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This paper is devoted to a study of the cohomology groups of the n-fold
symmetric product SP,(X) of a finite simplicial complex X, where #=1,2,-.-..
Our main success is as follows.

Since points of SP,(X) are represented by unordered sets {%y, #s, -+, #n}
with x;&X, we shall define an into-homeomorphism g,,, : SP,,(X)—»>SP,(X) by
Cun %1 Xy oy Xy =%y Xa,e o, X, %,-+-,%}, where m<n and % is a base ponit

of X. Let G be any coefficient group for cohomology groups, and consider for
any ¢ the homomorphism 4 , : H(SP,(X); G)»H4SP,(X); G) induced by ¢,
We have then the following which is an extension of the result due to S.D.
Liao [6]: The homomorphism . , has the right inverse, to be denoted by s,
(i-e. ¢, pmn=the identity isomorphism of HY(SP,(X), G)), and therefore it
follows that ¢ , is an onto-homomorphism, and that H¢(SP,(X); G) has a sub-
group isomorphic with HY(SP,(X); G) for any m<n. The construction of the
homomorphism u,, , is based on a theorem stated as follows : Denote by SP,, (X)
a space which is obtained from SP,(X) by identifying the image of ¢, , to a
point, then we have that HY(SP,(X); G) is isomorphic with the direct sum %l
HYSP)(X); G). We call SP,(X) the reduced #-fold symmetric product of X.

Next, assuming that X is homologically (r—1)-connected®’, we study the
integral cohomology group of SP,(X). For this purpose we utilize the Cartan-Leray
spectral sequence of regular finite covering [2, 3]. As a result, we obtain that
the homomorphism ), , : H(SP,(X)) > HY(SP,,(X)) is isomorphic into for ¢=<
r+1 if #'=1, and for ¢<Min (r+n'—2, 2r+1) if n'>1, where n = 2°n'(e=0, »’:
odd). This gives especially that o, : HI(SP,(X))~H"(X) for g=r+1.

We have calculated in [7] the cohomology of the 2- or 3-fold symmetric
product of an »-sphere S”. At the present paper, some of the results stated
there will be again proved by a different method from the preceding. We show

also that H"+*(SP,(S"))=0 for =3 and nx1.

1. Special cohomology groups
Consider a connected, finite simplicial complex X. We denote by

*) The space Y is said to be homologically (#—1)-connected if the integral homology
groups H (Y) = 0 for 0<g<r and the reduced homology group ﬁO(Y) = 0. If a simply
connected space Y is homologically (»—1)-connected, then Y is (v—1)-connected in the
usual sense.
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P,(X)V (nz1)
the n-fold cartesian product of X. As usual, points of P, are represented by
ordered sets

(%1, Hgy =+ =+, %) (%; € X).
Suppose now that X is ordered. Then a natural simplicial decomposition of P,
is introduced as follows [4, 6]: A point w=(%,,%,, ---+,%,) is a vertex of the
simplicial decomposition if and only if each #%; is a vertex v; of X; Different
(g+1) vertices @, = (Vgy,Vpa, +**** JUon), Wy= (Vg1 Ve, +ov+, V1p), =20 v, Wy = (Vg ,Vga,
-+,0g,) form a g-dimensional simplex if and only if, for each k=1,2,...-, 2,
(g+1) vertices vog, vyp,  » - -, Vg are contained in a simplex of X and it holds that

Vor=U;=-- -+ =0, with respect to the order < in X. Throughout this paper,
P, will be always considered with this decomposition.

Denote by
S,
the symmetric group of the letter 1,2,....,n. Each a€©, yields a transfor-
mation
o: P,»P,
defined by
X%y, Koy, + v+, Bn) = (Fala)s Kalo)s *** *» Kalw)-

Therefore &, may be regarded as a transformation group acting on P,. The
orbit space O(P,; ©,) ove: P, relative to &,2 is called the n-fold symmetric
product of X, and is denoted by

SP,X)v
in the present paper. Write
@,: P,—»SP,
for the identification map, and put
{xly Koy v vy xn} = (p”(xl, Kgy veoe, xn)
Then points of SP, are represented by unordered sets {#, #s ----, %,} with
xieX.

As is noted in [6], every transformation « : P, - P,(xe®,) is simplicial, and
if a simplex of P, is mapped onto itself by o« then it remains point-wise fixed
under «. Therefore it follows easily that the identification map ¢, carries the
simplicial decomposition of P, naturally to a cellular decomposition of SP,.?’

1) TFor the sake of brevity, X in this notation will be usually omitted if there is no
confusion.

2) Let Y be a Hausdorff space on which a group I' acts. Then the orbit space
O(Y; I') over Y relative to I' is defined as a space obtained from Y by identifying each
point yeY with its image 7(y)(ver).

3) As is shown by simple examples, @, does not necessarily produce a simplicial
decomposition of SP,. However, if we consider the first barycentric subdivision of P,,
this is carried by @, to a simplicial decomposition of SP,, being a subdivision of the
cellular decomposition of SP, mentioned above.
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In the following, we consider always SP, as such a cell complex. Obviously @,
is both proper and cellular®). Therefore @, defines a unique cochain homomor-
phism
@5 CUSP,; G) > CU(P,; G)
for each ¢=0,1,2, --.-, and for any coefficient group G.
For each «=®,, the transformation o:P,—»P, is simplicial, so that the
cochain homomorphism
o : CYP,; G)— CUP, ;G)
can be defined. Therefore it follows that C?(P,; G) may be regarded as an &,-
group by defining «(¢)=a%(c) (x€S,, cC!(P,; G)). Consider the subgroup
CIP,; G)&n®
of CYP,; G). Then it is easily verified that the coboundary homomorphism &

maps CYP,; G)®» into C*4P,; G)%». Thus we have a cochain complex
)

ey Cq(Pn; G)Gni) Cq+1(Pn; G)Sn_g. cen,
whose cohomology group is denoted by
HiP,|©,; G).

Since it is easily seen that the cochain map @} yields an isomorphism of C4SP,;
G) onto CYP,; G)®a, the following is obvious.

ProrosiTioN (1. 1). We have

@, : H(SP,; G\=H!P,|&,; G),

where @, is the homomorphism induced by @3.

Take from X a vertex % which is used as the base point. Let m and #
(m=mn) be integers, and consider a continuous map

S Py~ Py
defined by
fm,n (xl, Ky v v e .’xm) — (xl’ Koy vvooy Ky %y 000 0y *)
Then f, , is a simplicial map. Given a€®,,, define ¢, ,(®)€S, by
Epn(@) (1,2, - oo, ) = (a(1), &(2), « -+, a(m), m+1, -+ -, m).

Obviously we have
Em,n(“) fm,n =fm,n &,

and so

.fn?,n Emn(0)® = a%frf,n
for the cochain homomorphism f%, : C4(P,; G) - C!(P,,; G) induced by fu.. It
follows from this that f¥, yields a cochain homomorphism

Fon: CUPy; G)Su— CUP,,; G)om,

and so a homomorphism

4) We use here the terminologies ‘cellular decomposition, cell complex and proper
map’ in the sense of the book of Steenrod [91.

5) Let B be a A-group, then we denote by B4 the subgroup of B which consists
of all beB for which A(b)=b for all Ae 4.
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Fam HU(P.S,; G)=HYP,|S,; G).
Define a continuous map

tyn ' SP, — SP,

by
l'm,n{xv Ky v oo, xm}z{xl, Kgy voovy Ky ¥, o ’.4}

Then ¢, , is both proper and cellular, and further

¢’nfm,n = lm,n P
Therefore we can consider the cochain homomorphism %, : C/(SP,; G)—Ci(SP,,;

G), and it follows that

e d X R R
fm,n (pn - (pm l’m,n'

Thus the commutativity holds in the diagram:
£
o HYSP,; G) —™" 5 HY(SP,; G)
(1-2) ot ok
Hq(Pﬂ[@%; G)_—M)Hq(Pm[@m; G)
Write (P,(X), P,,(X))V for the n-fold cartesian product of (X, «):

(1. 8) (P, P,) = (X, #) X (X, #) X ++ -+ X (X, #).
Obviously P, is a subcomplex of P,, consisting of all points (%, %5, ------ ) %)
such that #%; =+ for some 7i=1,2,...... ,n. Therefore P; is a subcomplex

invariant under &, so that, for each «€®,, the cochain homomorphism o® may

be regarded as also a cochain homomorphism of C%(P,. P,; G) onto itself. Thus,

by the way similar to defining H%(P,|©,; G), we can define the cohomology group
HY((Py, P,)|©y; G)

from the cochain complex

e .__8_>Cfl(Pm P;;G)S,,_8>C(1+1(Pw P;L; G)G,,_8>. e

Write
SPL(X)

for the image of P,(X) by @,. Then it follows that SP, is a subcomplex of
SP,, and is the orbit space O(P,; G,).» Therefore the cochain homomorphism
@ maps C/SP,, SP,; G) isomorphically onto C¢(P,, P,; G)®x, so that we have
the proposition similar to (1. 1):

ProrositioN (1. 4). It holds that

@, - H1(SP,, SP,; G) ~ HY((P,, P,)|S,; G)

Sor the homomorphism g, induced by @3.

The following is trivial.

LemmA (1. 5). The map ey, (n=1) gives a homeomorphism of SP,_, onto
SP,, where we make a convention : SPy=x.

Let 7%: CYP,, P,; G)-»Ci(P,; G) be the cochain homomorphism induced by
the inclusion map 4, : P,~(P,, P,). Then j¥ maps CYP, P,; G)®n into C(P,;
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G)®x, and hence it defines a homomorphism
Jn  H((Pu, P,)|©,; G) = HY(P,|S,; G).
It is obvious that the commutativity holds in the diagram :

(1. 6) HY(SP,, SP,; G) H(SP,; G)
\l/(p” D \l/ n
H((P,, P,)|®,; G) 1% HY(P,]S,; G)
where 75 is the homomorphism induced by the inclusion map 7,: SP, — (SP,,
SP,).

2. The right inverse of .,

Let m and # be positive integers such that m=<n. We call then (n; m)-array
each ordered set (iy, 73, - - -, 7,,) of mutually distinct m integers <. If an (n;m)-
array (iy, s, -+--,1,) satisfles a condition : 4,<¢,< -+ -+ <1, it is said to be normal.

Given an (n; m)-array (iy, 4s,- -+, %,), it is associated with a continuous map

Vg, ig, ..., Ty P, (X)->P, (X)

defined by

"If'il, iz, ~---,1:m(x1’ Koy v, xn) = (x'il, Kig, * ") xim)-
If w,,w,,----, w, are vertices contained in a simplex of P, then r;, ;, ... i.(®,),
Vitvige oo rig(®1)s =+ s Wig in ... im(®,) aTe obviously vertices contained in a single

simplex of P,. Therefore v, i, ..., is asimplicial map, so that it induces the
cochain homomorphism

"Ab"i?, (7T : Cq(Pm; G)*Cq(Pm G)

Define now a cochain homomorphism
¥ n:CUP,; G)— CY (P, G)

by
Wm, (nzm) 'l‘b'@l 19y veeyipy?
the sum being taken over all normal (n; m)-arraies (¢3,%y ++++,%,). Since it is

obvious that

B iy, ig, ... im = Wi, glig), ooy Blig) (P E ©Gn),
we have

VBiin), tie) . 86O = W iy oo i P () = Vi 1, (0)
for each cochain ceC‘Y(Pm; G)Gm Thus it follows that

¥,nic) = , ‘x[l‘bl 12“m’im(o) for ceC’(P,,; G)&m,

(n;m) Mmi
where . Z denotes the summation extended over all (n; m)-arraies (3,75, +,1,,)-
Since

"!”131, gy vene, i@ = "]"w(h), alig) ..., @im) (‘X € @”>’
it follows further that
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ok ?Fﬂl; n (C) Z ) ’WL' 'llb'“,q,z’ .. (C)
/
= () m' "‘b‘“(zl)» aig), ..oy w(i,,,,)\c)
;1 =
= (rf?m) m! '&b‘ilyiz, ..... im(c)
= yrm, n (C)

This means that ¥, ,(c) € C/(P,; G)®xif ce CYP,; G)®n. Thus ¥, , yields a
cochain homomorphism

Vpnt CUPy; G)8m— CUP,; G)Cn
and hence a homomorphism

C ot HUP,|S,; G) > HY(P,|S,; G).

mn
Write
@ 1) v =gy W @ H(SP,; G) - HISP,; G).
Trivially we obtain
LEMMA (2. 2). @) is the identity isomorphism.

Consider the commutative diagram :
y sk

HY(SP,; G) <———— HI(SP,; G)
o
(= 8) l': ln\\ u—1,m
HYSP,—; G)

where ¢,", , and 7% are the homomorphisms induced by ¢,_y,, and the inclusion
map : SP,—SP, respectively. It follows then from (I.5) that ¢, , is an onto-
isomorphism. Write
K(SP,; G) = the Kernel of Lf_lm.

Then the above diagram and the cohomology exact sequence for (SP,, SP,) yield
the following :

LemMMA (2. 4). K'(SP,; G) is the image group of the homomorphism j, :
HYSP,, SP,; G) - H(SP,; G).

We shall prove

LemMa (2. 5). Let IS m=<n, and consider the diagram :

*
HY(SP,; G) —" > H1(SP,; G)
Tin N\ s
" CHYUSP; G "
Then it holds that o) ¥F, =}, on Ki(SP; G).
Proof. 1t follows from (2. 4) that our purpose is accomplished if we prove

I'Z,n Tzn]l* = gp‘lﬂ;njl*
Further, by (1. 6), (2. 1) and (1. 2), this is reduced to prove

f;,n WZn]zD = !P'zmjf
For this purpose, it is sufficient to prove that



Cohomology of symmetvic products 127

(A) Z fm n'\b"bl,zz (C) =(Z[) "lbl;%_‘,iz, ,‘L’L (C)’ (C € C“Z(Pt, P;’ G))

(n; 2)

where (?l) (s =mn or m) denotes the summation extended over all normal (s; /)-
arraies (2y, 25, -+ -+, %).

Let w be any point of P,. It is then obvious from the definitions that
Vit o0, iy fonn (©) 1S iy ig, ... ,4, (@) if the (n; [)-array (24, 75, -+, 7)) is an (m; ])-
array, and is in P; otherwise. Therefore, for each simplex 47 = (w,, wy, --+-, w,)
in P,, we have that

(FEn Wty iy ) (4) = (W iy () (1) 08 =0

according as the (u;l)-array (iy, @5, ----,4;) is an (m; I)-array or not. This proves
(A), and the proof of the lemma is complete.

Write ¥,  for the homomorphism ¥}, , : H(SP,,; G) >H!(SP,; G) restricted
on K¢SP,,; G). Then we have

PROPOSITION (2. 6). For any >0, the homomorphisms

v, . K{(SP,; G) > HiSP,; G) (1=m=n)

yield an injective representation of HUSP,; G) as a direct sum®, i.e. for each
acHYSP,; G), there exists a um’que system of n elements {a,,} (m=1,2, -, n) with
a,=K!SP,,; G) satisfying a = Z qf (@)

Proof. This is trivial for n_-l. Assume, inductively, the validity for n—1.
Consider the homomorphism

ef 1, H (SP,; G) > H!(SP,—y; G).

By the assumption of inducion we have

o (@) = Z W‘m,% (@), (a,€KY(SP,; G)).

n—1,n

m=1
Put
n—1
Ay = a— 2 w?n,n (am)
m=1
Then we have by (2. 5)
n—1
6.:—1, ” (un) = ":—I, n (a)- Zl 1':—-1, " Wgn, n (am)
Mo
n—1

= I‘:—I,n ( ) lem n—1 (“m) =0,

and so a, € K?(SP,; G). Since a, =¥} ,(a,) from (2. 2), it follows that

n—1

n
a=a,+ Z Wm, ( )= lez,n(am)‘
M=

"
Namely it was proved that a can be expressed as X ¥y, ,, (4,,) with a,,&K%(SP,,;

me=1
G).
Next we shall prove the uniqueness of such a expression. Suppose that we

6) See p. 8 in [4] for the definition of this terminology.
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have two expressions :

" n
a = Zqugn,n (QM) = Z ?F‘r)n,n (am)’
m=

m=1

where a,,, a,,K%SP,,; G). Then we have by (2. 2)

0= Z W(r)n,n, (am_'a;n)

me=1
, n—1 0 i
=a,—a,+ 3 ZFm,n (am—am)'
m=1

Apply 4:_1,7, to this equation. Since a,,—a,,&K?(SP,; G), it follows from (2. 5)
that

n—1
0= Zl ‘:—l,nwgn,n (am—am) = W?n,n-—-l (am_am)'
M=

By the assumption of induction, this implies that a,,—a,,=0 (m=1,2,...., n—1).
Therefore we have also @,=a,. This proves the uniqueness, and the proof of the
proposition is accomplished.
Owing to (2. 6), we can define a homomorphism
fomn . HU(SP,,; G)— H?(SP,; G) (g>0, m=mn)
as follows : Let aeH!(SP,,; G) be an element, and

a= 3 W?,m (ﬂl), ((llEKq(S,Pl; G))
I=1
Then p,, (@) is given by

m
fom,n (@) = % vy, (a)-

It is obvious that w, , is a homomorphism. We shall now prove
THEOREM (2. 7). It holds that e , pmn,=the identity isomorphism of
HYSP,,; G) for any ¢>0.
Proof. It follows from the definition and (2. 5) that

m
":,nﬂlm,n(“): lzi ‘j:z,n W?,n (a1)

e 0
= lX:l Wl,m (al)

=a.
This proves the theorem.

As a trivial consequence of (2. 7), we have

COROLLARY (2. 8). The homomorphism o 2 HU(SPy; G)—>HY(SP,; G) is
onto, and the homomorphism .y, HY(SP,; G)—>HYSP,; G) ts isomorphic into.

Consider the cohomology exact sequence for (SP,, SP,). Then it follows
from (2. 3) and (2. 8) that ¢*: HYSP,; G) —» HYSP,,; G) is onto for each g¢.
Therefore we obtain that j*: HYSP,, SP,; G)»>HYSP,; G) is isomorphic into



Cohomology of symmetvic products 129

for any ¢. Thus the following is concluded by (2. 4) and (2. 8).
THEOREM (2. 9). We have the dirvect sum relation :

H1 (SP,; G)~ X H!(SP,, SP,,; G)  (¢>0).

m=1

3. Reduced symmetric products
Let

P,(X)  (resp. SP,(X))
denote a finite CW-complex obtained from the complex P,(X) (resp. SP,(X)) by
shrinking the subcomplex P,(X) (resp. SP,(X)) to the point (%,) = (, #. ----, %)
(resp. {#,}={#, #,----,%}). Werefer to P,(X) (resp. SP,(X)) as the n-fold reduced
cartesian (resp. symmetric) product of X. Tt is obvious that the shrinking maps
bz (Pu Pp) = (P (%),
7yt (SP,, SP,) — (SP,, {#,})
are relative homeomorphisms.”? Therefore we have
ProrositioN (3. 1). For any ¢>0, it holds that
t*: H(P,; G)~ H! (P,, P,; G),
v o H1 (SP,; G) ~ H! (SP,, SP,; G),
where ti and T are the homomorphisms induced by t, and T, respectively.

By this and (2. 9), we can find at once the cohomology groups of the sym-
metric product from those of the reduced symmetric product. The latter will
be studied in §§4 and 6. We make some preparations for the study in the
remainder of this section.

For each a=®,, the transformation «: P,—P, obviously determines a trans-
formation «: P,—P, such that ‘o {,=f, «. Therefore P, may be regarded as a
space on which &, acts. Consider a continuous map

an Y R S“Fn
defined by '
a’n by = Ty @y

It is then easily verified that SP, is the orbit space O(P,; &,) whose identifica-
tion map is @,.

Define a space F, (X)Vc P, (X) (n=1) as follows: F, (n>1) consists of all
points (%, %,, - -+ -, %,) such that x;=x, for some ¢ and j (i=j) and F,=+. Define
further a space

F,(X)»cP,(X)
as the image of F,(X) by the map f#,. Then it follows easily that F, is a sub-
complex of P, which is invariant under &,, and consists of all points which are

7) For the definition, see p 266 in [4].
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fixed under some transformations (except the identity) of &,. Therefore P,—F,
is a locally compact space on which &, acts without fixed points, (i.e. on which
any transformation « = the identity («x € &,) admits no fixed point). Define a
space
SF,(X)V < SP,(X)

as the image of F,(X) by the map g,. Then it is obvious that SP,—SF, is the
orbit space O(P,—F,; ©,) whose identification map is @,. Thus it follows that
the space P,—F, is a locally compact principal fiber space of structure group &,
over the space SP,—SF,. Therefore we can apply the Cartan-Leray theory
[2, 8].8) .Before we state the result, we shall make some remarks.

Let HY(P,—F,; G) (resp. H/(SP,—SF,; G)) denote the Cech cohomology group
(with compact supports) of the locally compact space P,—F, (resp. SP,—SF,). It
follows then from the well-known general property of cohomology that H?(P,—
F,; G) (resp. H?(SP,—SF,; G)) is canonically isomorphic with the relative
cohomology group H4(P,, F,; G) (resp. HI(SP,, SF,; G)) of the cellular pair
(P, F,) (resp. (SP,, ST,).

Given ac®, and acH(P,, F,; G), define a(a)eH(P,, F,; G) by
3. 2) (@) = a*(a).

Then it follows that H?(P,, F,; G) is an &,-group by this operation.

We shall utilize the usual notations (as is seen in [8]) with respect to the
spectral sequence. Then the general theory of Cartan-Leray gives

ProrosITION (3. 8). There exists a cohomology spectral sequence (E,) in
which the term EL'? is isomorphic with the cohomology group H?(S,; H!(P,, F,; G))
of the group ©, with coefficients in the ©,-group HI(P,, F,: G), and E%:?4s isomorphic
with the graduated group D?4/DP+L.9-1 associated with a certain filtration (D)
(s+t=p+q) of H**(SP,, SF,; G).

The cohomology groups of SP, and of (SP,, ST,,) are related to each other by
the exact sequence. This relation is explained to some extent by evaluating the
cohomology groups of SF,. To do this, we define a space

SF,(X) c SF,(X)»

for each integer ¢=>1 as follows: Write SF,(X) (1<t<n/2) for a subset of
SF,(X) which consists of all points {#;,%;, ¥a,%s,« * <, %5, %, %p1 1, %p1 25+ =+, Tyg FESP,(X),
and put SF!(X)={=,} for t>n/2. Then SF,(X) is defined as the image of SF’(X)
by the map 7,. It is easily seen that SF’ are subcomplexes of SP,, and satisfy
a condition :

(3. 4) SP,oSF,=SF!>.... oSF, > SFit!5 .....

‘We shall prove

I

8) See also A. Bore™[1].
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LEmMMA (3. 5). For each t (1=t=<n/2), there is a relative homeomorphism
62: (S—Pt’ {"“‘t})x(sﬁpn—%: §F11——2t> g (STT:V S—T;+l)
with the following comventions: SPy=+, SF,=empty set.
Proof. Define a continuous map
w1 SP;XSP,_ o — SF!,
by
w,t,, ({xl’ Kyy o0y x;}X{xi, x/2 ] x;t—2t}>
=%y, ¥y, Koy Hay v ooy By Xy Hpy Xy, oo, Ko} (%5, 2,€X).
Then o, maps (SP;XSP,_s)U(SP,XSP,_,) in (SFLUSP,). Therefore o) can
be regarded as a continuous map of (SP;, SP)) X (SP,_a,SP,_,,) into (SF!, SF,U
SP)), so that !, defines a continuous map
ED-:L : S—P—gX—STn_gt hd §F~;.
Since @' maps {#} X SP,_y in {#,} and SP, X SF,_, in SF*', &' can be
regarded as a continuous map of (SPy, {%})X (SP,_u, SF,_») into (SF, SELH).
Notice here that each point of SF,—SF!/'' can be represented uniquely as {x,,
K, Koy Fay v ooy Ky By Kpq, Bpgny + v oy Xy} With ;=% (1S0=Zn—1) and x,=x; (155
<k<n—t). It follows then that @/ is a one-to-one correspondence of SP;X
SP,—y— ({#XSP,—) U (SP;xSF,_.,) onto SF.—SF'. Thus @, is a relative
homeomorphism. This completes the proof.

4. Symmetric products of homologically (r—1)-connected complexes

Assuming that X is homologically (r—1)-connected (r=2), we calculate in
this section some integral cohomology groups of the symmetric product of X.

‘We have

ProrosiTioN (4. 1). If X ds homologically (r—1)-connected, F, is homo-
logically (r-+n—238)-connected.

The proof needs some preparation, and hence will be given in the next
section.

From this, we have

LemMA (4. 2). Let X be homologically (r—1)-connected, then the integral
homology group H,(P,, F,)=0 for ¢<r+n—2.

Proof. It follows from (1. 3) and (3. 1) by the Kiinneth formula that H,(P,)
=0 for 0<g<mnr—1. Therefore, if we consider the homology exact sequeuce for
(P,, F,), the lemma follows at once from (4. 1).

We shall now prove

ProrosITION (4. 8). Let X be homologically (r—1)-connected, then the integral
homology group H,(SP,, SF,)=0 for ¢g<r+n—2.

Proof. It follows from (4. 2) by the universal coefficient theorem that
the integral cohomology group H?(P,, F,)=0 for ¢<r+n—2, and H"+*(P, F,)
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is free abelian. Therefore, if we consider the spectral sequence in (8. 3), we have
that if ¢<r+n—2 then E%?=0 and hence E2;?=0. Thus H(SP,, SF,) = D% =
D=1 = .... = D-14+1—() for q<r+4n—2. Further we have H’+*! (SP,, SF,)=
Dor+n—i= O rin=1_ g0, r+n-1_po (&, H+1 (P, F,))=H"+"1(P,, F,)%s,% by the
well-known fact [2]. Therefore H’+*~1(SP,, SF,) is a subgroup of a free abelian
group H'+**(P,, F,), so that H’+*'(SP,, SF,) itself is free abelian. The pro-
position is now clear by the universal coefficient theorem.

We shall prove the following result with respect to the reduced symmetric
product.

ProposiTioN (4. 4). Let X be homologically (r—1)-connected (v = 2), then it
holds that H1(SP,)=0 for 0<q<r+1 and n=2.

First we give a

Proof of (4. 4) for n=2. Since SF, is obviously homeomorphic with F, and
hence with X, it follows that H,(SF,)=0 for 0<g=<r—1. On the other hand, it
follows from (4. 3) that H,(SP,, SF;)=0 for g=<r. Therefore it is concluded by
the homology exact sequence for (SP,, SF,) that H,(SP,)=0 for 0<g=<r—1. This
implies that H?(SP,) = 0 for 0<g<r—1. Thus it remains to prove H?(SP,) =0
for ¢g=7 and r+1.

Since 7=2, it follows that H,(P,)=0 if 0<g=<r+1. Hence H/(P,) =0 for 0
<q=<r+1. This implies

(A) The coboundary homomorphism 8% : H(F,)—H’+(P,, F,) is isomorphic
onto.

Let a=©,, then the transformation o« is the identity on F,. Therefore the
homomorphism o* : H'(F,)—»H’(F,) is the identity isomorphism. This, together
with (A) and (3.2), proves that ©, operates on H’+(P,, F,) trivially. Thus, by
some usual arguments in spectral sequence [8], it follows that the homomorphism
@* : H+\(SP,, SF,)—»>H'+'(P,, F,) can be written as follows :

@* : H+Y(SP,, SF,) = D%’+1 — E% 1 E)+!
= Ho(@z; H,Jrl(pz: Fz)) = HHI(Pm Fz)-
However, as was seen in the proof of (4. 3), Do+ = E%7+—E%"+1  Therefore
we obtain
(B) @*: H+(SP,, SF,) > H'*'(P,, F,) is an onto-isomorphism.
Consider the commutative diagram

— o* —
H'(SF,) —> H"+'(SP,, SF,)
7" - P*

H'(F,) ———> H'+(P,, F,)
Since @ gives a homeomorphism of F, onto SF,, the left @* is isomorphic onto.
Therefore it follows from (A) and (B) that the upper 6* is also isomorphic onto.
By considering the exact sequence for (SP,,SF,), we have
(C) The homomorphism j* : H’(SP,, SF,)—>H’(SP,) is onto, and the homo-
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morphism ¢* : H*+ (SP,) — H’+! (SF,) is isomorphic into.
Since it follows from (4. 3) that H’(SP,,SF,)=0, we have H’(SP,)=0 by (C).
Consider the commutative diagram

3k
Hr+1(S—P2) ~Z—, H""I(S—Fz)
7* . P

H(Py) ———> H'(F,)
Then the upper ¢* is isomorphic into by (C), and the right @* is obviously
isomorphic onto. Therefore *7* is isomorphic into. On the other hand, H"+(P,)
=0 as was seen above. Hence @*i* =i*zp* is trivial. Thus we must have
H’+(SP,)=0. This completes the proof of (4.4) for n=2.
Proof of (4.4). We proceed by induction on #. Assume the validity of (4. 4)
for n=2,3, - --, p—1, and we shall prove (4. 4) for n=2.

Consider the sequence
sk * &

e p e
0,: H'(SP,) —> H(SF}) —> .-+ — HY(SF}) —> H/(SF31) —> .- .-,
which terminates in H¢(SF%/%) or HY(SF¥~"/?) according as ¢ is even or odd,
where 6 (0<i<p/2—1) denotes the homomorphism induced by the inclusion
(8.4). Then we assert

(D) @, is isomorphic into for ¢ < Min (r4-p—2, 27+1).

For the proof, it is sufficient to show that H¢(SP,, SF,) and H(SF}, SF4)
(1 =t<p/2—1) are trivial for ¢ < Min (r+p—2, 2r+1). This is obvious by (4. 3)
as for H!(SP,,SF;). To prove the result for H/(SF}, SF;"), consider the homology
group H,(SF’, SF4). Tt follows then from (3. 5) by the excision property of
homology that H,(SF’, SF}+") is isomorphic with H((SP,, {#})X (SPp_s, SF ;—s;))-
Therefore it follows from (4. 3) and the assumption of induction by the Kiinneth
formula that H,(SF}, SF4!) (2<i<p/2—1) is trivial for ¢=<2r—2¢+p—1 and
H,(SF}, SF}) is trivial for ¢=<2r+p—4. Hence the cohomology group H?(SF%,
ﬁ;ﬂ)zo for q%gtl\g}lz_l\;[in (2r—2t+4p—1,27r+p—4)= Min (2r+1,27+p—4). Since
7+p—2=2 +p—4 we have the desired result. Thus we obtain (D).

As for the range of ;, we have

(E) HY(SF5/%)=0 for g=r+1 (p: even); H/(SF~1/%)=0 for ¢<2r+1if p>3,
and for ¢g=2r—1 if p=3 (p : odd).

In fact, it follows from (3. 5) that H(SF%/?) and H¢(SF$~"/%) are isomorphic
with HY(SP,,) and H((SP(,—)e{#p—1),2}) X (X, %)) respectively. Therefore (E)
follows easily from (4. 3) and the assumption of induction, by the same argu-
ments as in the proof of (D).

As a direct consequence of (D) and (E), we have (4. 4) for n=p. This
completes the proof of (4. 4).

In the above proof, we have proved simultaneouly the following : (See (D)
and (E))
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PROPOSITION (4. 5). Let X be homologically (r—1)-connected (r=2). (i) If
n is odd then Hi(SP,)=0for ¢< Min (r+n—2,2r+1). (i) If n is even, the homo-
morphism 0,=0"/?* 0, : H(SP,) —» HY(SP,, ,) is isomorphic into for < Min (r+n
—2, 27 41).

We shall prove

THEOREM (4. 6). Let X be homologically (r—1)-connected (r=2), and n=2en',
wheve ez0 and n' is odd. Then the homomorphism (,:,k_l,” : HY(SP,)»H!SP,_,) s
isomorphic onto for g=<r+1 iof n'=1, and for ¢< Min (r+n'—1, 2r+1) if n’>1.

Proof. By (2.4), (2.8) and (3. 1), it is sufficient for this purpose to prove
that

(F) H”(_S-Pn) —0 {for g<r+1 if n’=1,

lfor ¢< Min (r+n'—2, 2r41) if w'>1.

If »'=1, (F) is obvious from (4.4). Let #'>1. Then it follows from (ii) of (4.
5) that @, 04,--- 0;: H{(SP,)-»>H!(SP,) is isomorphic into for ¢< Min (r+2n’
—2, 27+1), and that Hi(SP,)= 0 for ¢< Min (r+n"—2, 2r+1). This proves (F)
for n'>1. Thus we have proved the theorem.

Especially we have

CoROLLARY (4. 7). Let X be homologically (r—1)-connected (r=2). Then, for
any nz1, SP, is homologically (v—1)-connected® and it holds that

o u: H(SP,) ~ HI(X) for g =17, r+]1.

5. Homology of F,(X) — Proof of (4. 1)

Before we proceed to the proof of (4. 1), we make some algebraic prepara-
tions.

Let

7 (]
consst of all partitions %, v, -... of the set [n] of the integers 1,2, -.-., n.
Define in JI|n] a partial order > as follows : If # is a refinement of v, then u>v.
With this order, [I[n] is a lattice.

If integers 4, j&[n] are contained in the same subclass of a partition uwelr|#],
we shall write 7= 4 (#). The following result on the meet #Nv of two partitions
u, vell[n] will be obvious:i=j; (#Nv) if and only if there is either k&[#n] such
that =% (u) and k=j (v), or I€[n] such that ¢=/(v) and I =7 (u).

Let Uy, Uy, ----, U, be the disjoint subclasses into which a partition # di-
vides [#]. Then % is called the height of u, and is denoted by %(#). Obviously,
w with h(u)=1 is the minimal element of 17{#], and » with %(#)=# is the maximal
element of MI[n]. ,

Given a partition 4 ={U, U,, --- ,U,}ell[n], define Suc[n+1] by

9) S. D. Liao gives in [6] a proof of that if X is (»—1)-connected then so is SP,,.”
10) By a partition of a set M, we mean a division of M into non-overlapping sub-
classes,
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Su={U,, Uy, ----,Uy, Uh+1},
where Uy, denotes the set {n+1} of the single element n+1. This yields a
correspondence
S:H[n] - Hn+1].
The following is immediate.
Lemma (5. 1). S(uNv)=SunSv. h(Su) = h(u)+1. If u=+v, then Su=Sv.
Let ac[n] be any integer. Then we define a correspondence
aS: n] - Hn+1]

as follows : Let u = {U,, U,, ----, U}II[n], and Uy, denote the subclass con-
taining 4. Then “Su is given by
“Su = {Uy -, U wfa)-1, U’w(q)’ Ua(a)+1: <o, Uy

where U’,, denotes the union of the sets U, and {n+1}. Immediately we
have
Lemma (5. 2). *S(unv)=*Sun4Sv. h(*Su)=h{u). If u=v, then *Su=+Sv.
Each sequence

O = (Uy, g, + =+, %))
of elements u; (i=1,2,....,]) of IT[n] is called the sequence in M[n]. If 1,99+~
u; are mutually distinct, the sequence @ is said to be proper. Let =2, and @
=(ty, 4y, - - -, ;) @ proper sequence in JT{z]. Then we define, for each 7 (2<i<)),
a new proper sequence D;0 in JI[n] as follows :
Di® = (g Ny, Wy Nty -+ o, Uiy (%)
with a convention : #;Nu; is omitted whenever wu;Nu; =u;Nu; for some j<k.
A sequence @ = (g, U, -+ -, ;) With h(u;) = h(ty) = ---- = h(n;) is said to be

homogeneous. By the height %(®) of a homogeneous sequence @ is meant the
height of each element of 0.

By making use of D;, we define now the terminology ‘regular sequence’
recursively as follows : Every (proper, homogeneous) sequence of a single element
is regular. Especially a proper sequence of height 1 is regular. From here
proceed by induction, and assume that it has been defined that a proper homo-
geneous sequence of height 4—1 is regular. Let @ be a proper homogeneous
sequence of height 4. Then @ is said to be regular if each D;® is a homo-
geneous sequence of height 2—1 and is regular.

Since the meet of two distinct partitions of height 2 is always the minimal
element, we have obviously

LEmMMA (5. 3). Every proper homogeneous sequence of height 2 is regular.

REMARK. As is easily seen, a proper homogenecus sequence of height 3 is

not necessarily regular.

Given a proper homogeneous sequence @ = (wy, g, - -, ;) in II[n], define
sequences S@ and *S@ as follows :
SO = (Suy, Stay, - -+, Suy),

eSO = (*Stwy, *Sthy, - - - -, 2Suy).
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Then it follows at once from (5. 1) and (5. 2) that both S@ and *S® are proper
homogeneous sequence in fI[n+1], and #(S®)=~(0)+1, h(*SO)=h(0). We shall
prove

Lemma (5. 4). If 0 is regular, sv are SO and *S@.

Proof. The proot is done by induction on the height % of @. If h=1, the
lemma is clear. Assume, inductively, that the lemma has been proved for every
regular sequence of height A—1, and let @=(u,, %,, ----,u;) be a regular sequence
of height 2. We may assume /=>2. Then it follows from the definition that
each D; 0 (2<s<l) is a regular sequence of height A—1. Therefore, by the
assumption of induction, SD;@ (resp. 4SD,®) is the regular sequence of height
h (resp. h—1). However it follows from (5. 1) that

SD,® = (S(u Nwi), S(usNaag), - -+, S(wiy N ;)
= (Sulﬂ Sui} S”zﬂ S'M/i, Tttty S%i—ln Sui)
= D,So,

and similarly from (5. 2) that
*SD;® = D; *S@.

Thus each D;S@ (resp. D;*S0) is the regular sequence of height % (resp. A—1),
so that S@ (resp. “S®) is regular by the definition. This completes the proof.

Let

Bls,8) = (1—2) (t—1)/2+s.

Then it is easily seen that, for a given integer ¢>0, there is a unique system
(s, t) of integers such that f(s, f)=¢ and 0<s<£™) Define a partition w?e II[n]
(1=1,2,--.-,B(n—1,n) and n=2) as follows :
(5.5)  wf={{1} oo o= 11 {5, 1 {51}, oee, {11 {413, oo, {0},
where = f(s,f) and s<f. Then h(w”)=n—1. Conversely, it is obvious that every
weII[n] of height n—1 has such a form. As a direct consequence of the defini-
tions, we have

LemMA (5. 6). Let 1<s<t=n and 1=<a=n, then w', = Swis y WEtlHN
Wit ntt) = “Shs, o

Define a sequence Q[#] by putting

(5. 7) Q[M] = (w;b) wg: crtty w?) ) wZ(n-—l,n))'
Then Qn] is both proper and homogeneous, and % (Q[n])=n—1. We shall
prove

Lemma (5. 8). Q[n] is regular.

Proof. The proof is done by induction on #. The lemma for #n=2 is trivial.
Assuming the validity of (5. 8) for n=£%, we shall prove that Q[k+1] is regular.
For this purpose, it is sufficient to prove that

DiQ[h+1] = (@H1nwh+! whtl qut+l ... bl gkt

(2=<i<p(k,k+1)) is a regular sequence of height 2—1. Let ¢=f(s, ¢), where s<¢.

11) B(1, 2)=1, B(1,3)=2, B(2, 8)=3, B(l, 4)=4. B(2, 4)=5, B(3, 4)=6, ... ..
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Case I: ¢tk

It follows from (5. 6) that w}*'=Sw} for any j=<i. Therefore we have by
(5.1)

D,Qlk+1] =(Swkn Swk, Swin Swk, ..., Swk_ N Swk)
= (S@inwk), Swinw}), .-, S(w}_,nw}))
= SD;Q [k].

Since Q[k] is regular by the assumption of induction, each D,Q[k] is a regular
sequence of height 2—2. Therefore it follows from (5. 4) that D; Q[k+1] = SD; Q[£]
is a regular sequence of height k—1.
Case Il : t=Fk+1.
If j<k+1 and j<s, then
Wi e NOEE )=kl NWEE -
Therefore it follows from the definition of D, that

DiQ [k+1] = (@it Nwitly o, w5 Nwt ey, -0 0kl NwEE )
Further it follows from (5. 6) that
D; Q [k+1] = (Sw}, *Swf, -+ -, Swjy 1 1)
— 550 [E].

By the assumption of induction, Q[&] is a regular sequence of height k—1.
Therefore we obtain by (5.4) that D,Q[k+1]=sSQ[k] is a regular sequence of
height £—1. This completes the proof.

We return here to a topological consideration. We retain the usage of the
notations in the above sections.

Given ue]l[n], define a subset M(u)cP,(X) by putting

M(u) = {(%y, %, -+, %) EPy |5, = ; if 1 =7 (w)},
and write
M (u)
for the image of M(u) by ¢,. It is easily verified that M(x) is a subcomplex of
P,X). Let u={U,, U,,----,U,}, and let [; (1<j<%) denote the least integer in

U;. Without loss of generality, we may assume that [,;<ly<.--- <.

Define a continuous map

p:M(u)—> P,
by
0 (%4, oy + vy %) = (K1y, Kty <+ -+, Xy)-

Obviously p is a homeomorphism of M(x) onto P;, and p maps M(x)( P, onto
Pj. Therefore p: (M(u), M(u)\ P,)—>(Py,P;) is a relative homeomorphism, and
hence so is the map o : (M («), (+,))—>(P, (%)) defined by p. This, together with
(1. 3) and (3. 1), implies

Lemma (5.9). Let X be homologically (r—1)-connected, and ueil[n]. Then
M (u) is homologically (hr—1)-connected, where h=h(u).

As a direct consequence of the definition, we have
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Lemma (5. 10). For any u, ve[l[n], it holds that M (uNv) = M (u) N M (v).
where ( in the right stands for the intersection of the sets.
Extend the definition of M to every sequence @ = (#, u,,- - - - ;) in [I[n] by
setting
M(@) =]W(”1) U M(%) y----u M(%l):
where U denotes the union of the sets. Using the Mayer-Vietoris sequence of
homology groups [4], we shall prove the following :
Lemma (5. 11). Let X be homologically (r—1)-connected, and @ a regular
sequence in In]. Then M(®) is homologically (r+k—2)-connected, where h=F(0).
Proof. We shall give the proof by induction on 4. The lemma is clear from
(5.9) if A=1. Assume the the validity of (5. 11) for every regular sequence of
height A—1, and let @=(u,, u,, ----, u;) be a regular sequence of height 4.
Case I: I=1.
It follows from (5. 10) that M (®@)=M (u,) is homologically (h7—1)-connected.
Since hr—1=7+h—2, M(0) is homologically (r-+%—2)-connected.
Case I: [=2.
By the definition, each D,0 = (uyN\u;, wyNtt;, -+, u;—yN#;) is a regular
sequence of height #—1. Therefore, by the assumption of induction, we have
(A) M(D;0)(2<i<)) is (r+h—3)-connected.
Let @; (1=<¢</) denote the subsequence (u,, #,, ----, %;) of @. Then we have
M (0;,) UM (u;) = M (0;),
M (0;_,) M (us)
= (M (u)U---- UM (u;))) N M (us;)
= (M (u) N M (w;))U+- - U(M (s—y) N M (u15))
=M (uyNu;)U--+- UM (ni—y N 14;) (by (5. 11))
=M (D; 0).
Therefore the (integral coefficient) homology Mayer-Vietoris exact sequence for

(M(@;); M(0;_y), M(u;)) becomes as follows:12)

-—>H, (M((pi—l))'l'Hq (M(u,)) M H, (M(m,)) - H,y (ﬂ(D, 0))—> """

It follows from (A) that H, ,(M(D,0)) =0 for ¢ <7+h—2, and from (5. 9) that
H (M (u;)=0 for g<hr—1. Therefore if g<r+h—2, then the homomorphism ¢;_, :
Hq(M(@i—1))—* Hq(ZTf((D%)) is onto. This holds for 7=1,2,..--,I—1, and 0, = 0,
@,=(u,). Therefore we have that ¢,y ¢,z -+ by H(M(uy))>H,(M(0)) is onto.
As was shown in Case I, H (M(u,))=0 for g<r+%—2. This implies that H (M
(0))=0 for g=<r+%—2. Namely we conclude the proof.

We are now in a position to prove the proposition (4. 1).

Proof of (4.1). Consider the partition @} defined in (5.5). Then it is ob-
vious that M(w]) is a subset of F,,(X) and F,=M (w{) UM (03) U --U M (@}, 1 ,)-
Therefore, for the sequence Q[#] defined in (5. 7), we have M(Q[n])=F,. As was

12) We take the reduced homology groups for dimension 0.
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proved in (5. 8), Q[#n] is a regular sequence of height #—1. Thus (4. 1) follows
directly from (5. 11).

6. Symmetric products of spheres

Take an 7-sphere S” as X and let #=2 or 3. By applying the method stated
in §3 to such a case, we shall in this section give another proof of some of
the results which we have had in [7].2®) Throughout this section, we assume
that »=2.

THEOREM (6. 1). Let p<2r, then

_ Zy for p=r+2k+1 (k=1,2,....),"
H? (SP. (57) ~ {O for zZther p. ( !

Proof. It is obvious that F, is an 7-sphere and P, is a 2r-sphere. Therefore

the cohomology exact sequence for (P,, F,) yields the following :
— Z for q=r+1,
H (P, Fo) M{O for g<7+1 and r+1<g<2r.
As was seen in the proof of (4. 4), &, operates on H”+! (P,, F,) trivially. There-
fore, in the Cartan-Leray spectral sequence (3. 3), we have that
EP1=0  for g<r+1 and 7+1<q< 27,
Ep = HY(&,; Z),
where &, operates on Z trivially. It is known [3] that
Z if =0,
H? (S,; Z) ~{Z, if p is even>0,
0 otherwise.
We can thus prove by some usual arguments in spectral sequence that
HI(SP,, SFy) = B0 = Bpr=brtt (p<2y),

so that

sZ if p=r+1,

H? (SP,, SF,) ~{Z, if p =r+2k+1 (k=0,1,2,....),

lO otherwise
for p<2r. Since SF, is an r-sphere, the cohomology exact sequence for (SP,,
SF,) gives that

H? (SP,, SF,) ~ H? (SP,)
for 0<p<r and r+1<p<2r. This proves the results for p=7, r+1. Since it
follows from (4. 4) that H?(SP,)=0 for p<r+1, the proof of the theorem com-
pletes.

Since P,(S*)=S", we have by (2. 9), (3.1) and (6. 1) the following :

COROLLARY (6. 2). Let p<2r, then

13) More results than in the present paper are obtained in [7], but it is impossible
for us to prove all of them by the present method.

14) We shall write Z and Z, respectively for the group of integers and the group of
integers mod p.
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Z if p=r,
H? (SP, (S")) @{Zz if p=r+2k+1 (k=1,2,----),
0 otherwise.
We shall next consider the 3-fold symmetric product of S”. For this purpose,
we shall first study the homology group of F4(S7).
As was seen in the proof (4. 1), we have
Fy(S") = M(w]) U M (w3) U M ().
(See §5.) For the sake of the brevity, we write
F=TF,S), N;=M@w? (i=1273).
Let 0 denote the minimal element in the lattice 17]3], then we write also
D=M(0).
Then N; is a 27-sphere, and D is an 7-sphere.
We shall prove

Leuma (6. 3).
_ Z+Z for gq=r+1,
H,(F,(S) ~ { g
0 for 0<g<r+1 and r+1<g<2r.
Proof. Consider the homology Mayer-Vietoris sequence for (N 2UNy; Ny, Ny).
Since N,NN, = D, we have then the following exact sequence :15)

.o > H,(D) b, H(N,)+H,(Ny) N H(N,UN,) A, Hy (D)= -+

This proves that
H,(N,UN,) =0 for 0<g<r+1 and r+1<g<2s,

4:H,., (NyUN,) ~ H, (D) (=~ Z).

Consider next the homology Mayer-Vietoris sequence for (N, U N.UN,; N,;,N,UN,).
Since N,U(N,UN,)=F and N,N (ZV2 UN,) =D, we have then the following exact
sequence : %)

(A)

= Hy(D) > BN 4 HN,UR) 2> B (F) > (D)~
This, together with (A), proves that
H,(F)=0 for 0<g<7r+1 and r+1<g<27,
and that the sequence

(B) 0 H,vy (NoUNy) —25 H,y(F) 2> H, (D) > 0
is exact, and hence H,.,(F)~Z+Z. Thus we complete the proof of (6. 3).
REMARK. By using of the method similar as in the proof of (4. 1) stated in
§ 5, we can prove the follwing :
H,(F,(S))=0 for 0<g<r+n—2 and r+n—2<q<2r+n—3; H, ., ,(F(S") is a
finitely gemerated free abelian group.
Let (4, 7, k) be any permutation of (1, 2, 3), and consider the diagram :

15) We use the same notations as in p. 39 of [4].
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—. 9% — lis .
H, (D) <= H,+4(Ni, D) =% H,.,(N;UN;,N))

Mi; —_— —_— n —
—HE H, (N;UN;) —rE, H,(F),

where 9; is the boundary homomorphism, and I;;*, m,;y, 7z, are the homomor-
phisms induced by the inclusion maps. Then 9;, /;;4 and m;,, are onto-isomor-
phisms. Write
O = Mg Mg Lijue 07

Then we can prove the following by some usual arguments in homology theory
[41.

LEmmA (6. 4). o =—0j.

Let s’eH,(D) denote a generator, and write

ey =04; () EH 1 (F5 (5) (<))

Then we have

LEMMA (6. 5). H,.(F4(S7)) is generated by e, and e,.

Proof. Recall the definitions of 4 and ¢ in the Mayer-Vietoris sequence [4!.
Then it follows that the isomorphism 4 in (A) can be written explicitely as

02 lz_sl* Maas,
so that the image of ¢ in (B) is generated by
Ny (02 Lz Mags) ™ () = 025 (87) = €.
Therefore if we can show that
4o ;3 = the identity isomorphism of H, (D)

for the homomorphism 4 in (B), the proof is complete. This is proved as follows.
Consider the commutative diagram

J— — Ny —
Hr+1 (NIUN:’,) “—H’gHHl(F)

_ m_m* oy /3*___ _
Hr+1(N1U\Z\72UN3)—$H¢+1(F;N1UN2)
/

where oy, By and p, are the homomorphisms induced by the inclusion maps. Then
oy is an onto-isomorphism, and the homomorphism 4 in (B) can be written
explicitely as
9 ‘xi_el B
Therefore we have
Aoy = (01 05" By) (ax Migh liss O7)
=005 V1o lusw O (DY Putuse = Puagy)
= the identity (BY Vi Ligse = ).
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Thus we complete the proof.
Let S and T denote the elements of &, defined as follows :

-39 T-(3)

Then both S and T are the identity on D, and
S(Zzl) = ]_\71, S(Z—iz) = sz- S(N:a) = Nz’
T(Nl) = Nz: T(Nz) = Na: T(Na) = Nr
Therefore, by using of some commutative diagrams, we can easily assert that
SO0 =013, Sy013=07, Sy =04,
Ty =02, T40133=0y, T40y=0cy.
This, together with (6. 4), implies that
(6. 6) Sg(e) =¢s Siled) =e,, Sx(er) =—eq,
Ti(es) =1, Tules)) =—e; Ty(er) =—ea
We shall prove
LemmMa (6. 7). e;=—e +te,.
Proof. It follows from (6. 3) and (6.5) that e; can be represented as
e =7pet+qe, (p, g : integers).
Then we have by (6. 6) that
er="Ty(s) =Ty (pes+qes) =—pes—qe,
=—pe—q(petqe)=—pge—(p+q°) e
This impies that
pg=—1 and p+¢*>*=0,
so that p=—1 and ¢g=1. Thus we have (6. 7).
From (6.6) and (6.7), we obtain
LEMMA (6. 8). Sy(ey) =—ey, Siles) =—e3+e,,
Ty(e)) =—es Ty(es) =€1—e,.
We shall here pass to the cohomology. It follows from (6. 3) that
- Z+7Z for g =7r+1,
HA(F, (9) ~ {0 for 0<g<r+1 and 7+ 1<g<2r.
Since H(Py(S"))=0 for 0<¢<37 it follows that
8: Hi(F, (S’)) ~ Hi+ (I_’3 (59, F5(S7)
for 0<g<3r—1. Denote by e;, ey e H'+1(F,(S"))=Hom (H,., (F4(S5’)), Z) the dual
of ¢, and e, respectively, and write
¢;=8efeH (P, (S),Fy(S)) (i=1,2).
Then the following is obvious from the above consideration.
ProposiTiON (8. 9).
Z+Z  for g=r+2,

HI(PoS7), FolS1) =~ {O Jor g<r+2 and r+2<q<2r.
Further H'+2 (Py(S7), F4(S7)) is generated by ¢, and. c,.
By (6.8) and the naturality of §, we can assert easily that
S*(cl) =-—C;—Cy, S*(Cz) = Cy,
T*(c,) = ¢, T*(cy) =—C1—Ca
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Therefore the definition (3. 2) gives
PROPOSITION (8. 10). The group €, operates on H'+2(P4(S"), F4(S")) as follows :
S(e)) =—¢1—cy, S (Ca) =y,
T (¢1) =—c¢y—c¢5, T (c3) =c¢y.

We shall prove

TueoREM (6. 11). Lot p=<2r—1, then
(Zy if p=r+4k+1  (k=1,2,....),

0 otherwise.

Proof. By making use of the theorem 1 of Chap III in [5], or of the proje-
ctive resolution for &, given in §7, we can compute the cohomology groups of
&, with coefficients in the &,-group H'+2(P,(S"), F4(S")) described in (6. 10). This
computation is straightforward, and is left to the reader. The result is as follows :
Z, f p=4k+3 (k=1,2,....),

otherwise.
Consider the Cartan-Leray spectral sequence (3.3), then it follows from (6. 9)
and the fact just stated that
E?=0  for gq<r+2 and r4+2<q <27,
Eé”’+2¢v{z3 for p=4k+3 (k=0,1,2,-...),
0 for other p.
Thus, by some usual arguments in spectral sequence, we can prove that if =27
then

1 (SP, (5) =

H? (&y; Hr+2 (P, (S7), Fy(S7)) ~ 10

H? (3P, (S'), SFy (57) = EA2742 = Ep=r=2r42
Z, for p=r+4k+1 (k=1,2-..+),
= {O for other .
Since it follows from (3. 5) that H?(SF,(S"))=0 for 0<p<2r, the exact sequence
for (SP4(S”), SF4(S7)) yields that
H? (SP, (S"), SF, (S")) ~ H? (SP, (S)) for p<2r.
This, together with the above fact, proves the theorem.
As a direct consequence of (2.9), (3.1), (6.1) and (6. 11), we have
COROLLARY (6. 12). Let p<2r, then
Z for p=r, :
L et e TR
9 p=r+4k+3 (k=0,1,.-..),
0 for other p.
we shall finally prove
THEOREM (6. 13). It holds that
H+2(SP, (5)) =0 for =8 and n = 1.
Proof. Note first that
H7+2(SP, (S") =0 for » =3 and #n = 2 or odd.
In fact, this is trivial for #» = 1, and follows from (6. 1) for #» =2, from (6. 11)
for =3 and from (i) of (4.5) for odd #=5. Recall next (ii) of (4.5). Then it
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follows from the above fact inductively that
H+2(SP, (S)) =0 for » =3 and n = 1.
This, together with (2. 9), yields the theorem.

7. Miscellany

1. Projective resolution for the group &,.

For each integer ¢=0, construct an &;-free abelian group K, having as an
©,-basis a set of g+1 abstract elements ¢, 4, ¢, 4y, -+++, €g,0. Define a homomor-
phism 9 : K,»K,, by

0 (eai ;) = (14+T+T?) gy j+ (14+(—1)+S) €2i j1,
9 (eainr,j) = (1=T) €3,y — (1_(—1)i+j -TS) €2i+1,j—1r
where S, T, are the elements defined in § 6. Then the verification that 59=0
is straightforward. Therefore we have an ©;-complex K = {K,, 9} which is &,-
free. Further we can easily prove that K is acyclic, by using the following con-
tracting homotopy % : Let £=0, 1,2, and /=0, 1,2, 3, then
h(T#e; ;) =0  if 1>0,

0 if k=0,
h (Tkezi,o) = —%2+1,0 ifk=1,
—(147) eyitr,0 i k=2,

0 if k=0,1,
B (T egisy,) = 482”2’0 ifh=2
h(T*S egivrj) = (— D)W/A+HHI TRVl ey iy if >0,
B (T*S egiviyo) = (—1)WAHTHA=(D gy
(= )W/ o (ThH—=D ey, o),
where [m] stands for the greatest integer < m. Thus K is a projective resolu-
tion for &,.

II. We have seen in (3. 3) that there is the spectral sequence relating (2, (X),
F,(X)) to (SP,(X), SF,(X)).

The same holds between (P,(X),F,(X)) and (SP,(X),SF,(X)). Namely we
can assert the following : There exists a cohomology spectral sequence (E,) in
which the term E%? is isomorphic with H/(S,; H!(P,(X), F,(X); G)), and E£? is
isomorphic with the graduated group associated with Hf+/(SP,(X), SF,(X); G),
appropriately filtered. By using this spectral sequence, we can prove that if
p<Zr then

H? (SP:a (S7), SE4(S"); Z) ~ HP71 (8 Z),
where &, operates on Z trivially. From this, we can also obtain (6. 12).
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