Journal of the Institute of Polytechnics,
Osaka City University,
Vol. 2, No. 2, Series A

Homological Structure of Fibre Bundles

By Tatsuji Kupo

(Received Dec. 15, 1951)

1. To find relations existing among the homological characters of the
bundle space, of the base space, and of the fibre of a given fibre bundle is an
important problem in topology. ’

In the preceding paper [9] the author, in connection with this problem, gave
a new formulation of the so-called Leray’s algorism [10] on the one hand, and
generalized two theorems of Samelson concerning to homogeneous spaces to
theorems of fibre bundles (see §2 below) on the other hand.

The purpose of the present paper is to give them more detailed accounts
and to derive almost all theorems in our direction.’> In part II characteristic
groups and characteristic isomorphisms are defined for arbitrary set systems,
and their fundamental properties are given.?? In this form they reveal a close
bearing on the theory of Morse, classifying cycles according to critical levels.
Moreover they may be applied to homotopy as well as cohomotopy theories.
In particular, if applied to cohomotopy theory, they give a formal answer to
the classification problem of maps of an (#+7)-complex into an z-sphere for
arbitrary » but for sufficiently large n (II, $4). In part IIT results of part Il
are applied to fibre bundles over a complex. In part IV various formulas con-
cerning to U- and MN-multiplications are given, and the theorems of Gysin [5],
of Thom-Chern-Spanier [23], [3], and of Wang [24] are generalized. In part
V o- and oO-multiplications are introduced and as application several important
theorems about homological trivialness are given, some of of which® seem to
be contained in the results announced by Hirsch [6].

2. To explain our problem we shall give here some theorems about homo-
logical triviality.

Theorem A. (Kunneth’ theorem) If A is the product complex of two com-
plexes B and F, the cohomology ring H*(A) is isomorphic to the Kronecker
product H¥(BYRH*(F) of the cohomology rings H*(B), H*(F) of B, F respec-
tively, where the rational number field is taken as the coe fficient ring.

1) Major parts of this paper (Part II-IV) were published in Japanese in March, 1951,

2) Another abstract formulation of Leray’s algorism was obtained by H. Cartan, J. Leray
[30], and J. L. Koszul [8].

3) Theorem 22 and Theorem 23. In the case of homogeneous space these theorems are
consequences of the results proved by Koszul [8].
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For a product bundle A=BXF, the cohomology ring of the bundle space
A is therefore completely determined by the knowledge of those of the base
space B, and of the fibre F.

But besides product bundles there are many classes of fibre bundles for
which the same proposition hold. For example we have the following
Samelson’s theorem [15]:

Theorem B. If a compact connected Lie group G acts on a sphere S transi-
tively, and the isotropy group U(G/U=S") is connected, then

(@) if nis odd, H¥(G)=H*(S"xU),®

() if n is even, H¥(G)=H*(S?™ 1xII), where Il is a product space of
several odd dimensional spheres such that H*(U)~H*(S"1xII).

Sacrificing the multiplicative observation, the conclusions (a), (b) of
Theorem B reducez respectively to

21 Pe(t) = Pga() x L (),
2.2) Pe(®) = Bgon—-1() x Pr(2),

where Ly(8) =PBgn-1(#) X Py(?), and where Bx(¥) denotes the Poincaré polynomial
of M. In this reduced form the case (a) of Theorem B was generalized by
the author to the following theorem [9], (V, §6):

Theorem C. If A is a fibre bundle over an odd dimensional homology
sphere B (dim B=nLs(£)=1+1"), and if the group of the bundle G is a compact
connected Lie group, then

(2.3) Ba(t) = P x P .

Incidentally in important applications (2.3) plays also the role of (2.2).
In fact we may calculate the Poincare polynomials of the closed simple groups
belonging to the main four classes as well as of the Stiefel mani folds by making
use of Theorem C alone.

We call a fibre bundle §={F, G, B, A, ¢, ¢y} homologically trivial when it
satisfies (2.3). Itis known that the following classes of fibre bundles are also
homologically trivial:

(2.4) Fibre bundles over an acyclic complex (III, $5),

(2.5) Even dimensional sphere-bundles over a complex (Chern-Spanier [3];
(IV, $8)),

(2.6) Fibre bundles over an n-sphere with fibre F such that H?(F)=0
(p>n—1), or with fibre F which is a d-dimensional homology sphere with
d>n-1 (Wang [24]; (IV, §9)),

(27) Let A be a compact connected Lie group, and F a closed connected

4) H* is the same as above,
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subgroup. The coset space A/F=B is a fibre bundle of the type
{F,F,B,A,..,..}. We shall call it simply a homogeneous space. Then a
homogeneous space over a homological I-manifold B (H*(B)~H*(Il), where
I is a product space of several cdd dimensional spheres) (Koszul [8].

The non-trivial characteristic groups measure a deviation from homological
trivialness.

Part I

Preliminaries

1. Fibre bundles. In this paper by a fibre bundle we mean a coordinate
bundle in the sense of Steenrcd [21], and we use the notations &={F, G, B,
A, ¢, ¢y}, 'F={F,'G,'B,’A,'d, "¢'v}, etc. to denote fibre bundles, where F, G,
B, A, ¢, U, ¢y are respectively the fibre, group of the bundle, base space, bundle
space: projection, coordinate neighborhoods, and coordinate funciion of §.5° By
a fibre bundle of type (Fo, Go) (type (Fo, Go, Bo) ) we mean a fibre bundle &
such that F=Fo, G=Go (F=F,, G=Go, B=By). § is a d-sphere bundle (an
orientable d-sphere-bundle) if it is of type (S?, Os41) (type (S%, Ra) ), where S¢
is the unit d-sphere, Ogs1 is the orthogonal group of d+1 variables, and
R;=04,, is the rotation gronp of S%9 § is a principal fibre bundle, if it is
of type (G, G), where G zcts on itself as the group of left translations. A
map” h:A—'A is a bundle map h:F>'TF, or it is admissile, if there exists a
map h:B-»B such that (1) h¢="¢h, (2) h|¢~1(x) is a homeororphism onto
’¢=1(n(x) ), where x€B, (3) for any U>dx, 'U>’x=h(x) the correspondenrce :
UNRW](U)> x—>’¢,“Ul, ’ohy, » €G is a map, where ¢y, » : F—>A is defined as usual
by dv, ) =0y(x, ¥), y€F. Fand’F of the same type (F,G) ((F, G, B)) are
equivalent (equivalent in the vestriced semse) if there exists a bundle map
h:%—>'E, such that h:A—>'A is a homeomorphism onto (if moreover the
induced map k: B—>'B=B is an identity map).

F is a groduci bundle, if G=1, A=BXF, {(x, ¥)=x,U=B, ¢y(x, y)=xX.
If G is contained in a larger group G which operates on F, § gives rise to a
new fibre bundle §=& by merely replacing G by G. & and ’‘§ with F='F are
G-equivalent (G-equivalent in the restricted sense), if ¥z and ‘¥z are definable
and are equivalent (equivalent in the restricted sense). If ¥ is G-equivalent

5) Unless otherwise mentioned the definitions and terminologies are the same as may be
found in the Steenrod’s book [21], which we have in common as the standard text.
We shall refer it to [S]. It would have been more convenient if we had used the
same notations. But it was too cumbersome for the author to revice all of the notat-
ions in the old manuscript, in which we used the terminologies and notations in the
Chern-Sun’s paper [21. We shall refer it to [CS].

6) Generally  with an arc-wise connected G is called orientable.

7) A map of topological space into a topological space is always assumed to eb continuous,
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in the restricted sense to the product bundle A=BxF, it is roughly also called
a product bundle. T is a portion of T over BoC’B, and is denoted by '&|Bo
if F="F, G="G, B=Bo, A="¢"W(By), ¢="¢|A, U="UNB, ¢g="¢'5|(UXF). T
is a product of 'T and ''%, and is denoted by F="Fx'F, if F="Fx""F, G='G
"G, gy=Cgx"g)-Cyx"9)="g-'9)x("g-"y) for g€G, B="Bx"B, A="A
X//A, d)(a>=¢</axlla>=/¢(/a>X//d)(//a)’ U=/UX//U" ¢U(x7 y>=¢v</x><//x’ /y
X" y)="rg(" 5, '9IX " ¢pr15(""x, "' ¥). F is the induced bundle of ‘T by a given
map f:B—'B, and is denoted by F='%r, if F='F, G="G, A=[the graph of the
many valued function 7: B> A®]=[the subset of Bx’A consisting of points
(x,’a) such that f(x)="¢(a)], ’"¢(x,’a)=x, U=r"U), ¢v(x, y)=(x, ¢’y
(f(x),3)). Let & be a fibre bundle of type (F, G, B). It is called a universal
fibre bundle of type (F, G, B) if it has the following properties :

(i) For any § of type (F, G, B) there exists a map f : B—>B such that the
induced bundle §,~%9,

(ii) ¥f two maps f1, f2: B—>B are homotopic (f1~/2), then {?Aflm%ffz ,

i) If %flz%fz for two maps f1, f2: BB, then f1i~f2. In the case when
F=G/U is a homogeneous space'®, and B is a polyhedron, the existence of a
universal fibre bundle of type (F, G, B) was assured by Steenrcd [S]'»’. The
following theorems, which were established by Chern-Sun [CS], are important
in the sequel.

Theorem D. Given two fibre bundles ¥ and ', where 'B is compact. Con-
sider the fubre bundle Fx 112 and let f :'Fx(0)>F be a bundle map. Then for
any homotopy f:'BxI—B of the induced map Fo:'Bx(0)>B, there exists a
bundle map inducing f and such that f|'Fx(0)=f0.

Theorem E. Let F be a principal fibre bundle such that ni(A)=0 (C<i<n).
Then it is a universal fubre bundle of type (G, G, B), where B is a polyhedron
of dimension at most n.

Theorem F. The base space B of a universal fibre bundle of type (G, G, B)
is al the same time the base space of a universal fibre bundle of type (F, G, B)
and vi.e versa.

The actual form of the universal fibre bundle of type (G, G, B™) given by
Steenrod [S] is {G, G, On/Ons1XG, On/Ons1s...s...}. where G is a compact
Lie group and m is sufficiently large so that O, contains Ox.1xXG1® If G is
connected we may replace Ox by Rr-1=0jy .

8) f(a)='4~ (f(x) )C’A for x€ B.

9) “~”, “~ read “equivalent in the restricted sense to”, “equivalent to” respectively.

10) See (Introduction, g 2).

11) The existence of a universal fibre bundle of type (F, G, B) was proved independently
by Chern-Sun [CS], when G is a linear group, F is a coset space of G, and B is a
polyhedron.

12) 1I== the unit interval <0,1>.
13) See, [S], 7.5.
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'¥ is called the associaled principal fibre bundle of F, if it is of type
(G, G, B), ’A is the totality of bundle maps ‘a : F>%,1% '¢(‘a)=x, where ‘a(F)
=F,,'U=U, "¢y(x, g)=¢v,0¢. In sucha case we may define a map 7:’AXF
—A by 7(a, y)="a-y.}% Finally if F=G/U is a homogeneous space (Intrcduc-
tion, §2), the associated principal fibre ’F of §F together with the natural

map v :’a—'ay determine a fibre bundle of type (U,U, A,’A, v,...).

2. Eilenberg-Steenrod’s axioms for cohomology theory. We expect that
the reader are familiar to the seven axioms for cohomology theory as were
given by Eilenberg-Steenrod [4].17” But for the sake of convenience we shall
give them here but in a slightly different form; the excision axiom adopted
here is the strong one.

Axiom I: Identity map f:(X, A)—(X, A)® induces the identity isomor-
phism fF¥: H*(X, A)=H?(X,A).

Axiom II: For f:(X, A)—(Y, B), g:(Y, B)—~(Z, C), there holds the rela-
tion (gf)*=r*g*.

Axiom IIT: For homotopic f, g:(X, A)—~(Y, B), fr=g%.

Axiom IV: The following sequence of homomorbhisms:

j* 7% 3
2.1 —>H?*(X, A)>—H?"(X, B—H?"(A, B—H"" (X, A)—>
is exact, where j: (X, B)—(X, A), i : (A, B)—~(X, B) are inclusion maps.

Axiom V: Let fi:(X, A)—Y,C), f2:(X, B)~(X, D), f3:(A, B)—(C,D)
be induced from f:(X, A, B)—~(Y, C,D). Then commutativity relations holds
in the diagram:

—>H?*(Y, C)—H?*(Y, D)—H?(C, D)—H?*\(Y, C)—>
(2.2) lfl* lfz* f3* lfl*
—> H(X, A)— H(X, B)>— H(A, B—H**"'Y(X, A)—>
Axiom VI': For the identity map k:(X-Int A, A-Int A)—~(X, A), k¥ is
an isomorphism onto (excision isomorphism).

Axiom VII: For a space consisting of a single point P, H*(P)=0 ($=F0),
HO(P)=a given group p (which is called coefficient group).9 20

3. Immediate consequences of the Eilenberg-Steenrod’s axioms.
Lemma 1. H?(A, A)=0.

14) Here F is regarded as a fibre bundle of type (F, G) over a point.
15) See, [S], 8. 7.

16) See, [S], 9. 6.

17) See also [20], [16].

18) (X, A) is assumed to be a closed pair.

19) Remember that H?(X,A)=0 for p<0.



106 Tatsuji KUDO

Lemma 2. If f:(X,A)—(Y,B) has a homotopy inverse, then f+ is an
isomorphism onto. In particular if (X, A), (Y, B) have the same homotopy
type H*(X, A)=~H*(Y, B).

Lemma 3. Let f: (X, A)—~(Y, B) bz the identity map, and let ¢, (C<t<1)
be a deformation of Y such that ¢1(Y)CX, ¢:(B)CB, ¢1(B)CA, ¢i(X)CX,
0 (AYCA. Then f* is an isomorphism onto.

Lemma 4. If A is a deformation retract of X, then H?(X, A)=0.

Lemma 5. Let X=X1UX:; XDADX:1NX:, and let 1 :(X:, X:UA)—
(X, A), p: (Xi, XiNA)—(X, X;UA), vi: (X, A)—(X, X;UA) ((, j)=(1,2) or
(2.1)) be the identity maps. Then p* is an isomorphism onto, ws=y*(p*)~1
is an isomorphism into, \* is a homomorphism onto, H*(X, A)=o1H?(X1, X1
NA) +wH?(X 2, X2NA) is a dirert decomposition, and IFw;=1.

We give here only the proof of the last lemma. Since (X-Int (X;UA),
(X;UA)-Int X;UA))=(Xi-Int (X:NA), X;:NA-Int (X.NA)), by making use of
the excision axiom (Axiom VI’) two times we see that u* is an isomorphism
onto. By Axiom II g*=i*ve, Hui(u™*)~1=1, 4¥*w;=1. Hence i is a homo-
morphism onto and w; is an isomorphism into. It remains to prove that H?(X, A)
= H?(X1, X1NA) +wH?( X5, X2NA) is a direct decomposition. Firstly
noticing that H?(X;, X.NA)~H?(X;UA, A) by the excision axiom, the sequence

*

H*(X, X¢UA)—V£>H”(X, A)LH”(Xi , XiNA) is exact. Hence if Afw=2*w
=0 for w€H?(X, A), then w=y*u for some u € H*(X, X2NA), hence 0=7i*w
= A*yy*u=p*u, implying that =0, or w=0. Secondly wiu=wjsus, ux€H?*(Xy,
XxNA) (k=1, 2) imply wwi=wsu;=0, i.e. mH?(X1, X1NA)+w:H?(X2, X2NA)
is a direct sum. For u,=Afwius =AFwsuy=rFy 7 pus* ) lus=0.

Now let w€H?(X,A) be arbitrary. Then AM(w—wili*w—widsfw)=2Atw
— AFwidito — AFw s 5w = Afw - A¢fw--0=0, implying that w=w:iA*w +w;is w.

4. Mayer cochain complexes. By a Mayer cochain complex we mean a

3p 3p+1
homomorphism sequence——> C?——>C?*1—>C?*2—— ..., guch that 0p+10,=0.

It is denoted by {C?;d»}. The p-th cocycle group Z? of a given Mayer complex
{C?;0,} is defined by Z”=[the kernel of 6,]CC?. Obviously 0,-1C?~1CZ".
The factor group H ?=72/6C?-1 ic called the cohomology group of the Mayer
cochain complex.

5. Faisceau of groups. Cohomology theory with local coefficients. Let X
be a topological space, and {¢} be a family of closed sets of X. If a group p,
is associated with each ¢, and if a homomorphism %(¢’, 6) : p,—p,/ is associated
with each pair (¢, ¢) with ¢<¢’, such that x(¢"/, ¢’) %(d’, ¢)=%(6"’, 6) for oo’
<¢', and such that X(o, 0)=1, then, following J. Leray [10], we say that a
faisceau of groups §=/{p,, 2(d’, 6)} is given over X.
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We consider in the followings only tke case when X is a polyhedron and
{s} is a family of all (closed) cells of X.21> Let K={s?} be a cellular decom-
position of X and K its closed subcomplex. We define: C?=the additive group
of all linear forms ¢?= X aiws! with @i €052, Or equivalently all function a:
=c%o?) deiined over all g-cells of K —K, and with values in 0o, - Define a
Lomomorphism 4 : C?3 ¢%dc € C*1 by 6c(o% )= [o3*: 6i]%(a3, o) (a}). 20
Remembering the property x(si*?, o3*1)2(4%*?, ail):x(a‘{” , 67), we can easily
prove that 66=0, obtaining a Mayer cocltain complex {C?;d}. The cohomology
groups of this Mayer complex are called the cohomology group with the
faisceau of groups /i as coefficient domain, and are denoted by HY( K, §),

Now assume that every %(¢’, 0) (¢’ >0¢) is an isomorphism onto, and K is a
simplicial decomposition. Then, if o Do %o, %1, X(xo, 0) (0, 21)=%A(x0, o’)
x(d’, 0) X(a, ') (o', %1)=%(%0, ') %(d’, 1), where A(g, ¢’) denotes [x(o¢’, o)]!
for ¢/>>0. This enables us to define «(xo, %1)=2%(x1, ¢)%(0, x1) without ambi-
guity. o has the property: w(xox1) o(xixs) ... e(¥eXo)=1 for o=(ZXoeX1 ... Xq).
From the above we easily see tkat the cohomology theory with faisceau of
groups as coefficient domain is essentially??®’ the cohomology theory with local
coeffioient in the sense of N. E. Stezenrod [18].

6. U- and N-products. The consideration of U- and N-products appear
only in the Jast two parts, where the axiomatic treatment is abondoned. But
it is not at a'l unusaful to enumerate the most important of their properties
in an axiomatic form, following Steenrod [20].23> The basic coefficient domain
o of our oohomology theory is a ring (with unit 1) when we are dealing with
U-product only. It is a {eld for both homology and cohomology theories when
we are dealing with U- and N-products.

(6.1) For u?€cH?(X, A1), "€ HY((X, A2) where XDA1UAs, the \U-product
u?\Jv? of u®? and v® is an element of H? (X, A1UA2).

(6.2) The left multiplication (u*U) HY(X, As)—H? (X, A1UA2) defined by
(u®Dv*=u?Uv? is linear ; similarly the right multiplication (\Uv?): H*(X, A1)
—H*"*?(X, A1UAz2) defined by (\JvDu? =uP\Uv? is linear.

(6.3) Let fi:(X,A)—(Y,B;)(E=1,2), f3:(X, A1UA)—(Y, BiUB;) be in-
duced from f:(X, A1, A2)—(Y, Bi, B2). Then fs*(u® Uv")=f*u?\U f*v%, for
u? €eH?(Y, Br), v €HY(Y, B2).

(6.4) If v"e HYA(X), (UvY) maps the cohomology sequence of the triple (X, A, B)
into itself homomorphically but raising the dimension by q, i.e. commutativity
relations hold in the diagram:

21) [og” :Gq] denotes the incidence number of c%** and of. For its axiomatic definition

see [4], [16]. The cells which appear in this paper are homemrophs of the unit
full-sphere. [ : ] is accordingly either=-0 or +1.

22) As for this formulation of local coefficients see also P. Olum’s paper: Obstructions to
extensions and homotopies, Annals of math.

23) As for the concrete definition of | J- and ()-products, see Lefschetz “algebraic topology”.
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—> H?(X,A)— H?X,B)y— H?(A,By— H"'YX,A)—>
l(Uv% (Uot) l(Uv") l(Uv")
— > H?*(X, A)—H (X, B)—%H”*Q(A, B)——H?+*1( X, A)—>

where (UvY) : H?(A, B)—H?*+*%(A, B) is an abreviated nolation of (Ui*v?), i*
being induced by the identity map i: A—X. Such abreviation is always used.
(6.4) The left multiplication (u®?\J) has the analogus property.

(6.5) w?Uv?'=(—-1*"Ju? for u? € H*(X, A1), v* € HY(X, As).

(6.6) (WUv)Uw" = «® U Uw") for u? €eH?(X, Ay, EH?(X, A2),
w e H(X, As), XDA1UA2UA;.

The direct sum H¥ X, A)= 2", H?(X, A) thus becomes a ring with respesct
to the U-product and is called the cohomology ring of the pair (X, A). The
commutation rule (6.5) holds in H*(X, A).

(6.7) Now let us assume that p is a field, and (X, A) is a polyhedral pair.
H?*(X,A) and Hp(X, A) are dual to each other, i.e. inner product <u?, z*>
of u* cH*(X,A), z2? €cHy(X, A) are defined in such a way that (i) <«?, 2>
is bilinear, (ii) any homomorphism 7 : H?(X, A)—p is representable in the form
p(u?)=<u®, zp> in a unique way, (iii) any homomorphism v:H,(Y, A)—p is
representable in the form v(2?)=<*, 2> in a unique way.

(6.8) Foramap f:(X, A)—(Y, B), the induced maps f*: H(Y, B)—~H*(X, A),
r*:H(X, A)~H Y, B) are dual to each other, i.e. <u®, f*?>=<f*u?, 22>
for u? €cH?(Y, B), z* € H(X, A).

Now we define the N-product v'Nz"+? of v* €HY(X) and 2?*1€H p+o(X) by
the relation2 :

(6.9) <u?, ! N2+ T>=<uPUr", 27> for every u® € H?(X). Corresponding to
(3.3) we have
(6.10) Fx(f*uPN2?+*)=u? N\ f*2?*, for u® € H?(Y), 27+ € H p1o( X).

7. Composable and minimal elements.2> Let X be a connected polytedron,
and let o be a field, as in the end of the last section. Then the cohomology
ring H¥(X) has a unit 1€ HY(X):1UuP=u?Ul=u®* for any u® € H?(X), and
H(X)={q-1}, a€p (immediate consequence of the axioms). An element
u? € H"(X), which can be generated from the elements of H.X),...,H?-(X)
by U-multiplication and addition, is called a composable element of H*(X). u®
is therefore of the form #’= 3 v,Uw:, where v;, w; are homogeneous and of
positive dimensions. The totality of p-dimensional composable elements
obviously constitutes a subspace S*(X) of H?(X). An element #” of H (X))
which is not a composable element is called primitive. We can choose an

24) We need only the absolute case in this paper.
25) See, [7], [15], [6].
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irreducible system of generators {1, 1, uz,...,u} of the cohomology ring H*(X)
consisting of homogeneous elements. Obviously the p-dimensional ui’s in the
above system oonstitute a linearly independent representative system of H?(X)
/S?(X), and conversely if we choose for each p a linearly independent repre-
sentative system of H?(X)/S?(X), their union constitutes an irreducible system
of generators of H*(X). Thus I=2"p.1 dim (H?(X)/S?(X) ). It is called the
rank of X.

An element 2? of Hx(X) is called minimal, if it is orthogonal to every
element #? of S?(X):<u”, 2°>=0:2" is a minimal element of H,(X) if and
only if it is contained in the annihilator M,(X) in Hy(X) of S*(X). It is
easily seen that the condition of minimality of «? is evuivalent to the following
condition :

(7.1) If 0<r<p, wrNz?=0 for everyu” € H'(X). For the minimal elements the
following facts are fundamental :

(7.2) Let f: XY bz a mmap. Then fy:H(X)—>H(Y) maps M(X) into
M(Y).

(7.3) If H(X)=0 for 0<p<d, then any z* € H(X) is minimal. In parii-
cular a d-dimensional homology element of a homology d-spheve is minimal.
(7.4) The rank of X is equal to Yps1 dim M(X).

(7.5) Let KyCH(X) be a subspace and K, ils annihilator in H*(X). If
KoNM(X)=0 for each >0, {1, K1,K2,...,Kp,...} generates H¥*(X).

We shall prove only (7.2). Let z2? € My(X). Then for each »#* €H*(Y),
0<r<lp, " NS =75 (f*uNz?)=0 by (6.10).

8. The cohomology ring of a group manifold. Pontrjagin ring. Let X be
a group manifold.2”? The structure of thLe cohomology ring H*(X) is investiga-
ted by H. Hopf [7] and H. Samelson [15]. We state here only such results
which we need in Part V.20 Let Hy(X)=2p Hp(X) be the total homology
group. We can introduce in H4«(X) a multiplication z%02? as follows: Let
7 : X XX—X be defined by 7(&'Xx/")=x'2"". If ¢? and ¢ are singular cycles of
X, then ¢?xXc* and 7(c® X %) are singular cycles of X xX and X respectively.
The homology class of 7(c?x¢%) is determined by the homology classes 2%, 2% of
¢, ¢? respectively, and is denoted by z”0z% This product was first introduced
by Pontrjagin [13] and is called the Ponirjagin product.
(8.1) H(X) becomes a ring T(X) with respect to the Pontrjagin multipli-
cation.
(8.2) Let M(X )=E1M o(X) and let \(M(X)) be the Grassmann algebra

26) See, Theorem C (Introduction).
27) In thi paper “group manifold of a compact connected Lie group”.
28) For detail see [7], [15], [8].
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over the field o of the space MI(X). Then N(Mi(X))=21p No{MI(X))
~P(X) by the correspondence: J(E1n€z... nEx)=F10820 .. ofi (& € ME(X)).

The elements of Ez/\\p (Mi(X) ) are called composable (or more preoisely
o-composable), and the elements of the annihilator M*(X) in H*(X) of
I’gz/\p (M%(X)) are called minimal (or more precisely o-minimal). Obviously
M*(X) is the direct sum of the spaces M?(X)=M*X)NH?(X). We put
M¥(X) =1§1M”( X).

(8.3) AWM X))=H*(X) by the correspondence )&y p€2... AEx)=E1U&U ...
UE(& € M¥(X)). Thus the linearly independent basis of M¥*(X) iogether
with 1 constitule an irreducible sysiem of generators of the ring HY(X).

We use further the facts:

(8.4) Mauw(X)=0 (v>0): every non-irivial minimal homogeneous element of
H.(X) is odd dimensional.
(8.5) M2(X)=0 (v>0); every mnon-irivial minimal homogeneous element of
H*(X) is odd dimensional.

As a dual operation of the left o-multiplication (2%0): H(X)—H p+o(X),
(2P0)z8=z"07%, where 2" €H(X), 2°€H.(X), we define an operation (cz?):
H?»*(X)>HYX) by:

(8.6) Lult2?, 24> = <uP+, 2Poz”>

Then the following is the lemma 2.2 of [8]:

(8.7) Let o0 be a subring of HXX). If a is siable under every (vz),

2€H(X), then a is generated by 1 and a subspace V¥ of M¥*(X), i.e. a con-
tains 1 and is generated by the minima! elements belonging o a.

Part 11

1. Characteristic groups and characteristic isomorphisms of a set system.
Given a set system A={A=AnD An-D -+ DAcDA_1}, we consider, for ¢>q’'>q",
the cohomology sequence of the triple (A¢, A, Ag?):

(qs a7 @/
Tp
1.1 —> H"(Aq, Ad) —> H?(Aq, Ag7)
Bgaq: q’s @) a;}q’ a’ryq't)

—> H(Ay, Ad?)

—> H?*1(Aq, As)—>.

For brevity we shall write [¢’, ), (¢, ¢’ [¢’], (¢) instead of (¢’ +1, ¢’, q’"),
(e, d,d-1), (¢ +1, ¢, ¢—1), (¢,g—1, —1) respectively. Furthermore we put
Aq=An (Q>n)y A=A (Q<—1).

Now we define

(1.2) C(p-) =6""%A) =H?(Aq, As-1),
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(1.3 EUp—a) = kernel a5 P 9 = image BTV P(k>-2),
(1.4) W p—q) = kernel 757V D = image aF Y TFP(k>--1).
Clearly 3§=3%,,= -, Bi=1]= .- for sufficiently large k: we shall denote them

by 2%, B respectively. We see also that
(1.5) 67=352,057, =358 - DELDIBLD - DBIDBL = BIOBVL, = 0.

Let us prove for instace 3iD%®B%. Remembei*ing that the transitivity rela-
tion holds in the diagram:

q+k+2
it O

H?(Aq, Ag—1) «——— H?(Agsrs2, Ag-1)

@ N ‘ ATt 010 =D

aply
Hp-l(Aq—l ) A—l) ’

we have 8%=image Bgoq+k+2’ qJD z'mage Bgz+k+2, q3a§q_+1k+2» -1y ‘D=image agzzl:%qw.

Theorem 1.
(1.6) Ox: 55 1(D)/1BU D) =~ B (p—k—-1)/BL*"*(p~k~1).

Theorem 2. H?,? being the kernel of 1Lhe injection homomorphism
H?*( A, ALW)DH?*(Aq, A-1), we have

(1.7 v H?+L, -1/ HP, 92 BL(H)/BL(P) .

Lemma 1. Assume that the transitivity relations hold in the diagram:

and that the homorphisms 01, ¢; 02, ¢ are exact. If we put 1'=kernel 9,
TV =kernel 0., d=kernel 05, 4’ =kernel 0/, we have TV /T'~4’/4.

Proof: For x €1V, 0=01/x=¢b1x. Therefore, from the exactness of 2, ¢,
01x=0.y for some y €Gs. From the exactness of 01, ¢, 0’y =¢b01x=0, implying
that ¥y €4’. Although » cannot be determined uniquely, but for two such y
02(y1—y2)=0. Therefore y1—y2€ 4. Thus we obtain a homomorphism IV—4’/4,
which is easily verified to be an onto homomorphism. That the kernel of this
homomorphism is T is also clear.

Proof of Theorem 1: We have only to apply Lemma 1 to the following
diagram:
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AHP Y Agsrar, Ad)
AR [ R
H?*%(Aq, Agr) —> H**"1(Ayips2, Ad) —> H?* 1 Agrrra, Ag-1).
SSV R ey

Hp+q+l<Aq +k+2 Aq+k+1)

In the same way we can prove Theorem 2.
Considering the factor groups of the groups in (1.5) by B], we have

(1.8) 67/Bf = HL,09L, = 9D - DHPLDRKLD - DRIDKG =0,

and the isomorphisms of Theorem 1, 2 become

1.9) O DL, (D)/DUP) = KK (p—k—1D)/ KT (p—k-1),
(1.10) v H?+L,1/ H2, 9 DL(H)/KL(P).

Definition 1. For the set system % we call $Xp), KX(p), H*>?; 0, ¥ the
characteristic groups and the characteristic isomorphisms of . In the case
when one wishes to make explicit the fact that they are associated with %[,
they are written as 929N, K2 ), H? (W) ; o(W), w().

Definition 2. A map f: A—A’ is called a map of the set system U into W
and is denoted by f : AW, if f (A)C AL for each ¢, where W ={A’ =An/DA::_1
D DAL}

Theorem 3. 7 :N—-W obviously induces the homomorphisms

(1.1D) F#FOP (W) — HF (N,
82 W) —> /YW,
H?W)—> H?(N),

and hence the homomorphisms

S # ORI /9 1A —> HEZIAW /D (W)
REIQD/&E (W) —> KELFQO/KE QWO

commute wilth the characteristic isomorphism :

F#o) = o) f #,
FEe(U)) =w(QA)f#.

The proof is omitted (cf, the proof of Theorem 4).

Definition 3. Two maps fo, f1:U—>W are called homotopic (in the weak
sense), if there exists a map F: AxI—A’ such that F(a, 0)=f¢a), Fla,1)
=r1(a), F(AxI)CAg,.

Theorem 4. If fo,f1: > are homotopic, then f§=r5, k>—1.
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Proof: 1Tt is sufficient to prove fic—s{c € By %(A) for any 32,%W). If we
define A: AXI—A, p: A~AXI by MNaxt)=a, m(a)=ax(7), commutativity
relations hold in the diagram

l*
H?* (A, Agy) H?* (A1, Aey)
| £ Jx a* x|
H?*(Aq, Age)—— B Aa, Aa-)) 2 HP(AxT AqaxD),

Mg

and A%, g are inverses of each other. Choosing & € H?*%( Ay, , A.;_l) such that
¢=i*¢, we have j¥fi¥c=j*f ¥ =p F*E=(*)"LF*¢, Therefore 7 fo¥c—r1%¢)
=0, fo¥c—fr¥c €BY W), FF=rFk>-1).

2. Leray’s relation for Poincarée polynomials. In this section we take the
rational number field as the coefficient group of our cohomology theory. We
define three kinds of polynomials as follows:

P, )= 2 t7s%(H%9), 6(1,s)= 2 1°s%(H?+1,-1/H?, ),
P’q;O 7”‘1;0

Di(t, s) =p>k§. . Ot”‘<"+1>s“p(<i>£l'{/®£’q), where o(m) denotes the rank of m.
) Z

The following relation among these polynomials was given by J. Leray [11]:
If @£’1q=®&’q fOI‘ any p; q,

(2.1) (L, s) = 6(L, s)+ f{, (#5414 56+ 2)D(E, ) .
Proof: S ¥ID(t, s)=3" 3 9p(DLYDP D= T {2s2p(H? 1/H?)
k=0 k=0 p;’“—l, =0 p}l, =0
SR G P MR U - SO RS WAL TC R
p>?’ =0 p>3, 920 p}l, =0

-L = 170Dy D+ =, 225%0(DY D+ 1=B(t, )~ = [£2s70(DR D+ 11, s%0( D3 ?

+125%0( DL )+ - 1=F(¢, s)— p;o t7s% (87> ),
KT

E} $k+2@k(t, S)= ’Z‘_b p>k§ o ip"\k"‘l)s“k*zp(ﬁ‘z:f-l’ q+k+2/§z—k—ly q+k+2)
’

S SRRYRP D= B PSP OE X (8 URP D+ e
2 1’?0,‘1>2 1’}0,‘1?3

Y

=
Il
=]

I
M

P20, 4zk+

= DR D+ D SR D= T (B D= 5 st (f2 .
p=0

>0 220, 952 P50, 450

S
\

0

W+ F D DL D=L, = T LEAPED+ T 2R D=0, 5)

’

= 3 (5% YRE D=, = 2 2s(H S HPD =t ) -6, 5).
17'020 P"I}O

3. Results for homology theory. The discussions and theorems in the

preceeding sections may apply to homology groups, homotopy groups, as well

29) This is the case in Part III,
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as cohomotopy groups. For later use we state here the results for homology
groups briefly. The sequence corresponding to (1.1) is the homology sequence
of the triple (Aq¢, Ao, A7)

=(gs 9/ 2D
Tp
3.1 «—— H?( Ay, Ar) <— H*(Aq, A7)
é(q: ars g zar /s o)
» )

D E— HPCAQ/’ AQ’/) D — ﬁp+1<Aq ’ A‘q/) .

We define:
(3.2) BUp—g) =849 = A*(Aq, A1), BD—q) =F™ Q) = kernel
Z;,q:ll y 4-k—2) _ image %z(,q—l, q—k-2) s “%(p_q) E%‘£~q ’ a (90 = kernel §§Q+k+2 » O
= jmage Z;a+rc+2 ’

(8.3) B1=31,031=3D3"D - DFLOIBLD - DBIDBL, =B OB =0
Theorem 1.
G.H 0: BUP)/Bi_ (D) =~ B2 (p—k—1)/3FHp-k—1).

Theorem 2. H?9 being the image of the injection homomorphism HP+?
(Aq, Ac)>H?+Y(A, A-y) we have

(3.5) w1 H? /AP 971 = BL(p) /BL(P) .
(3.6) CyB1OHL = HDOHID - DDLDRED - DRIDKRL, =0.

Similarly Theorem 3/, 4. corresponding to Theorem 3, 4. hold for homology
theory.

If Aq are polyhedra and we are based upon suitable coefficient groups for
instance ithe rational numbear feld for both cohomology and homology groups,
we have the following dualities: €%(p) and €%(p) are dual to each other ; 3X D),
BUD), are annihilators of BYp), 3K P) respectively. H?*Y(A) and H?+1(A)
are dual to each other; H®? and H"* are annihilators of each other.

4. Application to cohomotopy groups. Theorem 1-4 also apply to cohomo-
topy groups [16], under certain restriction of dimensions. Let K be an
n-complex and let K? be its g-section (¢g=-1,0,-,#%n). Let us put A¢=K? such
that we obtain a set system A={K=K"D - DK~1=0}.

Let n%X,Y) denote the g¢-th relative cohomotopy group. Then C%(p)
=pP+(K?, K1) for 2(p+q)—1>q, and 3% p) for 2(p+q)—1>n, are defined;
BUp) for Ap+q)—1>q—1, H? =z for 2p+q)—1>n, are also defined.
Thus in these cases where 2(p+g)>n+2 and g=#n, or 2(p+q)>n+1 and
g<n-—1, we are not restricted in applying Theorem 1-4. In the remainder we
assume that p, g range over the domain refered to sbove.
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First of all it should be remarked that the following facts are known3® :
(5.1) 8Yp)=n?*Y( K, K" )~CUK, (p+q)?) where ()" denotes the h-th homo-
topy group of the l-sphere S'.

(5.2) (D*=0 for h<l, hence €(p) =0 for p>0; (B)'~1I; (h"* 1 ~1Is for
r>3; (B 2~1y for h>2.
(5.3) HYp)~HYK,(p+a)),
(5.4) wP*H(K) = ml PHO1 Dm0 PO s Db n
(5.5) 9"(0) = D2,(0) = HK(0), $*~1(0) = H27(0) = H%'(0),
9"-2(0) = P27%(0)D957*(0) = 70 ,
(5.6) £L0) =0, fL(-1)=8{(~-1), fL(-2)= QL -2),

(5.7) We also denote by @ the following composite homomorphism :

$2,(0) —> 92,(0)/95(0) — K{?(—1)/RE2(—1) = KI*2(-1) = KL (—-1)CTHL?
(=1). If in virtue of the isomorphism of (5.3) we substitute HY(K,I),
H™2(K,I:) for 92,(0), 92 —1) respectively, the homomorphism @: H%,(0)
—> 912(—1) coresponds to the Steemrod’s squaring homomorphism: Squ-z:
HYK,I)—> H"®%K, I;), so thatD0) and K3**(—1) may be identified to
Kernel {Sqe-2} CHYK,I), Image {HYWK,I)} respectively.

Keeping in mind the above remark, we have:

D (K~ n"(K)[n%" = §&(0)/R%(0) = D"(0) =~ H™(K, I) (n>3).3V
This is the Hopf-Whitney’s classification theorem of maps of an #-complex
into an #z-sphere _
(ii) als "2 /70, "1~ HETH(0)/R%7(0) = H"(0),
70 "1/~ "~ Oi(—1)/8% = O"(-1)/8%,(-1),

or
a1 (K)/x% "1~ H"YK,I),

%" 1~ H"K, I:)/Sqn-1H"2(K,I), (n>5)3D
This is the Steenrod’s classification theorem of maps of an #-complex into
an (n—1)-sphere.

(iii) 7" 2(K) = gl, "3,
b "3 /70 "2 & HE72(0)/R57%(0) = D57%0),

70 "2 /7 11 SN 1)/REN (1) = §1/(~1)/R7(-1),
7L P 1 (- 2)/R5( ~2) = H(—2)/R1(~2).

30) See [16], [25].
31) Our method does not aply to lower dimensional cases.



116 Tatsuji KuUDO

or
7" 2(K )/n% "2~ Kernel {Sgn-+} CH" XK, I),

7% "2 /g1, "1~ H"1(K, I2)/Sqn-sH"3(K, I),
a7~ "1l ~ H(K; [2>/I132) .

In order to determine the group I' or &5(—2) we must consider :
0 : 93730) — K(—2)/{(-2)CH*(-2)/R1(-2),
0: 9" —1)—> &5(—-2)/R%(-2) = {Y(—-2)CTH*(-2),
or
o0 : Hy 3K, I)—> H™"(K,I.)/Ky(-2),

0 H 2K, I:)—> K% -2)(H(K,I:), where H33(K,I)=XKernel
{Sqn-s} CH" (K, I).

Part III
Fibre bundles over a complex

1. Let §={F,G; B, A, ¢, ¢y} be a fibre bundle over a complex B, i.e. a
finite polyhedron with a definite cellular decomposition B={s?}.21> We denote
the g-section of B by B?, and the inverse image ¢~1(&2) of £ by !5, where £ is
any subset of B. Let By a given subcomplex of B, and put Aq=§‘m; . Ads
form a set system A={A=AnDAn1D -+ DAeDA-1}, the characteristic groups
and isomorphisms of which are now precisely analysed. The method is axio-
matic, and is closely parallel to the one which was used when Eilenberg-Steenrod
proved the coincidence of the axiomatic cohomology groups of a complex with
the ordinary one calculated from its cellular structure.

2. The case: B=E?. If B=E?, ¥ is a product bundle, and without loss
of generality we may assume that A=E?=BxF. Let the northern and
southern hemi-spheres of S” be denoted by E',, E” respectively. Then the
equator is S™1=E7NE”. In this section we take Bo=0. Consider the coho-

mology sequence of the triple (E7, §™-1, E71):
N H“”l(fi , E""_‘_—l) - Hp+r—1(§r—-1 , E"f__l) ___3_> qu(E’; s §7'—~1>
— H?*"(E%, E77Y)—
Since H?(E%, E")=0 by (I, §3, Lemma 4), thz coboundary homomorphism &
in the above sequence is an isomorphism onto. On the other hand, we obtain

an excision isomorphism H?*+™1(8™1, E*~" y~H?+1(E%~", §-2) by Axiom VI

(I, $2). Combining these, we obtain isomorphisms:

32) This is the only group which is not known to be calculable from a given simplicial
decomposition of K,
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2.1 gro1: HP = \(ETY, S~ HP+7(E,, 877Y),
(2.2) g% Ge-18a-2 o: HP(EY) —> HP+(EL, §%1),

Futher it is easy to see that the injection homomorphism Z%*: H 2 BU)>H?(E?)
is an isomorphism onto, and combining it with g? we obtain the following

isomorphism onto:

2.3 nt: H?(FY)—> HP*(E%, §%1).

Since E¢ is homeomorphic with the fibre F, we have

(2.4) H?(EL, 81y~ H?(F).

In particular, considering the case when H consists of a single point,

(2.5) H?(EY, S*1) =0 (p+q)., otherwise~H(E})(=p: the coefficient
group) .

3. The structure of H?+%(Aq, Ag_y) =64 p). We put ul=d?-5¢. Let 4j:
H"(Aq, Aq-1)—H?*%(3], §), pi: H?*(A,, (B*—uH)UBy) —H?+(37, ), vi:
H™%(Aq, (B'—uf)UBo)—H?*%(Aq, A¢-1) be the homomorphisms induced by
identity maps Then ¢ is an isomorphism onto for ¢f¢ Bo, and wi=pi(pi)1
is definable. Since pf=ih{, Mwi=1; consequently w!{ is an isomorphism into
and 2% is a homomorphism onto. Now applying the argument in the proof of
Lemma 5 (I, $3), we see that

3.1 H?*%(Aq, Aqr) =2 wiH?*(E], &7)

is a direct decomposition. Now let Fi: (E%L, 5-1)—(5!, ) be an admissible
map, the existence of which is assured by the Feldbau’s theorem. Then
(3.2) W= (Ff e HP(5)—> H? (&, 3D

is an isomorphism onto. By (3.1), (3.2) we obtain:

Proposion 1. The elements of H?*YAq, Ae1)=3Yp) are of the form
S winhi(al), where af € H?(5Y), and the summation is ranged over all i with
03 € By.

4. Mayer cochain complexes {64(p); ;% and {L%(p, F); s, ¢}. Since

1 -1,
”;?;14-31’/-;1?11 =¢;’?:21¥1q Dfﬁgwﬂ";’qjq:() ’
(4.1) —> C4(p) ——— CI(p) ——> CWA(p) —>
«(2) %La+13
v+a P EVESY

is a Mayer cochain complex for each fixed p. The corresponding cohomology
groups are 9U(p)=9%,(p).

We define now another Mayer cochain complex. For any closed cell ¢ of
B, we define p,=H?(5). If 6<d’, the identity map 5—4&" induces a homomorphism
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2(ey 0’): p/—0,. But since for a point x€¢ both of the injection homomor-
phisms H?()—H?*(x), H?(6)~H?"(x) are isomorphisms onto, so is %(a, o’).
We define x(¢/, 6)=1{%(a, ¢’)} 1. Then it is easy to see that {o,; %(¢/, o)} is a
faisceau of groups over B. The Mayer cochain complex corresponding to this
faisceau of groups is denoted by {L¥(p, F), lv, »}.

Our goal is the following theorem:

Theorem 5. The two Mayer complexes {8Up), ap?e}, (LUD, F), In, d} are
equivalent : more precisely, there exists an isomorphism x: LI(p, F)—CUp), such
that

(4.2) ’lzr»?q’i =klpq.
k is actually given by k: LY P, F)dX afoi— 2 wihlal € €U(p).

Proof: It is sufficient to prove, for each ale? € LY P, &),

ayBax(alo?) = klp,  aZ6?), or

agPawihial = i S ([ed Dl 2(aitt, dDa?), or

(4.3) M layawinia=ni" ([4%: of]2(ai*t, o})al), for each j with o€ Bo.

Condition (4.3) may be further simplified. Consider the diagram:
“;qjq

H?*(Aq, Agm1) ——— —> H?*%%1(Ags1, Ad)

1 3
Vi p+1
AJ

!l .
B
A ————
H? (3, 3 —H?*"(Aa, (B'—DUBD) |
5 )
Hp+q(3¢jl+l>_8_>Hp+Q+1(3§+l . 33+1> .
Since commutativity relations hold in the diagram, (4.3) reduces to:
(4.4 00 () hiah = 3 ([of*': ai12(a5*, o) al).
(i) The case: [di*': ¢¥]=0. (44) becomes:
(4.5) O ()10 =0. for b € H**4(5], &)).
Considar the diagram:
q D I g
H?* (58, ) < H?*(Aq, (B~ u)UBo)—> H*9(35)
\m* lm* /@3*
Hp+q(a§+1uag , a‘}“Ua‘é) ,
where ¢’s are identity maps. Commutativity relations hold in the diagram; ¢:*

is an excision isomorphism; ¢s*=0. Consequently, O*(pf)~1=¢s*(@1*)~1=0,

which proves (4.5).
(ii) The case [6§*': 6f]==%1. Commutativity relations hold in the follow-

ing diagram:
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g 0%

HI’-HI(ag' ag) < HP+Q<AQ’ (BQ_uf'?)UB‘)) > Hp+q<ag+l>

N T%* la
HP (G5, (5 —ud) ) —> HP* (55, 557,

3
where ¢’s are identity maps.

Since ¢4* is an exision isomorphism, (4.4) reduces to:
(4.6) 6Coa) hial = [o5*: i1 15" x(a§™, ol af.

Now let us consider the case [¢}*': ¢!]=+1. In thiscase f;=/;|(EL, S*1)
~fi. Representing 7 as a product space o!x F, let fi(x, ¥)=(F«(x), Zi(x, ¥)),
of (%, »)=CF x), 25(x, ¥)), where (x, ) CEL. Then, since E% is contractible,
without loss of generality, we may assume gi(x, ¥)=g:¥, £:(x, ¥)=g;y where g,
£5€G. Further we may assume fj=fs---f*, f5* is not changed by doing so.
Thus assumed we have fi='7;% where & is an automorphism of E% defined
by: &: EL3(x, y)—(x, g5giy)=(x, gv)€EL. Tt is obvious that, h'Z*=g*h":
H?(EV)—HYY(E?, §59-1), Hence 0 pa*) " hy=0(ps*)~1( F*) b F*=0( o)/ F)1
(&)1 gk Fr=0Cps*) CFF) Y 7% . Therefore (4.6) reduces to:

4.7 M) FA LRV Fi¥ = p3 A (a3, of).

The proof of (4.7) is easy.

Finally let [o?*': 6f]=—1. Let r be defined by 7(§o, -, &, Eqs1)=(50, -,
—&q¢, €a41), and put Fi= fir and ki =(FF)RF % . Then k3 =(fir Y*1h2( fir)
=(f /)W) Bir*f . But since tre latter t* operating on H**W E%*1) is the
identity, while the former (v*)~1=r* operating on H?+%(E%*'. §?) only changes
sign, 8Cps*)"1 Rlal=h5" 2(o4*t, o) al= -1 (e, o) al, which proves (4.6).

Theorem 5 is thus proved.

5. Orientable case (G=arc-wise connected). The group L?(p,F) is iso-
morphic to the ordinary cochain group C*(B—Bo, H?(F)) of B with the p-th
cohomology group of the fibre as coefficient domain. The isomorphism is realized
as follows:

Let ¢i: dixF—3 be any admissible map, and put ¢is: F3 3—0i, o)
=¢i(%, ¥). @i, » induces obviously isomorphism go?‘, 2 HP(G)~H?(F), not depend-
ing on a special choice of x€4¢?. Then &: LU(p, F)> T aloi—X (¢ .al) di €CT
(B—Bo, H?(F) ) is the desired isomorphism. Now and throughout the remain-
der of this paper we assume that § is orientable, i.e. G is arc-wise connected.
Then the above isomorphism £ is indedendent of a special choice of ¢;. Let
@i/ be another admissible map, then the map ¢?> x—w{fw%, »=&i» € G is homotopic
to the constant map ¢f > x—e € G, where ¢ denotes the unit element of G. Hence
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go;k o= goi 2, as desired. From this we can prove that d0=&lp, ox"1: CY(B- By,
H?(F) )—+Cq+1(B Bo, H’(F)) is an ordinary coboundary operator. Thus we
havea:

Theorem 6. The Mayer cochain complex {L'(p, ¥); lp, o}, and hence {E(p),
a2, is equivalent to the Mayer complex {C{B—Bo, H(F)), 0}. In parti-
cular 3%p), BUp), Up) are isomorphic to Z(B- By, H*(F)), B(B— By,
H?(F)), H(B—Bo, H?(F)) respectively. In particular, i f our basic coe ffici ent
domain is a field, DU p) is isomorphic to the Kronecker product H(B— By)
KRH?(F).

6. Invariance theorem. The characteristic groups and isomorphisms in the
prec3eding sactions depend not only on the fibre bundle § but also on a cellular
decomposition (K, Ko) of the base space (B, Bo). Therefore their strict nota-
tions should have besn 92’ ?(%; K, Ko), etc. Now let us consider for a given
& various callular decompostions of (B, By) and find the relations zmong the
corresponding characteristic groups and isomorphisms.

Theorem 7. With each pair {(K, Ko), 'K, 'Ko)} of cellular decompositions
of (B,By), we may associate isomorphisms wi{(K, K,), (K, Ko)}:

DUF 'K, ' Ko) — 82T K, Ko), 2P, 'K,’Ko) — S 4 K, Ko), H??
(%, 'K, Ko)—H? Y% ; K,Ko) such that O(F; K, Ko)w{(K, Ko), 'K, Ko)}
=wi{(K, Ko), (K, 'K} 0(F; 'K, 'Ko), ¥(F; K, Ko)w{(K, Ko), ('K, "Ko)}
=wi{(K, Ko), 'K, Ko)} (% ; 'K, "’Ko), and such that wi{(K, Ko), (K, K)}
w{(’K, "Ko), (K, "Ko)} =w{(K, Ko), (K, " Ko)}.

Proof: Let f:%F—'% be a bundle map, which induces a czllular map
f: (K, Ko)—(K,'Ko), where (K, Ko), ('K, ’Ko) are given czllular decomposi-
tions of (B, Bo), (B, ’By) respectively. Then f inducss a map f# of the set
system A=WA(F; K, Ko) into the set system A=ACF; 'K, ’Ko). By Theorem
311, §1) FA:UA—"A induces in turn a homomorphism f#*: Op ‘(' ; 'K, 'Ko)
-9 UF; K, Ko), etc.,, commuting with @, ¥. Let f1: F—’F bz another bundle
map which induces a callular map fi: (K, Ko)—("K,’K,), and which is con-
nectad to fo=/ by a continuous family of bundle maps: F—'F (0<#<1). We
assume further that each f: induces f:: (B, Bo)—(’B,’By). f: need not be
cellular, but we may suppose f:(K?)C’K?*1 for each g. For, if otherwise, we
first replace f; by &: with the above property by deformation, and then replace
f: by g: which induces &: by Theorem D (I. §1). Thus assumed, f; inducss a
homotopy of f 5’ S f’ : A—'Y, and by Theorem 4 (1L, §1) we obtain:

(6.1) fE=7s%.

We first consider the case: F='F, Bo=Bo, (K, Ko) (K, Ko)(('K,’Ko) is
a subdivision of (K, Ko)). Let &1 be a cellular map ('K, "Ko)—(K, Ko) which
is homotopic to the identity &o: (B, Bo)—(B, Bo) the homotopy being
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2:.33 By Theorem D, there exists a continuous family of bundle maps g; which
induces g; and such that go is the identity 1. Obviously £1:(/A)CY, and induces
g5 O U, 'K, 'Ko)—90 (B 'K, "Ko), etc.; 170CA  and  induces 1#:
P UF, K, Ko)O0 (F; K, Ko) etc. Now, since g 17(00)CA and 17g7(%)
C’U are homotopic to the identities 1: A-N, 1: "A—'A respactively, by Theorem
4 1#g# =], g#1#=13% Therefors 1¥ and g¥ are both isomorpeisms onto, and
inverses to each other. Since 1 (and hence 1¥) depends only on &: K, Ko;
'K,’Ko, so is g5. We put w{(K, Ko), ('K, Ko)}=1#, w{('K, "Ko), (K, Ko)}
=g%. Obviously if (“K,"Ko)>(K,'Ko)>(K, Ko), w{(K, Ko), 'K, Ko)}
w{(’K,"Ko), (K, Ko)}=w{(""K,"”Ko), (K, K¢)}. Now let (K, Ko), (K, Ko) be
arbitrary two decompostions of (B, By). Let (YK, '"Ko)>(K, Ko) be so fine that
the identity map (B, Bo)—(B, Bo) can be approximated by a cellular map ¢:
('K, ’K¢)—(K, K¢).3® By making use of Theorem D, a bundle map ¢: T—F
which induces ¢ can be defined, inducing homomorphisms ¢#: 9 U(F, K, Ko)
-9V U(F, 'K, Ko) etc. By (6.1) ¢* is independent of the special ¢. We put
w{(K, Ko) (K, Ko)}=w{(K, Ko), 'K, Ko)} w{’K,’Ko), (K.Ko)}. It is inde-
dendent of the subivision chosen. Now by the discussion used in the special
case: ('K, ’Ko)>(K, Ko), we see that w{(K, Ko), (K, Ko)} w{(K, Ko) (K,’Ko)}
=1, showing that w{(K, Ko), (K, Ko)}’s are isomorphisms onto. That
w{(K, Ko), 'K,’"Ko)} w{("K,’'Ko), (""K,"Ko)}=wi{(K, Ko), (""K,"”Ky)}, and
that w commute with 0, ¥, are obvious, and the theorem is proved.

By Theorem 7, we may unite 92 %F; K, K,), etc. into 9 «F, B, By)
=PI UF; K@, Ko®), w{(K®, Ko®), (K®, K¢®)}} etc. An element #
of VU F; B, By) is of the form: u={,u™ -}, u® €DV (F; K, K»),
UB = (KB, Ko®), (K, Ko} 4™,

The influence under a general bundle map f: §—'T may be discussed in an
obvious way.

8. Results for homology theory. All the results in the preceding sections
may be similarly stated in terms of homology theory. In particular :

Theorem 6. [f G is arc-wise connected, the Mayer chain complex {C4(p),
d T2} is equivalent to the Mayer chain complex {CUB, Bo; H?(F)), 8}. In
particular 5%(p), BUD). Dp) are isomorphic to Z%B, B; H*(F)), 5B, By ;
H?(F)), H(B, Bo; H"(F) ) respectively. In particular, i f our basic coeficient
domain is a field, HY(p) is isomorphic to theKronecker product HY(B, Bo)
RH?(F).

9. Corollaries to Theorem 6 (and 6’). Throughout the remainder of this
raper B, F are assumed to be connected polyhedra of dimensions # and d
respectively, and G is arc-wise connected.

33) We may assume that g;(’ K% K?+1. See, J. H. C. Whitehead [26].
34) (gf)F= f¥gs
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Cor. 1. If H?(F)=0, in particular if p<0 or p>d, then CU(p)=0.

Cor. 2 H”(Ay, A)=0 (¢'>q>p).

Proof : Hp(Aq ’ Aq)=0, HpCAqH ’ Aq)E@qH(P_Q"1)=0a Hp(Aq-n-z ’ Aq)=0
from the exactness of 0=H?(Ags2, Aqs1)>H"(Ags2, A)—H*(Aq1, Ad)=0,
and so on.

The intuitive meaning of Cor. 2 is better understood in the dual form:

(9.1) H"(A¢, A)=0 (¢>¢>p). (9.1) implies:

(9.2) (Taking Bo=0), any p-cycle in A is homologous to a p-cycle in Ayp; any
(p—1)-cycle which is homologous to 0 in A is already homologous to 0 in Ap.

Cor. 3. H”(Aq, A¢)=0 (p—d—1>¢>"q).

Cor. 4. 531—«1—2(17)=5%—1(P>=330(P), Bi_»(P) =§B‘1_l(p)=%§,(p),

In particular, 3%(0)=3%0), BI(0)=BL(0); 3i_.(d)=2%(d), BUd)=B"(d).
Cor. 5. [f H?(F)=0 for 0<p<d,

9.3) 3%0) = 3&(0)DBL(0) = BI(0)DB5_,(0) = B (0),
9.4) 54 ad) = 3i-1(@)D8i-1(d) = B:(d)DB(d) =BU(d).
Consequenily
(9.5) B UA) /BT @) = BiZs )/ 342N (@) ~ Bi(0)/B5_,(0)
= B5(0)/B%0) .

Cor. 6. From the definition,

(9.6) H?(A, A1) = H?*L-1DH? 0D .« DH? ™" =0,
Besides,
9.7 H?(A, A-)) = H%+1,P-4-1_(9.8) H%? =0.

In particular, if H?(F)=0 for 0<p<d,
(9.8) H(A, A-) = H®*L 71D H% P8 = ... = L, P-1DH%? =0.
Consequently,
(9.9)  H'I(A)/Hbt= = H*1, =02/ O, =41 = 205071 (3)/B1(d)
= 357N d)/B* N d) .
(9.10 B%0)/B%(0) = 35(0)/Be(0) ~ H» ©=1/H% * = H1, 971,

Cor. 7. Assvme that o is a field, Bo=0. If HY(B)=0 for 0<q<n, it is
obvious that 3'(p)=2%L(p) =BL(p)=BUp).
For q=0 or =n, we have

B(p) = B_s(p)DBa_2(D) = BX(0)DBL(p) = BUp),
5U(P) = Be(0) DB p) = By ($) DBr_o(p) = B"(p) .
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Consequently non-trivial chavacteristic isomorphism @ is:

(9.11)  B%p)/BA(D) = Ba—s(D)/Bu—2(p) = B, (p—n+1)/Br_y(p—n+1)
=BL(p—n+1)/B(p—n+1).

Since HP(A)=H?*L,-1DH? 0=".. = [P-n+2,7=17) f[]¥-" " =(), non-trivial

chavacteristic i somorphisms ¥ are:

(9.12) B(p—n+1)/Be(p—n+1)=3%p-n+1)/Be(p—n+1)

A HP-"+2, "=1] [p=n+1,n _ Fppe1,0
(9.13) H"(A)/H”° = H"*1 ~1/H?5 0 & Za(D)/BA(D) = Z&(p)/BXp) .

Cor. 8. If H"™ %A, A-1)=0, then 3L(p)=BL(D).

10. The case: p=0, Bo=0. By Theorem 6, and Cor.4. HYB)
~HYB, H(F) )=~9%(0)=9%(0). By Cor. 6, H%?=0. Thus the characteristic

isomorphism w: H1,%1/H0% %~=9%(0)/8%(0) reduces to H(A)DH» —1~9L(0)
/8%(0), inducing a homomorphism :

(10. D) £10) — HY(A).

It can be easily verified that the homomorphism (10.1) is equivalent to the
homomorphism :

(10.2) ¢*: HY(B)—H'(A), induced form ihe projection ¢: A—B. Thersfore
identifying $?(0) to H?(B) (if necessary), we see

(10.3) 8KZ(0) = Kernel ¢*, (10.4) HY ! = I'mage ¢*.
11. The case ¢=0, Bo=0. By Theorem 6 and Cor. 4, H?(F)~H(B. H*(F))
=9 p)DOL(P)DRUP)=0. By Cor. 6, H**1,-1=H?(A). Thus the character-

istic isomorphism W : H?*1L ~1/H? ox9%(p)/R%(p) reduces to H?(A)/H?> O
~9%(p), inducing a homomorphism :

11.1) H?P(A) — 9°(p).

It can easily be seen that the homomorphism (11.1) is equivalent to the homo-
morphism :

(11.2) ¢*: H?(A)—H?(F,), induced by the injection i: F,—A, where ADF,
is a fubre at a fixed point x of B.

Therefore, identifying 9°(p) to H"(F,,) (if necessary), we see
(11.3) D%(P) = I'mage i*, (11.4)  H?° = Kernel i*.
Similarly identifying 9°(p) to H*(F),

(11.3Y  R%p) = Kernel iy, (11.4Y  H?° = Image iy.
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As for the characteristic isomorphism @, by Cor. 4, @:95_,(p)/93_(p)~
{2+1(0)/ 8221(0) reduces to

(11.5) 0 : DU/ DU P) ~ §E(0)/RET(0), where we put
DLUD) = Do_o(D) , RETH(0) = &321(0) .
Dually, putting 82() = 83_,(»), H2+10) = $2+1(0), we have
(11.5) 0 : RUP)/ §E(0) =~ H51(0)/DE(0) .
The properties of DU(p), R271(0); K(p), 951 will be investigated later.
12. The case p=d, By=0, H*(F)~p. By the dual fi)rms of Theorem 6, Cor.
4, and Cor. 7, we have HB)~HB, ﬁ"(F))zﬁ"(d)=®&(c€), and A%1,9-1=0,

Thus the characteristic isomorphism ¥~1: H 9 A4 1,1x8 (d)/R4(d) reduces
to HH'~%%(d)/fL(d) inducing a homomorphism

(11..1) ¢ 9%(d) —> B A).

By Cor. 6, the characteristic isomorphism @ : &%_,(d)/R3_,(d)=3:1(0)/
$L*0), reduces to

(12.2) RL(d)/RE_(d) =~ HIFI0) / DL10) .
The meanings of (12.2) and (12.1) will be given later (IV, §6; §7).

13. Leray’s relation. According to Thieorem 6, in case where p is a field
Leray’s relation (2.1) (I, $2) becomes ;

(13.1) Pr(2)-Pals) = 6(2, )+ 3o (41 +552)D(4, 5) .

k=0

In particular putting f/=s, we have:

(13.2) Ba)-Ba(t) = Bul)+ (1+8) 3 £#1Dults ).

Immediate consequences of (13.2) are:

(13.3) Ap-Xp =%A4, where Xy denotes the Euler characteristic of M,
(13.4)  Pr(t)-Pu(t) 7 Pu(t) (Leray’s inequality),

(13.5)  Bp(#)-Ps(2) = Pu(#) if and only if HUp) = HL(p) for any 2, q.

Part IV
Multiplicative Properties of characteristic groups

1. In this part the set system U is the same as in the preceding part. We
shall assume further that Bo is void ; the group of the bundle G is a connected
compact Lie group, and the fibre F is a homogeneous space F=G/U. Under this
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circumstance, given an arbitrary simplicial decomposition of B, A may be
simplicially decomposed in such a way that A¢(g¢=0,1, ..., n) are all subcom-
plexes of A. Cohomology theory and U-product appearing here are those
introduczd into polyhedra in the usual way.3%

2. The product of two fibre bundles. Let F='"Fx’'F, and let 'B={d},
'A={t8}, "B={"6f}, "' A=1{""1;} be cellular decompositions such that 'Aq, "’ As
are subcomplexes of ’A, ’’ A respectively. Then clearly B='Bx"B={d]x""d%},
A="Ax""A={t9x"'77} are czllular decompositions of B, A respectively, and A¢’s
are subcomplexes of A. In fact, the support of a point ‘ax”’a€ A being the
product ‘t2x’/z] of the supports ‘t§ ,’’t; of ‘a,"’a respactively, and the projec-
tions ‘¢(’72), "¢(’'7;) being contained in the supports ‘o7, /a5 of ‘¢('a), ""¢("’a)
respactively, the actual form of A,=B° is A;=Uqgsszi'A¢x’’A;. Then it is
easy to prove:

(2.1) If 'a,”’u are cochains of 'A," A vespectively, such that 'u|’ Aq=0, ""u|"" A,
=0, then ‘ax'"u is a cochain of A such that (‘ax"#)|Aq+s+1=0.

Now we define the following multiplications :

2.2) P (r) CC(p+r),
(2.3) H"("A)xH'("A) C H*"(A).

As for (2.2): Let ‘u€’CUp)=H?YW A, Ag1), "v€/"C(r) = H™*(" As,

"As-1) bz reprzsentad respectively by cochains ‘#, /v of ‘A, ”A such that
0’ul’ Aqg=0, ‘a}’ Ag1=0; 00| A;=0, "v| As-1=0.
Then w="ux'"v is a cochain of A such that 00 |Aq+s=0, w| Ag+;-1=0, representing
an element w of HP*"™"*(Agis, Agrs—1)=8(p+7r). That w is determined
uniquely by ‘4 and /v is easily verified also by making use of (2.1). w is
denoted by uxwv. As for (2.3): this is the ordinary multiplication.

By making use of (2.1) and repeating the above arguments we have:

Theorem 8. For k>0,

2.4 ‘B (BIXBia(r) C (P,
(2.5) IBE (PINBL(r) CBL (P,
(2.6) B (PIXIBU)  CBE(prr),
(2.7) rH?,¢ X HTS (C HPr-1,045+1

Since '3L(p)x"BE(r) TBI(p+r), BUP)X"BL(r)CTB(p+r), in (2. 4),
(2.5), (2.6) we may replace 3,B by 9. respectively.

Obviously the above multiplications are bilinear, and we may define for
"ux € "HI(P), the following homomorphisms :

35) See Lefschetz’s text. See also [1].
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(2.8% Cuex): "D ()" D(r) —> DEZi(P+7r)/ D (p+7),
(2.9 Curx )z 851" 8i(r) —> SLX1(p+r)[RET(p+7),
(2.10), (X ): "9(r)] " 8%(r) —> PL(p+r)/ RE*(p+7).
Further we may define:

(2.11), (TuoX ) TH'LI-1[/HTS s HPHT+1, 048-1 ] fpI+r, @45

directly using cochains. Then we have:
Theorem 9;. For "u, €'9Yp),

(2.12), (=" Cupx )0 = O X)),
(2.13), (Cu®x W = w17y X ).

Replacing the left multiplications in (2.8);~(2.12); by the right multiplications
(X""v), we obtain in the same way the corresponding definitions and formulas
(2.1)»~(2.12)». In particular:

Theorem 9,. For ""py€&(r),

(2.12) (X"vg) O = OF (X "ve),
(2.13)r (X)) WEL = gFI( X "p,) .

3. \/-product. Given a fibre boundle ¥ we consider the self-product
'F=FxF. Let the decomposition of B be simplicial. We first notice that there
exists a map g1: B—/B=BxB homotopic to the diagonal may go: B—'B 3%
such that g}(b%)C’B? The following map % is an example of such g1. Let the
verticss of B be simply ordered. % maps each ordered simpley o=(%xo%1... Xq)
Onto {(x0)X (xox1 ... 2D} U {(xox1) X (X1% ... %)} U ... U (X1 ... %) X (%¢)} semi-
linearly as indicated by the following figure:

(0,0)=xo (0x0)
©." (0,2) (Ox 1) (0x2)
(2x2)
Xos - (x1)
=W (L) (22)=X2 (1x2)

Let g: BXI—'B be a homotopy connecting go to gi1. By Theorem D, the
inducad bundles (I, §1) 'Fo,XI and ‘§, are equivalent in the restricted sense.
But, since the bundle space of ’%aoxl is a subset A of BX’AXI defined by
A={(x,'a, t)|go(x)="¢("a)}, and the bundle space of ‘T, is a subset A of
BxIx’A defined by A={[x, t,’allg(x, t)="¢(‘a)}, the map %: A—A, giving the
above equivalencz may be written as: x(x, ‘@, t)=[x, {, £,,:(’a)], for ‘a €' Foya»

36) For x¢ B, ge(x)==xxxe’/B. See [3].
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where &z,1: "Fo 2y—>"Fyw,0 is @ homeomorphism, and &,,, reduces to the identity
when ¢=0. By making use of §z:’s, we define a map f: AxI—'A by f(a, t)
=<z,:(fo(@)) tor a € F», where fo is the diagonal map: A—~'A=AxA. Obviously
Wfila, )=g(x, t)=g1(¢a, t); f1: A—'A defined by f1(a)=r(a, 1) satisfies
f1(A)C’Aq, inducing a map of the set systems f f : A—A. By Theorem 3, f I
induces the homomorphisms /§ of the characteristic groups :

3.1 [ CHZ (p+r) —> HIN(p+r),

(3.2) FE KR (ptr) —> Kt (p+r),

(3.3) fi#: CHPHT-L, Q8L s FIPAT=1, Q4541 s

(33)/ fif. /HIJ+'r—1,q+s+1//Hp+r,q+s___) Hp+r.-1,q+s+1/Hp+r’p+q.

We give the following definitions: For u#€9(p), v (r); a€ H?(A),
bEH(A); e €DL(D), c€H™LI*/H"S | ¢y € HP-1,9+1/ %9 we define

u\/v = ffuxv) €D™(p+7), a\/b = f¥(axb) € H***(A),
”m\/c;_fé{?(umx c)=Hp+r—1,'1+s+8/H‘p+r,Q+s’ Cl\/C—“—ff(Cl Xc) ¢ Hp+r+l,q+8+1/H1’+r,'l 1 8.

Then in virtue of (2.4)-(2.7), (5.1)-(3.3), we have:
Theorem 10.

G.9 i (P)V Bi () C BZ(p+7),
(3.5) K& (PN Dia(r) C K (p+r),
(3.6) Pia(®V & () C K (p+r),
(3.7) H? 0\ H* C HPFr=3,00-1,

Further if we define (ux\/), (Nux) for ux € DY p) in the same way (urpx ), (X ux)
were defined in the preceding section, we have in virtue of Theorem 9 and

(3.1)-(3.3):
Theorem 11.
(B.8%  (~D"™ 0O = 02w\, B8 (Vaw) 03 = 08 (Vuw),
(3.9), (U D)W = ¥y, \/ ), (3.8) (Vo)W = wH(\/ o) .
We remark that if we denote by 0 the following composite homomorphism :
(3.10) 0 : D) —> Du(p)/S&(p) —> H” "1/ H?»?,
we have:
(3.11) U\ € = 0(u)\/C,
(3.1 0\ Vo) = 0(0e)\/O(v), for u€D(P), veHL(r).

Now let us prove that the product \/ does not depend on a special g1. For this
purpose let g-1 be another g£1, i.e. a map g-1: B—’B which is homotopic to
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the diagonal map go and such that g-1(BY)C’B% Let f-1 be deiined in the same
way as f1 was defined from g1. Then it is sufficient to prove in virtue of
Theorem 4 and the definition of the product \/ that f i’l is homotopic to f f’ in
the sense of (I, §1). Let g: BXI-—'B, X :'SooXI-—"Ti» Eore 1" Foqu—"Focart>
maps used to define f-1, where I- is the interval <—1,0>.

The interval < —1, 1> being denoted by E, let §: BXE='B, 1: oy x E—'F7
be defined by : §=8, 1=1, for t€I-; g=g, 1=1, for ¢€1. Since g.a(BHC'BY,
the homotopy £ connecting g-1 to g1 may be deformed into a homotopy k such
that k(B?, ¢)C’B%! for each £.3% Let ! be a deformation of Z to k: I is a map
l: BXExI—'B such that I(x,4,0)=8(x, t), I(x, ¢, 1)=k(x, t), 1(x, —1, s)=g-1(%x),
I(x, 1, s)=g1(x). Then by Theorem D the equivalence x:! Tog X E—'Fg may bs
extended to an equivalence 0: gy X E X [—F;, such that, when we define
Eat s Norers by Z(X'at) =[%t,E2:("a)], 0(x,'a,t,s) =[xt 8 orsss (“@)] for
‘a €'Foyx), we have Yme,0=mrt» Tas11s=5z21. Noticing that fu: A—'A are
given by fii(a)=&,.1(fu(a)), a€F,, we easily see that the map: AXE3
(@, £)—> 7y 01( Fo(@))C’ A gives the desired homotopy of f7 to f <8

4. Relation to the ordinary {J-product. Let f1 be the same as defined in
the preceding section. The map f lll : - induces a homophism fI:/C(p)—
CUp). Let ucGUp), vEC(r), and define u\/ v €C(p+r) by u\ v=FF(uxv).

Lemma. ZLet B be a subcomplex of B, ind et F=%|B. Let 1A A be the
inclusion map, and let i#: G4 p)—»@"( P) be the induced homomorphism (U, $1).
Let 7; A—Ax A be obtained from fi by vestricting the range of definition as
well as the range of values. Then we have:

(4.1) i#(u\ 1) = (i%u\/7 i%0), for u€C(p), v € (r).

Proof: Let j: AX A—Ax A be the inclusion map. Since it is easily seen that
FH ux v)=1%uxi%v, we have ¥(u\/r0)=i%fFuxv)=(f1iY#(uxv) =G ¥ ux v)=
F#JH ux ) = FE(i%ux i%0)=i%u\/ si#v.

We apply this lemma to the case where B=s{**. We notice that ¥ : (%
(p+7r)>—64+(p+7) is identical with the homomorphism (III, §3) Jg+s Fr+a+rss
(Agiss Agis—1)— HP 15 (Glts 2045y If we identify €%(p) to CY B, H?(F)) in
virtue of the isomorphism in Theorem 6, from (4.1) we have

(4.2)  X*(ajai\/ r1dio})=i¥(ais})\/ 7 i#(d}o}), for aiai € C'(B, H*(F)),
@405 € C5(B, H'(F)).
Now let us assume that a fixed simple ordering of the vertices of B is given
and let us take g1=h: the special one which was given in the preczding section

as an example. We notice that H?(F) and H"(F) are paired to H**"(F) by
the ordinary (Cech-Whitney’s) U-product, and that with respect to this pairing
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C% B, H*(F) and C*(B, H"(F)) are paired to C?**(B, H**"(F)) in the usual
way : by making use of the functional notation we define «Uwv € C***(B, H**"(F))
for u€CYB, H?(F)), vcC*(B, H(F)) by (#Uv)(x0x1 ... Xqus)=u{Xox1 ... Xo)U
v(Xq ... Xq+s), where o=(%oX1 ... Xq+5) is an ordered simplex. We shall show that
two multiplications \/r; and U coincide up to sign For this purpose it is
sufficient to prove that 4 *((&{o{)\/r, (&jo}))=%13**((ajsDU(a]7))), i.e.

(4.3) i¥(aja)\/r 1¥(d50) =215 ((a]Ua; (01U d))) .

There are several cases. If either of or ¢} is not contained in o %%, both
sides of (4.3) vanish. If both ¢] and ¢} are contained in ¢;*?, a slight conside-
ration shows that (4.3) reduces to

(4.4 (aioD\V3(ayoy) = £(a7Ud;)(s;Ud3), whre
a}s? € CY(B, H*(F)), ajsy €C*(B, H'(F)).

(i) If ol]Ud5=0, dim [(Image g1)N(dixd5))]<g+s. Hence it is easily
seen that both sides of (4.4) vanish.

(ii) If 6]Ue530, we may assume without loss of generality that ¢7Udj=0}"".
Since ¥ is a product bundle, we may assume that A=BxF. Then f:dl*'xF
—ol* X gl x FXF may be represented by f(x, y)=(h(x),£,(d(»))), where
§,: FXF—>FxF is an automorphism which is homotopic to the identity and
where d: F—-F xF is the diagonal map. Let d: F>FxF be a cellular map
which is homotopic to d. Sincs ¢f*° is contractible 7 is homotopic to the map
7(x, ¥)=(h(x), d(»)), the projection [x— h(x)] remaining fixed, (4. 4) reduces to

(4.5) 7#[(ais}) x (djos)]=(a}Ua})ai™ .

Since ajd?, djs} may be represented by cochains of the form ¢Xc}, aixc)
respectively, (afo?)x(ajs}) is represented by the cochain (ofx cf)x(d§Xc))=
(1) (oix o) x (P xc}). Hence (aid])\/r,(&js}) is represented by the cochain
(1" Rm*(o? X a%) x d*(c? % ¢}), which represents (—1)"*(afUd})oi** .

Theorem 12. Identifying 9 p) to HYB, H*(F)), we have

(4.8) uNv= (=1 ulv, for u€(p), veH(r),
4.7 a\/b=aUb, for a€ H*(A), be H'(A).
Proof : (4.6) is the immediate consequence of the above discussion. (4.7)

is the immediate consequence of [1].36

By this theorem, Theorem 10 becomes :

36) See [1].
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Theorem 10 (U).

(4. 8 i1 (P) U §i, () C D2 (p+7) 5
(4. 9 S5 (DU () C K (p+7),
(4.10) (DU & (r) C 8 (D+7),
(4.11) H?*U H™® C HP+r-1,245+1

Corollary to Theorem 12. If o is a field, we have U p)=9(OIN/D(p).

5. Algebras © and H(A). We consider the direct sums 9 =215, 9Up),
H(A)=YyH*(A). They are algebras with respect to \/- (or U-) multiplication.?”
In particular H(A) is the ordinary cohomology ring of A. The following facts
are only the restatement of the results in the preceding sections:

(5.1) In virtue of (3.4) in Theorem 10, H°=3,H(p), H(0)=3.H0),
Hi=2"0,¢0%p), and Do =15 PL(p) are subalgebras of 9, and so are their
intersections 93=9°N9x, HX=9"N9.,.

(5.2) In virtue of (3.5), (3.6) in Theorem 10, R:=21p,¢R¥P) is an ideal of
Hi-1. Hence Cr=94-1/f: is an algebra, multiplication being inducsd from
that of 9x-1.38 K(0)=RNK(0) and K.(0)=8.NK(0) are ideals of H,(0)=
Hr-1(0)=9(0).

(5.3) If we put HP*=3H"?, H%'=3,H"?, in virtue of (3.7) in
Theorem 10, HY* is a subalgebra of H(A); H*! is an ideal of H(A).

(5.4) Consider the direct sum &=, (H?*1L,%1/H?% and introducs in it a
multiplication \/ by making use of representatives. This is possible in virtue

of (3.7) in Theorem 10. Then ¢~9./f. is a ring isomorphism according to
(3.12).

6. ,\~product. In this section the coefficient ring o is a field. Under this
assumption D=315,,9p) is dual to 9, and H(A)=pH?(A) is dual to H(A).
Then /\-product is defined as follows: Let v€9(»), z€D*(p+7»). Then vz
is an element of $U(p) satisfying the following equation: <lw, v/\z>=<u\/v,2>,
for every u€9Up); let bec H'(A), 2€ A**"(A). Then bz is an element of
H?(A) satisfying the following equation: <ab/\z> = <a/\bz>, for every
a€ H*(A).

Identifying $%(p) to HY(B, H*(F)), we see from Theorem 12 that /\-product
is essentially the same with the ordinary N-product. From Theorem 10 we have:

37) Hisa doubly graded ring in the sense of H. Cartan.

38) When we denote by A the following composite homomorphism : Cr=Dr-1/ Kr—>Dr—1
[ D1 Qu+1/ Rx—>Dr—1/ fx=Cx G becomes a graded ring with differential operator Ax,
the cohomology ring of which is isomorphic to Gr+;. See [8], [30].
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Theorem 13.

(6.1) DL (r) N\ 8L (p+r) C RE(D),
(6.2) LM N\ S (p+r) CHE ()
(6.3) i N 8iX(p+r) C KD,
(6.4) H7»® N HP+r,048 C foe,e-1,

We define for ux€9i(r) the homomorphism (ux/\): DL(p+7)/PLE(p+7) —
BUp)/ 88,.(p) directly in virtue of Theorem 13, or we define it as the dual
homomorphism of (\Vux) : 8L,1(D)/ KU P)— KIH(p+7)/RE(p+7).
The other homomorphisms being similarly defined, we have:

Theorem 14.

(6.5) Cue N0 = 03 (ue/\)
(6.6) (UeoNEEL = W (4, \ ), Where U € Do OF ey € Doo/ Ko
Consider the following diagram:
(6.7) S0 —Ts Bl RL) — s oL g
1(/\zm> | re | Atz

L) —20s BUP) /PP — s A1 AP0,

where 7., € DLH(p+#); 6; are natural homorphisms ; (/\2.) and (/\Wsz.,) are
defined in virtue of Theorem 13. Then we have:

Theorem 15. Commutativity relations hold in the above diagram (6.7).

Proof: (/Nzw)1=02(/\2.,) is obvious. Let us prove that Ww1(»)A¥f2z.,
=00/ \2) for v €DL(r)/Fs(r). In virtue of (5.4) for any a € H?*1,91/H?,19
we have <a, T(v/\2,) > = <(a), v/\22.> = <W(a)\/V, 022> =<w(a\/w~Yv)),
02200> = <a\/¥~ V), Wiz, >=<a, ¥~ 1v) Wz, >.

By (11, §9) ¥: $5(d)/Ra(d)=~H%"/H**1,"1 reduces to T: D"(d)~H"+*(A).
Let Z™ %€ ™(d), 2"+** € H**% A) correspond to each other under this isomorphism.
Let us consider the case where »=0. p=d, s+g=#xn. Then in virtue of (ITI, §9)
(6.7) reduces to:

(6.8)  H"%0) —7—> H"(0) /KL (0) > H. ‘(9—3—) H""(A)
[crzeny [cazem e [z
5@~ by — s ane s geaca,
where 03, 0, are identity isomorphisms.
Now if B is an orientable manifold, so is A, since F is assumed to be a

homogeneous space (IV, §1). Thus if we take as Z™? the generator of 9"(d).
according to Poincaré duality theorem?? we see that

39) See [5] 40) See (III, 210).



132 Tatsuji KUDO

(NZ™2): §"-%0)— HUd), and (N"*?): H*(A)— H*(A)
are isomorphisms onto. On the other hand, since the composite homomorphism
fsw-16; : $"-9(0)—H"%(A) may be regarded as the induced homomorphism
¢* 1 H*™%(B)— H"%A) (IU, $10), the composite homomorphism 84%8. : $(d)
—H%% A) may be written as:

(6.9) 0sw07 = (NZ" ) gF(ANZ™ )71 .

Thus we see that the homorphism ¢ : A4 B)—H%"%A) observed in (I, §12)
is in this case identical with the generalized Hopf’s inverse homomorphism.
We shall call J the Hopf’s inverse homomorphism also in the general case where
B is an arbitrary polyhedron and p is an arbitrary ring. Thus $%4(d), H%?
are regarded respectively as the kernel and the image of the Hopf’s inverse

homomorphism.
7. A theorem of Gysin. Consider the characteristic isomorphism :

(7.1) @ : 8&(d)/Re_(d)=DLrE+1(0)/9%L*+1(0), which was already considered
in (II1, §12).

This induces a homomorphism

(7.2) G : R%(d) —> $+%+1(0) /DL ?*1(0), or
(7.3) G : 84(d) — H™1(B) /¢ H**1(A).

This }{omomorphism was first considered by W. Gysin, and will be called Gysin’s

homomor}h‘z'sm also in general cases.
Now let us assume that H?(F)=0 for 0<p<_d. Then by Cor. 5 (I1I, £9),
we have Hiri+1(0)=9"*1(0) and 8(d)=0. Thus we have a generalized

Gysin’s theorem:
Theorem 16. If H?(F)=0 for 0<p<d, then

(7.4) {&(d)~ HY™*1(B)/xH™ " 1(A),
(7.5) 84(d) = [the kernel of the Hopf’s inverse homomorphism ¢ : HYB)—
ﬁ‘1+d<A)] .

8. Theorems of Thom [23] and Chern-Spanier [2]. Let us assume that
H?*(F)=0 for 0<p<d. Then by Cor. 5,6 (III, §9), we have

(8.1) 0 : H-U(d)/2E (@) =~ §4(0) C H%0),
(8.2) w1 $9(0)/84(0) = HH -1 C H'(A),
(8.3) v: H*1(A)/HY 2~ 9L (d) C H*--1(d).

Therefore we obtain the following exact sequence;
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(8.4) H™1(A) —> $4-1(d) —> $%(0) —> HY(A) —>
U Yooy o y- vt oy
H1,9-2 HL-1(d) R40) HL®

Thus identifying £%(d) and $%0) to HYB), in virtue of (I, £10) we have:
Theorem 17. If H?(F)=0 for 0<p<d, we have the following exact sequence:

yr 1] ¢F
(8.5) H*1(A)—> H**"1(B) — HYB)—> H(A)—>.

By (3.8) in Theorem 11, commutativity relation holds in the following
diagram:
o(d) ——> HT(0)
low ovm
$1-4=-1(d)—> £U0) , where u€ H*1(0).
Thus we have:
Theorem 18. Put 2=0(1), where 1€ H*(B). Then 0: H**1(B)—HB)
may be represented in the following form:

(8.6) o(u) =ulUQ,

The above theorems were announced by Thom and independently by Chern-
Spanier in case where § is a d-sphere bundle. They stated also: if & is a
d-sphere bundle, 2 is the image under the natural homomorphism H*Y(B,I)—
H®*Y(B) of the Whitney-Steenrod’s characteristic cohomology class of the sphere
bundle F. If oisa field and d is even, £ vanishes according to the well-known
properties of characteristic classes®), hence ® are all null homomorphisms.

Thus

Theorem 19. An even dimensional sphere bundle §F is homologically trivial.

We shall not prove it in this paper, since direct proof will be given in

another paper.

9. Theorems of Wang [24]. Let HYB, H?(F))=0 for 0<g<n, and let
H™(B, H*(F))~H?(F): for example let o be a field and let B be a homology
sphere. Then as Cor. 7 (III, $9) we have:

7.1) 0: 8" (p—n+1)/9n(p-—n+1)~ RA(p) C H(p),
F-1: AP A) /AP0~ Du(p—n+1) C B(p—n+1),
T D(p)/RUP)~ H?0 C H?(A).
Thus we have the following exact sequence:

u—1 n I
(1.2) — BP(A) s B p—nt1) — AU p)—> AP(A)—> .

41y [217, [29].
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Identifying H°(p) and H"(p) to H?(F), in virtue of (III, §11) we have:
Theorem 20. Under the assumptions given at the beginning of this section
we have the following exact sequence:

_ oo
9.3) —>f?”“1(A)—>I?l"*"”(F)l)ﬁ”(F)—}——za H?(F)—>.

If further H?(F)=0 for p>n—1, or if d>n—1 and H?(F)=0 for 0<p< d, then
@ are obviously null homomorphisms. Thus we have

(9.4) H?(A)~ B*(F)® H*-"(F) in these cases.

Theorem 20 is thus a generalization of the theorems of Wang.

Part V
Further properties of characteristic groups and isomorphisms

1 The general assumptions throughout this part are the same as in the
preceding part. Since we are dealing with polyhedral spaces only, we may
choose the singular homology and cohomology theories as our basic theories.

2. o-multiplication. Let us define a kind of multiplication which is a
generalization of Pontrjagin multiplication. Let 'T={G,G; B,’A,’¢, ¢y} be the
principal fibre bundle of F. Notice that a point ‘@ €G,="¢~1(x)C’A is an
admissible map ‘a: F—F,. Let n:’AXF—A be defined by 7(’a, y)="ay for
‘a€’A and y €F, where ‘ay is the image of ¥ under ‘a. Given a singular g-chain
¢? of A and a singular p-chain @? of F, the singular (p+g)-chain 7(c% a?) of
A is denoted by ¢%a?. Obviously ¢%a” is bilinear and subjects to the usual
boundary formula:

(2.1) 0(¢%a) = 0¢c%a® +(—1)%%0a? .

In particular: if ¢% @” are singular cycles, so is ¢%a” ; if moreover either ¢? or
a® is a boundary, so is ¢%a”. Thus a bilinear multiplication H%( A’ )oH?(F)C
H?*%(A) may be defined by taking representatives. More generally, for any pair
of subcomplexes BCCCD, we may define a bilinear multiplication (or a pairing)
H?('B,’CYoH"(F) C H**(B, C). 1In particular A*('Aq,’As)o H(F) C H?*"
(Aqs Ag).
Obviously commutativity relations hold in the following diagram:
(2.2) —H*("Ay¢,"Ag’) > H?("Aq,"Ag?) — H?("Ag, "Ay) > H? 1Ay , " Ag? ) —
| oan | cean e o cean
—H?*"(Ay, Ay?) = H?*"(Aq, Aa?) — H**7( Aqg, Ay)—H" (A, Ad?)—.

From (2.2) we may derive the following formulas:

(2.3) 'BUP)HT(F)C3Up+r), (2.4) 'BUp)oH (F)C BUp+7),
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(2.3) tA?%H(F) C B,

Since in particular /BU(p)oH(F)CBY(p+7), we may replace 3, Bin (2.3), (2.4)
by 9, & respectively:

(2.6) 'DUp)H(F) CHUp+7r),  (2.7) 'KUPp)HA'(F) C K& (p+r).
The following relations are also obvious:
(2.8) 0t (oa) = (ca) Di*, (2.9) T*(og?) = (oa?)T+1,

When p is a field o-multiplication is defined starting from o-multiplication
in the same way as MN-product was defined from U-product: for « € H” *T(é,f)),
@ € H(F), the product uoa is an element of H?(’C,’D) such that <uta,z>=
<u,z0a>> for every z2€ H?(YC.’D). Corresponding to (2.5)-(2.9) we have:

(2.5Y H?+" % H"(F) C'H??,
(2.6 QUp+r)0H (F)C'Up), - (2.7 KUp+r)aH(F) C'SLp),
(2.8Y  0F'(0a®) = (ca®)0E, (2.9  wH(a?) = (ca® )Wt .

3. Let ¢l=¢;: di—'A bz a slicing map. Then since ¢; maps (o, ¢f) into
/6%, D), it represents an element ¢f=¢; of HY('5¢, &7), as well as an element
1% of HW Aq,’Aq-1) (II, §3). &, A¥e; do not depend on a special choice of
¢:» since G is arc-wise connected.

It is easily seen that the correspondence H?(F)3a® —e0a®” € H**9(51, 50)
gives an isomorphism H?(F)~H**%(5}, ), and that:

(38.1) the correspondence C(B, H*(F))3 Yaloi— 3 (3§z)oaf € H**(Aq, Ag—1) =
CUp) gives the isomorphism CH B. H*(F)~C4(p) in Theorem 6’. Hence (3.2)
BUOYH-H?(F)=8%p). We shall often identify CY B, H?(F)) to €% p), and use
the symbol in several ways: for instance ¢! € A%’ Aq,’A¢-1) implies of=1%.,
€ H( Aq, Ag—1) implies of=(J}z;)ol where 1€ HO(F).

The partial map ¢:|5f represents an element of H%'(Y3!) (as well as of
H%1(’ Ag-1)), which is the image 8¢; (the image 7627" ~’i%,) under the boundary
homomorphism 8 : H4(’5?,/60) —~H1("5,) (057 7 : HY (' Aq, " Aqm1—H 1 Ag-1)).
For the sake of simplicity we shall denote a{{7" 7i%:; by ¢.. Then we have
by (2.2):

3.3 Ty T (Cialed) = 2ty .

4. From now on we shall assume that o is a field. In this case we obviously
have :

(4.1)  *BC0A*(F) = 34p), (4.2) "BUOYH?(F) = BD),
(4.3)  "DU00H?(F) = HU(p).

More generally we have:
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(4.4) DUP)YH(F)=["D(0OH?(G)IoH"(F) = $Y0)o['D(p)oH(F)].

(4.3) is the dual form of Corollary to Theorem 12 (IV, $4) in the following
sense: (4.5) for any ¢ €9%0), ¢”eHU(p), # €'HY0), 2/ € H(F) we have
<C/\/C//, z/oz//> e <C/, 2/> <C//’ 2,/>, Where <CI’ z/> , <C//, z//> may be
understood after suitable identifications.

5. The homomorphism ;4P . Consider the pairing %Y/ A¢-1)oH?(F)

CH?+%-1(Aq-1). This enables us to define a pairing of HY(B, H1(’ As-1)) and
HYB, H*(F)) (= 9%(p)) into H?*“1(A¢-1): explicitly KI(X ¢ e, 2 alal)
=3¢ oaf € HP+9"1 (Ag-1), where X ¢i7'6?€Z9(B, H"' (YAg-1)), 2 adal€
ZYB, H*(F)).
Now it is obvious that ag?3¥~1':/6%0)—>H%1(’Ag-1) corresponds to X {.of
under the isomorphism Hom {’€%(0)—>H%1(’ Aq-1)}~C% B, H?(F)), where as in
83 pi=ay P Ae, € HT1(’ Ag-1). Since i7" 1 reduces to null homomorphism
on ’'B%0), 3 ¢! is a cocycle €z B, H1(' Ag-1)).

On the other hand we observed in (3.3) that in the following diagram:

H?7(Aq, A¢-1) a1 oD r H?*11( A1)
Upialy
U _—

— _ %7 s
Cq(B, H’"(F)) —— KI(33%;:5:°.)

g2 corresponds to the homomorphism KI(ZZ ¢uof, -). Since apily P

reduces to null homomorohism on BYp) (C3&(p)) it induces a homomorphism
ap : DUp)—>H?+1(Aq-1). It may be realizzd in the from wupu=KI(«, u), where
o € HY( B, H-1(’ A¢-1)) is represented by X ¢w0?. If o/ =0, up=0 for each p.
Thus we have:

Theorem 21. ’9%0)='HL(0) implies DU D)=LD) for each p. In particular
if §isa principal fibre bundle, DY0)=2%(0) implies DU p)=£L(p) For each p.

6. The groups 9, ﬁg, R:(0) and $4(0). Considar the characteristic iso-
morphism

(6.1) 0 : D5_5(D)/ D31 (D)=R5(O(/R521(0), 671 R5_,(p)/ K3,
~ 9511(0)/95+1(0) .

Since 93_,(p) = £%(p), {50 = RL(0), K)_,(p) = K&(p) and D3*(0) =
£2+1(0), putting DI_,(p)=DA(P), K3Z(0)=RE(0), &5_,(p)=RL(p) and £321(0)
= H%*1(0), we have
(6.2) 0 : DD/ DH(DI=REH(0)/RE(0), 01 : §L(p)/ RUBI)~DE1(0)/D%(0) .

The characteristic groups appearing in (6.2) are of particular importance as
will be recognized in the following theorems. Putting 9% = 3»DUp), KL =
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Y RUD), ..., we have:
Theorem 22. Let § be a principal fibre bundle. Then
(i) 9% =9% implies D° = D%, or equivalently -
(ii) 8 = 8% implies §% =0, or
(iii) 8x(0) = £,(0) implies £,0) =0, or
(iv)  92(0) = 9,00) implies D(0) = £.,(0).

Remark 1. Since $% is a subalgebra of 99, Theorem 22 is obvious in case
92 generates 9°. The last condition is satisfied in the case of homogeneous
(Koszul [8], Theorem 18.3). The author could not generalize this to the
corresponding theorem of fibre bundles.

Theorem 23. If § is a principal fibre bundle, we have: D%L(2v) = H°(),
or equivalently §&(20)=8%(2), or SL(O)=8%*1(0), or DZ*1(0)=521(0).

Remark 2. Hirsch [6] states that “§%/&2 may be regarded as a subspace
of the group of minimal elements of $°. Such minimal elements are odd
dimensional.” This statement seems to contain both Theorem 22 and Theorem 23.

Theorem 24. H%=9° implies Do.=9.

Proof : DU p)=HU0)/H(p)=0L0)VIHD)THL(HYCTHUp), in virtue of
Cor. to Theorem 12 (U, §4), Cor. 5 (I, §9) and Theorem 10.

Theorem 25. If & is a principal fibre bundle, or a homological sphere
bundle, D(0)=9(0) implies D=9.

Proof : In virtue of Theorem 22 and Cor. 5 (III, §9), £..(0)=9(0) imlies
9% =90 Hencz in virtue of Theorem 24, we have Do=9.

Remark 3. 9%=9° says that “i*: H(A)—»H(F x,) 1S an onto homomor-
or equivalently ““7Zx: I?(Fxo)—J?(A) is an isomorphism”. £,(0)=9(0) says
phism,” that “¢y: H(A)—H(B) is an onto homomorphism”, or equivalently
“¢or: H(B)— H(A) is an isomorphism.”

Theorem 26. If B is an odd dimensional homology sphere, then D=9..

Proof : I ¥ is a principal fibre bundle the proof is obvious according to
Theorem 22, 23, 24. But Theorem 21 assures the validity of the theorem in
the general case.

Remark 4. Theorem 24, 27 are in some sense generalizations of Samelson’s
theorems [15].

Theorem 27. If § is a principal fibre bundle, DY is generated by the sub-
space of DY consisting of o-minimal elements of DO,

The proofs of Theorem 22, 23, 27 will be given in the following sections.

7. Proofs of Theorem 22. We shall prove that §%=8&2 implies §%=0.
For <1, we have 8&%(p)=8%(p)=8{3_,(»)=0.

Let us assume tkat p>1, and that §%(7)=0 (or equivalently D%(»)=9%(»))
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for »<'p. In order to prove that 8%(p)=0, it is sufficient to prove that §&(p)
contains no non-vanishing minimal element of £°. For if so, we have 9°(p)
= 9%(p) +[Composable elements of £°] N H(p). But since H%(») = HL(») by
assumption and since % is a subalgebra, we have D%(p)=9°(p). Or &%(p)=0.
Assume on the contrary there exists a minimal element 04=2? € $%(p»)=KL(p)
=89_,(p), then there exists an integer % such that 0<{k<p—2, and such
that z € &(p) - {_,(P).

Since 0<p—k—1<_p, by the definition of minimality we have z/\z=0 for
every u € H?-*1(G). Now, denoting by {2z} the class mod &¢_..(p») of z, we
choose a representative element Z € 95**(p—k—1) from @-1({z}). Since H**2
(p—k—1)=9*+2(0)oH?-*~1(G), Z may be written in the form Z =X ¢ioa; where
¢ €9*2(0) and {a} are a basis of H?-*1(G). Let {u;} be the dual basis of
H?-%*1(G). Then by (4.5) usNZ =X ¢ciolus/N\a;s;) =C5. On the other hand
noticing that #; € 9°(p—k—1)=2%(p—k—1), in virtue of Theorem 14 we have
0=0"Y{us\e})=u; N0~ {z})=u;/\{Z} ={u;/\Z} ={¢;}. Consequently ;€ DEFZ(0).
Thus in virtue of (2.6) we have Z=X Cioas € Di12(p—k—1). But this implies
that {Z}=0, hence {z} =0, contrary to the assumption.

8. Proof of Theorem 27. Since 9= when we restrict ourselves to
Arsz2, it is sufficient to prove that 9% is generated by o-minimal element of H°
belonging to £%. First of all, D% is a subalgebra of 9°. 9% is non-void since
it contains 9°(0). In vertue of (2.6Y, for any a® € H?(G), D% is stable under
(oa?). On the other hand we easily see that o- and O-multiplications in the
sense defined in this part coincide with those defined in (I, §8). Hence by
(8.7) (1, §8), 9% is ;generated by its subspace consisting of all o-minimal
elements of 9° contained in 9% .

9. Proof of Theorem 23. Since 95_,(7)=9.(#) for r<p+1, and H3_,(p+1)
=9u(p+1), we have:

Dp1=DL(0)+ =+ DUPI+HL(D+1) + oov,
D& = U+ ++ DUPI+DX(P+1)+ -

Since 9% is an algebra, an element of H3_,(»+1), which may be generated by
by multiplication and addition from lower dimensional elements of £5_,, is an
element of $%. But according to Theorem 27, an element of 95_,(p +1) is
either a o-minimal element or composable from lower dimensional elements. That
is to say, an element of % which is not an element of 9% which is not an
element of % which is not an element of D% is o-minimal. On the other hand
there is no even dimensional o-minimal element since G is a compact connectzd
Lie group. Hence 9%(2v)=9%().
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Added in proof: The author obtained a proof of the following proposition
(Cf. Remark 1, p. 137): D2 generates 9° if § is a principal fibre bundle. This
may be proved by the infinitesimal method of J. L. Koszul [8] if & is the
universal principal fibre bundle given by N. E. Steenrod (Cf. p. 104).* If & is
general, it may be proved by making use of Theorem 22. The above proposi-
tion has the following consequences :

7) If B is homologous to zero in ‘B, and if 'S is a principal fibre bundle
over 'B, then the F='F|B is homologically trivial.

ii) Every even dimensional homological sphere bundle is homologically
trivial (Cf. Theorem 19, p. 133).

* In this case our proposition is contained in a theorem of A. Borel — La transgression dans
les espaces fibrés principaux, C. R. Paris 232 (1951).
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L’aneau spectral et I’anneau filtré d’homologie d’un espace localement compact

et d’une application continue, J. Math. Pures Appl. 29 (1950).

L’homologie d’un espace fibré dont la fibre est connexe, J. Math. Pures Appl.

29 (1950).



