Cohomology mod p of symmetric products of spheres

By Minoru Nakaoka

(Received September 28, 1957)
(Revised December 14, 1957)

Throughout this paper, we denote by \mathfrak{S}_{m} the symmetric group of degree m, K a finite simplicial complex and p a fixed prime integer. The group ς_{m} operates in a natural way on the m-fold cartesian product $\mathfrak{X}_{m}(K)=K \times K \times \cdots \times K$. The orbit space $\mathfrak{S}_{m}(K)$ over $\mathfrak{X}_{m}(K)$ relative to \mathfrak{S}_{m} is called the m-fold symmetric product. We study in the present paper the cohomology $\bmod p$ of the symmetric product $\mathbb{S}_{m}\left(S^{n}\right)$ of an n-sphere S^{n}. However the method we use will be applicable for calculation of cohomology of the symmetric product of more general complexes.

Let St^{I} denote the iterated Steenrod reduced powers, and $v_{0, m}$ a generator of $H^{n \prime}\left(\Im_{m}\left(S^{n}\right) ; Z_{p}\right) \approx Z_{p}$. Then our main theorem is stated as follows ${ }^{0}$: If $q<n$ and $p^{h} \leqq m<p^{h+1}$, the vector space $H^{n+q}\left(\Im_{m}\left(S^{n}\right) ; Z_{p}\right)$ has a base formed by elements $\operatorname{St}^{I} v_{0, m}$, where I runs over the set of all admissible and special elements with degree q and length $\leqq h$. (See $\wp 3$ for the precise definitions.)

The method we use is as follows.
Let $\mathbb{S}_{\infty}(K)$ denote the infinite symmetric product of K. It follows from a result in my paper [7] that the injection homomorphism $\iota_{m}^{*}: H^{q}\left(\mathbb{S}_{\infty}(K) ; Z_{p}\right) \longrightarrow H^{q}{ }^{\prime} \mathfrak{S}_{m}(K)$; Z_{p}) is an epimorphism. As was proved by Dold-Thom [4], $\varsigma_{\infty}(K)$ is a product of the Eilenberg-MacLane complexes. Therefore we can describe a set of generators for $H^{q}\left(\Im_{m}(K) ; Z_{p}\right)$ in virtue of the Cartan's computation [2]. In order to examine if these generators are linearly independent, we choose a particular p-Sylow subgroup \mathfrak{G}_{m} of \mathfrak{S}_{m}, and consider the orbit space $\mathscr{S}_{m}(K)$ over $\mathfrak{X}_{m}(K)$ relative to \mathscr{S}_{m}. The natural projection defines a homomorphism $\Omega^{*}: H^{q}\left(\varsigma_{m}(K) ; Z_{p}\right) \rightarrow H^{q}\left(ङ_{m}(K) ; Z_{p}\right)$. We prove it by using of the transfer homomorphism that ρ^{*} is a monomorphism. Let $m=a_{0} p^{h}+a_{1} p^{h-1}+\cdots+a_{h}\left(0 \leqq a_{i}<p\right)$ be the p-adic expansion of m, and denote by $3_{p}(K)$ the p-fold cyclic product of K (i.e. the orbit space over $\mathfrak{X}_{p}(K)$ relative to the subgroup $3_{p} \subset \mathbb{S}_{p}$ of cyclic permutations). The 1 we have that $\mathbb{S}_{m}(K)$ is homeomorphic with the space $\mathfrak{X}_{a_{0}}\left(\mathfrak{J}_{p}^{h}(K)\right) \times \mathfrak{X}_{a_{1}}\left(\mathfrak{J}_{1}^{h-1}(K)\right) \times \cdots \times \mathfrak{X}_{a_{h}}(K)$, where $\left.\mathfrak{J}_{p}^{r} \backslash K\right)$ denotes the iterated cyclic product $3_{p} 3_{p} \cdots 3_{p}(K)$ (r-times) of K. As for the cohomology structure of $3_{p}(K)$, I have studied in the paper [6]. By making use of some results there, we analyse the cohomology structure $\bmod p$ of $\mathcal{S}_{p}^{r}(K)$, and we determine the dependence of the generators.
0) (Added April 14, 1958) I have recently succeeded in determination of the cohomology ring $H^{*}\left(\mathcal{G}_{m}\left(S^{n}\right) ; Z_{p}\right)$.

1. The orbit space ${ }^{3}{ }_{p r}(K)$

In this and next sections, we study the orbit space over the m-fold cartesian product of K relative to a p-Sylow subgroup of \mathbb{S}_{m}. The special case $m=p^{r}$ is dealt in this section, and the general case in next section.

Let q be an integer $\geqq 0$. Denote by Ω_{q} a set consisting of all sequences (i_{1}, i_{2}, \cdots, i_{q}), where each i_{j} is an integer $\bmod p . \Omega_{q}$ has p^{q} elements. We shall associate to an element $\left(i_{1}, i_{2}, \cdots, i_{q}\right) \in \Omega_{q}$ an integer $A_{i_{1}}, i_{2}, \cdots, i_{q}$ defined as follows :

$$
A_{i_{1}, i_{2}}, \cdots, i_{q}=i_{1} p^{q-1}+i_{2} p^{q-2}+\cdots+i_{q}+1 \quad\left(0 \leqq i_{j}<p\right)
$$

This gives clearly a one-to-one correspondence of Ω_{q} onto the set $\left\{1,2, \cdots, p^{q}\right\}$.
We shall regard Ξ_{m} as the group of all transformations of m letters $1,2, \cdots, m$. For each $q(0 \leqq q<r)$ and each $\left(k_{1}, k_{2}, \cdots, k_{q}\right) \in \Omega_{q}$, we define an element $T_{k_{1}, k_{2}}^{r}, \cdots, k_{q} \in \mathbb{S}_{p^{r}}$ by

$$
\begin{align*}
& T_{k_{1}}^{r}, \cdots, k_{q}\left(A_{i_{1}}, \cdots, i_{r}\right) \tag{1.1}\\
= & A_{i_{1}}, \cdots, i_{q}, i_{q_{+1}+1}, i_{q_{+2}}, \cdots, i_{r} \\
= & A_{i_{1}}, \cdots, i_{r} \quad \text { if }\left(i_{1}, \cdots, i_{q}\right)=\left(k_{1}, \cdots, k_{q}\right),
\end{align*}
$$

Obviously we have

$$
\begin{equation*}
\left(T_{k_{1}}^{r}, \cdots, k_{q}\right)^{p}=1 \tag{1.2}
\end{equation*}
$$

We shall prove
Lemma 1. $\quad T_{j_{1}}^{r}, \cdots, j_{m} T_{k_{1}}^{r}, \cdots, k_{q}$

$$
\begin{aligned}
& =T_{k_{1}}^{r}, \cdots, k_{q} T_{j_{1}}^{r}, \cdots, j_{m} \quad \text { if } m \leqq q \text { and }\left(j_{1}, \cdots, j_{m}\right) \neq\left(k_{1}, \cdots, k_{m}\right), \\
& =T_{k_{1}}^{r}, \cdots, k_{m}, k_{m+1}+1, k_{m+2}, \cdots, k_{q} T_{j_{1}}^{r}, \cdots, j_{m} \\
& \quad \text { if } m<q \text { and }\left(j_{1}, \cdots, j_{m}\right)=\left(k_{1}, \cdots, k_{m}\right) .
\end{aligned}
$$

Proof. The following can be easily proved from the definition (1.1).
Case I: $\quad m \leqq q$ and $\left(j_{1}, \cdots, j_{m}\right) \neq\left(k_{1}, \cdots, k_{m}\right)$

$$
\begin{aligned}
& T_{j_{1}}^{r}, \cdots, j_{m} T_{k_{1}}^{r}, \cdots, k_{q}\left(A_{i_{1}}, \cdots, i_{r}\right) \\
&= T_{k_{1}}^{r}, \cdots, k_{q} T_{j_{1}}^{r}, \cdots, j_{m}\left(A_{i_{1}}, \cdots, i_{r}\right) \\
&= \begin{cases}A_{i_{1}}, \cdots, i_{m+1}+1 \\
A_{i_{1}}, \cdots, i_{q_{+1}+1}, \cdots, i_{r} & \text { if }\left(i_{1}, \cdots, i_{m}\right)=\left(j_{1}, \cdots, j_{m}\right), \\
A_{i_{1}}, \cdots, i_{r} & \text { if }\left(i_{1}, \cdots, i_{m}\right) \neq\left(j_{1}, \cdots, j_{m}\right) \text { and }\left(i_{1}, \cdots, i_{q}\right)=\left(k_{1}, \cdots, k_{q}\right),\end{cases} \\
& \text { if }\left(i_{1}, \cdots, i_{m}\right) \neq\left(j_{1}, \cdots, i_{m}\right) \text { ahd }\left(i_{1}, \cdots, i_{q}\right) \neq\left(k_{1}, \cdots, k_{q}\right) .
\end{aligned}
$$

Case II: $m<q$ and $\left(j_{1}, \cdots, j_{m}\right)=\left(k_{1}, \cdots, k_{m}\right)$

$$
\begin{aligned}
& T_{j_{1}}^{r}, \cdots, j_{m} T_{k_{1}}^{r}, \cdots, k_{q}\left(A_{i_{1}}, \cdots, i_{r}\right) \\
= & T_{k_{1}}^{r}, \cdots, k_{m+1^{+1}}, \cdots, k_{q} T_{j_{1}}, \cdots, j_{m}\left(A_{i_{1}}, \cdots, i_{r}\right) \\
= & \left\{\begin{array}{ll}
A_{i_{1}}, \cdots, i_{m+1^{+1}}, \cdots, i_{q_{+1}+1}, \cdots, i_{r} & \text { if }\left(i_{1}, \cdots, i_{q}\right)=\left(k_{1}, \cdots, k_{q}\right), \\
A_{i_{1}}, \cdots, i_{m: 1^{+1}}, \cdots, i_{r} & \text { if }\left(i_{1}, \cdots, i_{q}\right) \neq\left(k_{1}, \cdots, k_{q}\right) \text { and }\left(i_{1}, \cdots, i_{m}\right)=\left(k_{1}, \cdots, k_{m}\right), \\
A_{i_{1}}, \cdots, i_{r} & \text { if }\left(i_{1}, \cdots, i_{m}\right) \neq\left(k_{1}, \cdots, k_{m}\right)
\end{array}\right. \text { Q. E.D. }
\end{aligned}
$$

Let $\pi_{k_{1}}^{r}, \cdots, k_{q} \subset \mathbb{S}_{p^{r}}$ denote a cyclic subgroup generated by $T_{k_{1}}^{r}, \cdots, k_{q}$. The order of $\pi_{k_{1}}^{r}, \cdots, k_{q}$ is p. Since

$$
\begin{equation*}
T_{j_{1}}^{r}, \cdots, j_{q} T_{k_{1}}^{r}, \cdots, k_{q}=T_{k_{1}}^{r}, \cdots, k_{q} T_{j_{1}}^{r}, \cdots, j_{q} \quad \text { if }\left(j_{1}, \cdots, j_{q}\right) \neq\left(k_{1}, \cdots, k_{q}\right), \tag{1.3}
\end{equation*}
$$

we may define $\rho_{1+1}^{r} \subset \mathbb{S}_{p^{r}}(0 \leqq q<r)$ by

$$
\rho_{q+1}^{r}=\prod_{\left(k_{1}, \cdots, k_{q} ; \in \Omega_{q}\right.} \pi_{k_{1}}^{r}, \cdots, k_{q},
$$

the product of $\pi_{k_{1}}^{r}, \ldots,{ }_{k q}$'s as subgroups of $\mathfrak{S}_{p^{r}} . \rho_{q+1}^{r}$ is the direct product of $\pi_{k_{1}}^{r}, \ldots, k_{q}$'s, and its order is the p^{q}-th power of p.

Next, for $q=1,2, \cdots, r$, define

$$
\sigma_{q}^{r}=\rho_{1}^{r} \rho_{2}^{r} \cdots \rho_{\square}^{r},
$$

the product of ρ_{m}^{r} 's as subgroups of $\mathbb{S}_{p^{r}}$. Since Lemma 1 yields that $\rho_{m}^{r} \rho_{n}^{r}=\rho_{n}^{r} \rho_{m}^{r}$ ($1 \leqq m, n \leqq q$), it follows that σ_{q}^{r} is a subgroup of $\mathbb{S}_{p} r$. Furthermore Lemma 1 shows that ρ_{q}^{r} is an invariant subgroup of σ_{q}^{r}. We have

$$
\begin{equation*}
\sigma_{q}^{r} / \rho_{q}^{r} \approx \sigma_{q-1}^{r} . \tag{1.4}
\end{equation*}
$$

Actually, σ_{q}^{r} is a split extension of ρ_{q}^{r} by σ_{q-1}^{r}, where σ_{q-1}^{r} operates non-trivially on ρ_{q}^{r}. From (1.4), we obtain by induction on q that the order of σ_{q}^{r} is the $\left(p^{q-1}+p^{q-2}+\cdots+1\right)-$ th power of p.

We write $\mathscr{C}_{p^{r}}=\sigma_{r}^{r}$. The order of $\mathscr{S}_{p^{r}}$ is the ($p^{r-1}+p^{r-2}+\cdots+1$)-th power of p. Since this is the highest order of p in p^{r} !, the group $\mathscr{C}_{p^{r}}$ is a p-Sylow subgroup of $\mathfrak{S}_{p r} .^{1)}$

We note here the following
Lemma 2. If $0 \leqq q<r-1$ and $T_{i_{1}}^{r-1}, \ldots, k_{q}\left(A_{i_{1}}, \ldots, i_{r-1}\right)=A_{j_{1}}, \ldots, j_{r-1}$, then $T_{k_{1}}^{r}, \cdots, k_{q}\left(A_{i_{1}}, \cdots, i_{r}\right)=A_{j_{1}}, \ldots, j_{r-1}, i_{r}$.

This is clear from the definition (1.1).
Let $\mathfrak{X}_{p^{r}}(K)$ be the p^{r}-fold cartesian product of K. A point x of $\mathfrak{X}_{p^{\prime}}(K)$ is given as a function x defined for each $A_{i_{1}}, \ldots, i_{r}$ and takes values in K. The symmetric group $\mathbb{S}_{p^{r}}$ operates on $\mathfrak{X}_{p^{r}}(K)$ in a natural manner:

$$
(\alpha x)\left(A_{i_{1}}, \cdots, i_{r}\right)=x\left(\alpha\left(A_{i_{1}}, \cdots, i_{r}\right)\right), \quad \alpha \in \mathbb{S}_{p^{r}} .
$$

Define a map $f: \mathfrak{x}_{p^{r}}(K) \longrightarrow \mathfrak{x}_{p^{r-1}}\left(\mathfrak{X}_{p}(K)\right)$ by
$(f x)\left(A_{i_{1}}, \cdots, i_{r-1}\right)=x\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times x\left(A_{i_{1}}, \cdots, i_{r-1}, 1\right) \times \cdots \times x\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right) \not \mathfrak{X}_{p}(K)$.
It is obvious that f is an onto-homeomorphism.
Lemma 3. If $0 \leqq q<r-1$, then

$$
f T_{k_{1}}^{r}, \cdots, k_{q}=T_{k_{1}}^{r-1}, \cdots,{ }_{k_{q}} f .
$$

1) Such a subgroup for $p=2$ is studied in [1] by J. Adem.

Proof. Let $x \in \mathscr{X}_{p^{r}}(K)$ and put $A_{j_{1}}, \ldots, j_{r-1}=T_{k_{1}}^{r-1}, \cdots, k_{q}\left(A_{i_{1}}, \cdots, i_{r-1}\right)$. Then we have

$$
\begin{aligned}
&\left(f T_{k_{1}}^{r}, \cdots, k_{q} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right) \\
&=\left(T_{k_{1}}^{r}, \cdots, k_{q} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times\left(T_{k_{1}}^{r}, \cdots \quad{ }_{k_{q}} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}, p_{-1}\right) \\
&= x\left(A_{j_{1}}, \cdots, j_{r-1}, 0\right) \times \cdots \times x\left(A_{j_{1}}, \cdots, j_{r-1}, p-1\right. \\
&=(f x)\left(A_{j_{1}}, \cdots, j_{r-1}\right) \\
&=\left(T_{k_{1}}^{r-1}, \cdots{ }_{k q} f x\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right) . \\
& \text { Q.E.D. Lemma 2) }
\end{aligned}
$$

Denote by $\mathcal{Z}_{p}(K)$ the p-fold cyclic product of K. Let $\mathcal{Z}_{p} \subset \mathbb{S}_{p}$ be the subgroup of cyclic permutations. Then, by definition, $\mathcal{3}_{p}(K)$ is the orbit space $\mathrm{O}\left(\mathfrak{X}_{p}(K), 3_{p}\right)$ over $\mathfrak{X}_{p}(K)$ relative to $\mathcal{3}_{p}{ }^{2}$. Write $\overline{\mathrm{I}}: \mathfrak{X}_{p}(K) \longrightarrow \mathcal{3}_{p}(K)$ for the identification map.

Let $g: \mathfrak{X}_{p^{r-1}}\left(\mathfrak{X}_{p}(K)\right) \longrightarrow \mathfrak{X}_{p^{r-1}}\left(\bigcap_{p}(K)\right)$ be a continuous map defined by

$$
g=\overline{\mathrm{I}} \times \overline{\mathrm{I}} \times \cdots \times \overline{\mathrm{I}} \quad\left(p^{r-1} \text {-fold }\right),
$$

namely

$$
(g y)\left(A_{i_{1}}, \cdots, i_{r-1}\right)=\overline{\mathrm{I}}\left(y\left(A_{i_{1}}, \cdots, i_{r-1}\right)\right), \quad y \in \mathfrak{X}_{p^{r-1}\left(\mathfrak{X}_{p}(K)\right) .} .
$$

It follows immediately that

$$
\begin{equation*}
\beta g=g \beta \quad\left(\beta \in \mathbb{C}_{p^{r-1}}\right) . \tag{1.5}
\end{equation*}
$$

Lemma 4.

$$
\begin{aligned}
g f T_{k_{1}}^{r}, \cdots, k_{q} & =g f & & \text { for } q=r-1, \\
& =T_{k_{1}}, \cdots, k_{q} g f & & \text { for } q<r-1 .
\end{aligned}
$$

Proof. The formula for $0 \leqq q<r-1$ is obvious from Lemma 3 and (1.5). We shall prove $g f T_{k_{1}}^{r}, \cdots, k_{r-1}=g f$.

For $x \in \mathfrak{X}_{p^{\prime}}(K)$, we have

$$
\begin{aligned}
& \left(f T_{k_{1}}^{r}, \cdots, k_{r-1} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right) \\
= & \left(T_{k_{1}}^{r}, \cdots, k_{r-1} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times\left(T_{k_{1}}^{r}, \cdots, k_{r-1} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right) \\
= & \left\{\begin{array}{c}
x\left(A_{i_{1}}, \cdots, i_{r-1}, 1\right) \times \cdots \times x\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right) \times x\left(A_{i_{1}}, \cdots, i_{r-1}, p\right) \\
\text { if }\left(i_{1}, \cdots, i_{r-1}\right)=\left(k_{1}, \cdots, k_{r-1}\right), \\
x\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times x\left(A_{i_{1},}, \cdots, i_{r-1}, p-2\right) \times x\left(A_{i_{1}} \cdots, i_{r-1}, p-1\right) \\
\text { if }\left(i_{1}, \cdots, i_{r-1}\right) \neq\left(k_{1}, \cdots, k_{r-1}\right) .
\end{array}\right.
\end{aligned}
$$

Therefore it follows that

$$
\left.\left.\begin{array}{rl}
& \left(g f T_{k_{1}}^{r}, \cdots, k_{r-1} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right) \\
= & \overline{\mathrm{I}}\left(\left(f T_{k_{1}}^{r}, \cdots, k_{r-1} x\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right)\right) \\
= & \overline{\mathrm{I}}\left(x\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times x\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right.\right.
\end{array}\right)\right), \begin{aligned}
& = \\
& = \\
& = \\
& = \\
& (g f x)\left(\left(A_{i_{1}}, \cdots, i_{r-1}\right)\right) \\
& \left.i_{i_{1}}, \cdots, i_{r-1}\right) .
\end{aligned}
$$

Q. E. D.
2) Let Y be a space on which a group Γ operates. Then the orbit space $\mathrm{O}(Y, \Gamma)$ over Y relative to T is defined as a space obtained from Y by identifying each point $y \in Y$ with its image $\gamma(y)(\gamma \in \Gamma)$.

Lemma 5. If $g f(x)=g f\left(x^{\prime}\right)$ for $x, x^{\prime} \in \mathfrak{X}_{p^{r}}(K)$, then $x^{\prime}=\alpha x$ with $\alpha \in o_{r}^{r}$.
Proof. Since $(g f x)\left(A_{i_{1}}, \cdots, i_{r-1}\right)=\overline{\mathrm{I}}\left(x\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times x\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right)\right)$ and $\left(g f x^{\prime}\right)\left(A_{i_{1}}, \cdots, i_{r-1}\right)=\overline{\mathrm{I}}\left(x^{\prime}\left(A_{i_{1}}, \cdots, i_{r-1}, 0\right) \times \cdots \times x^{\prime}\left(A_{i_{1}}, \cdots, i_{r-1}, p-1\right)\right)$, it follows that

$$
x^{\prime}\left(A_{i_{1}}, \cdots, i_{r-1}, i_{r}\right)=x\left(A_{i_{1}}, \cdots, i_{r-1}, i_{r}+n\right)\left(i_{r}=0,1, \cdots, p-1\right),
$$

where $n=n\left(i_{1}, \cdots, i_{r-1}\right)$ is an integer mod p depending on (i_{1}, \cdots, i_{r-1}).
Let α be an element of the abelian group ρ_{r}^{r} defined by

$$
\alpha=\prod_{\left(k_{1}, \cdots, k_{r-1}\right\rangle \in \Omega_{r-1}}\left(T_{k_{1}}^{r}, \ldots, k_{r-1}\right)^{n\left(k_{1}, \cdots, k_{r-1}\right)} .
$$

Then it follows that

$$
\begin{aligned}
& (\alpha x)\left(A_{i_{1}}, \cdots, i_{r}\right) \\
= & \left.x\left(\left(T_{i_{1}}^{r}, \cdots, i_{r-1}\right)^{n\left(i_{1}\right.}, \cdots, i_{r}\right)\left(A_{i_{1}}, \cdots, i_{r}\right)\right) . \\
= & x\left(A_{i_{1}}, \cdots, i_{r-1}, i_{r+n}\right) \quad\left(n=n\left(i_{1}, \cdots, i_{r-1}\right)\right) .
\end{aligned}
$$

Therefore $x^{\prime}\left(A_{i_{1}}, \cdots, i_{r}\right)=(\alpha x)\left(A_{i_{1}}, \cdots, i_{r}\right)$, and hence $x^{\prime}=\alpha x$. Q.E. D.

Write $\mathscr{G}_{p} r^{\prime}(K)$ for the orbit space $\mathrm{O}\left(\mathfrak{X}_{p^{\prime}}(K), \mathscr{S}_{p^{\prime}}\right)$, and consider the ideatification maps

$$
\begin{aligned}
\varphi: & \mathfrak{X}_{p^{r}}(K) \longrightarrow\left(\mathfrak{G}_{p^{r}}(K),\right. \\
\psi: & \mathfrak{X}_{p^{r-1}}\left(\mathfrak{3}_{p}(K)\right) \longrightarrow \mathscr{G}_{p^{r-1}}\left(\mathfrak{3}_{p}(K)\right) .
\end{aligned}
$$

Then it follows from Lemma 4 that $g f: \mathfrak{X}_{p^{r}}(K) \rightarrow \mathfrak{X}_{p^{r-1}}\left(\mathcal{X}_{p}(K)\right)$ defines a continuous map $h: \mathscr{S}_{p^{r}}(K) \longrightarrow \mathbb{G}_{p^{r-1}}\left(3_{p}(K)\right)$ such that

$$
\begin{equation*}
\psi g f=h \varphi . \tag{1.6}
\end{equation*}
$$

Proposition 1. h is an onto-homeomorphism.
Proof. Since $g f$ and φ are onto, it follows from (1.6) easily that h is onto. We shall next prove that h is one-to-one. Since φ is onto, it is sufficient for this purpose to prove that if $h \varphi(x)=h \varphi\left(x^{\prime}\right)$ for $x, x^{\prime} \in \mathfrak{X}_{p^{r}}(K)$ then $x^{\prime}=\gamma x$ with $\gamma \in \mathbb{B}_{p^{r}}$. Under this assumption, it follows from (1.6) that $\psi g f(x)=\psi g f\left(x^{\prime}\right)$. Therefore $g f\left(x^{\prime}\right)=\beta g f(x)$ with $\beta \in G_{p^{r-1}}$. Let $\beta=T_{I_{1}}^{r-1} T_{I_{2}}^{r-1} \cdots T_{I_{w}}^{r-1}$, where each $I_{j} \in \Omega_{q}(q<r-1)$. Put $\bar{\beta}=T_{I_{1}}^{r} T_{I_{2}}^{r}$ $\cdots T_{I_{w}}^{r} \in G_{p^{r}}$. Then it follows from Lemma 4 that $g f\left(x^{\prime}\right)=g f \bar{\beta}(x)$. Therefore Lemma 5 implies that $x^{\prime}=\alpha \bar{\beta} x$ with $\alpha \in o_{r}^{r}$. Put $\gamma=\alpha \bar{\beta}$. Since $\gamma \in \mathbb{G}_{p^{r}}$, we obtain $x^{\prime}=\gamma x\left(\gamma \in \mathbb{B}_{p^{r}}\right)$.

Since h is continuous and $\mathscr{G}_{p} r(K)$ is compact, it follows that h is an ontohomeomorphism.
Q.E.D.

Define the iterated cyclic product $\mathcal{S}_{p}^{r}(K)(r=0,1, \cdots)$ by

$$
3_{p}^{r}(K)=3_{p}\left(3_{x}^{r-1}(K)\right), \quad 3_{p}^{0}(K)=K .
$$

We have
Theorem 1. The space $\mathscr{G}_{p^{\prime}}(K)$ is homeomorphic with the iterated cyclic product $3_{j}^{r}(K)$.

Proof. For $r=0$ the theorem is trivial. To establish the general case we proceed
by induction. Assume that $\mathfrak{B}_{p^{r-1}}\left(\mathcal{B}_{p}(K)\right)$ is homeomorphic with $\mathcal{3}_{p}^{r-1}(K)$ for every K. Then $\mathcal{S}_{p^{r-1}}\left(3_{p}(K)\right)$ is homeomorphic with $\mathcal{3}_{p}^{r-1}\left(3_{p}(K)\right)=3_{p}^{r}(K)$. Therefore it follows from Proposition 1 that $\mathscr{G}_{p r} r(K)$ is homeomorphic with $\mathcal{B}_{p}^{r}(K)$. Q. E. D.

2. The orbit space $\mathbb{E S}_{m}(K)$

Let m be an integer, and let

$$
m=\sum_{r=0}^{h} a_{h-r} p^{r} \quad\left(0 \leqq a_{i}<p\right)
$$

be the p-adic expansion of m. Denote by $W(m)$ a set consisting of all pairs (r, j) of integers such that $0 \leqq r \leqq h, 1 \leqq j \leqq a_{h-r}$. To each $(r, j) \in W(m)$, we shall associate a monotone map $\theta_{r}^{j}:\left\{1,2, \cdots, p^{r}\right\} \longrightarrow\{1,2, \cdots, m\}$ defined by

$$
\theta_{r}^{j}(s)=\sum_{q=r+1}^{h} a_{h-q} p^{q}+(j-1) p^{r}+s \quad\left(1 \leqq s \leqq p^{r}\right),
$$

and define a monomorphism $\overline{\theta_{r}^{j}}: \widetilde{S}_{p r} \longrightarrow \widetilde{S}_{m}$ by

$$
\begin{aligned}
\left(\overline{\theta_{r}^{j}} \alpha\right)(t) & =\theta_{r}^{j} \alpha(s) & & \text { if } t=\theta_{r}^{j}(s) \text { with } 1 \leqq s \leqq p^{r}, \\
& =t & & \text { otherwise },
\end{aligned}
$$

where $\alpha \in \mathbb{S}_{p^{r}}$ and $1 \leqq t \leqq m$. Write ${ }^{j} \mathfrak{(}_{p^{r}}$ for the image group $\theta_{r}^{j}\left(\mathbb{G}_{p^{r}}\right)$, where $\mathbb{B}_{p^{r}}$ is the p-Sylow subgroup of $\mathbb{S}_{p^{r}}$ mentioned in $\S 1$. If $(r, j) \neq(q, k)$, then $\alpha \beta=\beta \alpha$ for $\alpha \in \mathscr{G}_{p}, \beta \in{ }^{k} \mathscr{(}_{p^{q}} q$. Therefore we may define a group $\mathscr{G}_{m} \subset \mathbb{S}_{m}$ by

$$
\mathbb{\bigotimes}_{m}=\prod_{(r, j) \in W(m)} j \mathfrak{\oiint}_{p^{r}}
$$

the product of $j \mathscr{G}_{p r \prime}$'s as subgroups of \mathscr{S}_{m}. \mathscr{S}_{m} is the direct product of $j \mathscr{S}_{p}{ }_{p}$ ’s, and hence its order is the $\left(\sum_{r=1}^{h} a_{h-r}\left(p^{r-1}+p^{r-2}+\cdots+1\right)\right)$-th power of p. This is the highest power of p in m !, so that \mathcal{S}_{m} is a p-Sylow subgroup of \mathbb{S}_{m}.

We shall represent points of $\mathfrak{X}_{m}(K)$ as functions y defined on $\{1,2, \cdots, m\}$ and take values in K. The operation of \mathfrak{S}_{m} on $\mathfrak{X}_{m}(K)$ is written as follows:

$$
(\beta y)(t)=y(\beta t) \quad \beta \in \mathbb{S}_{m}, y \in \mathfrak{X}_{m}(K), 1 \leqq t \leqq m
$$

To each $(r, j) \in W(m)$, we shall associate two maps

$$
\tilde{\xi}_{r}^{j}: \mathfrak{X}_{p r}(K) \longrightarrow \mathfrak{X}_{m}(K), \quad \tilde{\eta}_{r}^{j}: \mathfrak{X}_{m}(K) \longrightarrow \mathfrak{X}_{p r}(K)
$$

defined by

$$
\begin{aligned}
& \left(\tilde{\xi}_{r}^{j} x\right)(t)=x(s) \quad \text { if } t=\theta_{r}^{j} s, \quad \text { and }=* \quad \text { otherwise } \\
& \left(\tilde{\eta}_{r}^{j} y\right)(s)=y\left(\theta_{r}^{j} s\right)
\end{aligned}
$$

where $1 \leqq s \leqq p^{r}, 1 \leqq t \leqq m, x \in \mathfrak{X}_{p^{r}}(K), y \in \mathfrak{X}_{m}(K)$ and $*$ is a base vertex of K. It is obvious that for any $\alpha \in \mathbb{S}_{p r}$

$$
\begin{aligned}
& {\tilde{\xi_{j}^{j}}}_{r} \alpha=\left(\overline{\vec{r}}_{r}^{j} \alpha\right) \tilde{\xi}_{r}^{j}, \\
& \widetilde{\tilde{\eta}}_{r}^{3}\left(\bar{\theta}_{r}^{k} \alpha\right)=\alpha \widetilde{\eta}_{r}^{j} \quad \text { if }(q, k)=(r, j), \quad \text { and }=\tilde{\eta}_{r}^{j} \quad \text { otherwise. }
\end{aligned}
$$

Therefore the maps $\tilde{\xi}_{r}^{j}$ and $\tilde{\gamma}_{r}^{j}$ yield respectively maps $\xi_{r}^{j}: \mathscr{B}_{p} r(K) \longrightarrow \mathfrak{@}_{m}(K)$ and $\eta_{r}^{j}: \mathscr{E}_{m}(K) \longrightarrow \mathfrak{G}_{p} r(K)$. It follows immediately that

$$
\begin{align*}
\eta_{7}^{k} f_{r}^{j} & =\text { identity map } & & \text { if }(r, j)=(q, k), \tag{2.1}\\
& =\text { constant map } & & \text { if }(r, j) \neq(q, k) .
\end{align*}
$$

Define a map $\eta: \mathbb{G}_{m}(K) \longrightarrow \mathfrak{X}_{a_{0}}\left(\mathbb{S}_{p h}(K)\right) \times \mathfrak{X}_{a_{1}}\left(\mathscr{O}_{p h-1}(K)\right) \times \cdots \times \mathfrak{X}_{a_{h}}(K)$ by

$$
\eta(z)=\left(\eta_{l}^{1}(z) \times \cdots \times \eta_{l}^{\pi_{0}^{0}}(z)\right) \times\left(\eta_{l-1}^{1}(z) \times \cdots \times \eta_{l-1}^{\alpha_{1}^{1}}(z)\right) \times \cdots \times\left(\eta_{0}^{1}(z) \times \cdots \times \eta_{0}^{q_{h}}(z)\right) .
$$

It is easily seen that η is an onto-homeomorphism. Therefore by Theorem 1 we have
Theorem 1^{\prime}. The space $\mathscr{H}_{m}(K)$ is homeomorphic with the space $\mathfrak{X}_{a_{0}}\left(\mathcal{S}_{p}^{h}(K)\right) \times$ $\mathfrak{X}_{a_{1}}\left(\mathfrak{P}_{p}^{h-1}(K)\right) \times \cdots \times \mathfrak{X}_{a_{h}}(K)^{3)}$.

For $q>0$, let

$$
\begin{array}{ll}
\xi_{r}^{3 *}: & H^{q}\left(\oiint_{m}(K) ; Z_{p}\right) \longrightarrow H^{q}\left(\mathscr{S}_{p r}(K) ; Z_{p}\right), \\
\eta_{r}^{3 *}: & H^{q}\left(\mathbb{S}_{p r} r(K) ; Z_{p}\right) \longrightarrow H^{q}\left(\mathscr{S}_{m}(K) ; Z_{p}\right)
\end{array}
$$

be the homomorphisms induced by ξ_{r}^{j} and η_{r}^{j} respectively. We have then by (2.1)

$$
\begin{aligned}
\xi_{r}^{j * *} \eta_{q}^{k *} & =\text { identity } & & \text { if }(r, j)=(q, k), \\
& =0 & & \text { if }(r, j) \neq(q, k) .
\end{aligned}
$$

Therefore, by the Künneth relation, we have
Corollary. Assume that K is $(n-1)$-connected and $q<2 n$. Then a set of the homomorphisms $\xi_{r}^{3 *}\left(\right.$ resp. $\left.\eta_{r}^{3 *}\right),(r, j) \in W(m)$, provides a projective (resp. injective) representation of $H^{q}\left(\bigotimes_{m}(K) ; Z_{p}\right)$ as a direct sum.

Let

$$
\rho: \mathfrak{X}_{a_{0}}\left(\mathfrak{3}_{2 \lambda}^{h}(K)\right) \times \mathfrak{X}_{a_{1}}\left(\mathcal{3}_{p}^{h-1}(K)\right) \times \cdots \times \mathfrak{犬}_{a_{h}}(K) \longrightarrow \mathbb{S}_{m}(K)
$$

be the natural projection of $\mathscr{C}_{m}(K)$ onto $\mathscr{S}_{m}(K)$. Then we have
Theorem 2. The homomorphism

$$
\rho^{*}: \quad H^{q}\left(ভ_{m}(K) ; Z_{p}\right) \rightarrow H^{q}\left(\mathfrak{X}_{a_{0}}\left(\mathfrak{ß}_{x}^{h}(K)\right) \times \mathfrak{X}_{a_{1}}\left(\mathfrak{D}_{p}^{h-1}(K)\right) \times \cdots \times \mathfrak{X}_{a_{h}}(K) ; Z_{p}\right)
$$

induced by ρ is a monomorphism for any q.
More generally we have
Theorem 2'. Let $\Gamma_{1}, \Gamma_{2}\left(\Gamma_{1} \subset \Gamma_{2}\right)$ be two subgroups of \Im_{m} such that the index
3) Let \mathscr{S}_{m}^{\prime} be any p-Sylow subgroup of \mathfrak{S}_{m}. By the well-known fact, \mathfrak{S}_{m} and $\mathfrak{G}_{m}^{\prime}$ are conjugate. Therefore the space $\mathcal{B}_{m}(K)$ and $\mathfrak{G}_{m}^{\prime}(K)$ are homeomorphic. In general the following holds: Let Y be a space on which a group Γ operates, and $\Gamma^{\prime}, \Gamma^{\prime \prime}$ be conjugate subgroups of Γ. Then the orbit space $\mathrm{O}\left(Y, \Gamma^{\prime}\right)$ and $\mathrm{O}\left(Y, \Gamma^{\prime \prime}\right)$ are homeomorphic. In fact, if $\Gamma^{\prime \prime}=\alpha \Gamma^{\prime} \alpha^{-1}$ with $\alpha \in \Gamma$, the map $\bar{\alpha}: \mathrm{O}\left(Y, \Gamma^{\prime}\right) \longrightarrow \mathrm{O}\left(Y, \Gamma^{\prime \prime}\right)$ induced by the transformation $\alpha: Y \longrightarrow Y$ gives a homeomorphism.
$\left(\Gamma_{2}: \Gamma_{1}\right)$ of Γ_{1} in Γ_{2} is prime to p. Then the homomorphism $\rho^{*}: H^{q}\left(\mathrm{O}\left(\mathfrak{X}_{m}(K), \Gamma_{2}\right)\right.$; $\left.Z_{p}\right) \longrightarrow H^{q}\left(\mathrm{O}\left(\mathfrak{X}_{m}(K), \Gamma_{1}\right) ; Z_{p}\right)$ induced by the natural projection ρ is a monomorphism for any q.

Since \mathscr{S}_{m} is a p-Sylow subgroup of \mathscr{S}_{m}, the index $\left(\mathscr{S}_{m}: \mathscr{S}_{m}\right)$ is prime to p. Therefore Theorem 2^{\prime} implies Theorem 2.

Proof of Theorem 2'. As in the proof of Proposition 1 in [7], it is given by means of the special cohomology groups and the transfer homomorphism.

Let $C^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)^{\Gamma}$, be the subgroup of the (alternative) cochain group $C^{q}\left(\mathfrak{X}_{m}(K)\right.$; Z_{p}) which consist of all cochains u such that $\gamma u=u$ for all $\gamma \in \Gamma_{j}(j=1,2)$. Then $\left\{C^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)^{\Gamma}, \delta\right\}$ is a cochain complex, where δ denotes the coboundary operator of the simplicial complex $\mathfrak{X}_{m}(K)$. The cohomology group of this complex is denoted by $\Gamma_{j}^{-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)$ (the special cohomology group). Let $i: C^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)^{\Gamma_{2}} \longrightarrow$ $C^{q}\left(\mathfrak{犬}_{m}(K) ; Z_{p}\right)^{\Gamma_{1}}$ be the inclusion, and $t: C^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)^{\Gamma_{1}} \longrightarrow C^{q}\left(\mathfrak{犬}_{m}(K) ; Z_{p}\right)^{\Gamma_{2}}$ the transfer homomorphism (cf. p. 254 of [3]). We have then

$$
t i(c)=\left(\Gamma_{2}: \Gamma_{1}\right) c, \quad c \in C^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)^{\Gamma_{2}} .
$$

The cochain maps i and t induce the homomorphisms $i^{*}: \Gamma_{2}^{-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right) \longrightarrow$ ${ }_{1}^{\Gamma-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)$ and $t^{*}: \Gamma_{1}^{-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right) \longrightarrow \Gamma^{-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)$ respectively, and we have

$$
t^{*} i^{*}=\left(\Gamma_{2}: \Gamma_{1}\right)
$$

Since $\left(\Gamma_{2}: \Gamma_{1}\right)$ is prime to p, it follows that $t^{*} i^{*}$ is an automorphism, and hence i^{*} is a monomorphism. Denote by $\varphi_{j}: \mathfrak{X}_{m}(K) \longrightarrow \mathrm{O}\left(\mathfrak{x}_{m}(K), \Gamma_{j}\right)$ the natural projection $(j=1,2)$. Obviously φ_{j} induces an isomorphism $\varphi_{j}^{*}: H^{q}\left(\mathrm{O}\left(\mathfrak{X}_{m}(K), \Gamma_{j}\right) ; Z_{p}\right) \longrightarrow$ ${ }^{5}{ }_{j}^{-1} H^{q}\left(\mathfrak{X}_{m}(K) ; Z_{p}\right)$, and the commutativity $i^{*} \varphi_{2}^{*}=\varphi_{1}^{*} \rho^{*}$ holds. Consequently ρ^{*} is a monomorphism.
Q. E. D.

3. Prerequisites : notations, cohomology of cyclic product

Let Z_{+}denote the set of all non-negative integers. We denote by Z_{+}^{∞} the set consisting of all sequences

$$
I=\left(i_{1}, i_{2}, \cdots, i_{k} \cdots\right), \quad\left(i_{k} \in Z_{+}\right)
$$

such that $i_{k}=0$ for sufficiently large k. In Z_{+}^{∞}, we shall consider the following relation of order $<$ (lexicographic order from the left): For any two elements $I=\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right)$ and $\left.J={ }^{\prime} j_{1}, j_{2}, \cdots, j_{k}, \cdots\right)$ of Z_{+}^{∞}, we write $I<J$ if and only if

$$
i_{1}=j_{1}, \cdots, i_{k}=j_{k}, i_{k+1}<j_{k+1}
$$

for some k.
For any element $I=\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right) \in Z_{+}^{\infty}$, the length $l(I)$, the height $h(I)$ and the degree $d(I)$ are defined as follows:
$l(I)=$ the least number of l such that $i_{k}=0$ for all $k>l$,
$h(I)=$ number of the set $\left\{k \mid i_{k} \neq 0\right\}$,
$d(I)=\sum_{k=1}^{\infty} i_{k}$.
An element $\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right) \in Z_{+}^{\infty}$ is called to be proper if $i_{k} \equiv 0$ or $1 \bmod$ $2(p-1)$ for any k. A proper element ($i_{1}, i_{2}, \cdots, i_{k}, \cdots$) is called to be admissible if $i_{k} \geqq p i_{k+1}$ is satisfied for any $k \geqq 1$. For an admissible element I, we have $h(I)=l(I)$. We say that an element $\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right)$ is special if $i_{k} \neq 1$ for any k.

The element $(0,0, \cdots, 0, \cdots) \in Z_{+}^{\infty}$ is denoted by O. This is a unique element such that the length is $0 . O$ is admissible and special.

For each $r \in Z_{+}$, we define a subset $Z_{+}^{r} \subset Z_{+}^{\infty}$ by

$$
Z_{+}^{r}=\left\{I \in Z_{+}^{\infty} \mid l(I) \leqq r\right\} .
$$

For any complex K, the Steenrod operations are homomorphisms

$$
\begin{array}{lll}
\mathrm{Sq}^{s}: H^{q}\left(K ; Z_{2}\right) \longrightarrow H^{q+s}\left(K ; Z_{2}\right) & \text { for } & p=2, \\
\mathcal{P}^{s}: H^{q}\left(K ; Z_{p}\right) \longrightarrow H^{q+2 s(p-1)}\left(K ; Z_{p}\right) & \text { for } & p>2 .
\end{array}
$$

We shall denote by

$$
\Delta: H^{q}\left(K ; Z_{p}\right) \longrightarrow H^{q+1}\left(K ; Z_{p}\right)
$$

the coboundary operation associated with the coefficient sequence $0 \longrightarrow Z_{p} \longrightarrow Z_{p^{2}} \longrightarrow$ $Z_{p} \longrightarrow 0$ (the Bockstein homomorphism).

Let $i=2 s(p-1)+\varepsilon$, where $s \in Z_{+}$and $\varepsilon=0$ or 1 . Then, following H. Cartan [2], we put

$$
\begin{aligned}
S t^{i} & =S q^{i}, \\
& =\mathcal{P}^{s} \text { if } \varepsilon=0, \quad=\Delta \mathscr{P}^{s} \text { if } \varepsilon=1
\end{aligned}
$$

according as $p=2$ or $p>2$, and we associate to each proper element $I=\left(i_{1}, i_{2}, \cdots\right.$, $\left.i_{k}, \cdots\right)$ a homomorphism

$$
S t^{I}: H^{q}\left(K ; Z_{p}\right) \rightarrow H^{q+d(I)}\left(K ; Z_{p}\right)
$$

defined by

$$
S t^{I}=S t^{i_{1}} S t^{i_{2}} \cdots S t^{i_{k}} \cdots
$$

With J. Adem [1], we make the following convention on the binomial coefficient: For any integers i and j, we put

$$
\begin{aligned}
\binom{i}{j} & =\frac{i(i-1) \cdots(i-j+1)}{j!} \quad \text { if } j>0, \\
& =1 \text { if } j=0, \text { and }=0 \quad \text { if } j<0 .
\end{aligned}
$$

It should be noted that $\binom{-1}{j}=(-1)^{j}$ if $j \in Z_{+}$. The definition implies directly
Lemma 6. If $\binom{i}{j} \neq 0$ and $i \geq 0$, then $i \geq j$.

The cohomology of the p-fold cyclic product $3_{p}(K)$ of K is studied by the author in his paper [6]. In the study, the homomorphisms

$$
\begin{aligned}
& \phi_{0}^{*}: H^{q}\left(\mathfrak{X}_{p}(K) ; Z_{p}\right) \longrightarrow H^{q}\left(3_{p}(K), \delta_{p}(K) ; Z_{p}\right), \\
& E_{m}: H^{q}\left(K ; Z_{p}\right) \longrightarrow H^{q+m}\left(3_{p}(K), \delta_{p}(K) ; Z_{p}\right)
\end{aligned}
$$

are fundamental. By using of these homomorphisms, we shall now define a homomorphism

$$
\begin{equation*}
\Phi_{m}: H^{q}\left(K ; Z_{p}\right) \longrightarrow H^{q+m}\left(3_{p}(K) ; Z_{p}\right) \tag{3.1}
\end{equation*}
$$

for each $m \in Z_{+}$as follows :

$$
\begin{aligned}
& \mathscr{\Phi}_{0}(c)=j^{*} \phi_{0} *((-c) \times 1 \times \cdots \times 1), \\
& \mathscr{\Phi}_{m}(c)=j^{*} E_{m}(c) \quad(m>0),
\end{aligned}
$$

where $c \in H^{q}\left(K ; Z_{p}\right), 1$ denotes the unit class of $H^{*}\left(K ; Z_{p}\right)$ and $j^{*}: H^{q+m}\left(3_{p}(K)\right.$, $\left.\mathfrak{D}_{p}(K) ; Z_{p}\right) \rightarrow H^{q+m}\left(3_{p}(K) ; Z_{p}\right)$ is the injection homomorphism. $\mathscr{D}_{1}=0$ is a direct consequence of the definition of E_{1}.

Theorem (11.4) in [6] yields
Profosition 2. Let B be a basis of the vector space $H^{*}\left(K ; Z_{p}\right)$. Then a set

$$
\mathscr{D}(B)=\left\{\Phi_{m}(b) \mid b \in B, 0 \leqq m \leqq(p-1) \operatorname{dim} b, m \neq 1\right\}
$$

of elements of the vector space $H^{*}\left(3_{p}(K) ; Z_{p}\right)$ is independent. If K is (n-1)connected and $q<2 n$, then a base for the vector space $H^{q}\left(3_{p}(K) ; Z_{p}\right)$ can be formed by a set $\{c \in \Phi(B) \mid \operatorname{dim} c=q\}$.

Theorems (11.6) and (11.7) in [6] give
Profosition 3. Let $m, s \in Z_{+}$and $m=2 t+n$ with $t \in Z_{+}, \eta=0$ or 1 . Then it holds that

$$
\begin{aligned}
\mathrm{Sq}^{s} \Phi_{m} & =\sum_{j=0}^{s}\binom{m-1}{j} \Phi_{m+j} \mathrm{Sq}^{s-3} \\
\mathcal{P}^{s} \Phi_{m} & =\sum_{j=0}^{s}\binom{t+\eta-1}{j} \Phi_{m+2 j(p-1)} \mathscr{P}^{s-j} \text { for } p=2 \\
\Delta \Phi_{m} & =\left(1+(-1)^{m}\right) / 2 \Phi_{m+1}+(-1)^{m} \mathscr{\Phi}_{m} \Delta
\end{aligned}
$$

4. Cohomology of iterated cyclic products of spheres

Let S^{n} denote an n-sphere ($n \geqq 1$), and e^{n} be a fixed generator of $H^{n}\left(S^{n} ; Z_{p}\right)$. Let $r \in Z_{+}$, and $M=\left(m_{1}, m_{2}, \cdots, m_{k}, \cdots\right)$ be an element of Z_{+}^{r}. Then we shall associate to M an element $[M]_{r}=\left[m_{1}, \cdots, m_{r}\right] \in H^{n+d(M)}\left(\mathcal{S}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ defined as the image of e^{n} by the composite homomorphism

$$
\begin{aligned}
& H^{n}\left(S^{n} ; Z_{p}\right) \xrightarrow{\Phi_{m_{r}}} H^{n+m_{r}\left(3^{1}\left(S^{n}\right) ; Z_{p}\right) \xrightarrow{\Phi_{m_{r}-1}} H^{n+m_{r-1}+m_{r}\left(\mathcal{3}^{2}\left(S^{n}\right) ; Z_{p}\right) \longrightarrow} \xrightarrow{\Phi_{m_{1}}} H^{n+m_{1}+\cdots+m_{r}\left(\widehat{3}^{r}\left(S^{n}\right) ; Z_{p}\right) .}} .
\end{aligned}
$$

It is clear that $\operatorname{dim}[M]_{r} \geqq n$ for any $M \in Z_{+}^{r}$, and that

$$
\begin{equation*}
\mathscr{\Phi}_{m_{1}}\left[m_{2}, \cdots, m_{r}\right]=\left[m_{1}, m_{2}, \cdots, m_{r}\right], \quad \oplus_{m_{1}}\left(e^{n}\right)=\left[m_{1}\right] . \tag{4.1}
\end{equation*}
$$

It follows from the fact $\Phi_{1}=0$ that $[M]_{r}=0$ unless $M \in Z_{+}^{r}$ is special.
From Proposition 2 we have immediately
Proposition 4. Put $\mathfrak{B}_{r}=\left\{[M]_{r} \mid M \in Z_{+}^{r}, M:\right.$ special $\}$. If $q<n$, a basis for the vector space $H^{n+q}\left(\mathcal{B}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ can be formed by a set $\left\{c \in \mathfrak{B}_{r} \mid \operatorname{dim} c=n+q\right\}$. Especially $H^{n}\left(\mathcal{S}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ is generated by the element $[O]_{r}$.

Throughout this section we assume that 'every cohomology class has dimension less than $2 n$.

The following proposition can be proved from Proposition 3 and (4.1) by induction on r. The proof is straightforward.

Proposition 5. We have in $H^{*}\left(\mathcal{3}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ the formulas:

$$
\begin{align*}
& \quad \mathrm{Sq}^{s}\left[m_{1}, m_{2}, \cdots, m_{r}\right] \tag{4.2}\\
& =\sum_{S}\binom{m_{1}-1}{s_{1}}\binom{m_{2}-1}{s_{2}} \cdots\binom{m_{r}-1}{s_{r}}\left[m_{1}+s_{1}, m_{2}+s_{2}, \cdots, m_{r}+s_{r}\right] \text { for } p=2, \\
& \quad \operatorname{P}^{s}\left[m_{1}, m_{2}, \cdots, m_{r}\right] \\
& =\sum_{S}\binom{t_{1}+\eta_{1}-1}{s_{1}}\binom{t_{2}+\eta_{2}-1}{s_{2}} \ldots\binom{t_{r}+\eta_{r}-1}{s_{r}}\left[m_{1}+2 s_{1}(p-1),\right. \\
& \\
& \left.\quad m_{2}+2 s_{2}(p-1), \cdots, m_{r}+2 s_{r}(p-1)\right] \text { for } p>2,
\end{align*}
$$

where $S=\left(s_{1}, s_{2}, \cdots, s_{r}, 0,0, \cdots\right) \in Z_{+}^{r}, d(S)=s$, and we put $m_{k}=2 t_{k}+\eta_{k}$ with $t_{k} \in Z_{+}$, $\eta_{k}=0$ or 1 .

$$
\begin{align*}
& \Delta\left[m_{1}, m_{2}, \cdots, m_{r}\right] \tag{4.3}\\
= & \left.\sum_{k=1}^{r}(-1)^{m_{1}+\cdots+m_{k-1}\left(1+(-1)^{m_{k}}\right) / 2\left[m_{1}, \cdots, m_{k}+1\right.}, \cdots, m_{r}\right] .
\end{align*}
$$

Let $M \in Z_{+}^{r}$, and let $I \in Z_{+}^{\infty}$ be proper. Then it follows from Propositions 4 and 5 that $S t^{I}[M]_{r}$ has a unique representation :

$$
S t^{I}[M]_{r}=\sum_{N} a_{N}[N]_{r} \quad\left(a_{N} \in Z_{p}\right),
$$

where N is extended over all special elements of Z_{\ddagger}^{r} with $d(N)=d(M)+d(I)$. If $a_{N} \neq 0$ in this expression, we write

$$
[N]_{r} \subset S t^{I}[M]_{r} .
$$

Lemma 7. Let $M, N \in Z_{+}^{r}$ and $i \equiv 0$ or $1 \bmod 2(p-1)$. Then if

$$
(p-1) d(M) \leqq i, \quad i>0, \quad[N]_{r} \subset S t^{i}[M]_{r},
$$

we have

$$
h(N) \geqq h(M)+1 .
$$

Proof. Since the result for $p=2$ are proved similarly, as an illustration we write the proof for $p>2$. Let $i=2 s(p-1)+\varepsilon\left(s \in Z_{+}, \varepsilon=0\right.$ or 1$)$.

Case 1: $\varepsilon=0$. Let $M=\left(m_{1}, m_{2}, \cdots, m_{k}, \cdots\right), N=\left(n_{1}, n_{2}, \cdots, n_{k}, \cdots\right)$. Then, by Proposition 5, we may assume that

$$
\begin{aligned}
n_{k} & =m_{k}+2 s_{k}(p-1) \quad(k=1,2, \cdots), \\
S & =\left(s_{1}, s_{2}, \cdots, s_{k}, \cdots\right) \in Z_{+}^{r}, \quad d(S)=s .
\end{aligned}
$$

Put $h=h(M)$, and let $m_{k}>0$ for $k=\alpha_{1}, \alpha_{2}, \cdots, \alpha_{h}$. The proposition is clear for $h=0$, and hence we may assume $h>0$.

Since $n_{k} \geqq m_{k}$ for any k, we have $h(N) \geqq h(M)$. Assume now $h(N)=h(M)$. Then we have $n_{k}=0$ for $k \neq \alpha_{1}, \alpha_{2}, \cdots, \alpha_{h}$, and hence $s_{k}=0$ for $k \neq \alpha_{1}, \alpha_{2}, \cdots, \alpha_{h}$, Therefore if we put $m_{k}=2 t_{k}+\eta_{k}(k=1,2, \cdots)$, it follows from (4.2) and the assumption that

$$
\binom{t_{\alpha_{1}}+\boldsymbol{\eta}_{\alpha_{1}}-1}{s_{\alpha_{1}}}\binom{t_{\alpha_{2}}+\eta_{\alpha_{2}}-1}{s_{\alpha_{2}}} \cdots\binom{t_{\alpha_{h}}+\boldsymbol{\eta}_{\alpha_{h}}-1}{s_{\alpha_{h}}} \equiv 0 \bmod p
$$

Since $t_{\alpha_{k}}+\eta_{\alpha_{k}}-1 \geq 0$ for $k=1,2, \cdots, h$, it follows from Lemma 6 that

$$
t_{a_{k}}+\eta_{\alpha_{k}}-1 \geq s_{a_{k}} \quad(k=1,2, \cdots, h),
$$

and hence

$$
m_{\alpha_{k}}=2 t_{\alpha_{k}}+\eta_{\alpha_{k}} \geqq 2 s_{\alpha_{k}}-\eta_{\alpha_{k}}+2>2 s_{\alpha_{k}}
$$

Therefore we have

$$
d(M)=\sum_{k=1}^{h} m_{\alpha_{k}}>2 \sum_{k=1}^{h} s_{\alpha_{k}}=2 s .
$$

and so $(p-1) d(M)>2 s(p-1)=i$, which contradicts with our assumption. Thus $h(N) \geqq h(M)+1$.

Case 2: $\varepsilon=1$. Let $i=1$. Then $M=O$, and hence the lemma is clear by (4.3). Therefore we shall assume $i>1$.

The assumption $(p-1) d(M) \leqq i=2 s(p-1)+1$ implies $(p-1) d(M) \leqq 2 s(p-1)$. And, since $i>1$, we have $2 s(p-1)>0$.

Since $[N]_{r} \subset \Delta S t^{2 s(p-1)}[M]_{r}$, there exists an element $L \in Z_{+}^{r}$ such that

$$
\begin{align*}
& {[L]_{r} \subset S t^{2 s(p-1)}[M]_{r},} \tag{4.4}\\
& {[N]_{r} \subset \Delta[L]_{r} .} \tag{4.5}
\end{align*}
$$

Since $(p-1) d(M) \leqq 2 s(p-1)$ and $2 s(p-1)>0$, it follows from (4.4) and the fact just proved above that

$$
h(L) \geqq h(M)+1 .
$$

It follows from (4.3) and (4.5) that

$$
h(N) \geqq h(L) .
$$

Therefore we have $h(N) \geqq h(M)+1$.
Q. E. D.

Proposition 6. Let $I \in Z_{+}^{\infty}$ be admissible, and let

$$
[N]_{r} \subset S t^{I}[O]_{r} \quad\left(N \in Z_{+}^{r}\right) .
$$

Then we have

$$
h(N) \geqq h(I)=l(I)
$$

Proof. The proof is by induction on $l(I)$. If $l(I)=0$ the proposition is trivial. Therefore we assume the proposition for I with $l(I)==l-1$, and shall prove it for I with $l(I)=l>0$.

Let $I=\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right)$ and put $I^{\prime}=\left(i_{2}, i_{3}, \cdots, i_{k}, \cdots\right)$. Then we have $[N]_{r} \subset S t^{i_{1}} S t^{\prime}[O]_{r}$. Therefore there is an element $M \in Z_{+}^{r}$ such that

$$
\begin{align*}
& {[M]_{r} \subset S t^{t^{\prime}}[O]_{r},} \tag{4.6}\\
& {[N]_{r} \subset S t^{i_{1}}[M]_{r} .} \tag{4.7}
\end{align*}
$$

Since $I^{\prime} \in Z_{+}^{\infty}$ is admissible and $l\left(I^{\prime}\right)=l-1$, it follows from (4.6) and the hypothesis of induction that

$$
\begin{equation*}
h(M) \geqq h\left(I^{\prime}\right)=l-1 . \tag{4.8}
\end{equation*}
$$

Since I is admissible, we have by the definition

$$
i_{k} \geq p i_{k+1}, \quad k=1,2, \cdots .
$$

Adding these inequalities, we have

$$
i_{1} \geqq(p-1)\left(i_{2}+i_{3}+\cdots\right)=(p-1) d\left(I^{\prime}\right)
$$

Since $l(I)>0$, we have $i_{1}>0$. Therefore, by Lemma 7, it follows from (4.7) that

$$
\begin{equation*}
h(N) \geqq h(M)+1 \tag{4.9}
\end{equation*}
$$

Together (4.8) with (4.9), we obtain $h(N) \geqq l=h(I)$.
A direct consequence of Propositions 5 and 8 , we have
Theorem 3. Let $I \in Z_{+}^{\infty}$ be admissible and $h(I)>r$. Then it holds that

$$
\mathrm{St}^{I}[O]_{r}=0 \quad \text { in } \quad H^{*}\left(\mathcal{3}_{p}^{r}\left(\mathrm{~S}^{n}\right) ; Z_{p}\right)
$$

Denote by $\alpha_{i} \in \mathbb{S}_{r}(1 \leqq i<r)$ the permutation which interchanges i and $i+1$, and leaves fixed all the other letters. It is well known that \mathbb{S}_{r} is generated by $\alpha_{1}, \alpha_{2}, \ldots$, α_{r-1} with the defining relations:

$$
\begin{aligned}
& \alpha_{1}^{2}=\alpha_{2}^{2}=\cdots=\alpha_{r-1}^{2}=1, \quad\left(\alpha_{i} \alpha_{j}\right)^{2}=1 \quad \text { if } \quad i+1<j, \\
& \left(\alpha_{i} \alpha_{i+1}\right)^{3}=1
\end{aligned}
$$

(See Dickson: Linear groups p. 287). Therefore it follows that if we define

$$
\begin{array}{r}
\alpha_{\imath}\left[m_{1}, \cdots, m_{i}, m_{\imath+1}, \cdots, m_{r}\right]=(-1)^{m_{i} m_{\imath+1}}\left[m_{1}, \cdots, m_{i+1}, m_{i}, \cdots, m_{r}\right] \\
\\
(i=1,2, \cdots, r-1),
\end{array}
$$

then \mathbb{S}_{r} becomes an operator group on a vector space $H_{0}^{*}\left(\mathcal{B}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ generated by
the set \mathfrak{B}_{r} (see Proposition 4). Let $c \in H_{0}^{*}\left(\mathfrak{D}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$. If $\alpha c=c$ for any $\alpha \in \mathfrak{G}_{r}$, we call that c is symmetric.

Proposition 7. If $c \in H_{0}^{*}\left(\mathbf{3}_{p}^{r}\left(\mathrm{~S}^{n}\right) ; Z_{p}\right)$ is symmetric, then so is $\mathrm{St}^{I} c$ for any proper $I \in Z_{+}^{\infty}$. Especially $\mathrm{St}^{I}[O]_{r}$ is symmetric.

Proof. By straightforward calculation, it follows from Proposition 5 that $\alpha_{i} \in \mathbb{S}_{r}$ commutes with $\mathrm{Sq}^{s}, \rho^{s}$ and Δ (i. e. $\alpha_{i} \mathrm{Sq}^{s}[M]_{r}=\mathrm{Sq}^{s} \alpha_{i}[M]_{r}$ etc). Therefore we have $\alpha \mathrm{Sq}^{s}=\mathrm{Sq}^{s} \alpha, \alpha \mathcal{P}^{s}=\mathcal{\rho}^{s} \alpha$ and $\alpha \Delta=\Delta \alpha$ for any $\alpha \in \mathscr{S}_{r}$. This proves the proposition.
Q. E. D.

Lemma. 8. Let $M=\left(m_{1}, m_{2}, \cdots, m_{k}, \cdots\right), N=\left(n_{1}, n_{2}, \cdots, n_{k}, \cdots\right) \in Z_{+}^{r}$, and $i \equiv \equiv 0$ or $1 \bmod 2(p-1)$. Assume now $[N]_{r} \subset \operatorname{St}^{i}[M]_{r}$. Then, for q such that $m_{q}>0$, we have $n_{q}<p m_{q}$.

Proof. Since the proof for $p=2$ is similar, we write only the proof for $p>2$. Put $i=2 s(p-1)+\varepsilon\left(s \in Z_{+}, \varepsilon=0\right.$ or 1$)$.

Case 1: $\varepsilon=0$. We may assume that $n_{k}=m_{k}+2 s_{k}(p-1), S=\left(s_{1}, s_{2}, \cdots, s_{k}, \cdots\right)$ $\in Z_{+}^{r}, d(S)=s$. Put $m_{k}=2 t_{k}+\eta_{k}\left(t_{k} \in Z_{+}, \eta_{k}=0\right.$ or 1$)$. Then it follows from Proposition 5 and the assumption that

$$
\binom{t_{1}+\eta_{1}-1}{s_{1}}\binom{t_{2}+\eta_{2}-1}{s_{2}} \cdots\binom{t_{r}+\eta_{r}-1}{s_{r}} \not \equiv 0 \quad \bmod p
$$

Especially $\binom{t_{q}+\eta_{q}-1}{s_{q}} \neq 0$. Since $m_{q}>0$, we have $t_{q}+\eta_{q}-1 \geqq 0$. Therefore it follows from Lemma 6 that $t_{q}+\eta_{q}-1 \geqq s_{q}$. From this, we have $m_{q}-2 s_{q}=2 t_{q}+\eta_{q}-2 s_{q} \geqq 2$ $-n_{q}>0$. Hence $p m_{q}-n_{q}=(p-1) m_{q}+\left(m_{q}-n_{q}\right)=(p-1) m_{q}-2 s_{q}(p-1)=(p-1)\left(m_{q}-\right.$ $\left.2 s_{q}\right)>0$. Namely we have $p m_{q}>n_{q}$.

Case 2: $\varepsilon=1$. The lemma follows easily from the result for $\varepsilon=0$ and (4.3). Q. E. D.

Proposition 8. Let $I \in Z_{+}^{r}$ be admissible, and $N \in Z_{+}^{r}$. Then if $[N]_{r} \subset \operatorname{St}^{I}[O]_{r}$, we have $N \leqq I$. Furthermore $[I]_{r} \subset \mathrm{St}^{I}[O]_{r}$.

Proof. ${ }^{4}$ We write only the proof for $p>2$. The proof for $p=2$ is similar.
Since the statement is trivial if $l(I)=0$, we proceed by induction on $l(I)$.
Assuming the statement for I with $l(I)=l-1$, we shall prove it for I with $l(I)=l>1$.

Let $I=\left(i_{1}, i_{2}, \cdots, i_{k}, \cdots\right)$, and put $I^{\prime}=\left(i_{2}, i_{3}, \cdots, i_{k}, \cdots\right)$. Then if $[N]_{r} \subset \operatorname{St}^{I}[O]_{r}$, there exists an element $M \in Z_{+}^{r}$ such that

$$
\begin{align*}
& {[M] \subset \operatorname{St}^{I^{\prime}}[O]_{r}} \tag{4.10}\\
& {[N]_{r} \subset \mathrm{St}^{i_{1}}[M]_{r}}
\end{align*}
$$

[^0]Since I^{\prime} is admissible and $l\left(I^{\prime}\right)=l-1$, it follows from (4.10) and the hypothesis of induction that $M \leqq I^{\prime}$. Let $M=\left(m_{1}, m_{2}, \cdots, m_{k}, \cdots\right)$ and $N=\left(n_{1}, n_{2}, \cdots, n_{k}, \cdots\right)$.

Case 1: $m_{1}>0$. It follows from Lemma 8 and (4.11) that $n_{1}<p m_{1}$. Since $M \leqq I^{\prime}$, we have $m_{1} \leqq i_{2}$. Therefore we obtain

$$
n_{1}<p m_{1} \leqq p i_{2} \leqq i_{1} .
$$

Thus we have $N<I$.
Case 2: $m_{1}=0$. It follows from Proposition 7 and (4.10) that

$$
\left[m_{2}, m_{3}, \cdots, m_{r}, 0\right]=\left[m_{2}, m_{3}, \cdots, m_{r}, m_{1}\right] \subset \operatorname{St}^{I^{\prime}}[O]_{r}
$$

Therefore, by the hypothesis of induction, we have

$$
\left(m_{2}, m_{3}, \cdots, m_{r}, 0,0, \cdots\right) \leqq I^{\prime}=\left(i_{2}, i_{3}, \cdots\right) .
$$

It follows from (4.11) and Proposition 5 that

$$
N=\left(n_{1}, n_{2}, n_{3}, \cdots\right) \leqq\left(m_{1}+i_{1}, m_{2}, m_{3}, \cdots\right)=\left(i_{1}, m_{2}, m_{3}, \cdots\right) .
$$

Therefore we obtain

$$
N \leqq\left(i_{1}, m_{2}, m_{3}, \cdots\right) \leqq\left(i_{1}, i_{2}, i_{3}, \cdots\right)=I
$$

This completes the proof of the first part.
Assume that $[I]_{r} \subset \operatorname{St}^{i^{i}}[M]_{r}$ with $[M]_{r} \subset \operatorname{St}^{I^{\prime}}[O]_{r}$. Then it follows from the above argument that $M=\left(0, i_{2}, i_{3}, \cdots\right)$. Thus, by the hypothesis of induction and Propositions 5 and 8 , we have the second part.
Q. E. D.

As a direct consequence of Propositions 4 and 9, we obtain
Theorem 4. A set of elements $\operatorname{St}^{I}[O]_{r} \in H^{n+q}\left(\mathfrak{3}_{p}^{r}\left(S^{n}\right) ; Z_{p}\right)$ is linearly independent, where $I \in Z_{+}^{\infty}$ is extended over all admissible and special elements such that $d(I)=q<n$ and $l(I) \leqq r$.

5. Proof of main theorem

A point of the m-fold symmetric product $\mathbb{S}_{m}(K)$ is represented by an unordered set $\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}$ with $t_{j} \in K$ for $j=1,2, \cdots, m$. Let $* \in K$ be a fixed vertex. For any integers m, n with $m \leqq n$, define a map $\iota_{m, n}: \mathbb{S}_{m}(K) \longrightarrow \mathbb{S}_{n}(K)$ by

$$
\iota_{m, n}\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}=\left\{t_{1}, t_{2}, \cdots, t_{m}, *, *, \cdots\right\} .
$$

Obviously ' $_{m, n}$ maps $\mathbb{S}_{m}(K)$ into $\mathbb{S}_{n}(K)$ homeomorphically. The inductive limit of the sequence

$$
K=\mathbb{S}_{1}(K) \xrightarrow{\ell_{1,2}} \mathbb{S}_{2}(K) \longrightarrow \cdots \longrightarrow \mathbb{S}_{m}(K) \xrightarrow{\mathfrak{\ell}_{m, m+1}} \mathbb{S}_{m+1}(K) \longrightarrow \cdots
$$

is called the infinite symmetric product of K, and is denoted by $\mathbb{S}_{\infty}(K)$.
The following theorem was established in [7] by the author.

Theorem 5. Let $m \leqq n$, then the injection homomorphism

$$
\iota_{m, n}^{*}: H^{q}\left(\mathfrak{S}_{n}(K) ; Z_{p}\right) \longrightarrow H^{q}\left(\mathfrak{S}_{m}(K) ; Z_{p}\right)
$$

is an epimorphism for any q.
From this, we have
Theorem 6. Let $\iota_{m}: \mathbb{S}_{m}(K) \longrightarrow \mathbb{S}_{\infty}(K)$ be the inclusion map, then the injection homomorphism

$$
\iota_{m}^{*}: H^{q}\left(\Im_{\infty}(K) ; Z_{p}\right) \longrightarrow H^{q}\left(\Im_{m}(K) ; Z_{p}\right)
$$

is an epimorphism for any q.
Proof. It follows from Theorem 5 that the homomorphism of homology

$$
\iota_{m, n_{*}}: H_{q}\left(ভ_{m}(K) ; Z_{p}\right) \longrightarrow H_{q}\left(ভ_{n}(K) ; Z_{p}\right)
$$

is a monomorphism for any $n \geqq m$. Let $a \in H_{q}\left(\mathbb{S}_{m}(K) ; Z_{p}\right)$ be an element such that $\iota_{m}^{*}(a)=0$, and c a cocycle $\bmod p$ in $\mathbb{S}_{m}(K)$ representing a. Then c is a bounding cycle in $\Xi_{n}(K)$ for sufficiently large n. Therefore we have $\iota_{m}, n_{*}(a)=0$, and hence $a=0$ by the fact above-mentioned. Thus it follows that the homomorphism of homology

$$
\iota_{m_{*}}: H_{q}\left(ভ_{m}(K) ; Z_{p}\right) \longrightarrow H_{q}\left(ভ_{\infty}(K) ; Z_{p}\right)
$$

is a monomorphism. From this we have immediately Theorem 6.
Q. E. D.

The following theorem was established by A.Dold-R.Thom [4] and others.
Theorem 7. $\mathfrak{S}_{\infty}\left(S^{n}\right)$ is an Eilenberg-MacLane complex $K(Z, n)$ (i.e. the homotopy group $\pi_{i}\left(\Theta_{\infty}\left(S^{n}\right)\right) \approx Z$ for $i=n$, and $=0$ for $\left.i \neq n\right)$, where Z denotes the additive group of integers.

The $\bmod p$ cohomology group $H^{*}\left(Z, n ; Z_{p}\right)$ of $K(Z, n)$ was calculated by H . Cartan [2] (See also J-P. Serre [9] for $p=2$):

Theorem 8. Denote by u_{0} a fixed generator of $H^{n}\left(Z, n ; Z_{p}\right) \approx Z_{p}$. Then if $q<n$ the vector space $H^{n+q}\left(Z, n ; Z_{p}\right)$ has a base formed by elements $\operatorname{St}^{I} u_{0}$, where $I \in Z_{+}^{\infty}$ is extended over all admissible and special elements with $d(I)=q$.

We have
Proposition 10. Put $v_{0, m}=\iota_{m}^{*}\left(u_{0}\right)$, then $H^{n}\left(\Xi_{m}\left(S^{n}\right) ; Z_{p}\right)$ is a cyclic group of order p whose generator is $v_{0, m}$. If $m=p^{r}$ then $\rho^{*} v_{0, m}=a[O]_{r}$ with $a \equiv 0 \bmod p$, where ρ^{*} is the homomorphism in Theorem 2.

Proof. It is known [5,7] that $H^{n}\left(\Im_{m}\left(S^{n}\right) ; Z_{p}\right)$ has a subgroup isomorphic with $H^{n}\left(S^{n} ; Z_{p}\right) \approx Z_{p}$. Therefore the first part of Proposition 10 follows from Theorems 6 and 7. The second part follows from Theorem 2 and Proposition 4.
Q. E. D.

We shall now prove
Main Theorem. Let $p^{h} \leqq m<p^{h+1}$ and $q<n$. Then the vector space $H^{n+q}\left(\Im_{m}\right.$ $\left(S^{n}\right) ; Z_{p}$) has a base formed by elements $\mathrm{St}^{I} v_{0, m}$, where $I \in Z_{+}^{\infty}$ is extended over all admissible and special elements with $d(I)=q$ and $l(I) \leqq h$.

Proof. It follows from Theorems 6, 7 and 8 using the naturality of St^{I} that the vector space $H^{n+q}\left(\widetilde{S}_{m}\left(S^{n}\right) ; Z_{p}\right)$ is generated by elements $\operatorname{St}^{I} v_{0, m}$, where $I \in Z_{+}^{\infty}$ is extended over all admissible and special eleme ts with $d(I)=q$. Therefore, for the proof of the theorem, it is sufficieat to prove the following (A) and (B).
(A) If I is an admissible element with $l(I)>h$, then $\mathrm{St}^{I} v_{0, m}=0$.
(B) If $\sum_{i} a_{i} \mathrm{St}^{I_{i}} v_{0}, m=0\left(a_{i} \in Z_{p}\right)$ for admissible and special elements I_{i} with $d\left(I_{i}\right)=q$ and $l\left(I_{i}\right) \leqq h$, then we have $a_{i}=0$.
For a proof of (A), let $m=\sum_{r=0}^{h} a_{h-r} p^{r}\left(a_{0} \neq 0\right)$ be the p-adic expansion of m, and consider the diagram

$$
\begin{aligned}
& H^{n+q}\left(\mathfrak{B}_{p}^{r}\left(\mathrm{~S}^{n}\right) ; Z_{p}\right) \stackrel{\xi_{r}^{* *}}{\leftrightarrows} H^{n+q}\left(\mathfrak{C}_{m}\left(S^{n}\right) ; Z_{p}\right)
\end{aligned}
$$

where ρ^{*} and $\xi_{r}^{j *}$ are the homomorphisms mentioned in $\S 2$. It follows from definitions that the commutativity holds in this diagram. Therefore we have

$$
\xi_{r}^{3 *} \rho^{*} \mathrm{St}^{I} v_{0, m}=\rho^{*} \iota_{n}^{*} r, m \mathrm{St}^{I} v_{0, m}=\rho^{*} \mathrm{St}^{I} v_{0, p^{r}} .
$$

Since $r \leqq h<l(I)$, Proposition 10 and Theorem 3 imply that $\rho^{*} \operatorname{St}^{I} v_{0, p^{r}}=a \mathrm{St}^{I}|O|_{r}=0$. Namely we have

$$
\xi_{r}^{j *} \rho^{*} \mathrm{St}^{I} v_{0, m}=0 \text { for every }(r, j) \in W(m)
$$

Thus it follows from Corollary of Theorem 1^{\prime} that $\rho^{*} \mathrm{St}^{I} v_{0, m}=0$. By Theorem 2, we have $\mathrm{St}^{I} v_{0, m}=0$. This completes the proof of (A).

From the assumption of (B), we have $\sum_{i} a_{i} \mathrm{St}^{I_{i}} v_{0, p h}=\iota_{i}^{*} h, m\left(\sum_{i} a_{\imath} \mathrm{St}^{I} v_{0, m}\right)=0$. Therefore we obtain by Proposition 10 that $\sum_{i} a_{i} \mathrm{St}^{I}[\mathrm{~S}]_{h}=0$. Then Theorem 4 implies that $a_{i}=0$ for each i, and we have (B).
Q. E. D.

Together with Proposition 7, we have
Corollary 1. If $q<n$, the image of $H^{n+q}\left(\subseteq_{p h}\left(S^{n}\right) ; Z_{p}\right)$ by the monomorphism ρ^{*} is contained in the subspace of $H^{n+q}\left(\boldsymbol{\Omega}_{p^{h}}^{\prime \prime}\left(S^{n}\right) ; Z_{p}\right)$ formed by all the symmetric elements.

We have also
Corollary 2. If $p^{h} \leqq m<p^{h+1}$ and $q<n$, then the homomorphism $\mathrm{c}_{p h}^{*}, m: H^{n+q}$ $\left.\left(\mathfrak{S}_{m}\left(S^{n}\right) ; Z_{p}\right) \longrightarrow H^{n+q}\left(\Im_{p h} S^{n}\right) ; Z_{p}\right)$ is an isomorphism.

Bibliography

[1] J. Adem: The relations on Steenrod powers of cohomology classes. Algebraic Geometry and Topology, Princeton University Press (1957), pp. 191-238.
[2] H. Cartan: Sur les groupes d'Eilenberg-MacLane I, II. Proc. Nat. Acad. Sci. U.S.A., 40 (1954), pp. 467-471 and pp. 704-707.
[3] H. Cartan-S. Eilenberg: Homological Algebra. Princeton University Press (1956).
[4] A. Dold-R. Thom: Une généralisation de la notion d'espace fibré. Application aux produits symétriques infinis. C. R. Acad. Sci. Paris, 242 (1956), pp. 1680-1682.
[5] S. D. Liao: On the topology of cyclic products of spheres. Trans. Amer. Math. Soc., 77 (1954), pp. 520-551.
[6] M. Nakaoka: Cohomology theory of a complex with a transformation of prime period and its applications. J. Inst. Polytech., Osaka City Univ., 7 (1956), pp. 51-102.
[7] M. Nakaoka: Cohomology of symmetric prcducts. ibid, 8 (1957), pp. 121-144.
[8] M. Nakaoka: Cohomology mod p of the p-fold symmetric products of spheres. J. Math. Soc. Japan, 9 (1957), pp. 417-427.
[9] J-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv., 27 (1953), pp. 198-232.

[^0]: 4) I am indebted to my colleagues Mizuno and Toda for the improvement of this proof.
