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1. Introduction

We shall give, in this paper, cellular decompositions of the classical Lie
groups SO(n), SU(n) and Sp(n). The important role is toe give the primitive
cells by making use of cross-sections from cells such that spheres S*~'=SO0(n)/
SO(n—1), S = SU(n)/SU(n—1) and S*' = Sp(n)/Sp(n—1) minus one point,
respectively, to SO(n), SU(x) and Sp(n). The cells of SO(n) are closely connected
with the real projective space P [7], [10] and the cells of SU(n) are closely con-
nected with the suspended space E(M) of the complex projective space M [11].
The cells of Sp(n), however, have no connection with the quaternion projective
space directly.

In the classical Lie groups, the cup products and the Pontrjagin products
are calculated rather simply :the Pontrjagin products of cells, fortunately, are
cellular in the almost cases. As for the Steenrod’s reduced powers, since these
operations are calculated in the projective spaces P and M (and hence E(M)),
we can calculate some reduced powers in SO(n) and SU(n). In the case of Sp(n),
we shall obtain the aim by researching the connections between SU(2#) and
Sp(n).

The cellular decompositions of the classical Lie groups follow cellular
decompositions of the Stiefel manifolds V,,,, = SO (n) /SO (n—m), W,,,,=SU (n)/
SUn—m), X,,,,=Sp(n)/Sp(n—m) and some homogeneous spaces F,=SO0(2n)/
SUn), X,=SU2n)/Sp(n). We shall compute their homological properties by
making use of their cell structures.

2. Notations

Let X be a finite cell complex and I' a coefficient commuta'ive ring with
a unit. We denote by H(X; I') (resp. H*(X; I')) the homology group (resp.
cohomology algebra) of X with coefficient ring I. If f: X—>Y is a continuous
mapping, we denote by fx (resp. /%) the chain (resp. cochain) homomorphism
and by ,f: HX; I''-H(Y; I') (resp. pf*: H*(Y; I''=H*(X; I')) the homomor-
phism (resp. algebraic homomorphism) induced by f respectively. Throughout
this paper, I' will be Z or Z,.1) According as I" is Z or Z,, ;fx (resp. pf*) and

1) Z is a free cyclic group with one generator. Z, is a cyclic group of order p,
where p is a prime integer.
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rfw (resp. pf*) will be denoted by fu (resp. /%) and fy (resp. f*) or ,fs (resp.
»f*) and ,fy (resp. ,f*). If ¢% (where & denotes the dimension of %) is a cell
of X, then (¢f) (resp. (,¢f)) denotes the integral chain (resp. integral chain
reduced modulo p) which is represented by the cell ef. If (,e5) (resp. (pe7)) is
a cycle, then e eHy(X; Z) (resp. ,ef €H*X; Z,)) denotes the homology class
containing the chain (ef) (resp. (ye7)). Let [e%] (resp. [,¢%]), analogously, be the
integral cochain (resp. integral cochain reduced modulo p) which assigns 1 to
only the cell ¢% and 0 to the others. If [¢%] (rese. [,¢%]) is a cocycle, then %

2

€H*X; Z) (resp. ,ekeH"X; Z,)) denotes the homology class containing the
cochain [e%] (resp. [,¢%]). We shall omit, later on, the brackets () and [ ]
(occasionally, even the left sufix p) in the case there is no danger of confusion.
Py(¢) denotes the (usual) Poincaré polynomial of X and ,Px(f) denotes the
Poincaré polynomial of X modulo .

Let H be a (finite dimensional) free algebra (resp. algebra over Z,), graded
by the submodules H? (1=0), anticommutative, with a unit which is a base of
He. A set (%, %, ---+), where x, is a positive dimensional homogeneous element
of H, of H is a simple generator of H if the monomials xg %z, - - “ Xy, where %2,>
Re>«- >kj; k=1,2,...., form with the unit an additive free base (resp. additive
base over Z,) of H, and denote by H=4(%,,%,,- ---). An algebra H with a simple
generator (%, %,,----) is a free exterior algebra (resp. exterior algebra over Z,)
if x¥=0, ¥=H, and denote by H=A(%xy, %5, -+ -).

3. C(lassical Lie groups and Stiefel manifolds

We denote by F one of three fields of real numbers R, complex numbers C
or quaternion numbers Q, and by 4 = d(F) the dimension of F over R; d(R)=1,
d(C)=2 and 4(Q)=4. Let F” be the right vector space of dimension # whose

elements are ordered sets of # elements of F. Specifically x=(xy, %5, -« -+, %,) is
in F*if each x;€F, and, if 4 is in F, then xa=(%,4,%,4,----.%,a). Let e; be the
element of F* whose ¢-th component is 1 and whose other components are 0.
Define the inner product of % = X", ¢;#; and y= X/, ¢;y; in F” and the norm
of x by

(%, 9) =" % v; (%; is the conjugate of x;),
and

¥=v/(x4)

respectively. The elements ¢,,¢,, -+, ¢, form an orthonormal base in F*.

Let G(n) be the group of linear transformations in F”" preserving the inner
product. In matrix notation, (1. #n)-matrix A with coefficient in F is in G(n) if
and only if

AA* = A*A = 1,2

2) A¥ is the transposed conjugate matrix of 4. T, is the unit (», n)-matrix.
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G(n) is called the orthogonal group O(n), unitary grouf U(n) or symplectic group
Sp(n) according as the field F is real, complex or quaternionic.

Since the fields of real and complex numbers are commutative, the deter-
minant of matrix can be considered. Let SG(n) be the subgroup of G(n) (except
G(n)=Sp(n)) composed of all matrices in G(#) whose determinants are 1. SG(»)
is called the special orthogonal group SO(n) or special unitary group SU(n) accord-
ing as the scalars are real or complex.

Define a mapping ¢ : G(n)—>SG(n) X S, where S#' is the 0-or 1-dimensional
sphere of real or complex numbers respectively whose norms are 1, by

£ (4) =4 (det A~ ) x det 4,

Ly
then ¢ is a homeomorphism. Consequently O(n) is non-connected and SO(n) is
the connected component of O(n).

Fr1 is embedded in F” as a vector subspace whose last component is 0.
Then G(n—1) may be regarded as a subgroup of G(n) by extending a matrix 4
of G(n—1) to G(n) by requirement that 4e,—e¢,. Thus we have sequences (S&! =)
G(l)cG2)c----cG(n) and I,=SG(1)cSG(2)c----cSG(n).

Let S%~'={xeF"*|x|=1} be the unit sphere in F”. Then the embedding
Fr=1cF* gives rise to an embedding SA"~1-1cS#~1. For integers n=m=>1, let

Su.m be the Stiefel manifold of ordered orthonormal m vecters a=(a1,aq, -+, dy)
in F. S, 4. is embedded in S, , by regarding a point a=(a,,8s, -+ -, @)
of S,—1,m_1 as a point a=(a,,a,,----,a,,.4,6,) of S, . Thus we have a sequence

Sln=mt)=1_G 1T Sumr2sC - CSpme Sun is called the real Stiefel manifold
Vom, complex Stiefel manifold W, or quaternion Stiefel manifold X, ,, according
as the scalars are real, complex or quaternionic.

Define a projection p, = P, cin : G (1) > Sy, (TSP Dy = P, Scin)  SG (1) >
Sy, m» for n>m) by

lbm(A) = (Agn—m+1, ey, Aen——b Aem)
Then G(n) (resp. SG(n)) operates transitively on S, ,, and G(n—m) (resp. SG(n—m))
is the subgroup of G(n) (resp. SG(n)) leaving fix a point (6, i1, -, €no1, €)-

Hence we have a fibre space G(n) /G(n—m) = S,, ,, (resp. SG(n)/SG(n—m) = S,,,,)
with projection p,. That is, we have O(n)/O(n—m) = SO(n)/SOmn—m) =V 4 m,
Un)/Un—m)= SUn)/SUn—m)= W, and Sp(n)/Sp(n—m)=X,,,.. Especially
Van=0(0), Vyuos=S0(n), W,,=Un), Wyys= SU(n) and X, = Sp(n); Va,=
SEY, Waa=S2"" and X,,,=S§""".

4. Primitive characteristic map fg): EZ '->G(n) (resp. fseum : EZ™
—~8G(n))

E4"=1) be a closed cell in F** consisting of all x=(x,,%,, - - - ,%,—;) such that
|%]2=]% |24+ +]%,,]2<1, and E%4! a closed cell in F consisting of all pure
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imaginary numbers whose norms < 1. Constract a closed cell E#~! with the
dimension dn—1 over R by EX'XE%~!. Define a mapping fou): E¥ 1= G(n)
by setting
Joom (@, %) = (85 +2: %), 1,7=1,2, ----, n,
where % = (%, -+, %,-1) € E{"™, x, = /1 [#|* and ¢ € Ef™", p=2¢/1_[¢|?
(g—v1—=1q]?). It is readily verified that f,um (g,%) is in G(n). In fact, using
that 37_;%; |2 =1 and p+p+|p|*=0,
Y1 (Bro 25 X5) (Opy +21 PX,)

= 3t (ri+, PXy) (B, + %4 P

= 8, +%; (p+P+ P2 X; = &,

When the scalars are commutative, it will be verified that the determinant
of fo(m (g, #) is —(—g+1/1—|g|?)?* for any x. So that if we define a mapping fsg() :
E4~15S5G(n) by

Tseom (4, %) = few (2, %) (_(ﬁ‘/lw 91" \}
I
then fsem (¢, %) is in SG(n).

We shall call fo,) (resp. fseum) the primitive characteristic map of EF'~! into
G(n) (resp. E¥~1 into SG(n)).

REMARK 4. 1. Let E¥" be d set of all x=(x,,-- -,%,)F" such that
|%]=1and %,&R, x,>0. This set is a subset of S¥~1. Define a homeomorphism
g: E4r=1_  E¥"=1) by the formula

g (xly ey xn_l) — (xl’ N xn),
where %, =+1/{_[x[2. Now define a mapping fom :EF ' X S¥~'—G(n) by
setting
fG(n) (g. %) = (i, +x, p%)),
where % = (%, .-+, %,) € S§"™' and p=2v/T1—[g[2 (¢—v/1—]q[?)- Then the
following diagram is commutative :

fG(lf)

EFT'=EF '} E{"Y —— G(n)
\l/ Ixg . T f’G(n)
Bl Fln=1) 220, pd-ty gdn—

i.e. fom=Fcmo(IX1)o(IXg), where I is the identity map and 7 is the injection.

REMARK 4. 2. When the field is commutative, the primitive charact-
eristic map f(,) can be written by the form

Joon (g, %) = L,+p (%;%), 4,7=1,2,----, n.

We shall remember that all of hermitian matrices X with properties #(X)=1 and
X?=X form the matrix form @) _, of the d(n—1)-dimensional projective space
£,— over F [11]. Hence a matrix x= (v;%,) in the last term of fz,)(g, x) is a
point of @ ,. Therefore, we can exchance the anti-image EZ~1 of fg, for the
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familiar space.

4. 1) Case O(n)

Let P,., be the (n—1)-dimensional real projective space and P)_, its
matrix form. We identify a point ¥={x,,-.--, x,]€P,_, such that x®4.... 442
=1 with a point X=(xx,)eP;_, and P,_, with P} . As is well known, P, ,
has a %-dimensional cell w* for n—1=% >=0. A characteristic map fp,_,: E%—
wt*C Py} | for the cell w* is given by

xix] : .
Jrner By, cove, ) =00 L 4 j=1,2, - k1,
L"r—k—l

where %y, = 1/1_(;5%4_. )

Now, the primitive characteristic map fy(,) is extendable to the mapping
f(',m) : P,_;—O0(n) defired by

f(;(n) X)=I1—-2X,

where X & Py_,. That is, fou) = fop_1) °fes on Ep~".

4. 2) Case SO(n).

The primitive characteristic map fso( is extendable to the mapping fgo, :
P, ,—S0(n) defined by

Fom (X) = (1,—2 X) ('“1 IH).

That is, fso( =JféO(n) ° fpu—y ON EZ,—I.

4. 3) Case U(n)

Let M,—; be the 2(n—1)-dimensional complex projective space and M, _, its
matrix form. We identify a point x=[xy,----,3,]€M,_, such that |x|2+.. .+
[%,]?=1 with a point X=(xX,)eM;_, and M,_, with MJ_,. As is will known,
M, has a 2k-dimensional cell #** for n—1=/#=0. A characteristic map fy,—,:
E%¥—M,_, for the cell u** is given by

%X, .
./FMn—l(xlr""’x&):("":I ); 1,]:1,2,--‘-,]3—]—1,
n—k—1

Let EL be a closed cell of pure imaginary complex numbers whose norms
are = 1. The suspended space E(M,_,) is the space formed from E{xXM,_, by
shrinking —ixM,_, and #XM,_* to two different points of E(M,,) respectively.
In th2 detail : let M(n,C) be the space consisting of all (7,7)-matrices with com-
plex coefficients. Mi(n,C) is a subspace of C#* by a correspondence (x;,) €M (n,C)—
(%11, %12, -+, %) €C?2. Define E(M ) as the space {(g,v/1—[q|?X); ¢€E¢ and
XeM; |JcELxM(n,C). E(M,-,) has two O-dimensional cells »°, ¢} and a
(2k—1)-dimensional 92— for nzzk=1. A characteristic map fr,_p: E¥ 1=EL
XEZFVosy—1c B (M, ) for v*1 is given by
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Fetn— (@ @, oo+, 20=0)) = (4, VI =[q[® fatn—r (B, -+ -, %))
Now, the primitive characteristic map fy(, is extendable to the mapping
fopm : E(M,—)>U(n) defined by

foo (@ Y) = 1+2 (@—v1—[q[) Y,
where (¢,Y)€E(M,—,), i.e. Y is experessed by the form v/T_[¢[2X, XeM, .
Then we have fyu=fy © fe@m—y on EZ.

4, 4) Case SU(n)

The another suspended space E(M,,_,) is the space formed from E{ XM, _, by
shrinking —ixXM,,—,, iXM,_, and ELX[1,0,----,0] to a single point of E(M,_,).
E{M,—,) has a 0-dimensional cell v and a (2k—1)-dimensional cell v?*-1 for n>
k=2

The primitive characteritsic map fsy(, is extendable to the mapping fy., :
E(M,—,)—»SU(n) defined by

Fovm (@ X) = (L4+p X) (“(HW/I_:IW; '

where XeM_|,q€EL and p=2¢T—[q[* (—V1—[q[?). Ifg==i or X=<1 o)
then fsy( (¢, X)=I,. Therefore fgy, is well defined as a mapping of E(M,_,).

5. CQCellular decompositions of G(n), SG(n) and S, ,,

LeMMA 5. 1. Given acF such that Re(a)=0%, from the equation
px=a, :
P and x are determined. um'quelj/ and continuously with respect to a under the con-
ditions peF, p+p+|p|2=0 and % is a real number.
Proof. 1In fact, we have readily that
— 2
p= hzlk;‘;(fi x= 71%' g.e.d.
Define a mapping Ep=E%: E%~1-Sa-1 by
Er = b1 fowm (or &g = P1 © fscm)-
LEMMA 5. 2. &z maps (EZ™Y)* to a point ¢, of S~ and EZ—1—(E&—1)2
homeomorphically onto SE~'—e,.
Proof. 1t is obvious that & maps (E#~1)* to ¢, Given any point a=(a,,
-vov,a,) of Sf~1_¢, it is sufficient to show the following equations can be solved
continuously :

Xn—1 lbxn = Ay,
1+xn pxn = an-
Using the preceding lemma and noting that Re(a,—1)<0, x,&R, #,>0 and

3) Re(a) is the real part of a.
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peF (also q) are determined from the last equation. From the other equations,
%y, %,—, can be determined continuously. g.e.d. )

REMARK 5. 1. If we define a mapping ¢pgmy: S¥'—e,— G(n) by dpawm=
fowm o €5, then we have

Do) (@1, vy Ay, @)= oo : )
—(l—a,)(1—a,)"'a, a,
where ¢, j=1,2,-...,n—1. This mapping gives a cross-section ¢g(, : SE~1—e,—>
G(n) in a fibre space G(n) /G(n—1)=S%~1 with projection p, [9. pp. 119, 125.
130].

From lemma 5. 2, we see that /i) (resp. fse) maps E%-1—F%-1_(pdk-1)>
homecmorphically into G(k)cG(n) for n=k=1 (resp. SG{k)cSG(n) for n=k = 2).
This mapping fu) (resp. fsem)) also will be written by the same letter fe(, (resp.
fse), if there occurs no confusion. Now put

&' =fon (EFTY)  fornzk=1
and
&) = Fso (EE™)  formzkz2.
We shall call eff>! (resp. e&t;,)) the primitive cell of G(n) (resp. SG(n)).
For integers n>k,=>1; ¢=1,2, ...+, 4, define a mapping
Joum 1 EF1TIX o XEF™ > G(n),
which is an extension of fg(,) by setting
Jow u -+, 90) = fow (V1) -+ - fewn (99)
and for integers n=>k,=2; 1=1,2, --..,4, define a mapping
Fsem: EF1=1. ... XE¥~1 - SG(n)

by setting ,

Fsem -+ 91) = Fsaw (1) =+ Ffsatm (¥5)-
Put

eyt T = o (BT X EfTY),

el Rl Foy (EFTIX - X EBTT)
and

eglél(;)l’ okl =fSG(;L) (E%h—lx e XE?“k_jl)’

el o= = ool (EFTIXC - X EFHTY)
and

e =1,.

REMARK 5. 2. O(n) has two O-dimensional cells €%, =TI, and 75, =
(—1 I 1). In the obove notation, hewever, we can not distinguish these cells
—
since these are written by the same letter eg,,. Confusion, however, will not

occur.  Zero in the expression egy,y %% is zero of #y,.
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Now, we shall show that G(n)is a cell complex composed of ¢? and egf; >4 =1
with n=k;>-... >k;=1.

First of all, we shall show that G(n) is the union of cells ¢® and e&;1 %!
with n=k,>.-..>k;=1. Since G(1)=S¢"!, we shall assume that above assertion
is true for G(m) where m>n. If A=G(n) but A¢&G(n—1), namely p,(4)=*e,, then
we can choose a point ye&#~! such that £;(y)=p,(4) by lemma 5. 2. If we put
U= fo(y), then U*4€G(n—1). Hence U*A4 belongs to some cell gty i1
with n—1=k,>-..->k;=1 of G(n—1) by the assumption. Therefore A belongs

to a cell gdn—l dky—1,-- ~,dkj—1'
Next we shall show that f;(,) maps E#1=1x ... £%;=1 homeomorphically onto
ety il and these cells ey %=1 are disjoint one another. In fact,

if U,Uy--- U=V Vs --.V, where U, c%»~1 and if m>m’ then k, <k, and
V,e€¥%~1is also similar one, then p,(U,U,---U)=p,(V,V,---V,). Since p,(U,U,

< Ug)=p4(Uy) and py(ViVy----Vy)=p4(Vy), we have p(Uy)=p4(V,). Since &
is homeomorphic, it follows U,=V,. Hence U,---U;=V,-- V,. Similarly U,=
V, and so on. Consequently we have s=¢. Therefore these cells are disjoint to
each other. The above proof also gives that fs(,) is one-to-one. The fact that
fe(n is @ homeomorphism is obvious from the continuity of the group multiplica-
tion and homeomorphism of &;.

Finally, it will be easily verified that the boundary of egz;" %=1 belongs
to the lower dimensional skelton than the dimension of edkl‘l k=1

By the quite similar method, we see that SG(x) is a cell complex composed
of €0 and eggiyh > HiT! with nzky>- .- >k, =2,

The dimension of ey =1 (resp. eggi® %=1 is (dk,—1)+---- +
(dk,—1).

Thus we have the following results.

THEOREM 5. 1. The orthogonal group O(n) is a cell complex composed of
2% cells e,y and egly % with n>k;>. ... >k,=0

THEOREM 5. 2. The special ovthogonal group SO(n) is a cell complex com-
posed of 2n1 colls g,y and €Sy " with n>ky>- - >k= 1. Especially, ekl
(n=k=2) is obtained as the image of the k-dimensional projective space Py, by the
primitive characteristic map fsoyy : Pyy—>SO(R)= SO(n).

THEOREM 5. 3. The wunitary group U(n) is a cell complex composed of 2%
cells €4,y and ey Pl with n2k,>- .- >k =1, Especially, efi' (n=kz1)
is obtained as the image of the suspended space E(Mp—y) of 2(k—1)-dimensional
complex projective space My, by the primitive characteristic map fy )+ E (M)
-UR)cU(#n).

THEOREM 5. 4. The special wunitary grouwp SU(n) is a cell complex com-
posed of 2 cells ey, and el T with n= k> >k=2.  Especially,
egmn) (n=k=2) is oblained as the image of the another suspended space E(My_;) of
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2(k—1)-dimensional complex projective space My_, by the primitive characteristic
map fsyumy : E(Mpy)—SUR)SU (n).
TrEOREM 5. 5. The symplectic group Sp(n) is a cell complex composed of

24 cells €3,y and egunt T with nzky>- - >kz1
To give a cell structure of the Stiefel manifold S,,,, with n>m, we put
Ahy—1, oo, dky=1 _ dhi=1, -, dky—
€S K Do (G0 1)
py CdRy—
=Pm (esél(n)l ] 1)
and
3Osn,m = (€n—mis, -+, Cue1, €n)-
Then S,,,, is a cell complex composed of the cells e§ and ¢ff=" =1 with

n=k;>.-- - >kzn—m+1. The proof will be analogously performed as in the
proof of the case G(n) [11].

THEOREM 5. 4. The real Stiefel manifold Vn,,,,__O(n) /O(n m) = SO(n )/SO
(n—m) is a cell complex composed of 2™ cells &, and e}y F with n>ky> -
>k, =n—m.

THEOREM 5. 5. The complex Stisfel manifold Wn,m = U(1¢)/U(1—]) =
SU(n) /SU(n—m) is a cell complex composed of 2™ cells €5, and eppr b 25~
with n=k;>---->k,=zn—m+1.

THEOREM 5. 6. The quaternion Stiefel manifold X, = SP(n)/Sp(n—m)

a cell complex composed of 2™ cells e, —and X1 =l with nzk,>--- >k=

Xnsm

n—m-+1.

6. Cellular decompositions of F,=S0(2#n)/U(n) and X,=SU(2n)/Sp(n)

A complex number (resp. quaternion number) ¢ may be represented in the
form a=a,+ia,?’, where a; and a, are real numbers (resp. a=a,+ ja,*’, where a,
and a, are complex numbers). Define an isomorphic mapping @j : C*—R?*" (resp
@l Q"—>C*") by the farmula

¢711¢zc (‘11’ cee, ) = (xl! Koy * s Xay—1» xzn):
where aj = Xyp_q -+ Xy, Xop—y and %,,ER,
(resp. ¢7g() (@1, oo an) = (%1, %oy -+ 0+, Fane1, Fau)s
where @ = %ap_1+ j X2, ¥ur—y and 2, €C) and also define ¢g : Q"—R*" by
‘P?QQ (@yy = v, @) = (%1, %4 Fay Bay -+ * 5 Kan—s> Kan—2> Fan—1> Fan) s

where @y = %347 ¥gp_ot§ ¥ar1+k Xar) Fars) Xgp—ss ¥ap—q and xy, € R. Then
these mappings induce homeomorphisms onto @ : C"=R?**, ¢t : Q"—C¥, ghc:
Q1L__,R4n. ¢%C . E%n__)EZn, ¢§Q:E4Q”->E4“, ¢7I1\"Q:E4 —’ER and ¢RC SZn 1__)512671—1’
(pCQ S4n 1__)84;1—— , ¢zQ:S‘én_I—’S‘Zl€n—l‘

By this isomorphism, a unitary (resp. symplectic) linear transformation of
C* (resp. Q") induces an orthogonal (resp. unitary) linear transformation of R

4) {1, 8} (vesp. {1, 4, j, k} is the usual base of C (resp. Q) over R
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(resp. C*), that is, U(n) (resp. Sp(n)) is a subgroup of O(2n) (resp. U(2n)). In
matrix notation, we assign A=(a;;)€U(n) (resp. Sp(n))
A — ((xzi—l, 27—1 :’xzi, 2] )) =0 (2%) (resp. U(Zn))
X2i, 25 Xoi—1, 27—1
where @;; = %aiy, 2j1H1 Xai, 2j5 Faim, 2jo1, %, »j € R (TSP @) = Xajm1, o)1+ %ai, 255
Kaimy, 2—10 %ai, 2; € C). As is easily verified, A’ satisfies the equality ‘4’ JA' =]

. 01
where ]=( r ] )with J =:( ) Hence we have readily U(n)cSO(2#n)
-y —-10

(resp. Sp(n)cSU{2n)).

We define F,, to be SO(2xn)/U(n) and X, to be U(2n)/Sp(n) respectively.
Denote by pg,: SO(2n)—F, (resp. px, : SU(2n)—X,) the projection.

Since U(n—1)=S0(2n—1)N U(n) and SO(2n)=SO(2n—1)U(n) (resp. Sp(n—
=SU(2n—1)NSp(n) and SU(2n) = SU(2n—1)Sp(n), the inclusion map «: SO
(2n—1)-S0(2n) (resp. ¢ : SU(2n—1)-SU(2n)) induccs a bundle isomorphism
SO(2n—1)/U(n—1) 22 SO(2n) /U (n)=F, (resp. ¢: SU2n—1)/Sp(n—1) =< SU(2n)/
Sp(n)=X,). Hence we have a natural embedding F, ,cF, (resp. X,_;CX,).

Now, to give a cell structure of F, (resp. X,), we shall define the primitive
characteristic map fp, : E2~2>F, (resp. fxn : EL™*>X,) by fen=PrsoVro fso@n—1)
(resp. fxw=pxnobo fsv(2n—1)-

Similarly, we define the characteristic map fg,: E¥1X.... X E¥1—F, (resp.
Jant BG83 - XEE1™%>X,) BY frn = Prao ¥ o fsotan—1) (1€SP- Pxn o b o fsuan—)-
Put

ek P [ (BREX- - XERY)
and
an ibFn( (n ))
(resp. e4k1——3 ,,,,,, =3 _f . (EH—1x ... E&~Y
and
€k, = Px, (Sp(n)).

Since fso@n—1) (T€sp. J sv@za—1) is homeomorphic on 8?{‘1><~ oo X E%i, with n>
ky> oo >k; =1 (resp. EF13% . XEFT3 w=ky > ..o >k =2), we can see
easily that [z, = Y¥rogp,of son1) (TeSP. fxu= b © @xn © f su(an—) is also homeomor-
phic on EX1x ... X ERi (resp. EF173 ... X EPIT3), where g¢p,: SO (2n—1) - F,

(resp. gx,: S U(Zn 1) - X,) the projection. Hence we have readily the following
theorems, applying the same techniques that were used in the proof of the case
G(n).

THEOREM 7. 1. F,=S0(2n)/U(n) is a cell complex composed of 2" cells
e, and el M with n>ky>- - >k > 1

THEOREM 7. 2. X, =SU(@2n)/Sp(n) is a cell complex composed of 27— cells
ek, and e¥1™% TS with n2ky > >k = 2.
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7. Homology and cohomology groups of G(n), SG(n), S, ,, F, and X,

In order to determine the homology and cohomology groups of a cell com-
plex, we have to seclect orientations of cells exist in it. For this purpose, we
shall begin by selecting orientaion of E"=FE%.

We recall that an orientation of E” (resp. S"=S%) is simply a generator of
the integral relative homology group H,(E*, S"*'; Z)=Z (resp. H,(S", e,y Z)=
Z). We first orient E?, that is, we select a generator E, of H, (E', S° Z) and
fix this generator. We now suppose that orientations S,_; of S* ! and E, of
E” have been selected and proceed to define inductively first S, and then E, ;.
If a mapping 7*: (E*, S*1)—(S", ¢,+,) is defined by the formula

(%) = (2% Hptrs -+ o5 20 X, 1250, ),
where #,1,=1/T—[x[? then 7" induces an isomorphism 7%; H,(E", S"~%; Z)—H,
(S*; Z); we set S,=7%(E,). The boundary homomorphism 9=9,+, maps H,i,
(En+1, S»; Z) isomorphically onto H, (5% Z), we set E,;; =27%S,). The choice
of orientations is indicated by the diagram

Hy (1, S Z)— + oo H, (B, 5 2)05 H, (5% 2)2
Hypy (E*1, 8% Z)—> - -
Let X be a cell complex, ¢% a cell of X and fy : E*—e%cX a characteristic
map used to define the cell ¢%. Then we orient ¢ so that fi(E;)=cs-
Define a homeomorphism
Tu, m ¢ (E"XE™, E"X St SP=1X E™) — (E"+m, Sr+m—1)
by the formula
To,m (%, Y) = (%A, YN),
where A= (max (%], |¥]))/v[x[2+[y]|?)- To orient E"XE™, we shall use the
mapping ;% : E**"—E"XE™ as a characteristic map for E"XE™.
EZ", Et and Sg'~! (vesp. Eg', Ef and Sg*~!) are oriented by the mapping
@i’  EX'—>EZ etc. (tesp. @l : EX'—E§" etc.).
Lemma 7. 1. Let &y &G and &) be the mappings defined in §5. Then we

have

7. 1) Epg (E3) = (=1)" S},
7. 2) %gy (E2cn-1) "_“—Sgn—l’
7. 3) Ez&& (Bgn—l) =-Sgn—l

Proof. The first formula is trivial because

g = (T ).

To prove the second formula, we shall compute the mapping degree of the
composition 7'}, _,oA% of the mappings
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b TLan—2 E}exElzen—z_‘l’lkzlepﬁ_;:EéXE(z;n.-1isgn—1ﬁgsiﬁz—lgl€§n—l'
we shall define an another mapping A : ExXEm~2>E2~! by setting
A (%) = (=% V/T—2 — %, %yb—2,y/T—42, -+«
—Xpu—1 Vﬁf—x,;_lt, xn_ltvx;i_l\/l—__t‘z, V]Tl;rzt)’
where (t, %) = (t, %1, %y, -+, %1, %,_;) € EXXEZ~% If we compute the local
degree at (¢, x)=0, we have +1. However Af,=—Ay since last two terms of A
and A% are exchanged to each other. Hence we have the lemma easily.
The last formula is proved analogously as in the proof of the second formula.
The boundary homomorphism on the real projective space P, is given as
follows
| Ouzry1 =0,
| Quar = 2up—1.
The boundary homomorphisms on spaces appeared in the preceeding sections are
also easily calculated. As for V, ,,, we prefer the results of [7].
LeMMA 7. 2. The boundary homomorphism 3 on V,,, is given by

Dol = Sy (Ao by (= Db 1) e

where n>ky>---- >k, = n—m and the symbol 315{,"~"-’~-,ki—1, ey = 0 if i>1 and k,
—V=Fkiyy, o7 if i =1 aud j=n—m.
The coboundary Lomomorphism & is given by
Be’;ly;"m‘-wkf:Zg’=1(_1)k1+~-~+ki—1((_1)ki+1)e’;,l‘;,;’; kL, e Ry
where n>ky>---- >k, Zn-m and the symbol e ~*itl F1—=0 if i<j and k,+1=
kiy or i=j and ki=n—1.
LemMMA 6. 3. The boundary and coboundary homomorphisms are trivial in
all dimensions for U(n), SU(n), W, ,.; Sp(n), X,...; F, and X,.
Therefore we have the following theorems. The details of theorem 7. 1
appear in [7].
TaeorEM 7. 1. V,,, has only torsion groups of order 2 and the Poincaré
polynomial is
(1+t2n—2m+1) (1+t2”_2m+5) . (1 _’_tzn—s)
if n is odd and m s even,
(1+t2~z—2m+1) (]_|_t:m—2m+5) e (1_1_,52“»-—5) (1+tn—-1)
if m is even and m is odd,

Pv,,.. (t) = (1+t""”) (1+tzn—2m+3) (14-g2m-2man) ... (1~|—l2""3)
if nand m are odd,
(1 4 gn=m) (1+[211—-2m+3) (14-g2n—2m47). . . (1+t2"—5) (1411
{ if n and m are even.
Especially,

Psoanin) () = (148) (148) -+ (14+471),
and
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Psoan) (f) = (14+8%) (1+87) -+ - (1+2275) (142271,
THEOREM 7. 2. W, has no torsion group and the Poincaré polynomial is
PWn,m (t) — (1+t2n—2m+1) (1+t2n—2m+3) e (1 _I_tzn——l).
Especially,
Pute) () = (1+) (1+8) (1+8) -+ (141070
and
Pouon () = (1+5) (1+8) -+ (14002,
TueorREM 7. 3. X, ., has no torsion group and the Poincaré polynomoal is
PXmm (t) — (1—}-14"_4"""3) (1+t4n—-4m+7) e (1+f4n—1)_
Especially,
Pspon (f) = (1+85) (1487) - (140871,
THEOREM 7. 4. F, and X, have no torsion group and their Poincaré
polynomials are
Pr, () = (14£) (14) ... (1103
and
Pi, (1) = (1+£) (148 ... (L t47-3)
respectively.
The following lemmas will be easily verified.
LemMmA 7. 4. The projections p,,: O(n) (vesp. SOn))—>V,, ., D, 2 U(n) (vesp.
SU#n)>W,,,, and p,, : Sp(n)—X,, ., are cellular.
7.4. 1) If n>k> o0 >k =1, then

0 or k,<n—m,
me%? (3}30(7.).. k) = v f !
b e g Jor kyzn—m,
and if n>ky> oo >k = n—m. then

Prle, M) = 8l
74.2) Ifn=k>---- >k 21 (resp. n = ky>---- >k, =2), then

SU
Do (egk(f-)-l, ..--,2k]~_1) =( %k (321;1(1)1, ~~~-,2kj—1) (n:f:m))
0 for k; < n—m,
= e;‘;?’_”{;,,,,,%j_l for By =n—m+1,
and if n=ky>---0 >k =n—m+1, then
p:: (e%?,;;nl’ . ~,2k:,—l) — P%}kiln—)l,«vn,ij—l
(=epoy 2 (nem)).

Especially p,,q is onto and Pk is isomorphic into.
74.3) If n=hy>e-eo>h =1, then

0 or R, <n—m
Do (€55, arim1) = for by =
11, ... i e, . ang—1 Jor Ry =m—m+1,
and if n=ky>-... >k =n—m-+1, then
® 0 aki—1,.... Ak =1y _ Aki—1,....,4ki—1
b (X1 1770) = €sptm i

Especially, p,,y is onlc and p is isomorphic into.
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LemMA 7. 5. The projections pg, : SO(2n) - F,, and px,: SU2n) — X, are
cellular.
75. 1) If n>ky>--->k, =1, then
PEnk (Eggf,z?’?..,zjk) = ef;ﬁ ...... 2k
and if 2n>ky>--- >k, =1, then
PE, (0 w) =0 for some k; is odd,

and if w>ky>---- >k, =1, then

B (2 ..., 2k 2%y, ..., 2k;
b%, (ep} 1) = esopny -
7.5.2) If nz=ky>---- >k =2, then
S e
Pxns (34k1(-1§), ..... 4k]-—3) = €ipy-3, ..., 4k —3"

and if 2n = ky>---- >k, =2, then
an* (6§5(.2.'f).,kj) =0 fOI’ some k@ ES -3 (’WLOd 4)
and if n = k> >k, =2, then

% Ak =8, ... 4R;i=3\ _ Ak1—3,....,4k,—3
?x, (ex,i 17%) = estian) 7

Especially, pxps is onto and p 1is isomorphic into.

We shall use the following lemma [3].

LeMMA 7. 6. Let q: E-B a be compact, connected fi ve space with fibve I.
Then the following two conditions are equivalent:

7.6. 1) iy: H(F; Z,)»H(E; Z) is tisomorphic into, where ©:F—E is an
injection.

7.6. 2) #Pr () = P (£) yPr (9)-
If E,B and F have no torsion group, then the lemma is also valid for the integral
coefficient.

Using this lemma, we have

LEMMA 7. 7. iy : H(Sp(n); Z)—>H(SU(2n); Z) is isomorphic into.

Proof.  Psuem (t) = Px, (t) Psppm (1) = (1+8) (14+5) -+ (L8273 (14 222)
and SU(2n), X, and Sp{n) have no torsion group.

RemARk 7. 1. Using that pgp(m o = Pspy in the diagram

Sp(n)\—z—%/ SU(@n)
Pv\ oy Psutn

St
we can prove lemma 7.7 directly without lemma 7.6.

8. Pontrjagin product in G(n) and SG(n)

For any topological group G and for any coefficient ring I, it is possible
to define a multiplication in H(G; I') in such a way that H(G; I') becomes an
associative algebra, called Pontrjagin algebra H(G; I') of G with coefficient I
Pontrjagin product will be denote by the symbol.+ If G, and G, are two
topological groups and g: G;—G, is a continuous (group)-homomprphism, then



On the homology of classical Lie groups 107

g5 Hy (Gy; T') > Hy (G, T) is also a (algebraic)-homomorphism (i. e. gy (@ + b)=

8x(a)8(b))-
Lemma 8. 1. In G(n) and SG(n), we have

ed](?;)—l ydkg—1 __ eéﬁs)—-l’dk]‘—l f07’ n Z kl) k? z 1’
and
dky—1, dhg—1 __ dka—1,dk1~1
el el = ege b Tl Jor = Ry, Ry 2 2.
Proof. Without loss of generality, we may assume that k;=Fk,—1=n—1.
. . dij
Give any point ABeef’y) =1 =1, where 4 =|.... : 1 € el V=" and B=(b;,)
€ elint with by = 8,;+x;p %), X7, [#]2=1 and x;, p € F. If we choose C = (c;;)
S e"’G'(’n‘ with ¢;, = 8;,+2,pZ;, where z;=Y4"1 apx, 1 =1,2,----, n—1 and z, =

%,, then we have AB = CA. In fact,

AB=<“”1>(bw)= =Y
b ybnﬂ

-1 =1 b
where > 7=1 a;, b]k = L]=1 i, ( 7k+x]1bxk) = at'€+27=1 Ay x]pxk'
When % = #n, we have furthermore

Z;l 1 au ]n—8m‘|‘2 1 Il” x]px = Sm'l"zzpzn = Cin-
On the other hand,

A Cin
C/.‘l = ( i = .
\ ‘i )( 1) ooy e an, N E

Cun

where X700 ¢ ag = 375 (Su+2, p7) an

= ﬂik+2j b=l Tig % P Xs s Ay

- %H—Z]-l at] x7P9_Ck (because Z?__lldls A = 8sk)~
when 7=#, we have furthermore

YISy o = Bun+ 000 Wi 2 pRp = Byt 2, p Xy = g
Thus the first formula is proved.
It should be noted that this calculation is valid even if we take A&G(n—1)

instead of Aeefiyh=1

The second formula is proved using the first formula, that is, given

4 eV and B e elt), then B is expressed by the form B =B, T, where

—_ 2
Byeely! and T = (¢++v1-1q[?) \ For 4 and B,, there exist C;ced(;’
n—1

such that AB,=C,4 by the note of the first formula. Hence
AB =AB,T=C, AT = (C, T) (T-+AT),
where Cy T & ef,) and TAT € o0 q.e.d.
Lemma 8. 2. If the field is commutative (i. e. except G(n)=Sp(n)), we have
e an1 SLARDL oy gy > 21,

and
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Ly T = el T for n= k=2
Proof. Without loss of generality, we may assume k=n. Give any point
ABeelb =1, where A=(a;)ely! with a;,=38;,+p %;%,, 30 |%[*=1, p+p+
|#|2=0 and B = (bij) € pg'(InI with by, =8i;+qy; Yi» Sralwlr=1, 9+g+1912_‘
Choose 7 € F, 7r+7+|r|*=0 and z,€R, 2,>0 which satisfy the equation (lemma
5.1)

7’2 = Ixnl +QIynl +P9 %, Y N where A = 21=1x Yis
and determine z; I=1,2, ---.,#n—1, from the equations
7213y =ﬁxl E)1"'qyl yn""pqxlym l - l; 2» crty %‘—1.
Using lemma 5. 1 again, s(s45+|s|?=0), f, 4, ---,f{_y &€ F and ¢, &
R, 1, ;>0 are determined from the equations
Stl tn—l — ﬁq (ynAxl_xnyl) (yn xn—l"xnyn—li , ]l = 1’ 2, R n—1.
722
Then we have st;f; = st Zn—tlft w1l _ PG (Yn Xi— %0 V) (%’n Fha— s Vi) .
n—1 72"71

Now, if we take C and D as C = (¢;) € e&yy", where ¢ = 8;;+72%;, and
D= (dif 1) € ¢V, where d;; = 8;,+st;1,, then we have AB = CD by the
direct calculation.

The second formula is proved by the slight modification. Given a point
ABe et @Y, then A, Be ¢y} are expressed by the form A=4,7T, B=B, T,
where A4, Bleeg'(n‘) Since TB T—leeé%l, for A, and TB,T! there exist C,&
gyt and D,eefl7V =" such that 4,TB,T-'=C,D, by the first formula. Hence
we have AB=A,TB,\T = A,TB,TTT = C;D,TT = C,T(T—*D,T)T, where C,Te
el and (T- 1DIT)TeeSG(n)) 1 q.e.d.

LemMA 8. 3. Let foy: EEIXST—15G(n) be the map defined in §2. Then
we have

Afen (@ %) A7 =Fou (0. An),  for 4 & G(n).

Proof. The (I, k)-element of A feu) (g, #) A™'= 37 oy @1i (85 +%; PX;) dpy= 85+
(3r a5 %) p (351 ax; %;) = the (I, k)-element of fs(,) (¢, A%).

LemMMA 8. 4. Let < denofe the integral chain Pontrjagin product in G(n) or

SG(n). Then we have

8.4. 1) eﬁ,ﬁ';’_ Soeeee 6G;§;’)_1 = 6%1) L....,dkj—1

fo;' n=ky> o >r; 21,
8.4. 2) ey s 56(1)1 = aky—1

for n=ky>--- >k =2,
8.4. 3) e§™ (resp. e3®™) is a unit with respect to .
8.4. 4) e % eG =0 (except G(n) = Sp(n)).

8.4. 5) 5y s 5™ — 0.
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G G - -

8.4.6) el el y = (— 1R o) o)

8.4. 7) SO(u) o SO(n) — (_1)k1k2+1 3SO(W)*6SO(M).

k1

8.4. 8) s,g;@ s,gfw) —— S0 5 65T,

Proof. The statements 9.4.1) -5) are trivial by the definitions of cells and
lemma 8.2. By lemma 9.1, we see g, « ¢G" 1= & gl |« ef" | for n = k>
k,=1. 1In order to determine the sign, consider the dlagram

E%kl-le.;kg—l P EdFk‘-le%kl—l 0 E%kg—leg‘kl—l

lfcw X fon) lfc(n) X few)

GxGm) " o 6m) ' Gmxcm
where p(z, ) = (%, 2),
0(% (¢.9)) = (% (@ (fow (#)™)),
and % is the group multiplication in G(n).

It is readily verified, using the rules of lemma 8. 3, that the diagram is

commutative, that is, two mappings

Oy =ho (fam X fowm)s

Oy =ho (fomXfam)o0op
agree : 0;= 0,.

It is readily verified that each of the mappings in the diagram is cellular,
at least in dimensions dk,+dk,—2 and dk,+dk,—3. In checking this for 4, one
must remember that k;>%,. We hall show that @ is homotopic to the identity
in such a way that during the homotopy it always remains celluler in
dimensions dk,+dk,—2 and dk,+dk,—3. To see this, take a contraction D,(a)
which contracts E#2~! into a point a=ix (0, - --,0); Do(#)=x and d;(¥)=a. Then
define 6,(%; (¢, ¥)) = (%, (¢, (fowoD:(%))~))). This gives the desired homotopy :
indeed @, is the identity, because fg(nD1(%))="15w)(@)=1,.

Now, if we compute the chain mapping induced by our mappings; then, as
is well known, we have

P (Egk1—1><E5kz—1) =(—1)@k=1) (@ke—1) E5k2—1><E5k1—1:
and
0 (E§k1—1><E5k1—1) = E5k2—1><E§k1—1-
For the composition mappings, hence, we have
D1 (E5k1—1XE$eg-1) = 35}&? 1, dka—1
Os5 (B 1 XEfy, ;) =(—1)dh=0 @m0 ggle) | 4 .
But @,=®,. Hence we have formula 6).

In order to prove 7), 8), define a mapping 7 : Effe~'Ef2=1 by

mF (¢ %1 Ko -+ - -, xkz—l)) = (g, —(g+vV1—[q[*)* %1, %2, -+, xkg—l)-
Then, as is readily verified, we have

TR (E;zez—*l) =_E11§2—-l’
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pes (Eg,—1) = Egy,_y-

We can prove 7), 8), by the similar techniques as 6), if we replace @,, @, in the
proof of 6) by the following two mapping,

01 = h o (fsemX fsam)

Dy =h o (fsatmX fsaim) 00 0 p o (IXTE),
respectively, where I: E#i—1 E#1-1 js the identity (0, = @,).

THEOREM 8. 1. The Pontrjagin algebras H4(G(n); ') and H, (SG(n); I') are

given as follows. (e§™ and 3™ are s wuits).
8.1. 1) Hy (O(n); Z,)={ed"},@ 4 (67", 9™, ..., 00,
where {80}, is a group of order 2 which is composed of 9" and 80" and e is
a unit, and

e w e w e = X"y Jor n>ky>ee >k 20

20 45 9 — 0

egif‘?"',kj*‘é(?(n) = 31?1(."-)--~k,-,o
8.1. 2) H, (SO(n); Zy) = A (5, ¢30M, ..., 500),
and
eff(”) CRREEE eg;)(") = eflo’(,",)_,, y Jor n>ky-oo >k =1,
S.1.8)  Hy(0@n+1); Z)= ()0 (G970, 98, oo, oSEEEY)
and
ezog?élkll)—l Foareew ezog,nz-l)—e]l-z-l = egﬁf’ﬂ?_l, ceeor 2k, 2k =1

Jor n>ky>-.-->k; =0,
BOEAH 4 GONH) _ (02n+1)

0(2n+1 02n41) __ ,0(2n+1)
32121,2k1)—1, <, 2k, 2051 % €0 = 21,211, - - -+, 2k, 2kj—1,0

(e....,0,~1 means e....,0). (also in 8.1. 5).

. SO(2n+1
8.1. 4) H, (SO@2n+1); Zp) = A (071, 30240, ..., e50Gn1]),
and
SO(2n+1) . ,SO@2nt1) __ ,SO(2n+1)
62;,1(,5’;;‘;_)1 LRREE ”62kj(,2kj—l = e3p0 281, -+, 2k, 2kj~1
for n>ky>--- >k = 1.
. 502 o@2n) ,0(2 0(2 0(2n)
8.1. 5) H, (0(2”) , Zp) = {“g( ")}2®.A (62,(1”): 04,(3"),' ) ezi;f)z,zn—m eau])
and.
0(2 . . ,0(2n) _ ,0@2n)
621(e1%k1—1 LR 321%,"2@--1 = eZI(el,Zkl—l, ceee, 2k, 2k =1
for n>ky>-.- . >k; =0
o2 o2 .. ,0(2n __ ,0(2n)
oo eZlgl,”%kl—l Heree Wezzgj,z)kj—l = O9u—i,2ky, 2011, - -, 2kj, 2hj= 1’

Jor n>ky>-- o>k =0
;,g(Zn) o ég(Zn) — eg(-‘!n)

0(2n)

0(2n)
\ €7y, -,

=0(2n) __
kj*eo = hy, e ks

S0(2
8.1. 6) H, (50(2”) H Zp) =4 (32?1(2") 03%2")" e 6‘29,?(_2;',)2,,_3, 32n(—7)):
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and
SO(2n) . ... . ,SO@2n)  _ ,SO(2n)
Cony, 2hy—1 % * 710 F COopiiogio1 = Oohy 2k —1, -, 2k), 20 —1
for n>ky>-- >k =1
S0(2n) , ,SO(En) . ... . S0E2n)  _ ,SO(2n)
Comct) % Cop gy g % oo €2k, 2hj—1 = Con-1,2%1,28, 1, - - -+, 2k}, 28— 1

for n>p>- - >ki=1
8.1. 7) Hy(Un); Z) = A (7™, 0, ... 0",

and

6%?11 oo F 32tjla(]~”—)1 = 65’;};’_)1,....,2;;]._1 for m=ky> ... >k =1.
BL8)  H(SUM; Z)= 40, U0, oS00,
and

65;5(_”1) Foeeeo % eg,g(f)l == ezsg(_’_’%’.m’zkj_l Jor n=ky>---- >kj >2,
8.1. 9) Hy (Sp(n); Z) = A (e5P™, e5t™, ..., 52),
and

e ke e = eI gy Jor n= k> >hi>1

Proof. The Statements 1) -6) are in [7]. The Statements 7), 8) are trivial
by the lemma 8.4. As for 9), the statement that xxx =0, where ¥ €H,(Sp(n);
Z) is not yet proved. To see this, consider an isomorphism into (herein, one-
to-one, # homomorphism into) appeared in the lemma 7. 7,

iy Hy (Sp(n); Z)— H, (SU(2n); Z).
Since H,(SU(2n); Z) is an exterior algebra, 7, (%#x) =iy (#)%4(x) =0. Hence we
have x#¥=0. q.e.d.

9. Primitive element

Let X be a space and I' a coefficient field. Denote by D*(X; I') the subgroup
of the cohomology group H*(X; I') generated by the elements of the form # ¥ 9,
where # and v are elements of dimension >0 in H*(X; I'). Let a4 be a homog-
eneous element of the homological group H(X; I') such that dim a>0. We shall
a homological primitive element of H(X; I') if a is orthogonal to D*(X; I).

Lemma 9. 1. If a is a homological primitive element of H(X; I'), then we
have

dea=a®1+1® a,
wheve dy, : H(X; IN—H(X; NQH(X; I') is the homomorphism induced by the diagonal
mapping d: X—>XXX such that d(x)=(x, %), and conversely.

Lemma 9. 2. Let f: XY be a mapping. Then for any homological pri-
mitive element a of H(X; I'), the image fy(a) is also a homological primitive element
of HY; ).

Lemma 9. 8. Let f: XY be a mapping. If all cup products are trivial in
H*(X; T), then the image f . (a), where a is awy positive dimensional homogeneous

5) wuVYw is the cup product of % and v.
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element of H(X; '), is a homological primitive element of H(Y; T).

Analogously, let G be a topological group and I' a field. Denote by D,(G;
I') the subgroup of H(G; I') generated by the elements of the form a « b, where
a and b are elements of dimension >0in H(G; I'). If a homogeneous % of H*(G;
I') such that dim #>0 is orthogonal to D, (G; I'), then u is called a (cohomological)
primitive element of H*(G; T).

LeMMA 9. 4. If u is a primitive element of H*(G; I'), then we have

) =1 1+1 Qu,
where h* H*(G; I''>H*(G; ') QH*(G; I') is the homomorphism induced by the
group multiplication h: GXG—G, and conversely.

LemMA 9. 5. Let G, and G, be two topological groups and f:G,~>G, be a
continuous homomorphism. Then for any primitive element w of H*(Gy; I'), f*(u)
is also a primitive element of H*(Gy; T).

If X (resp. G) has no torsion, the above definition is also appicable to the
case of the homological (resp. cohomological) primitive element of H(X; Z) (resp.
H*(G; Z)) with integral coefficient.

TrEOREM 9. 1. 9. 1. 1) e30% D for n =k =1 is a homological primitive
element of H(SO(2n+1); Z,), where p=2.

9.1.2) e5AM | for n—1=k=1 and 50 are homological primitive elements of
H(SO(2n); Z,), where p=£2.

In O(n), the results are similar as SO(n).

9.1. 8) e for n=k=1 (resp. 30" for n=k=2) is a homological primitive
element of H(U(n); Z) (resp. H(SU(n);Z)).

91. 4) egp™ for n=k=1 is a homological primitive element of H(Sp(n), Z).

THEOREM 9. 2. 9. 2. 1) ekon for n—1= k=1 is a primitive clement of
H*(SO0(n); Z,).

9.2. 2) e5Ginrty for n=k=1is a primitive element of H*(SO(2n+1); Z,),
where p=£2.

9.2. 3) eZGony ! for n—12k=1 and €3y, are primitive elements of H*(SO
(2n); Z,), where p=£2.

In O(n), the results are similar as SO(n).

9.2. 4) eyt for nzk =1 (vesp. &3} for n=k=2) is a primitive element of
HXU(n); 2) (resp. HHSU(n); Z)).

9.2. 5) egh for n=k=1 is a primitive element of H*(Sp(n); Z).

Proof. These theorems are the direct consequences of the structures of the
cup products (cf. Theorem 10. 1) and Pontrjagin algebra (cf. Theorem 8. 1.) of
these groups.

10. Cup products in G(n), SG(n); S,.. F, and X,

Throughout sections 10 and 11, it is convenient to extend our notation for
cells (cycles or cocycles) by requiring that, for example,
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2k1—1, -+ ,2ki—1 __ o 2ka\1)—1, -+, 2R )1
€T i~ = sign o ey} Y
2k1,2k1—1, -+ -+, 2k, 2k —1 __ o 2kq (1),2kal1) =1, - -+, 2kolj), 2Ratj)—1
£50(n) * PEIT =S @ plsoimy Ot vl Zraly
for all permutations w of the indices 1, .-.-,4 and that
k11, -, 2hj=1 _ 251,211, + -+, 2k, 2ki—1 _
eUin) 170 = 0 (€500 PEHTI=0)
if some &k, = k, for s=t¢, if some k,>#, or if some k,<1. We use similar notations
Bi, oo ki 2k —1, - 2him1 dhi~1,----,dki=1 2k, ----,2k; 4Ry =3, -, 4k;—3
for eghy,y ", eSgm i, espm iT%, e 7 and e} 177 etc.

TueoreM 10. 1. The cohomology algebras H* (G(n); I') and H*(SG(n);, T')
are given as follows (¢, and €3g .,y are Y -units).
10.1. 1) H*(SO(n); Zy)= 4 (5o €S0y "+ > Coim)s
and
2e§O(n)u 2615316(.”.)..,131' — Zelébla,)....,k]'_l_zzjﬂl Zegs(h.)..,ki-lfk,. <ok
for kB, k= 1.

Especially we have
€hom U 2k <m,

if 2%k = n.
10.1. 2) H* (50(2”"‘ 1); ZP) =4 (3.%?.‘:1(2n+1)’ e4Sb3(2n+1)’ cee 3?5’(%;?.;11)),
and

k
26§0(n) Y 2€30(m) = {

2y, 2h1—1 ki, 2hi—1 _ 9ky,2hi=1, -+, 2k, 2k —1
€soininy eV Csoenin) — €S0(2nt1) PEIN
. 2,1 4,3 202, 24=3 201
10.1. 3) H* (50(2”)’ Zp) =4 (650(2n)’ €somy * s 35’&2”) e 65’3(27»)):
and
2k1, 2k1—~1 U R 2k;,2k;—1 __ ,2k1,2k1—1, ----,2k;,2k,—1
€506(2m) " Csieny = SO(zn) ]
2n—1 2%y, 2k1 1 2ki,2ki—1 __ ,2n—1,2k;, 2k —1, -+ -, 2k;, 2k~ 1
esoem ~ sotan)' T Tttt Y Csdamy = €S0@a) 2
’ . 1 3 2n—1
10.1. 4)  H*(U(n); Z)= A (eymy 0wy ***» €0n))>
and
2h;—1 kil _ oki—1, .-, 2ki=1
3U(1n) Uol.o VY eU(Jn) =eU(1”) i,
. 3 5 201
10.1. 5) H* (SU(n); Z) = A (€Suimy vy > €ot0m)
and
2k ~1 ki1 _ 2hy—1, -, 2ki=1
st © o Csdm = EsUm i
. 3 7 4n—1
10.1. 6)  H*(Sp(n); Z) = A(¢Spm sptmy *** > €hpim)
and
Ahi-1 U U ARl _ k=1, oo 4kl
€sp(n) Cspm = 9Spin) !

Proof. These formulas essentially are due to that e&;! and &) are primi-

tive elements. We remember that dimensions of primitive elements are odd and
2x4=0 follows x=0 in H*(SO(n); Z,), H*(U(n); Z), H*(SU(n); Z) and H*(Sp(n); Z).
As the proof is performed anologously as in the case of the proposition 2.8, (2],
we shall omit here,
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TaeoreM 10. 2. The cohomology algebras H*(F,; Z,) and H*(X,; Z) are
given as follows
10.2. 1)  H*(F,; Z) =4 (e}, e, - €3 )

and
2k U ,2ky, e, 2k; 2k, 2k, -+, 2k; | NS 2ky, v, 28542k, - - - 2k
eF Y e i= % 142 im16F) I,
. 5 9 4n—3
10.2. 2)  H*(X,; Z) = A(e%,, €%, "+ €
and
Ak1—1 U ,dhp—1, -, dki=1 _ 4ky—1,4kp—1, .-, 4k;—1
Ay ex? i7" = ex 2 7

Proof. We can see, by applying that p;';n and p;"(” are isomorphic into, im-
medetaely.

11. Steenrod’s reduced powers

Let £ be a fixed prime number, K a finite complex and L a subcomplex of

K. The Steenrod’s reduced powers ®; are homomorphisms
®,: HI(K, L; Z,) » Hi+*t=) (K, L; Z,)
defined for all two integers s, t=0 and all couples of K and L, where L is a
subcomplex of K. On the other hand, if p=2, there exist, as is well knnwn,
Steenrod’s square homomorphisms Sg*
S¢:H' (K, L, Z,) » H*+ (K, L; Z,)

defined for all 5, #=0 and all couples (K, L). These two operations @ and S¢° are
combined by the relation ®5==Sg*.

We shall use only the following formulas.

11. 1) Iif: (K, L)>(K’, L") is a mapping, then @pof*=f*o@; (resp. Sq'of*=
F*oSq).
11. 2) @) (resp. Sg°) is the identity isomorphism.
11. 8) @, is trivial for g<2s (resp. S¢* is trivial for g<s)

11. 4) @i(x)=«"® for xe H*(K, L; Z,) (resp. Sq*(x)=x? for xeH(K, L; Z,)).

11. 5) &8:HY(L; Z,)—»H"YK, L; Z;) be the coboundary homomorphism, then
®300=080®;, (resp. Sg'od=00S¢").

11. 6) @ (xVy) =i+Z]_§’;; (%) ¥ @} (y) (resp. Sg'(xVy)=

(Cartan’s formula)

257 (%) Sg()-

Throughout this section, coefficients will continue to be taken exclusively
in Zp, Let<k be the binomial coefficient reduced modulo p. This symbol is
to be zero when it makes no sense, that is, if either 7 or % is negative or if k<.

The (n—1)-dimensional real projective space P,._, has k-dimensional cell o*
for n—1=k=0 and, as is well known, we have ,0f=(,0')*". The (#1—1)-dimen-
sional complex projective space M,_, has 2k-dimensional cell #** for n—1 =£k=0
and, as is well known, we have #?* =(u2)*

6) x? denotes the p-fold cup product of .
7) The expression in the right hand side is zero if it has no meansing.



On the homology of classical Lie groups 115

Lemma 11. 1. In the real projective space P, _;, we have
st (#)ors.

Proof. we proceed by an induction on s.
qu(wk) — qu((w1)k) — qu(wluwk—1) — Sqo wlUSqS(wk“l)—l-Sql wlUqu—l(wk_l)

= plVY (kzl ) wF1+5 L 2 Y (?:})wh—s—z

- (1w

LEmmA 11. 2. In the complex projective spaece M, _,, we have
6); (uzk) — ( ';? ) u2k+2s(p—1)’
and
qus (uzk) < k > Mzk+2s
q2s+1 (uzk) 0.
Proof. The proof is similar as P,_,. The formulas for S¢°is a special case
of @(u*), since Sg*+'=0.
In order to compute the reduced powers in E(M,_,), put
Ei (M, ={(ti, vIi—eX); 0<t=<1, X M},
M,,={0, X); X M;_,},
E_(M,.,) ={(t,vIi—£X);, -1=t<0, X M,_,}.
Define a mapping g : E+(M,_,)=E(M,—,) by g (¢, v1—2 X)=((2t—1)i, 2 vi(1—8)
X). Using that E,(M,—,) is contractible and the excision of (E.(M,—,), M,—,)C
(E(Mn—l)’ E—(Mn-—-l)):

S *
Hq(Mn——l) —> H+ (E+ (Mn——l): Mn—l) <g_‘ Ha+t (E(Mn—l))'
8 and g* are isomorphisms and we have v2—1 = g*=—1 §y2F—2,

LemvA 11. 3. In the suspended space E(M,_,) of M,_, (also E(M,_,)) we
have

3 (v3t1) = (k—s-l > pRh—l2s(p—1)
and
{ S = (P ot
Sgz+1 (v2F-1) = 0.
Proof. g* O3(ut=1)=0} g*(u%1)= 0} b(uth—2)=5 O ui—2) =5 # 1 Jusi-zsase—n
_ g*( k; 1
formulas for Sg¢* are obtained as similar techniques.

Let isou : Payx SOU1=152XF 50 () S0() 2> S0(n)

and

)v2k—1+23<¢’—1). Since g* is isomorphic, we have the first formula. The
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Fisvo : E (M) X SU(n— 1)“"‘__".@ SU (mx SU () LN SU(n)
be defined to be the compositions hsopm = ° (fsoyX7) and ksum = h o (fsyuXi)
respectively, where 7 is the inclusion map.
Lemma 11. 4. 11. 4. 1) FZsow ts cellular.  sfsomys ts onto
and

ahsoms (2005, X eso("‘”k]) o) . oy Jor m>ky and n—1>k;

isotns (a0 2652070, )= aelfff(f'.)..,kj for n—1>Fk;.
11.4. 2) Jisuw) os cellular.  Fspiws 45 onto
and
7 SUm—1 SU
ASU(n)s ("’2k;—1><32k2(f1, ~)-~~,2kj-l) = 62k1(-’-li,2k2—1, e, 2k 1
for n=Fky and n—1=Fk; = 2.

7 1 SU
ASU(n)s (”oxezkl(” ) ,ij—-l) = 321;1(—"2, e, 2k -1

Proof. 11. 4. 2): J, = hsum) is certainly cellular since it is the composition
of mappings we know to be cellular. Furthermore,

n=1) _ SU(n)«, ,SU(n)
T (Vap—1X 32k g 1, ,ij—l) = hy (62k1(—1>< “32k2(-1, ----,ij-l)
eSU0) 5 £SUM) — oSUM)
Cory—1% Copy1, ..., 2k =1 = €2k —1,2kp—1, -, 2kj—1
and
U(n—1) _ SU(n)\, ,SU(n)
Tox (Do X 033, < 2i-1) = Py (65 ®)x g2k1(~l,~-~-,2kj—l)
__ SU(n) ,, ,SU(n) _ ,SUn
=6 ( *gzkl(—l coer, 2hj=1 T Copy 1, o 2 -1

In any of the degenerate cases, these are valid.
11.4. 1) is similar as 11.4. 2).
Lemma 11. 5. 11. 5. 1)  ohgop s isomorphic into. If k;=1, then

P
=% k1, ook k1, oo, ki ~7 . By oeei by oeeei b
2hSO(n) (26510(n) 1) = 0% 26510("__1) J_;_Zg_l 2a’k’><26510(n_1) 2 ;

11. 5. 2) Z;‘U(,,) s isomorphic into. If k; =2, then
=%k 2k1—1, -+, ok;i— _ o 2
hsuim (€5t 2hi71) = g0t o 2
T
_I"Zh:l( )1 ‘vz’%—lx‘eg”l nl— i TR, e, 2k =1 .

Proof. 'This is a corollary of lemma 11. 4, since %* is the dual map to J.
These formulas are valid in the degenerate cases.

TaeEOREM 11. 1. I the classical Lie groups, some reduced powers are given
as follows.

11. 1. 1) In H¥SO(n); Z,), we have

s k s
S (Chom) = (%) el Sor kz1.
N TR T k; k N T . - -
Sq (6810(”) ])_i1+~...+ij=s<¢'j'>““( ) slo(”) ! fOi’ kizl,i=1, AR E
11. 1. 2) In SU(n), we have
k—1 —1425
®; (eg%(,:)) _ < ) o2k (1+2 (#-1)
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2k1—1,...., 2k~ ky—1 Ry—1\ oky—142i(p—1),- -, 2k 4+ 20 (p—1
& (Bl ki) = %, S( ) >( L L A
-

i1+

and
s k_l - S
Sq* (eSoim) = ( s ) e

Sq (e ki) = kl.—l>_“'< 1‘) o2, 2hj 12

i1+“+ij=s( 21
Sg+1 =0
11. 1. 8) In Sp(n), we have
s(p—1)
: S0 9k 1N gy s
® (Ggf,(n])) (—1) 2 < s >6§’;(n‘)+2(1’ y,

sp=1) ) ) )
@ (hfst o ) 7 3 (Zkl‘—1>_.<2k]~‘—1) AP, 41420y (p—)
i1+ ~+ij—s 21 i]

and
2k—1
Sq (452(71,1)) ( 92s >64k 1+4s
as [ pAk1—1, oo, 4Ri—1 > 2k1——1> <2k ) 4ky~144iy, - -, 4k, —14-4i;
S (e spm ) i+ +i]=s< 21, 2i; Csptm ! %

Sgc=0  for s =0 (mod 4)

Proof. 11. 1. 2) If n=2, the theorem is trivial. For »n>2, we proceed
inductively, supposing the theorem is valid for SU(zn—1). By making use of
lemma 11. 5, we have

E?Um‘. (@2 (‘%’Fd))) =0} (/;;kU(n) (‘3%—(:;))) @5 (v°X eSU(n— )+”2k_1><3%U(n—1))

k—1 -1 - k—1 -
=vo><( s )e:é’?f(nt%;(p ”+( s )v%—lus(ﬁ DX ESspm-1)

k—1 _ _
—( >h€U(n) (eglf/(;:)"'zsu’ 1)

Since Z?U(n) is isomorphic into, we have the first formula To see the second
formula, we shall use the Cartan’s formula by an induction on j.

2k1—1,2k—1, -, 2hj— 2k —1 kg1, -, 2k
®% (€5gqy el M) = @ (5t €S i)
1,2k —1 2k 2k, —1
= X O (edimy) © Opedpny
I+m=s
k1—1> 2k —1+21(p—1) U ) (k >2k2—1+2i2(1>—l)~-2k~—1+2i (p=1)
= [ 7
l+mz—:s< l S uim ig+- Ej—m< 12 SU(n)
- <k1'—1\<ka_—1>”“<k,. 1 gzkl—l+2i1({>—1),2k2—-1+2i2(1>—l),-~~,2kj—1+2£](p—l)
it Tj=s 11 ) 19 z] SU(n)

The other formulas are obtained quite similarly.

11.1. 1) is proved as similar as 11.1. 2).

To see 11.1. 3), we remember that the inclusion map ¢: Sp(n)—>SU(2n) in-
duces an isomorphism into: i, : H(Sp(n); I''=H(SU(n); I'), where I is Z or Z,.
By theoem 9.1. 8), ¢57®) (n=k =1) is a homological primitive element in Sp(n)
(for any coeffient Z or Z,). i,(egh™)) is, hence, also a homological primitive
element in SU(2x) for Z and Z, (lemma 9.2). In SU(n), however, e5p7 is the
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base of the (4k—1)-dimensional homological primitive element. So that we have
iy (€52 = € ey 3" where € is 1 or —1.

To determine the sign €, consider the diagram

- - 1 Jsptn) Dspw) can—
E3XESt > IEXEF=EF1 =% Sp(n) 222 SEF prg

421 4k—1
Ey Sg -

¢ /1Por
ELXE%~? & ELXE4-2— 4~ fsotn) SU(M)pSU(n) Stk

We note that @cox (S$_y) = (—1)* S§,_;, (bacause @rc ° @co (%) = (a, b, ¢, —d) for
Q> x=a+ib+ jc+kd = (a+ib)+ j(c—id)). Now,
Psuin ©ix (52°0) = @ogs© Pspinx (i) = oox © Eos (Ef_1) = — @cos (ST-1)
= (—=1)#+1S%, ;. (lemma 7.1). On the other hand,
€ psutmu(eiry”) =€ Ecx (Efy—y) =—€ S§y_;. Hence € = (—1)~.

So that we have the following

Lemma 11 1. 4y (eh5)) = (—1)* esiin.

We shall continue the proof of 11. 1. 3). Now

i*: H* (SU(2n); Z,)— H* (Sp(n); Z,)

is homomorphic onto and the kernel K is an ideal in H*(SU(2n); Z,) generated
by €%z, for k=0 (mod 2). Hence we have H*(SU(2n); Z;)/Kx=<H*(Sp(n); Z,),
and

{ i* (e¥5mn) =0 for k=0 (mod 2)
(e:g;](zln)) ('—l)k eélje:(n}

It is readily verified that K is invariant by ®}; ®,KcCK, using the formulas 11.
1. 2). Now we have

0 cbhoh = (1O} % (eiha) = (—1)'°0 el
e (2E—1\ ah—12s(p— £ S0 12— 1Y ap—
= (—1)rie (2R 1) ettt = (p)r (1t (2R T i

S(1> -1)
= (=1) (k l) 4k(l)+25(1>—l)

By making use of Cartan’s formula 11. 6 and the same technics as ®;, in SU(n),
we have the other formulas.  q.e.d.
REMARK 11.1. Using the isomorphisms into p): H*(S, ., Z,)—H*(G(n);
Z,), we can easily compute the reduced powers in the Stiefel manifols S, ,,.
TueorEM 11. 2. In the spaces F, and X,, some reduced powers are given as
Jollows
11. 2. 1) In H*(F,; Z,), we have

Se¥ () = (51 ) s,

2k> . (ggj>2ei§:‘1+2il,-~~~,2kj+2ij

Sq3s 282k1,-~-,2kj (
7* («£7, )il+~-~i ~\20,
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Sg+1t = 0.
11. 2. 2) In H¥(X,; Z,), we have

s /.ak 2 S
@5 (49) — ( ) AE—8+25(p—1)

S (edat, - 4hi=3) 2k1'—2) 2k;—2 P13+ 2i(p-1), - -, 4k; —342i(p—1)
% (ox ’ )M.%.:s( i ( i ) T
and
Sqts (34""3)=(2k_2) 6%; 344s
s [ Aky—3, - 4 — (2k 2k;—2 Ah1—3-+4iy, -, 4kj—342i)(p—1)
Sq*s (e3r i =3) = -LZ+1-—S\ 2111 ) ( 2% > e 1 j 1
S¢¢=0, for s 0 (mod 4).
Proof. By applying that pj (resp. p% ) is isomorphic into, we obtain, in a
trivial fashion, formulas from the formulas in SO(2n) (resp. (SU(2n)).

12. Appendix

A cellular decomposition of a space determines how to attach a cell to the
lower dimensional cells than it. In the lowest dimensions of the classical Lie
groups, the attaching mappings are familiar ones.

TueorReM 12. 1 In SO(n), the 2-dimensional primitive cell eéo(”) is attached
to the 1-dimensional primitive cell 3.150(n) by the mapping u: s*—s* whose degree is 2.

TaeorReEM 12. 2. In U(n) (resp. SU(n)), the 5-dimensional primitive cell
Y (esp. €3y(m) 1s attached to the 3-dimensional primitive cell €y, (resp. 3y )
by the suspended Hopf map E(v): S*—S3.

THEOREM 12. 3. In Sp(n), the 7-dimensional primitive cell egp(n) 1s attached
to the 3-dimensional primitive cell €3y, by the Blaker-Massey’s map p: S°—S3.
This mapping p is a Hopf construction of the mapping p’: S?X .S2-S?2 such that
o' (%, ¥)=xyX, where S® is quaternion numbers whose norms are 1 and S? is pure
imaginary quaternion numbers whose norms are 1.

proof. Theorem 12. 1 is obvious, because the real projective plane P, is
attached to P, by the mapping whose degree is 2 and fgq( is homeomorphic
on P,.

Theorem 12. 2. is also obvious, since the complex projective plane M, is
attached to M, by the Hopf map » (so that E(M,) is attached to E(M,) by E(»))
and fyg is homeomorphic on E(M,).

In order to prove theorem 12. 3, we consider the formula

Fspia) (g, %1) = (1+{1px1 #1 Py ) e Sp(2).
%y %y 1+%, p%,
If ge5%, then p=2y/T—[q[2(g— vV1—[q[®=0. Hence fsp()(¢, ¥)=1I5. Further-
more, if ¥=%,&€5?% then %,=1/T—|5[2=0, Hence we have

fsrw (g9 = (EEF 9,




120

where 1+ xpx=1+2x,/1— Iq]z(g_ vI=|q[? x.

Ichiro YoxoTa

If we put g=y sin 4, where yeS5?

and 0<<0=<=/2, then

14%p%X = 1+2xcos @ (y sin @—cos ) X =—cos 20--sin 20 xyX.

This shows that a mapping (g, #)—1+xp% is nothing than a Hopf construction of
a mapping (¥, y)—>xyx.
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