) \neq (k_1, \dots, k_m) & \text{Q. E. D.} \end{cases}$$

Let $\pi_{k_1}^r, \ldots, k_q \subset \mathfrak{S}_{p^r}$ denote a cyclic subgroup generated by $T_{k_1}^r, \ldots, k_q$. The order of $\pi_{k_1}^r, \ldots, k_q$ is p. Since

 $(1.3) T^r_{j_1}, \dots, j_q T^r_{k_1}, \dots, k_q = T^r_{k_1}, \dots, k_q T^r_{j_1}, \dots, j_q \text{ if } (j_1, \dots, j_q) \neq (k_1, \dots, k_q),$ we may define $\rho^r_{q+1} \subset \mathfrak{S}_{p^r} \ (0 \leq q < r)$ by

$$\rho_{q+1}^r = \prod_{(k_1, \cdots, k_q) \in \Omega_q} \pi_{k_1}^r, \cdots, \kappa_q$$

the product of $\pi_{k_1}^r, \ldots, \kappa_q$'s as subgroups of \mathfrak{S}_{p^r} . ρ_{q+1}^r is the direct product of $\pi_{k_1}^r, \ldots, \kappa_q$'s, and its order is the p^q -th power of p.

Next, for $q = 1, 2, \dots, r$, define

$$\sigma_q^r = \rho_1^r \rho_2^r \cdots \rho_q^r$$
,

the product of ρ_m^r 's as subgroups of \mathfrak{S}_{p^r} . Since Lemma 1 yields that $\rho_m^r \rho_n^r = \rho_n^r \rho_m^r$ $(1 \leq m, n \leq q)$, it follows that σ_q^r is a subgroup of \mathfrak{S}_{p^r} . Furthermore Lemma 1 shows that ρ_q^r is an invariant subgroup of σ_q^r . We have

(1.4)
$$\sigma_q^r / \rho_q^r \approx \sigma_{q-1}^r.$$

Actually, σ_q^r is a split extension of ρ_q^r by σ_{q-1}^r , where σ_{q-1}^r operates non-trivially on ρ_q^r . From (1.4), we obtain by induction on q that the order of σ_q^r is the $(p^{q-1}+p^{q-2}+\cdots+1)$ -th power of p.

We write $\mathfrak{G}_{p^r} = \sigma_r^r$. The order of \mathfrak{G}_{p^r} is the $(p^{r-1} + p^{r-2} + \cdots + 1)$ -th power of p. Since this is the highest order of p in p^r !, the group \mathfrak{G}_{p^r} is a p-Sylow subgroup of $\mathfrak{S}_p r$.¹⁾

We note here the following

LEMMA 2. If $0 \leq q < r-1$ and $T_{k_1}^{r-1}, \dots, k_q(A_{i_1}, \dots, i_{r-1}) = A_{j_1}, \dots, j_{r-1}$, then $T_{k_1}^r, \dots, k_q(A_{i_1}, \dots, i_r) = A_{j_1}, \dots, j_{r-1}$, i.e.

This is clear from the definition (1,1).

Let $\mathfrak{X}_{p^r}(K)$ be the p^r -fold cartesian product of K. A point x of $\mathfrak{X}_{p^r}(K)$ is given as a function x defined for each A_{i_1}, \ldots, i_r and takes values in K. The symmetric group \mathfrak{S}_{p^r} operates on $\mathfrak{X}_{p^r}(K)$ in a natural manner:

$$(\alpha x)(A_{i_1},\ldots,i_r) = x(\alpha(A_{i_1},\ldots,i_r)), \quad \alpha \in \mathfrak{S}_{p^r}.$$

Define a map $f: \mathfrak{X}_{p^{r}}(K) \longrightarrow \mathfrak{X}_{p^{r-1}}(\mathfrak{X}_{p}(K))$ by $(fx)(A_{i_{1}}, ..., i_{r-1}) = x(A_{i_{1}}, ..., i_{r-1}, 0) \times x(A_{i_{1}}, ..., i_{r-1}, 1) \times \cdots \times x(A_{i_{1}}, ..., i_{r-1}, p-1) \in \mathfrak{X}_{p}(K).$

It is obvious that f is an onto-homeomorphism.

LEMMA 3. If $0 \leq q < r-1$, then

$$fT^r_{k_1}, \ldots, k_q = T^{r-1}_{k_1}, \ldots, k_q f.$$

¹⁾ Such a subgroup for p=2 is studied in [1] by J. Adem.

Minôru Nakaoka

Proof. Let $x \in \mathfrak{X}_{p^r}(K)$ and put $A_{j_1}, \ldots, j_{r-1} = T_{k_1}^{r-1}, \ldots, k_q(A_{i_1}, \ldots, i_{r-1})$. Then we have

$$(fT_{k_{1}}^{r}, \dots, k_{q}x) (A_{i_{1}}, \dots, i_{r-1}) = (T_{k_{1}}^{r}, \dots, k_{q}x)(A_{i_{1}}, \dots, i_{r-1}, 0) \times \dots \times (T_{k_{1}}^{r}, \dots, k_{q}x)(A_{i_{1}}, \dots, i_{r-1}, p-1) = x(A_{j_{1}}, \dots, j_{r-1}, 0) \times \dots \times x(A_{j_{1}}, \dots, j_{r-1}, p-1) \quad \text{(cf. Lemma 2)} = (fx)(A_{j_{1}}, \dots, j_{r-1}) = (T_{k_{1}}^{r-1}, \dots, k_{q}fx)(A_{i_{1}}, \dots, i_{r-1}) \cdot Q. \text{ E. D}$$

Denote by $\mathfrak{Z}_p(K)$ the *p*-fold cyclic product of *K*. Let $\mathfrak{Z}_p \subset \mathfrak{S}_p$ be the subgroup of cyclic permutations. Then, by definition, $\mathfrak{Z}_p(K)$ is the orbit space $O(\mathfrak{X}_p(K), \mathfrak{Z}_p)$ over $\mathfrak{X}_p(K)$ relative to $\mathfrak{Z}_p^{(2)}$. Write $\overline{I}: \mathfrak{X}_p(K) \longrightarrow \mathfrak{Z}_p(K)$ for the identification map.

Let $g: \mathfrak{X}_{p^{r-1}}(\mathfrak{X}_{p}(K)) \longrightarrow \mathfrak{X}_{p^{r-1}}(\mathfrak{Z}_{p}(K))$ be a continuous map defined by

$$g = \overline{I} \times \overline{I} \times \cdots \times \overline{I} \quad (p^{r-1} - \text{fold}),$$

namely

$$(gy) \ (A_{i_1}, \ldots, _{i_{r-1}}) = \overline{\mathbf{I}}(y(A_{i_1}, \ldots, _{i_{r-1}})) \ , \ y \in \mathfrak{X}_{p^{r-1}}(\mathfrak{X}_p(K))$$

It follows immediately that

(1.5)
$$\begin{array}{l} \beta g = g\beta \qquad \left(\beta \in \mathfrak{S}_{p^{r-1}}\right). \\ \text{Lemma 4.} \qquad gfT^{r}_{k_{1}}, \ldots, k_{q} = gf \qquad for \quad q = r-1, \\ = T_{k_{1}}, \ldots, k_{q}gf \qquad for \quad q < r-1. \end{array}$$

Proof. The formula for $0 \le q < r-1$ is obvious from Lemma 3 and (1.5). We shall prove $gfT_{k_1}^r, \dots, k_{r-1} = gf$.

For $x \in \mathfrak{X}_{p^r}(K)$, we have

$$\begin{array}{l} (fT_{k_{1}}^{r},\ldots,k_{r-1}x)\;(A_{i_{1}},\ldots,i_{r-1}) \\ =\;(T_{k_{1}}^{r},\ldots,k_{r-1}x)(A_{i_{1}},\ldots,i_{r-1},0)\times\cdots\times(T_{k_{1}}^{r},\ldots,k_{r-1}x)(A_{i_{1}},\ldots,i_{r-1},p-1) \\ =\; \begin{cases} x(A_{i_{1}},\ldots,i_{r-1},1)\times\cdots\times x(A_{i_{1}},\ldots,i_{r-1},p-1)\times x(A_{i_{1}},\ldots,i_{r-1},p) \\ & \text{if} \quad (i_{1},\cdots,i_{r-1})=(k_{1},\cdots,k_{r-1}), \\ x(A_{i_{1}},\ldots,i_{r-1},0)\times\cdots\times x(A_{i_{1}},\ldots,i_{r-1},p-2)\times x(A_{i_{1}}\ldots,i_{r-1},p-1) \\ & \text{if} \quad (i_{1},\cdots,i_{r-1})=(k_{1},\cdots,k_{r-1}). \end{array}$$

Therefore it follows that

$$(gfT_{i_{1}}^{r}, \dots, i_{r-1}x) (A_{i_{1}}, \dots, i_{r-1})$$

$$= \overline{I}((fT_{i_{1}}^{r}, \dots, i_{r-1}x) (A_{i_{1}}, \dots, i_{r-1}))$$

$$= \overline{I}(x(A_{i_{1}}, \dots, i_{r-1}, 0) \times \dots \times x(A_{i_{1}}, \dots, i_{r-1}, p-1))$$

$$= \overline{I}((fx) (A_{i_{1}}, \dots, i_{r-1}))$$

$$= (gfx) (A_{i_{1}}, \dots, i_{r-1}).$$
Q. E. D.

4

²⁾ Let Y be a space on which a group Γ operates. Then the orbit space $O(Y, \Gamma)$ over Y relative to Γ is defined as a space obtained from Y by identifying each point $y \in Y$ with its image $\gamma(y)$ ($\gamma \in \Gamma$).

LEMMA 5. If gf(x) = gf(x') for $x, x' \in \mathfrak{X}_{p^r}(K)$, then $x' = \alpha x$ with $\alpha \in \rho_r^r$.

 $\begin{array}{l} Proof. \quad \text{Since} \quad (gfx)(A_{i_1}, \ldots, _{i_{r-1}}) = \bar{\mathbb{I}}(x(A_{i_1}, \ldots, _{i_{r-1}, 0}) \times \cdots \times x(A_{i_1}, \ldots, _{i_{r-1}, p-1})) \\ \text{and} \quad (gfx')(A_{i_1}, \ldots, _{i_{r-1}}) = \bar{\mathbb{I}}(x'(A_{i_1}, \ldots, _{i_{r-1}, 0}) \times \cdots \times x'(A_{i_1}, \ldots, _{i_{r-1}, p-1})), \text{ it follows that} \end{array}$

$$x'(A_{i_1},\ldots,i_{r-1},i_r)=x(A_{i_1},\ldots,i_{r-1},i_r+n)\ (i_r=0,\ 1,\ \cdots,\ p-1),$$

where $n = n(i_1, \dots, i_{r-1})$ is an integer mod p depending on (i_1, \dots, i_{r-1}) .

Let α be an element of the abelian group ρ_r^r defined by

$$\alpha = \prod_{(k_1, \dots, k_{r-1}) \in \Omega_{r-1}} (T_{k_1}^r, \dots, k_{r-1})^{n(k_1, \dots, k_{r-1})}.$$

Then it follows that

$$\begin{aligned} & (\alpha x) \ (A_{i_1}, \dots, i_r) \\ &= x((T_{i_1}^r, \dots, i_{r-1})^{n(i_1}, \dots, i_r)(A_{i_1}, \dots, i_r)) \ . \\ &= x(A_{i_1}, \dots, i_{r-1}, i_{r+n}) \quad (n = n(i_1, \dots, i_{r-1})) \ . \end{aligned}$$

Therefore $x'(A_{i_1}, \dots, i_r) = (\alpha x)(A_{i_1}, \dots, i_r)$, and hence $x' = \alpha x$. Q. E. D.

Write $\mathfrak{G}_{p^r}(K)$ for the orbit space $O(\mathfrak{X}_{p^r}(K), \mathfrak{G}_{p^r})$, and consider the identification maps

$$\begin{split} \varphi : & \mathfrak{X}_{p^r}(K) \longrightarrow \mathfrak{G}_{p^r}(K) \,, \\ \psi : & \mathfrak{X}_{p^{r-1}}(\mathfrak{Z}_p(K)) \longrightarrow \mathfrak{G}_{p^{r-1}}(\mathfrak{Z}_p(K)) \,. \end{split}$$

Then it follows from Lemma 4 that $gf: \mathfrak{X}_{p^r}(K) \to \mathfrak{X}_{p^{r-1}}(\mathfrak{Z}_p(K))$ defines a continuous map $h: \mathfrak{G}_{p^r}(K) \longrightarrow \mathfrak{G}_{p^{r-1}}(\mathfrak{Z}_p(K))$ such that

(1.6)
$$\psi g f = h \varphi \,.$$

PROPOSITION 1. h is an onto-homeomorphism.

Proof. Since gf and φ are onto, it follows from (1.6) easily that h is onto. We shall next prove that h is one-to-one. Since φ is onto, it is sufficient for this purpose to prove that if $h\varphi(x) = h\varphi(x')$ for $x, x' \in \mathfrak{X}_{p^r}(K)$ then $x' = \gamma x$ with $\gamma \in \mathfrak{G}_{p^r}$. Under this assumption, it follows from (1.6) that $\psi gf(x) = \psi gf(x')$. Therefore $gf(x') = \beta gf(x)$ with $\beta \in G_{p^{r-1}}$. Let $\beta = T_{I_1}^{r-1}T_{I_2}^{r-1}\cdots T_{I_w}^{r-1}$, where each $I_j \in \mathcal{Q}_q$ (q < r-1). Put $\bar{\beta} = T_{I_1}^r T_{I_2}^r$ $\cdots T_{I_w}^r \in G_{p^r}$. Then it follows from Lemma 4 that $gf(x') = gf\bar{\beta}(x)$. Therefore Lemma 5 implies that $x' = \alpha \bar{\beta} x$ with $\alpha \in \rho_r^r$. Put $\gamma = \alpha \bar{\beta}$. Since $\gamma \in \mathfrak{G}_{p^r}$, we obtain $x' = \gamma x$ $(\gamma \in \mathfrak{G}_{p^r})$.

Since h is continuous and $\mathfrak{G}_{pr}(K)$ is compact, it follows that h is an ontohomeomorphism. Q.E.D.

Define the iterated cyclic product $\mathfrak{Z}_p^r(K)(r=0, 1, \cdots)$ by

$$\mathfrak{Z}_p^r(K) = \mathfrak{Z}_p(\mathfrak{Z}_p^{r-1}(K)), \quad \mathfrak{Z}_p^0(K) = K.$$

We have

THEOREM 1. The space $\mathfrak{G}_{p^r}(K)$ is homeomorphic with the iterated cyclic product $\mathfrak{Z}_p^r(K)$.

Proof. For r=0 the theorem is trivial. To establish the general case we proceed

by induction. Assume that $\mathfrak{G}_{p^{r-1}}(\mathfrak{Z}_p(K))$ is homeomorphic with $\mathfrak{Z}_p^{r-1}(K)$ for every K. Then $\mathfrak{G}_{p^{r-1}}(\mathfrak{Z}_p(K))$ is homeomorphic with $\mathfrak{Z}_p^{r-1}(\mathfrak{Z}_p(K)) = \mathfrak{Z}_p^r(K)$. Therefore it follows from Proposition 1 that $\mathfrak{G}_{p^r}(K)$ is homeomorphic with $\mathfrak{Z}_p^r(K)$. Q. E. D.

2. The orbit space $\mathfrak{G}_m(K)$

Let m be an integer, and let

$$m = \sum_{r=0}^{h} a_{h-r} p^r \qquad (0 \leq a_i < p)$$

be the *p*-adic expansion of *m*. Denote by W(m) a set consisting of all pairs (r, j) of integers such that $0 \le r \le h, 1 \le j \le a_{h-r}$. To each $(r, j) \in W(m)$, we shall associate a monotone map $\theta_r^j: \{1, 2, \dots, p^r\} \longrightarrow \{1, 2, \dots, m\}$ defined by

$$\theta_r^j(s) = \sum_{q=r+1}^h a_{h-q} p^q + (j-1)p^r + s \qquad (1 \leq s \leq p^r),$$

and define a monomorphism $\overline{\theta}_r^j \colon \mathfrak{S}_{p^r} \longrightarrow \mathfrak{S}_m$ by

$$(\bar{\theta}_r^j \alpha)(t) = \theta_r^j \alpha(s) \qquad \text{if } t = \theta_r^j(s) \text{ with } 1 \leq s \leq p^r,$$
$$= t \qquad \text{otherwise,}$$

where $\alpha \in \mathfrak{S}_{p^r}$ and $1 \leq t \leq m$. Write ${}^{j}\mathfrak{S}_{p^r}$ for the image group $\theta_r^j(\mathfrak{S}_{p^r})$, where \mathfrak{S}_{p^r} is the *p*-Sylow subgroup of \mathfrak{S}_{p^r} mentioned in §1. If $(r, j) \neq (q, k)$, then $\alpha\beta = \beta\alpha$ for $\alpha \in {}^{j}\mathfrak{S}_{p^r}$, $\beta \in {}^{k}\mathfrak{S}_{p^q}$. Therefore we may define a group $\mathfrak{S}_m \subset \mathfrak{S}_m$ by

$$\mathfrak{G}_m = \prod_{(r,j) \in W(m)} {}^{j} \mathfrak{G}_{p^r},$$

the product of ${}^{j}\mathfrak{G}_{p^{r's}}$ s as subgroups of \mathfrak{S}_m . \mathfrak{G}_m is the direct product of ${}^{j}\mathfrak{G}_{p^{r's}}$, and hence its order is the $(\sum_{r=1}^{h} a_{h-r}(p^{r-1}+p^{r-2}+\cdots+1))$ -th power of p. This is the highest power of p in m!, so that \mathfrak{G}_m is a p-Sylow subgroup of \mathfrak{S}_m .

We shall represent points of $\mathfrak{X}_m(K)$ as functions y defined on $\{1, 2, \dots, m\}$ and take values in K. The operation of \mathfrak{S}_m on $\mathfrak{X}_m(K)$ is written as follows:

$$(\beta y)(t) = y(\beta t)$$
 $\beta \in \mathfrak{S}_m, y \in \mathfrak{X}_m(K), 1 \leq t \leq m$

To each $(r, j) \in W(m)$, we shall associate two maps

$$\tilde{\xi}^j_r \colon \ \mathfrak{X}_p r(K) \longrightarrow \mathfrak{X}_m(K) , \qquad \tilde{\eta}^j_r \colon \ \mathfrak{X}_m(K) \longrightarrow \mathfrak{X}_p r(K)$$

defined by

$$(\tilde{\xi}_r^j x)(t) = x(s)$$
 if $t = \theta_r^j s$, and $= *$ otherwise,
 $(\tilde{\gamma}_r^j y)(s) = y(\theta_r^j s)$,

where $1 \leq s \leq p^r$, $1 \leq t \leq m$, $x \in \mathfrak{X}_{p^r}(K)$, $y \in \mathfrak{X}_m(K)$ and * is a base vertex of K. It is obvious that for any $\alpha \in \mathfrak{S}_{p^r}$

$$\widetilde{\xi}_{r}^{j}\alpha = (\overline{\theta}_{r}^{j}\alpha)\widetilde{\xi}_{r}^{j},$$
 $\widetilde{\eta}_{r}^{j}(\overline{\theta}_{q}^{k}\alpha) = \alpha\widetilde{\eta}_{r}^{j} \text{ if } (q, k) = (r, j), \text{ and } = \widetilde{\eta}_{r}^{j} \text{ otherwise}$

Therefore the maps $\tilde{\xi}_r^j$ and $\tilde{\eta}_r^j$ yield respectively maps $\hat{\xi}_r^j \colon \mathfrak{G}_p r(K) \longrightarrow \mathfrak{G}_m(K)$ and $\eta_r^j \colon \mathfrak{G}_m(K) \longrightarrow \mathfrak{G}_p r(K)$. It follows immediately that

(2.1)
$$\eta_q^k \xi_r^j = \text{identity map}$$
 if $(r, j) = (q, k)$,
= constant map if $(r, j) \neq (q, k)$.

Define a map $\eta \colon \mathfrak{G}_m(K) \longrightarrow \mathfrak{X}_{a_0}(\mathfrak{G}_{ph}(K)) \times \mathfrak{X}_{a_1}(\mathfrak{G}_{ph^{-1}}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K)$ by

$$\eta(z) = (\eta^1_h(z) imes \cdots imes \eta^{a_0}_{h^0}(z)) imes (\eta^1_{h^{-1}}(z) imes \cdots imes \eta^{a_{1-1}}_{h^{-1}}(z)) imes \cdots imes (\eta^1_0(z) imes \cdots imes \eta^{a_0}_{0^h}(z))$$

It is easily seen that η is an onto-homeomorphism. Therefore by Theorem 1 we have

THEOREM 1'. The space $\mathfrak{G}_m(K)$ is homeomorphic with the space $\mathfrak{X}_{a_0}(\mathfrak{Z}_p^h(K)) \times \mathfrak{X}_{a_1}(\mathfrak{Z}_p^{h-1}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K)^{\mathfrak{d}_p}$.

For q > 0, let

$$\begin{split} \xi_r^{j*} \colon & H^q(\mathfrak{G}_m(K)\,;\,Z_p) {\longrightarrow} H^q(\mathfrak{G}_{p^r}(K)\,;\,Z_p) \,, \\ \eta_r^{j*} \colon & H^q(\mathfrak{G}_{p^r}(K)\,;\,Z_p) {\longrightarrow} H^q(\mathfrak{G}_m(K)\,;\,Z_p) \end{split}$$

be the homomorphisms induced by ξ_r^j and γ_r^j respectively. We have then by (2.1)

$$\begin{aligned} \xi_r^{j*} \eta_q^{k*} &= \text{identity} & \text{if } (r, j) = (q, k) , \\ &= 0 & \text{if } (r, j) \neq (q, k) . \end{aligned}$$

Therefore, by the Künneth relation, we have

COROLLARY. Assume that K is (n-1)-connected and q < 2n. Then a set of the homomorphisms ξ_r^{j*} (resp. η_r^{j*}), $(r, j) \in W(m)$, provides a projective (resp. injective) representation of $H^q(\mathfrak{S}_m(K); \mathbb{Z}_p)$ as a direct sum.

Let

$$\rho: \quad \mathfrak{X}_{a_0}(\mathfrak{Z}_p^h(K)) \times \mathfrak{X}_{a_1}(\mathfrak{Z}_p^{h-1}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K) \longrightarrow \mathfrak{S}_m(K)$$

be the natural projection of $\mathfrak{G}_m(K)$ onto $\mathfrak{S}_m(K)$. Then we have

THEOREM 2. The homomorphism

$$\rho^* \colon H^q(\mathfrak{S}_m(K); Z_p) \to H^q(\mathfrak{X}_{a_0}(\mathfrak{Z}_p^h(K)) \times \mathfrak{X}_{a_1}(\mathfrak{Z}_p^{h-1}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K); Z_p)$$

induced by ρ is a monomorphism for any q.

More generally we have

THEOREM 2'. Let Γ_1 , Γ_2 ($\Gamma_1 \subset \Gamma_2$) be two subgroups of \mathfrak{S}_m such that the index

³⁾ Let 𝔅'_m be any *p*-Sylow subgroup of 𝔅_m. By the well-known fact, 𝔅_m and 𝔅'_m are conjugate. Therefore the space 𝔅_m(K) and 𝔅'_m(K) are homeomorphic. In general the following holds: Let Y be a space on which a group Γ operates, and Γ', Γ" be conjugate subgroups of Γ. Then the orbit space O(Y, Γ') and O(Y, Γ") are homeomorphic. In fact, if Γ" = αΓ'α⁻¹ with α ∈ Γ, the map ᾱ: O(Y, Γ') → O(Y, Γ") induced by the transformation α: Y→ Y gives a homeomorphism.

 $(\Gamma_2:\Gamma_1)$ of Γ_1 in Γ_2 is prime to p. Then the homomorphism $\rho^*: H^q(O(\mathfrak{X}_m(K), \Gamma_2); Z_p) \longrightarrow H^q(O(\mathfrak{X}_m(K), \Gamma_1); Z_p)$ induced by the natural projection ρ is a monomorphism for any q.

Since \mathfrak{G}_m is a *p*-Sylow subgroup of \mathfrak{S}_m , the index $(\mathfrak{S}_m : \mathfrak{G}_m)$ is prime to *p*. Therefore Theorem 2' implies Theorem 2.

Proof of Theorem 2'. As in the proof of Proposition 1 in [7], it is given by means of the special cohomology groups and the transfer homomorphism.

Let $C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma_j}$ be the subgroup of the (alternative) cochain group $C^q(\mathfrak{X}_m(K); Z_p)$ which consist of all cochains u such that $\gamma u = u$ for all $\gamma \in \Gamma_j$ (j=1, 2). Then $\{C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma}, \delta\}$ is a cochain complex, where δ denotes the coboundary operator of the simplicial complex $\mathfrak{X}_m(K)$. The cohomology group of this complex is denoted by $\Gamma_j^{-1}H^q(\mathfrak{X}_m(K); Z_p)$ (the special cohomology group). Let $i: C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma_2} \longrightarrow C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma_1}$ be the inclusion, and $t: C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma_1} \longrightarrow C^q(\mathfrak{X}_m(K); Z_p)^{\Gamma_2}$ the transfer homomorphism (cf. p. 254 of [3]). We have then

$$ti(c) = (\Gamma_2: \Gamma_1)c, \quad c \in C^q(\mathfrak{X}_m(K); \mathbb{Z}_p)^{\Gamma_2}.$$

The cochain maps i and t induce the homomorphisms $i^*: \Gamma_2^{-1}H^q(\mathfrak{X}_m(K); Z_p) \longrightarrow \Gamma_1^{-1}H^q(\mathfrak{X}_m(K); Z_p)$ and $t^*: \Gamma_1^{-1}H^q(\mathfrak{X}_m(K); Z_p) \longrightarrow \Gamma_2^{-1}H^q(\mathfrak{X}_m(K); Z_p)$ respectively, and we have

$$t^*i^* = (\Gamma_2:\Gamma_1).$$

Since $(\Gamma_2:\Gamma_1)$ is prime to p, it follows that t^*i^* is an automorphism, and hence i^* is a monomorphism. Denote by $\varphi_j:\mathfrak{X}_m(K) \longrightarrow \mathcal{O}(\mathfrak{X}_m(K), \Gamma_j)$ the natural projection (j=1,2). Obviously φ_j induces an isomorphism $\varphi_j^*: H^q(\mathcal{O}(\mathfrak{X}_m(K), \Gamma_j); Z_p) \longrightarrow r_j^{-1}H^q(\mathfrak{X}_m(K); Z_p)$, and the commutativity $i^*\varphi_2^* = \varphi_1^*\rho^*$ holds. Consequently ρ^* is a monomorphism. Q. E. D.

3. Prerequisites : notations, cohomology of cyclic product

Let Z_+ denote the set of all non-negative integers. We denote by Z_+^{∞} the set consisting of all sequences

$$I = (i_1, i_2, \cdots, i_k \cdots), \qquad (i_k \in Z_+)$$

such that $i_k=0$ for sufficiently large k. In Z_+^{∞} , we shall consider the following relation of order < (lexicographic order from the left): For any two elements $I=(i_1, i_2, \dots, i_k, \dots)$ and $J=(j_1, j_2, \dots, j_k, \dots)$ of Z_+^{∞} , we write I < J if and only if

$$i_1 = j_1\,, \cdots, i_k = j_k\,,\; i_{k+1} {<} j_{k+1}$$

for some k.

For any element $I = (i_1, i_2, \dots, i_k, \dots) \in Z_+^{\infty}$, the *length* l(I), the *height* h(I) and the *degree* d(I) are defined as follows:

l(I) = the least number of l such that $i_k=0$ for all k > l, h(I) = number of the set $\{k \mid i_k \neq 0\}$, $d(I) = \sum_{k=1}^{\infty} i_k$.

An element $(i_1, i_2, \dots, i_k, \dots) \in Z_+^{\infty}$ is called to be *proper* if $i_k \equiv 0$ or 1 mod 2(p-1) for any k. A proper element $(i_1, i_2, \dots, i_k, \dots)$ is called to be *admissible* if $i_k \ge pi_{k+1}$ is satisfied for any $k \ge 1$. For an admissible element I, we have h(I) = l(I). We say that an element $(i_1, i_2, \dots, i_k, \dots)$ is *special* if $i_k \ne 1$ for any k.

The element $(0, 0, \dots, 0, \dots) \in Z_+^{\infty}$ is denoted by O. This is a unique element such that the length is 0. O is admissible and special.

For each $r \in Z_+$, we define a subset $Z_+^r \subset Z_+^\infty$ by

$$Z_+^r = \{I \in Z_+^\infty | l(I) \leq r\}.$$

For any complex K, the Steenrod operations are homomorphisms

$$\begin{split} & \operatorname{Sq}^{s} \colon H^{q}(K;\,Z_{2}) \longrightarrow H^{q+s}(K;\,Z_{2}) & \text{for } p = 2, \\ & \mathcal{O}^{s} \colon H^{q}(K;\,Z_{p}) \longrightarrow H^{q+2s(p-1)}(K;\,Z_{p}) & \text{for } p > 2. \end{split}$$

We shall denote by

$$4: H^{q}(K; Z_{p}) \longrightarrow H^{q+1}(K; Z_{p})$$

the coboundary operation associated with the coefficient sequence $0 \longrightarrow Z_p \longrightarrow Z_{p^2} \longrightarrow Z_p \longrightarrow 0$ (the Bockstein homomorphism).

Let $i=2s(p-1)+\varepsilon$, where $s \in Z_+$ and $\varepsilon=0$ or 1. Then, following H. Cartan [2], we put

$$St^i = Sq^i$$
,
= \mathcal{O}^s if $\varepsilon = 0$, = $\mathcal{A}\mathcal{O}^s$ if $\varepsilon = 1$

according as p=2 or p>2, and we associate to each proper element $I=(i_1, i_2, \cdots, i_k, \cdots)$ a homomorphism

 $St^{I}: H^{q}(K; Z_{p}) \rightarrow H^{q+d(I)}(K; Z_{p})$

defined by

$$St^I = St^{i_1}St^{i_2}\cdots St^{i_k}\cdots$$

With J. Adem [1], we make the following convention on the binomial coefficient: For any integers i and j, we put

$$\begin{pmatrix} i \\ j \end{pmatrix} = \frac{i(i-1)\cdots(i-j+1)}{j!} \quad \text{if } j > 0,$$
$$= 1 \quad \text{if } j = 0, \text{ and } = 0 \quad \text{if } j < 0.$$

It should be noted that $\binom{-1}{j} = (-1)^j$ if $j \in Z_+$. The definition implies directly LEMMA 6. If $\binom{i}{j} \Rightarrow 0$ and $i \ge 0$, then $i \ge j$.

The cohomology of the *p*-fold cyclic product $\mathfrak{Z}_p(K)$ of K is studied by the author in his paper [6]. In the study, the homomorphisms

$$\begin{split} \phi_0^* \colon H^q(\mathfrak{X}_p(K)\,;\,Z_p) &\longrightarrow H^q(\mathfrak{Z}_p(K)\,,\,\mathfrak{d}_p(K)\,;\,Z_p)\,,\\ E_m \colon H^q(K;\,Z_p) &\longrightarrow H^{q+m}(\mathfrak{Z}_p(K)\,,\,\mathfrak{d}_p(K)\,;\,Z_p) \end{split}$$

are fundamental. By using of these homomorphisms, we shall now define a homomorphism

for each $m \in Z_+$ as follows:

where $c \in H^q(K; Z_p)$, 1 denotes the unit class of $H^*(K; Z_p)$ and $j^*: H^{q+m}(\mathfrak{Z}_p(K), \mathfrak{b}_p(K); Z_p) \to H^{q+m}(\mathfrak{Z}_p(K); Z_p)$ is the injection homomorphism. $\mathcal{O}_1 = 0$ is a direct consequence of the definition of E_1 .

Theorem (11.4) in [6] yields

PROPOSITION 2. Let B be a basis of the vector space $H^*(K; Z_p)$. Then a set

$$\boldsymbol{\emptyset}(B) = \{\boldsymbol{\emptyset}_m(b) \mid b \in B, \ 0 \leq m \leq (p-1) \dim b, \ m \neq 1\}$$

of elements of the vector space $H^*(\mathfrak{Z}_p(K); \mathbb{Z}_p)$ is independent. If K is (n-1)connected and q < 2n, then a base for the vector space $H^q(\mathfrak{Z}_p(K); \mathbb{Z}_p)$ can be formed by a set $\{c \in \mathfrak{O}(B) \mid \dim c = q\}$.

Theorems (11.6) and (11.7) in [6] give

PROPOSITION 3. Let $m, s \in Z_+$ and $m=2t+\eta$ with $t \in Z_+$, $\eta=0$ or 1. Then it holds that

$$\begin{aligned} \operatorname{Sq}^{s} \boldsymbol{\mathcal{Q}}_{m} &= \sum_{j=0}^{s} \binom{m-1}{j} \boldsymbol{\mathcal{Q}}_{m+j} \operatorname{Sq}^{s-j} & \text{for } p = 2, \\ \mathcal{O}^{s} \boldsymbol{\mathcal{Q}}_{m} &= \sum_{j=0}^{s} \binom{t+\eta-1}{j} \boldsymbol{\mathcal{Q}}_{m+2j(p-1)} \mathcal{O}^{s-j} & \text{for } p > 2, \\ \boldsymbol{\mathcal{AQ}}_{m} &= (1+(-1)^{m})/2 \boldsymbol{\mathcal{Q}}_{m+1} + (-1)^{m} \boldsymbol{\mathcal{Q}}_{m} \boldsymbol{\mathcal{A}}. \end{aligned}$$

4. Cohomology of iterated cyclic products of spheres

Let S^n denote an *n*-sphere $(n \ge 1)$, and e^n be a fixed generator of $H^n(S^n; Z_p)$. Let $r \in Z_+$, and $M = (m_1, m_2, \dots, m_k, \dots)$ be an element of Z_+^r . Then we shall associate to M an element $[M]_r = [m_1, \dots, m_r] \in H^{n+d(M)}(\mathfrak{Z}_p^r(S^n); Z_p)$ defined as the image of e^n by the composite homomorphism

$$\begin{array}{cccc} H^{n}(S^{n}; Z_{p}) & \xrightarrow{\varPhi_{m_{r}}} & H^{n+m_{r}}(\mathfrak{Z}^{1}(S^{n}); Z_{p}) & \xrightarrow{\varPhi_{m_{r}-1}} & H^{n+m_{r-1}+m_{r}}(\mathfrak{Z}^{2}(S^{n}); Z_{p}) \longrightarrow \cdots \\ & \xrightarrow{\varPhi_{m_{1}}} & H^{n+m_{1}+\cdots+m_{r}}(\mathfrak{Z}^{r}(S^{n}); Z_{p}) \ . \end{array}$$

10

It is clear that dim $[M]_r \ge n$ for any $M \in \mathbb{Z}^r_+$, and that

(4.1)
$$\boldsymbol{\mathcal{Q}}_{m_1}[m_2,\cdots,m_r] = [m_1, m_2,\cdots,m_r], \quad \boldsymbol{\mathcal{Q}}_{m_1}(e^n) = [m_1].$$

It follows from the fact $\varphi_1 = 0$ that $[M]_r = 0$ unless $M \in Z_+^r$ is special.

From Proposition 2 we have immediately

PROPOSITION 4. Put $\mathfrak{B}_r = \{[M]_r \mid M \in Z_+^r, M: special\}$. If q < n, a basis for the vector space $H^{n+q}(\mathfrak{Z}_p^r(S^n); Z_p)$ can be formed by a set $\{c \in \mathfrak{B}_r \mid \dim c = n+q\}$. Especially $H^n(\mathfrak{Z}_p^r(S^n); Z_p)$ is generated by the element $[O]_r$.

Throughout this section we assume that every cohomology class has dimension less than 2n.

The following proposition can be proved from Proposition 3 and (4.1) by induction on r. The proof is straightforward.

PROPOSITION 5. We have in $H^*(\mathfrak{Z}_p^r(S^n); \mathbb{Z}_p)$ the formulas:

(4.2) Sq^s[
$$m_1, m_2, \dots, m_r$$
]

$$= \sum_{S} {\binom{m_1-1}{s_1} \binom{m_2-1}{s_2} \cdots \binom{m_r-1}{s_r} [m_1+s_1, m_2+s_2, \dots, m_r+s_r]} \text{ for } p=2,$$

$$\mathcal{O}^{s}[m_1, m_2, \dots, m_r]$$

$$= \sum_{S} {\binom{t_1+\eta_1-1}{s_1} \binom{t_2+\eta_2-1}{s_2} \cdots \binom{t_r+\eta_r-1}{s_r} [m_1+2s_1(p-1), m_2+2s_2(p-1), \dots, m_r+2s_r(p-1)]} \text{ for } p>2,$$

where $S = (s_1, s_2, \dots, s_r, 0, 0, \dots) \in Z_+^r$, d(S) = s, and we put $m_k = 2t_k + \eta_k$ with $t_k \in Z_+$, $\eta_k = 0$ or 1.

(4.3)
$$\mathcal{A}[m_1, m_2, \cdots, m_r]$$

= $\sum_{k=1}^r (-1)^{m_1 + \cdots + m_{k-1}} (1 + (-1)^{m_k}) / 2 [m_1, \cdots, m_k + 1, \cdots, m_r].$

Let $M \in \mathbb{Z}_+^r$, and let $I \in \mathbb{Z}_+^\infty$ be proper. Then it follows from Propositions 4 and 5 that $St^I[M]_r$ has a unique representation:

$$St^{I}[M]_{r} = \sum_{N} a_{N}[N]_{r} \qquad (a_{N} \in Z_{p}),$$

where N is extended over all special elements of Z_{+}^{r} with d(N) = d(M) + d(I). If $a_{N} \neq 0$ in this expression, we write

$$[N]_r \subset St^{I}[M]_r$$

LEMMA 7. Let $M, N \in \mathbb{Z}_+^r$ and $i \equiv 0$ or $1 \mod 2(p-1)$. Then if

$$(p-1)d(M) \leq i, \quad i > 0, \quad [N]_r \subset St^i[M]_r,$$

we have

$$h(N) \ge h(M) + 1$$
.

Proof. Since the result for p=2 are proved similarly, as an illustration we write the proof for p>2. Let $i=2s(p-1)+\varepsilon$ ($s\in Z_+$, $\varepsilon=0$ or 1).

Case 1: $\varepsilon = 0$. Let $M = (m_1, m_2, \dots, m_k, \dots)$, $N = (n_1, n_2, \dots, n_k, \dots)$. Then, by Proposition 5, we may assume that

$$n_k = m_k + 2s_k(p-1) \qquad (k = 1, 2, \cdots),$$

$$S = (s_1, s_2, \cdots, s_k, \cdots) \in Z_+^r, \quad d(S) = s.$$

Put h = h(M), and let $m_k > 0$ for $k = \alpha_1, \alpha_2, \dots, \alpha_h$. The proposition is clear for h=0, and hence we may assume h>0.

Since $n_k \ge m_k$ for any k, we have $h(N) \ge h(M)$. Assume now h(N) = h(M). Then we have $n_k = 0$ for $k \neq \alpha_1, \alpha_2, \dots, \alpha_h$, and hence $s_k = 0$ for $k \neq \alpha_1, \alpha_2, \dots, \alpha_h$, Therefore if we put $m_k = 2t_k + \eta_k$ $(k=1, 2, \dots)$, it follows from (4.2) and the assumption that

$$\binom{t_{\alpha_1}+\eta_{\alpha_1}-1}{s_{\alpha_1}}\binom{t_{\alpha_2}+\eta_{\alpha_2}-1}{s_{\alpha_2}}\cdots\binom{t_{\alpha_h}+\eta_{\alpha_h}-1}{s_{\alpha_h}} \equiv 0 \mod p.$$

Since $t_{\alpha_k} + \eta_{\alpha_k} - 1 \ge 0$ for $k=1, 2, \dots, h$, it follows from Lemma 6 that

$$t_{\alpha_k} + \eta_{\alpha_k} - 1 \geq s_{\alpha_k} \qquad (k = 1, 2, \cdots, h),$$

and hence

$$m_{\alpha_k} = 2t_{\alpha_k} + \eta_{\alpha_k} \geq 2s_{\alpha_k} - \eta_{\alpha_k} + 2 > 2s_{\alpha_k}.$$

Therefore we have

$$d(M) = \sum_{k=1}^{h} m_{\alpha_k} > 2 \sum_{k=1}^{h} s_{\alpha_k} = 2s.$$

and so (p-1)d(M) > 2s(p-1)=i, which contradicts with our assumption. Thus $h(N) \ge h(M) + 1$.

Case 2: $\varepsilon = 1$. Let i=1. Then M=O, and hence the lemma is clear by (4.3). Therefore we shall assume i > 1.

The assumption $(p-1)d(M) \leq i=2s(p-1)+1$ implies $(p-1)d(M) \leq 2s(p-1)$. And, since i > 1, we have 2s(p-1) > 0.

Since $[N]_r \subset 4St^{2s(p-1)}[M]_r$, there exists an element $L \in Z^r_+$ such that

$$(4.4) \qquad [L]_r \subset St^{2s(p-1)} [M]_r$$

$$(4.5) [N]_r \subset \mathcal{A}[L]_r.$$

Since $(p-1)d(M) \leq 2s(p-1)$ and 2s(p-1) > 0, it follows from (4.4) and the fact just proved above that

$$h(L) \ge h(M) + 1$$
.

It follows from (4.3) and (4.5) that

$$h(N) \ge h(L)$$
.

Therefore we have $h(N) \ge h(M) + 1$,

Q. E. D,

PROPOSITION 6. Let $I \in Z_+^{\infty}$ be admissible, and let

$$[N]_r \subset St^I[O]_r \qquad (N \in Z^r_+) .$$

Then we have

$$h(N) \ge h(I) = l(I).$$

Proof. The proof is by induction on l(I). If l(I) = 0 the proposition is trivial. Therefore we assume the proposition for I with l(I) = l-1, and shall prove it for I with l(I) = l > 0.

Let $I = (i_1, i_2, \dots, i_k, \dots)$ and put $I' = (i_2, i_3, \dots, i_k, \dots)$. Then we have $[N]_r \subset St^{i_1}St^{I'}[O]_r$. Therefore there is an element $M \in Z_r^r$ such that

$$[M]_r \subset St^{I'}[O]_r,$$

$$[N]_r \subset St^{i_1}[M]_r$$

Since $I' \in Z_+^{\infty}$ is admissible and l(I') = l-1, it follows from (4.6) and the hypothesis of induction that

$$(4.8) h(M) \ge h(I') = l-1.$$

Since I is admissible, we have by the definition

$$i_k \geq p i_{k+1}$$
, $k=1, 2, \cdots$.

Adding these inequalities, we have

$$i_1 \ge (p-1)(i_2+i_3+\cdots) = (p-1)d(I')$$
 .

Since l(I) > 0, we have $i_1 > 0$. Therefore, by Lemma 7, it follows from (4.7) that (4.9) $h(N) \ge h(M) + 1$.

Together (4.8) with (4.9), we obtain $h(N) \ge l = h(I)$. Q.E.D.

A direct consequence of Propositions 5 and 8, we have

THEOREM 3. Let $I \in \mathbb{Z}_+^{\infty}$ be admissible and h(I) > r. Then it holds that

$$\operatorname{St}^{I}[O]_{r} = 0 \quad in \quad H^{*}(\mathfrak{Z}_{p}^{r}(S^{n}); Z_{p}).$$

Denote by $\alpha_i \in \mathfrak{S}_r$ $(1 \leq i < r)$ the permutation which interchanges i and i+1, and leaves fixed all the other letters. It is well known that \mathfrak{S}_r is generated by $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ with the defining relations:

$$lpha_1^2 = lpha_2^2 = \cdots = lpha_{r-1}^2 = 1$$
, $(lpha_i lpha_j)^2 = 1$ if $i+1 < j$,
 $(lpha_i lpha_{i+1})^3 = 1$

(See Dickson: Linear groups p. 287). Therefore it follows that if we define

$$\alpha_{i}[m_{1}, \cdots, m_{i}, m_{i+1}, \cdots, m_{r}] = (-1)^{m_{i}m_{i+1}}[m_{1}, \cdots, m_{i+1}, m_{i}, \cdots, m_{r}]$$

$$(i = 1, 2, \cdots, r-1)$$

then \mathfrak{S}_r becomes an operator group on a vector space $H^*_0(\mathfrak{Z}^r_p(\mathfrak{S}^n); \mathbb{Z}_p)$ generated by

the set \mathfrak{B}_r (see Proposition 4). Let $c \in H_0^*(\mathfrak{Z}_p^r(S^n); \mathbb{Z}_p)$. If $\alpha c = c$ for any $\alpha \in \mathfrak{S}_r$, we call that c is symmetric.

PROPOSITION 7. If $c \in H_0^*(\mathcal{Z}_p^r(\mathbb{S}^n); \mathbb{Z}_p)$ is symmetric, then so is $\operatorname{St}^I c$ for any proper $I \in \mathbb{Z}_+^\infty$. Especially $\operatorname{St}^I[O]_r$ is symmetric.

Proof. By straightforward calculation, it follows from Proposition 5 that $\alpha_i \in \mathfrak{S}_r$ commutes with Sq^s , \mathcal{O}^s and Δ (i. e. $\alpha_i \operatorname{Sq}^s[M]_r = \operatorname{Sq}^s \alpha_i[M]_r$ etc). Therefore we have $\alpha \operatorname{Sq}^s = \operatorname{Sq}^s \alpha$, $\alpha \mathcal{O}^s = \mathcal{O}^s \alpha$ and $\alpha \Delta = \Delta \alpha$ for any $\alpha \in \mathfrak{S}_r$. This proves the proposition. Q. E. D.

LEMMA 8. Let $M = (m_1, m_2, \dots, m_k, \dots)$, $N = (n_1, n_2, \dots, n_k, \dots) \in Z_+^r$, and $i \equiv 0$ or $1 \mod 2(p-1)$. Assume now $[N]_r \subset \operatorname{St}^i[M]_r$. Then, for q such that $m_q > 0$, we have $n_q < pm_q$.

Proof. Since the proof for p=2 is similar, we write only the proof for p>2. Put $i=2s(p-1)+\varepsilon$ ($s\in \mathbb{Z}_+$, $\varepsilon=0$ or 1).

Case 1: $\varepsilon = 0$. We may assume that $n_k = m_k + 2s_k(p-1)$, $S = (s_1, s_2, \dots, s_k, \dots) \in Z_+^r$, d(S) = s. Put $m_k = 2t_k + \eta_k$ $(t_k \in Z_+, \eta_k = 0 \text{ or } 1)$. Then it follows from Proposition 5 and the assumption that

$$\binom{t_1+\eta_1-1}{s_1}\binom{t_2+\eta_2-1}{s_2}\cdots\binom{t_r+\eta_r-1}{s_r} \equiv 0 \mod p.$$

Especially $\binom{t_q+\eta_q-1}{s_q} \neq 0$. Since $m_q > 0$, we have $t_q+\eta_q-1 \ge 0$. Therefore it follows from Lemma 6 that $t_q+\eta_q-1 \ge s_q$. From this, we have $m_q-2s_q=2t_q+\eta_q-2s_q\ge 2$ $-\eta_q>0$. Hence $pm_q-n_q=(p-1)m_q+(m_q-n_q)=(p-1)m_q-2s_q(p-1)=(p-1)(m_q-2s_q)>0$. Namely we have $pm_q>n_q$.

Case 2: $\epsilon = 1$. The lemma follows easily from the result for $\epsilon = 0$ and (4.3). Q. E. D.

PROPOSITION 8. Let $I \in Z_+^r$ be admissible, and $N \in Z_+^r$. Then if $[N]_r \subset \operatorname{St}^I[O]_r$, we have $N \leq I$. Furthermore $[I]_r \subset \operatorname{St}^I[O]_r$.

*Proof.*⁴⁾ We write only the proof for p > 2. The proof for p=2 is similar. Since the statement is trivial if l(I)=0, we proceed by induction on l(I).

Assuming the statement for I with l(I) = l-1, we shall prove it for I with l(I) = l > 1.

Let $I = (i_1, i_2, \dots, i_k, \dots)$, and put $I' = (i_2, i_3, \dots, i_k, \dots)$. Then if $[N]_r \subset \operatorname{St}^I[O]_r$, there exists an element $M \in \mathbb{Z}_+^r$ such that

 $(4.10) \qquad \qquad \lceil M \rceil \subset \operatorname{St}^{I'}[O]_{r},$

$$(4.11) \qquad \qquad \lceil N \rceil_r \subset \operatorname{St}^{i_1} \lceil M \rceil_r$$

⁴⁾ I am indebted to my colleagues Mizuno and Toda for the improvement of this proof.

Since I' is admissible and l(I') = l-1, it follows from (4.10) and the hypothesis of induction that $M \leq I'$. Let $M = (m_1, m_2, \dots, m_k, \dots)$ and $N = (n_1, n_2, \dots, n_k, \dots)$.

Case 1: $m_1 > 0$. It follows from Lemma 8 and (4.11) that $n_1 < pm_1$. Since $M \leq I'$, we have $m_1 \leq i_2$. Therefore we obtain

$$n_1 < pm_1 \leq pi_2 \leq i_1$$

Thus we have N < I.

Case 2: $m_1=0$. It follows from Proposition 7 and (4.10) that

$$[m_2, m_3, \cdots, m_r, 0] = [m_2, m_3, \cdots, m_r, m_1] \subset \operatorname{St}^{I'}[O]_r.$$

Therefore, by the hypothesis of induction, we have

 $(m_2, m_3, \cdots, m_r, 0, 0, \cdots) \leq I' = (i_2, i_3, \cdots).$

It follows from (4.11) and Proposition 5 that

$$N = (n_1, n_2, n_3, \cdots) \leq (m_1 + i_1, m_2, m_3, \cdots) = (i_1, m_2, m_3, \cdots).$$

Therefore we obtain

$$N \leq (i_1, m_2, m_3, \cdots) \leq (i_1, i_2, i_3, \cdots) = I.$$

This completes the proof of the first part.

Assume that $[I]_r \subset \operatorname{St}^{i_1}[M]_r$ with $[M]_r \subset \operatorname{St}^{I'}[O]_r$. Then it follows from the above argument that $M = (0, i_2, i_3, \cdots)$. Thus, by the hypothesis of induction and Propositions 5 and 8, we have the second part. Q. E. D.

As a direct consequence of Propositions 4 and 9, we obtain

THEOREM 4. A set of elements $\operatorname{St}^{I}[O]_{r} \in H^{n+q}(\mathfrak{Z}_{p}^{r}(\mathbb{S}^{n}); \mathbb{Z}_{p})$ is linearly independent, where $I \in \mathbb{Z}_{+}^{\infty}$ is extended over all admissible and special elements such that d(I) = q < n and $l(I) \leq r$.

5. Proof of main theorem

A point of the *m*-fold symmetric product $\mathfrak{S}_m(K)$ is represented by an unordered set $\{t_1, t_2, \dots, t_m\}$ with $t_j \in K$ for $j=1, 2, \dots, m$. Let $* \in K$ be a fixed vertex. For any integers *m*, *n* with $m \leq n$, define a map $\iota_{m,n} : \mathfrak{S}_m(K) \longrightarrow \mathfrak{S}_n(K)$ by

$$\iota_{m,n}\{t_1, t_2, \cdots, t_m\} = \{t_1, t_2, \cdots, t_m, *, *, \cdots\}.$$

Obviously $\iota_{m,n}$ maps $\mathfrak{S}_m(K)$ into $\mathfrak{S}_n(K)$ homeomorphically. The inductive limit of the sequence

$$K = \mathfrak{S}_1(K) \xrightarrow{\iota_{1,2}} \mathfrak{S}_2(K) \longrightarrow \cdots \longrightarrow \mathfrak{S}_m(K) \xrightarrow{\iota_{m,m+1}} \mathfrak{S}_{m+1}(K) \longrightarrow \cdots$$

is called the *infinite symmetric product* of K, and is denoted by $\mathfrak{S}_{\infty}(K)$.

The following theorem was established in [7] by the author.

THEOREM 5. Let $m \leq n$, then the injection homomorphism

 $\iota_{m,n}^* \colon H^q(\mathfrak{S}_n(K)\,;\, Z_p) \longrightarrow H^q(\mathfrak{S}_m(K)\,;\, Z_p)$

is an epimorphism for any q.

From this, we have

THEOREM 6. Let $\iota_m : \mathfrak{S}_m(K) \longrightarrow \mathfrak{S}_{\infty}(K)$ be the inclusion map, then the injection homomorphism

$$\iota_m^* \colon H^q(\mathfrak{S}_{\infty}(K)\,;\, Z_p) \longrightarrow H^q(\mathfrak{S}_m(K)\,;\, Z_p)$$

is an epimorphism for any q.

Proof. It follows from Theorem 5 that the homomorphism of homology

$$\iota_{m,n_{*}}: H_{q}(\mathfrak{S}_{m}(K); Z_{p}) \longrightarrow H_{q}(\mathfrak{S}_{n}(K); Z_{p})$$

is a monomorphism for any $n \ge m$. Let $a \in H_q(\mathfrak{S}_m(K); Z_p)$ be an element such that $\iota_m^*(a) = 0$, and c a cocycle mod p in $\mathfrak{S}_m(K)$ representing a. Then c is a bounding cycle in $\mathfrak{S}_n(K)$ for sufficiently large n. Therefore we have $\iota_m, \mathfrak{n}_*(a) = 0$, and hence a = 0 by the fact above-mentioned. Thus it follows that the homomorphism of homology

$$\iota_{m_*} \colon H_q(\mathfrak{S}_m(K) ; Z_p) \longrightarrow H_q(\mathfrak{S}_{\infty}(K) ; Z_p)$$

is a monomorphism. From this we have immediately Theorem 6. Q. E. D.

The following theorem was established by A.Dold-R.Thom [4] and others.

THEOREM 7. $\mathfrak{S}_{\infty}(S^n)$ is an Eilenberg-MacLane complex K(Z, n) (i.e. the homotopy group $\pi_i(\mathfrak{S}_{\infty}(S^n)) \approx Z$ for i=n, and =0 for $i \neq n$), where Z denotes the additive group of integers.

The mod p cohomology group $H^*(Z, n; Z_p)$ of K(Z, n) was calculated by H. Cartan [2] (See also J-P. Serre [9] for p=2):

THEOREM 8. Denote by u_0 a fixed generator of $H^n(Z, n; Z_p) \approx Z_p$. Then if q < n the vector space $H^{n+q}(Z, n; Z_p)$ has a base formed by elements $\operatorname{St}^I u_0$, where $I \in Z_+^{\infty}$ is extended over all admissible and special elements with d(I) = q.

We have

PROPOSITION 10. Put $v_{0,m} = t_m^*(u_0)$, then $H^n(\mathfrak{S}_m(S^n); Z_p)$ is a cyclic group of order p whose generator is $v_{0,m}$. If $m = p^r$ then $\rho^* v_{0,m} = a[O]_r$ with $a \equiv 0 \mod p$, where ρ^* is the homomorphism in Theorem 2.

Proof. It is known [5, 7] that $H^n(\mathfrak{S}_m(S^n); Z_p)$ has a subgroup isomorphic with $H^n(S^n; Z_p) \approx Z_p$. Therefore the first part of Proposition 10 follows from Theorems 6 and 7. The second part follows from Theorem 2 and Proposition 4.

Q. E. D.

16

We shall now prove

MAIN THEOREM. Let $p^h \leq m < p^{h+1}$ and q < n. Then the vector space $H^{n+q}(\mathfrak{S}_m (S^n); Z_p)$ has a base formed by elements $\operatorname{St}^I v_{0,m}$, where $I \in \mathbb{Z}_+^{\infty}$ is extended over all admissible and special elements with d(I) = q and $l(I) \leq h$.

Proof. It follows from Theorems 6, 7 and 8 using the naturality of St^{I} that the vector space $H^{n+q}(\mathfrak{S}_{m}(S^{n}); \mathbb{Z}_{p})$ is generated by elements $\operatorname{St}^{I}v_{0,m}$, where $I \in \mathbb{Z}_{+}^{\infty}$ is extended over all admissible and special elements with d(I) = q. Therefore, for the proof of the theorem, it is sufficient to prove the following (A) and (B).

(A) If I is an admissible element with l(I) > h, then $\operatorname{St}^{I} v_{0, m} = 0$.

(B) If $\sum_{i} a_i \operatorname{St}^{I_i} v_{0,m} = 0$ $(a_i \in Z_p)$ for admissible and special elements I_i with $d(I_i) = q$ and $l(I_i) \leq h$, then we have $a_i = 0$.

For a proof of (A), let $m = \sum_{r=0}^{n} a_{h-r} p^r$ $(a_0 \neq 0)$ be the *p*-adic expansion of *m*, and consider the diagram

$$\begin{aligned} H^{n+q}(\mathfrak{Z}_{p}^{r}(S^{n})\,;\,Z_{p}) & \xleftarrow{\xi_{r}^{j,*}} H^{n+q}(\mathfrak{G}_{m}(S^{n})\,;\,Z_{p}) \\ & \uparrow \rho^{*} & \uparrow \rho^{*} \\ H^{n+q}(\mathfrak{S}_{pr}(S^{n})\,;\,Z_{p}) & \xleftarrow{\xi_{n}^{*}r_{,m}} H^{n+q}(\mathfrak{S}_{m}(S^{n})\,;\,Z_{p}) , \end{aligned}$$

where ρ^* and ξ_r^{j*} are the homomorphisms mentioned in §2. It follows from definitions that the commutativity holds in this diagram. Therefore we have

$$\xi_r^{j*}\rho^*\mathrm{St}^I v_{0,m} = \rho^* \iota_p^* r_{,m} \mathrm{St}^I v_{0,m} = \rho^* \mathrm{St}^I v_{0,p^r}.$$

Since $r \leq h < l(I)$, Proposition 10 and Theorem 3 imply that $\rho^* \operatorname{St}^{I} v_{0, p^{r}} = a \operatorname{St}^{I} |O|_{r} = 0$. Namely we have

$$\xi_r^{j*} \rho^* \operatorname{St}^l v_{0,m} = 0$$
 for every $(r, j) \in W(m)$.

Thus it follows from Corollary of Theorem 1' that $\rho^* \operatorname{St}^I v_{0,m} = 0$. By Theorem 2, we have $\operatorname{St}^I v_{0,m} = 0$. This completes the proof of (A).

From the assumption of (B), we have $\sum_{i} a_i \operatorname{St}^{I_i} v_{0, ph} = \iota_{ph, m}^* (\sum_{i} a_i \operatorname{St}^{I_i} v_{0, m}) = 0$. Therefore we obtain by Proposition 10 that $\sum_{i} a_i \operatorname{St}^{I_i} [O]_h = 0$. Then Theorem 4 implies that $a_i = 0$ for each *i*, and we have (B). Q. E. D.

Together with Proposition 7, we have

COROLLARY 1. If q < n, the image of $H^{n+q}(\mathfrak{S}_{ph}(S^n); Z_p)$ by the monomorphism ρ^* is contained in the subspace of $H^{n+q}(\mathfrak{Z}_p^h(S^n); Z_p)$ formed by all the symmetric elements.

We have also

COROLLARY 2. If $p^h \leq m < p^{h+1}$ and q < n, then the homomorphism $\iota_{p^h,m}^* \colon H^{n+q}$ $(\mathfrak{S}_m(S^n); Z_p) \longrightarrow H^{n+q}(\mathfrak{S}_{p^h}(S^n); Z_p)$ is an isomorphism.

Bibliography

- [1] J. Adem: *The relations on Steenrod powers of cohomology classes.* Algebraic Geometry and Topology, Princeton University Press (1957), pp. 191-238.
- [2] H. Cartan: Sur les groupes d'Eilenberg-MacLane I, II. Proc. Nat. Acad. Sci. U.S.A., 40 (1954), pp. 467-471 and pp. 704-707.
- [3] H. Cartan-S. Eilenberg: Homological Algebra. Princeton University Press (1956).
- [4] A. Dold-R. Thom: Une généralisation de la notion d'espace fibré. Application aux produits symétriques infinis. C. R. Acad. Sci. Paris, 242 (1956), pp. 1680-1682.
- S. D. Liao: On the topology of cyclic products of spheres. Trans. Amer. Math. Soc., 77 (1954), pp. 520–551.
- [6] M. Nakaoka: Cohomology theory of a complex with a transformation of prime period and its applications. J. Inst. Polytech., Osaka City Univ., 7 (1956), pp. 51-102.
- [7] M. Nakaoka: Cohomology of symmetric products. ibid, 8 (1957), pp. 121-144.
- [8] M. Nakaoka: Cohomology mod p of the p-fold symmetric products of spheres. J. Math. Soc. Japan, 9 (1957), pp. 417-427.
- [9] J.P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv., 27 (1953), pp. 198-232.