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Introduction

It is well known that the suspension (Einhdngung) homomorphism
E : 7a(S")>mn1(S™*1) is isomorshism if #<2r—1 [3] [1]* In recent years,
G. W. Whitehead has shown that the kernel of the suspension homomorphism
FE is the subgroup generated by whitehead product, if n=2r—1 [9, §71.

In this paper we shall calculate some special whitehead products, and
indicate some non-trivial suspension homomorphisms. For example, in cases
where n=r+4(r=2,4,5) and n=r+5(r=2,4,5,6) E is not isomorphic, and also
we obtain non-zero elements of mzns+10 (S¥**4) and mans22 (S2"*8) (=0, 1, .... .),
whose suspension vanish.

1. Notations
We shall use the notations analogous to those of G. W. Withehead [9, §1].
Define
St={(x1, ..., Xns1)| 2 xi=1},
EL={x€S"| %0120}, E”={x € 5" 2r+1=0},
I'={(x, ..., )] —1<x, <1},
=iz, .., )| T (1-5D)=1},
Jr={x €I™*1| 201120}, Jr={x €I"*1] x2,1<0},
y+=(1,0, ..., 0), 0=(0,...,0),
S®V SP=8%% 3,y x S*CS"x S”,
as sub-spaces in the euclidean spaces of suitable dimensions.
Define the mapping dn : S®xXI'>S"*1 as in [9, §1], which is characterized
by the following properties :

d» maps (S"—x)X[0, 1) topologically on E?} —yy,
dn maps (S"—y4)x(—1, 0] topologically on E” —y,,
dn(S" X'y x I )=y%, and du(x, 0)=(x,0).

We also define the mapping ¢»:S"™>S"VS™ as in [9, §1], which maps subspaces
Sp~t={x€S5"|x2=0} to the point yxxyx and elsewhere topologically preserving
orientation.

We denote the point (¢#1, ..., £%a) by £%, where £=(%1, ..., %s) and £ is a
real number.

* Numbers in blackets refer to the references cited at the end of the paper.
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Let on : S™1—I" be the central projection such that on(x)=x/r, where
r=Max(#1, ..., #a). Clearly we have ga(S"~2)=I""1, pn(E?™ V) =], ou( E™™1)
=J2! and on(¥5)=yx.

Define Opyq: IPX[IX I[P+ 1=([?x]?) by
Dp,o(%, ¥, t,)= (%, A+DDy) ~1<£<0,

Then 0,q is continuous and topological for ¢ € Int. I'l, and satisfies the conditions
Dp, (2} 17x [0, 11)CI? X% Opyo(I?x I*x[ -1, 0])CTI* X 1% @p,o(x, v, —1)=(x, ¥),
(1.1 0p,o(x, ¥,1)=(0, ), D, (%, ¥, —1)=(x, 0).

With our notations we can construct some mappings :

i) Suspension of f : S">S" is given by Ef(dun(x, ¢))=d:.(f(x), t), x €S".
ii) Join of maps f : I*—>I" and g:I>I° is given by
(S % gXOp,o(%, 9, t))=0r, s(f(x), g(¥),8), x€I®, yeI"
iii) Hopf construction of f:I*x [%>S" is given by

1.2) Gf(Opro(%, 3, t))=d(f(x, ¥), t), x€I?, yel

iv) Whitehead product of f:(I%, I*)>(X, x¢) and g: (1% ID>(X, xx) is
given by
F((1-t)x) 0<t<1, xelr,

[-f: g] (mﬂHI(xf ,‘V, t>)= { g((1+t)y) ~1§t_§_0, yEiq,

It is easily verified that the above constructions zre single valued and
hence continuous, and that they coincide with those of [9, $3].
It was shown in [9, §3] that

(1.3) (frg)o(fixg)=(fof)x(gog’),
(1.4 [f,glo(f g )=[foE(f'), g0E(g")].

We shall use the following theorems due to G. W. Whitehead [8].
(1.5) El4, p]=0.

(1.6) If f:I"*%>X satisfy the condition f(I? xI?)=xy, then f is homotopic to
the map f1+f2+{ g1, g22], where

fl(wp:q(x, :V, t))—':f(@p,q(x, y7 <t+1)/2))
Fo(@p,o( %, 3, t))=F(0p,(%, ¥, (£ —1)/2))

and g1:(I?, I?)>(X, x4), gz : (1% [")>(X, x4) are given by

g1((1=1)x)=f (Dp, (%, ¥0, 8))  0=<t<1, x€l?,

g2((1+t)y)=f<mP;Q<x0y Y, i)) —lgtéo) y ejq9

for fixed points yo € I and xo € I”.
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2. Hopf and Frendenthal invariants

For all values of n,7>1, we can construct a Hopf homomorphism H1:
7a(S")>mn+1(S?). According to [9, §4] we have direct sum decomposition
(S V S)ARa(S" )P S )Prn+1(S" XS, S”VST). Let

Q
2.1 Q:m(S'VS')gmu(S’XS”, STVST)

be the projection, then its right inverse is boundary operator @ in the sense
that Qo 0=ideniity.

Let w,:(E?, E.”)—>(S'>< S”, S"V S™) be the map given in [9, $17, such that
¥, maps Int. E2" topologically onto S"xXS"—S"VS", Since S"xST-S"VS" is
an open cell, we can construct a map f,:(S"xS", SV S")>(S?", y4) such that
0 maps S"xXS"—S"VS" topologically onto S* —yx, and the composite mapping
Or o w,: (E?, E'”)—)(S”, Yx) presserves orientation.

Then the composite homomorphism
(2.2) Oy 0 Wr 061 : wa( B )>mnn( B2, E27)

—n+1{S"XS", S"V S )>ra11(S, yx).
represents the suspension hommorphism.

Now we define the Hopsf homomorphism H1: wa(S")>mn+1(S2") by the com-
posite homomorphism

(2.3) Hi1=0r0Qo0 ¢r: ma(S")>ma(S"V S")>7wn+1(S"XS", SV S )>mas1 (S27).

Let H=w; 0 Qo ¢ be the Hopf homomorphism in the sense of [9], [10],
then we have H1=FE oH by (2.2). Since E is isomorphic for n<d4r—4, H, is
equivalent to H.

Also we can define Freudenthal invariants for all values of n, »>1. Consider
the element £ of triad homotopy group mn+2(S™*1; E7*Y, E77') as a null-
homotopy of suspension 4(£)=08(+(§) €mu(S"), where B+ and 0 are boundary
operators of triad and relative homotopy groups [1]. According to $6 of [9]
we define two homomorphisms

Aoy Ao” : wns2(STY; BN, ETD)ma,s(STHIX ST+, STV STy,
and define Freudenthal invariants of & by
(2.4) A/ (E)=brs10A/(E) and A"(E)=0ri10 Ap"(§)
Then Ay, 41" : wns2(S™1; ENY, E7P ) >1a43(S?+2) are Freudenthal homomor-

phisms of our sense.

We shall use the following theorems similar to those of $85,7 of [9]
without restriction of dimension.
(2.5) Let f: I?X1*>8"1 be a map of iype (u, B), then the Hopf invariant of
G(f) is given by
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HA({G( D =(-1YE(a*B),
(2.6) Hi(E(a))=0.

(2.7) Let u€ma(S™), B Gjnr(S"), and lel a=E(«) for some o €mn-1(S™1) (more
generally if Q(u)=0), then we have

Hy(Boa)=H1(B)o E(a).
(2.8) If a€nn(S"), BErm(S"), then
0, if r is even,
2E(uxf3), if r is odd.
(2.9) If a€ma(S7), and isr € nor(S%") represents the identity map, then

H1(a)=(—1)49 0 Hi(xt) .
(2.10) If &€musa(S™*1; EVFY, ETFY), then

A (E)=M"(E)=(—1YEEH(4(§)).
(2.11) If &€mpaa(S™1; EY, ETMY), then
A (E)=(=1)"*Ygrsp 0 M1"(§).
(2.5) follows from the similar argument as the proof of Theorem 5.1 of

[9] and (2.2). (2.6) is a direct consequence of the proof of Theorem 5.11

of [9].
To prove (2.7), we calculate ¢;(8o«) according to the proof of Theorem

H\LEC), E(8)]=

5.19 of [9], and gét the following equation
(0'Q ¢s(B)) 0 u=0Q¢s(Bo ),

where ¢/, €', 8, @ are the corresponding operations in (2.1). Let 0o : mn+1(E"*+1,
E:”l)——mn(S’) be the boundary homomorphism, then

(0'Q ¢s(B)) 0 u=0(Q ¢s(B) 0 85'(x)) .
Since 0 is an isomorphism, we have
Qos(Boa)=Q ¢s(B) 085 (u),
so that by (2.3) we have
Hi(Bou)=0,Q¢s(B o a)=0,(Q ¢s(B)o 55 (w)).
Another direct calculation shows
0,(Q ¢5(B) 0 85 (1)) =0:Q" ¢s(B) © E(u)=H () 0 E().

To prove (2.8), we use the fact axf=E(y) for some y, and Hi[¢r, ir]=22r.
Then (2.8) follows from (1.4) and (2.7).

Let gr:(S"%xS%, S"V S )>(S"xS", S"VS”) be the map given by a:(x, ¥)=(, x),
then by (4.22) of [9] we have
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Q(or(a))=0rQ(a),
where 2 €m,(S™VS”). And further calculations show
( — 1)727’ o 07'@((4)=0r0'rQ<’l>=0rQ(dr<“)) .

Then (2.9) and (2.11) are verified by the similar arguments of Theorem 5.49
and 7.28 of [9] respectively.

To prove the formula of (2.10) we consider the relation between the opsra
tion A in [9, §7] and 6. We can show the equation

Ors10A=(-1YEEo0,,
g0 that (2.10) is a direct consequence of Theorem 7.8 of [9].

3 Lemmas
If f: [?x[*>S™1 is given, we construct a »; ght suspension E'f : [? x [1+1->S"

by the rule

(dr1(f(x, y e , , if y cITxI,
Ef (%, Y1y -..... , yq+1))=jy>k i O ya)) yq+1)ifly:[qle

If / is homotopic to g, then E’f is homotopic to E’g. Also we have
G.D E'f(I*x JS)CEY, E'f(I?x JL)DE™, Ef|[?xI*=f,
and any map satisfying the condition (3.1) is homotopic to E’f.
LEMMA (3.2) —G(Ef) =~ E(G(f)).
LEMMA (3.3) If f(x, ) =F(x), then G(f)==0.
Proof of (3.2). Let
KP+Hi-1=JPx JIx (VY IPx [*x 1Y [?x[Tx(—1),
HY =1 x "< (DY P I XTI,
HEYM=IPX[*X["YI* X% (1),

be the subspaces of IP+?7*1=(I?xI?xI'), then H%™, H2' are closed (p+q)-
cells and we have HIVIY HP  =]r+erl [2+9 [P+ = KP+1-1

Let us give the homeomorphism % : [?*%>K?+%-1 by

(3- 4) 77(017,(106, Y, t))‘: (x, Y, Zt) "1/2§til/2’
(x, (2t+2)y, —1) -1<¢t<L-1/2,

Then we can extend 7 throughout /7+?*! homeomorphically such that
(3.5) p(JYOCTHE, y(JEr)CHEY,

because K?*?-1 bounds the cells H2*? and H”*" As is easily seen, the map
s [P+9+15[P+%+1 pregserves the orientation.
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Let G(E'f):[?*%*15>S™+1 be given. Define the map g:[?+*%+158"™1 ag
follows,
gli"XI"“=G(E’f)]j”XIq+1,
g(IPxI*x(1))=y*

Then g is defined on H2*? such that g(H4**)CE”"' and g(K?**~1)CS". Since
HP*" is a cell bound by the sphere K?*?-1, we can extend g over H”Z*? such
that g(H2*)CEL

Then g is homotopic to G(E’f ), because g and G(E’ f) coincide on [?Xx %1,
and map I? x 191 and I?x19*! to E7*' and E7*' respectively.

In another point of view, concider the map g o7 : [?+9+1587+1 then we have
by (3.5) goy(JY*)CEZ" and goy(J5")CEL.
Therefore —(g o7) is homotopic to the suspension of h=go|I[?*% Since 7 is
homotopic to the identity map, g is homotopic to —E(h). h is also given by

Yx 1/2<4<1,
B @p,o( 2, 9, £))= § dra(f(x,9), 2t) —1/25t<1/2,

Then h is homotopic to the Hopf construction of f, and
E(G(f))=~E(h)~-g=~—-G(Ef ) g.c.d.
Proof of (3.3). Give the homotopy /- : [?*%>S” by
S Opya( % 3, 8))=dr-y,(F(x), t+7—tr), 0=r<l.

Since @p,q(x, ¥, —1)=(x, 0), f. is single valued, continuous and gives the
nullhomotopy of fo=G(f). gq.e.d.

4 Theorem
In this paragraph, we assume that #=4 or 8, and regard the points of S"-1
as quarternions (n=4) or Cayley numbers (n=8). Also we may regard the
points of I™ as that of S"-1, relating by the central projection . :S™ 1—>I",
Then the multiplication [” x [">I" (or S"1) can be defined, and denoted by
x-y. Let hn=G(f) be the Hopf construction of f (x, y)=x-, then hx is so-called

Hopf fibra map, and in our cases we have the direct sum decomposition [2] [6],
T2n-1(S") = 720-1(S2" "1 )Dron-2(S"1).

Let 7» € ma(S™) be the element represented by the idetity map, then whitehead
product [Za, Zx] belongs to m2.-1(S") and has the direct sum decomposition as
above. The following theorem is the main result of this paper.

THEOREM (4.1) Lin 2a]l=2{hu} — ECtn-1),
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where dn—1 € man—2(S™""1) has nonzero Hopf invariant.

More precisely Tan-, are the elements given in [1, §5] (#=4) and in
[9, §8] (n=8).

It was proved in [8] that [¢n, 7n] generated the kernel of suspension, E :
Ton—1(S")>m2n(S"*1) (see also (3.49) of [9]). Hence we have

COROLLARY (4 2) ~ 2E{h}=FEE(un-1)+0.

COROLLARY (4.3) For some k=2, k-fold suspinsion E* : ne(S?)—>me+1(S+*)
is an isomorphism into, but the image of EY is not a direct swmmand.

COROLLARY (4.4) (kin) o {hu} =F2{hn} —k(k—1)/2+- E(un-1)
(k=0, x£1, £2, ...... )
Proof of Theorem. Consider the map % : [*">[?" by the rule

@n,n(.’f'y, y—l; 2t'—1) 0§i’~_<:1,

X(Dny (X, ¥, £))= g
( (x y >> wn,n<x-y, x-1, —2t—1> —1§—_th‘

It is seen from (1.1) that we have On,(x-y, ¥, —1)=0n,u(x-y, 271, —1)
and that On,a(x, ¥, 1) and @n,n(x-y, 371, 1) depend only ¥, and @n, (%, ¥, —1) and
On,n(x-3, 71, 1) depend only x. Therefore X is single valued, hence continuous.

The composite map fin 0 X : [2">S™ is given by
An1((x-9)-y71, 2t -1) 0<4<1,
dn-1((x-3))x71, —2¢t—1) -1<t<0,

Then hno X satisfies the condition of (1.6), and therefore it is homotopic to
the sum F1+Fa+[g1, g2], were

Fn 0 X(@ny o x, ¥, E))= {

F1(OQnyu %, 35 t))=dn1((%-9)-y71, 1),
Fo( @nyn(x, Y i))'—'dn—l((x‘y)‘x_l’ —1).

To determine g1, g2, we choose Xo=Yo=2yx in (1.6), then g1, g2 represent the
elements 7., —in respectively. Therefore we have

hno X == G(fl)“‘(_ln) o G<f2)“[im in] .

where f1(x, ¥)=(x-)-y71, fo(x, y)=(x-y)-x7%. _
The following properties of quarternion and Cayley number were established,

(4.5) (x-3)-y~1=x,
(4.6) If y=(y1, ...... , o) and (x-3)-x"1=(y1, ...... , '), then y1=y1.
According to Lemma (3.3) and (4.5), we have F1=G(f1)=0.

To apply the Lemma (3.2) to G(f2), we must take some permutations of
the coordinates of I%", but such permutations only chang the sign of G(f32).

Therefore (4.6), (3.1) and Lemma (3.3) show G(f2)~EG(fo), where fo
is given by fo(x, ¥)=(x-»)-x~1 for y €I"1 and x € [" (in the multiplication we
regard ¥y=(¥1 ..., Yu—1) as (0, Y1, ...... , Yu—1) in I™).
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Now G(fo) was given in [1, §5] (z=4), and [9, §8] (%2=8), and it is shown
that the Hopf invariants of G(fo) are essential elements of man-1(S2"~2),
Consequently we get the following equation for an—1={G(fo)}

{hn} -x=0+(—in) o E(fln—l)_[im in]——‘ _E<’ln—-1)—[in, in] ,
H1(tn-1)7+0.

If the degree of X is d, then Hl[im in]=2i2n, H],(E(lln—-l))=0 and Hl {hno X} :dizn.
Therefore d=—2, and hence {0 x}=—2{m}. g.e.d.

5 Non-isomorphic suspensions

It is already known that the suspznsion homomorphisms E : mar—1(S")—
w2 (S7+1) are not isomorphic in the cases =0 (mod. 2) and =1 (mod. 4)
(r>1), because the whitehead products [z Z»] of the identity mps Z.:S"—>S"
are essential [9, $91, and E[7x, £n]1=0 by (1.5).

We shall show that the suspension homomorphisms

E : 1(S") > mns1(S7FL)

are nol isomorphic for the following values of n and r (hence m,(S")==0).

7
rl2) 2

n| 6 819 10,16 |17 | 22 | 42 +10 4k+22{ 8k+2 | 8k+3

8
21444 8|8/|8/|2+4 |26+8 |4k+1 ak+1

(k=1,2, ..).
In other words the boundary homomorphisms of triads

B+ : wus2( ST ;ET'I, E.’:.+1)—)7l’n+1(E:.+1, S™)

are non-trivial. (Cf. Theorem II of [1, §41).

Let va={h2} be the generator of n3(S?), then v,=E"-2(yz) is the generator
of mns1(S™)=I3.

Let va'={ha} be the element given by Hopf map {hs}, and let va=E""'(vs’)
be the (7#-4)-fold suspension of v4.

vg"=1{hs} and vi"=E"8(vs") can be also defined.

It is verified in [10] using the Theorems (2.10), (2.11), that the suspension
E : 14(S2)>ns(S3) is isomorphism onto, and ma+2(S®)~I(7n=>2). We denote the
generator vn o vp+1 Of ma:2(S") bY 7s, then we have 7,=E"~2(y2).

Now consider the suspension E :7s(S2)—>m6(S3). We have ns5(S2)~Is and
its generator is given by vz o7s, and H1(vz o 73)=E(93)=74 by (2.7).

If Eveows=0, there corresponds Freudenthal invariants A4y/, 4" € ws(S6),
and by (2.10), (2.11) we have

A= M" = (=12E*H(vz079s) = 55,
Ay =(~1)iso A",
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Since A1"=E(y) for some y € 77(S5), we have (—1)i¢ 0 M1"=(—76) 0o E(y)=—E(7)
=—/A and 24)"=%s. This contradicts the fact that 7s generates ms(S°%),
and therefore E(vzo9s3)=y3o9s40. Denote v, o yni1=7+(7=2), then 7. is a
non-zero element of m,.+3(S™) by (4.3).

Let a3, a7 be the elements of 76(S3) and m14(S?) given in Theorem (4.1),
then we have H1(az3)=vs, Hi1(ar)=v1s, E2(u3)=2vs’ and E2(a7)=2v9".
i) For case »=2.

Consider the elements v20us € ms(S2), v2oasovs € m7(S2) and vz ous o 76 € ms(S?).
By (2.7), we have H1(asove)=vsovi=7s+0, H1(us 0 96)=vso y7=77=0. Since
vz induces isomorphism onto, we have vz o us==0, v2 © a3 0 ve==0, v2 0 us o 9Pe=0.

We have E2(vz o uz)=vaso E2(as)=v*0 (2vs’)=2v4 0 vs’ =0.

Since E : mx(S3)—>me+1(S*) is an isomorphism, we have

E(v20oa3)=0,
and also E(vaoazoyr) =0 for any 7 €mwa(S%).

Remark. P. Serre announced in [7] that mep+x-3(S¥), for odd k=3, and
for prime p, has the element whose order is p. It follows directly that the
suspension E : m2p(S2) = m25+1(S3) is not isomorphic.

In the following cases it is sufficient to show the existence of non-zero
whitehead roducts, because E[«, f]=0.

ii) The cases »=4, 8.
Consider the whitehead product [vs, 7a] € 1s(S*). By (1.3), (4.1),

[va, 2a]=[Z4, 2a] 0 (v3x23)=(2vs’ —E(u3)) o E%v3=2v4 o E4v3—E(a3) o E%;
=y4’ 0 2E%3—E(uz o E3v3)=E(uasove).

Since Hi(uzove)=76FE0 and E :mn(S3)>me+1(S%) is an isomorphism into, we
have [v4,74]7F0. Similarly we have [94,zs]=E(uson6)=+0, [vs, s ]=E(u70v10)730
and [7s, Zs]=E(u70910)70.

Consider the whitehead product [v4/, 4] €m0(S%). If [v4/, £41=0, by (3.72)
of [9, $3] there exists a map f : S”xXS*>S* of type (vi’,is). Therefore by (2.5)
H\({G(f)}) =v1d/, but by (2.9) 2v10’=0. This contradicts to (4.2). Hence
[v4, 24194-0. Similarly [vs". Zs]-=0.
iii) The other cases.

By (2.8), (4.2), Hi[viiess toxes] = 25 =0,

Hi[Vrgr f2ess] = Wl 0, (B=1,2,..).

This shows that the suspension E referred to above is not isomorphic in
the cases »=2k+4 and »=2k+8.
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It is shown in §9 of [9] that there exists an element 7 of wex(S*) such
that H1(7)=7xs E(7)=[iax+1, tax+1] for k=1. By (1.2), [vax+1, Zax+1]=E(7 0 ver).
From (2.10), (2.11) and H1(y ovex)=7%e10, we have E(y ovey)=0. Similarly
[#ax+1, Zax+1]=E(¥ 0 8r)70.
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