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Abstract
For a complete hyperbolic three manifold, we consider the representations
of 71(M) obtained by composing a lift of the holonomy with complexiténdi-
mensional representations of SLQ2). We prove a vanishing result for the co-
homology of M with coefficients twisted by these representations, usaofpriiques
of Matsushima—Murakami. We give some applications to loagitlity.

Let M be an orientable complete hyperbolic three manifold. Thierramy repre-
sentation of the complete hyperbolic structure

Hol: 71(M) — Isom" H® =~ PSL(2,C),

can be lifted to a representatid?l?o/l: m1(M) — SL(2,C) (see for instance [10]), and
there is a one-to-one correspondence between these liftsspim structures orM.
Composing one of these lifts with a finite representatinof SL(2, C), we obtain
a representation: 71(M) — SL(V). Then we can consider the associated flat vector
bundle E,,.

We will consider onlycomplexand finite dimensionarepresentations of SL(Z).
It is well known that for every positive integar there exists only one complex ir-
reducible representatiol,, of SL(2,C) of dimensionn. Moreover, V, is (n — 1)-th
symmetric power of the standard representatibn= C2. Let

on: T (M) — SL(n, C).

denote the representatigndefined above folv,.

A hyperbolic 3-manifoldM is said to betopologically finiteif it is the interior of
a compact manifoldM. This is equivalent to say that;(M) is finitely generated, by
the proof of Marden’s conjecture [1, 9].

Along the paper we shall assume thatis nonelementarywhich means, in the con-
text of three manifolds, that its holonomy is an irreducitBeresentation in PSL(Z),
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namely that there is no proper invariant subspac€of Elementary manifolds have a
simple geometry and topology (cf. Lemma 3.3) and the follmviesults still hold and
have a straightforward proof.

Theorem 0.1. Let M be a completenonelementaryhyperbolic 3-manifold that
is topologically finite and n> 2. Then the inclusio®M C M induces an injection

HY(M; E,,) = HYOM; E,),
with dim H}(M; E,,) = (1/2) dimH(@M; E,, ), and an isomorphism
H%(M; E,,) = H?(AM; E,,).

If M is a complete hyperbolic 3-manifold of finite volume with agle cusp, then
dM is a torus. An analysis of the cohomology groups(dM; E,) shows that all these
groups vanish for the representationg, with k > 0 (see Section 3.1). Hence, using
Theorem 0.1 we get the following result.

Theorem 0.2. Let M be a complete hyperboli@-manifold of finite volume with
a single cusp Then for k> 1 we have

H*(M; E,,) =0.

Notice that this theorem applies to hyperbolic knot extsrim S°. For instance,
it allows to compute Reidemeister torsions for hyperboliwtkexteriors.

Theorem 0.1 has applications to infinitesimal rigidity. Tégace of infinitesimal
deformations ofp, is isomorphic toH(M; Eadop,), Where

Ad: SL(n, C) — Aut(sl(n, C))

is the adjoint representation.

The following theorem is an infinitesimal rigidity resultrf@, in SL(n, C) rela-
tive to the boundary. Its proof uses the decomposition ofesgntationsi(n, C) into
irreducible factors, and will be given in Section 4.

Theorem 0.3. Let M be a completehyperbolic nonelementary and orientable
3-manifold that is topologically finite. 1BM is the union of k tori and | surfaces of
genus @,...,Q =2, and n> 2, then

dime HY(M; Eagep,) = k(N = 1) + ) (g — 1)(n* - 1).

In particular, if M is closed then H(M; Eago,,) = 0. In addition all nontrivial elem-
ents in H(M; Eago,,) are nontrivial in HY(dM; Eag.,,) and have no B representative.
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Whenn = 2, this is Weil's infinitesimal rigidity in the compact casnd Garland’s
L2-infinitesimal rigidity in the noncompact case. This hasrbgeneralized to cone
three manifolds by Hodgson—Kerckhoff [16], Weiss [28] ancbiBberg [7].

Let X(M, SL(n, C)) be the variety of characters afi(M) in SL(n, C). The char-
acter of pn is denoted byy,,. From the previous theorem and standard results on the
variety of characters, we deduce:

Theorem 0.4. Let M be a topologically finitehyperbolic nonelementary and ori-
entable3-manifold as inTheorem 0.31f n > 2, then the charactey,, is a smooth point
of X(M, SL(n, C)) with tangent space HM; Eadop,)-

For n = 2, this is Theorem 8.44 of Kapovich [18].

This paper is organized as follows. In Section 1 we recallesoesults about finite
dimensional complex representations of SIG®, Section 2 is devoted to Raghunathan’s
vanishing theorem, from which Theorem 0.1 will follow. Thmem 0.2 is proved in Sec-
tion 3, where we compute the cohomology of the ends and dissoisie properties of
lifts of representations. Section 4 deals with applicaitminfinitesimal and local rigid-
ity, in particular we prove Theorems 0.3 and 0.4.

Appendix A reviews some results about principal bundleg tn@ required in
Section 2.

1. Finite dimensional complex representations of SL(2, C)

Irreducible complex finite dimensional representation &{25C) are well known
to be the symmetric powers of the standard represent&@fonTherefore, there is ex-
actly one irreducible representation in each dimensiont \lkedenote the irreducible
complex n-th dimensional representation &?. We haveV, = Sym'"V,, with the
convention that Syfhis the base field.

The decomposition into irreducible factors of the tensadpict of two given com-
plex irreducible representation is given by the Clebschrd@o formula (cf. [11, §11.2]).

Theorem 1.1 (Clebsch—Gordan theorem)For non-negative integer numbers k
we have

n-1
Vi ® Vhyk = @ Vom-i)ik-1-
i=0

Lemma 1.2. Let V a finite dimensional complex representatior5e{2,C). Then
there exists a nondegenera@bilinear invariant pairing

¢:VxV —C.

Moreoverif V is irreducible this pairing is unique up to multiplicath by nonzero scalars.
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Proof. From the classification of the irreducible repreatons of SL(2,C), we
deduce thatv* is isomorphic toV. Thus we get an invariant bilinear pairing by com-
posing the isomorphisiiY xV =~ V*xV with the natural pairing betweevi* andV. If
V is irreducible,V = V,, then the Clebsch—Gordan formula implies the & V,,)* =~
Vh ® V,, has only one irreducible factor of dimension 1, so the bdmgairing is unique
in this case. 0J

From this lemma we get (cf. [13, Section 2.2]):
Corollary 1.3. Poincaré duality with coefficients in jEholds true.

Let Ad: SL(n,C) — Aut(sl(n,C)) denote the adjoint representation of 8]¢). Com-
posing it with the representatiot, we get a representation SL@) — Aut(sl(n, C)),
which makess((n, C) a SL(2,C)-module. Next we want to decompose this module into
irreducible ones.

Lemma 1.4. As SL(2,C)-modules we have
sl(n, C) = Vono1 ® Vons @ -+ - @ Vs.

Proof. Consider the action of SL(Z) on gl(n, C) obtained by composing the
n-dimensional representatiow, with the adjoint. We have the following isomorphisms
of SL(2,C)-modules:

Vo ® V. = gl(n, C) = sl(n, C) & C,

where the factolC corresponds to diagonal matrices. The result now followsnfthe
Clebsch—Gordan formula applied ¥ ® V" = V, ® V. O

2. Raghunathan’s cohomology vanishing theorem

The aim of this section is to prove Theorem 2.1 stated belows Theorem is a
particular case of a theorem due to Raghunathan [24]. Bedftaing it, let us recall
some facts.

The homogeneous manifold SL@)/SU(2) is endowed with a Riemannian struc-
ture using the Killing form on SL(Z7) (see Section 2.1 for details), which makes this
space isometric to hyperbolic 3-dimensional spkice

Let I be a discrete torsion-free subgroup of SI(2, and M = I"\H?® the corres-
ponding complete hyperbolic manifold. L&t be a finite dimensional representation of
SL(2,C), andp: I' — SL(V) the induced representation. We can consider the assdciate
flat vector bundle oveM,

E, = M xp V.
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The space ofE,-valued differential forms orM will be denoted byQ*(M; E,).
A SU(2)-invariant hermitian product oW vyields a well defined hermitian metric on
E,, and hence o2*(M; E,). In particular, it makes sense to talk abdit-forms of
Q*(M; E,) as those which are square summable.

Theorem 2.1([24]). LetI" be a discrete torsion-free subgroup 8t (2,C). Let
V be an irreducible finite dimensional complex represeatatf SL(2,C), and p: ' —
SL(V) the induced representation. Thefor p = 1, 2, every closed E-form in
QP(I'\H3; E,) is exact.

As an immediate corollary of Theorem 2.1 we get a particudaecf Raghunathan’s
cohomology vanishing theorem.

Corollary 2.2 ([24]). Let M be aclosedhyperbolic three-manifold. If V is an
irreducible finite dimensional complex representationStf(2, C), then

HY(M;E,) = 0.

REMARK. Raghunathan’s theorem applies to lattices of a semisirhjglegroup
G, and a broader family of representations, see [24].

From Theorem 2.1 we can easily deduce Theorem 0.1.

Proof of Theorem 0.1. We hav®l = I'\H3 for some discrete torsion-free sub-
groupT" of SL(2,C). If M is compact then the result is clear from Theorem 2.1, so
we can assuméVl is noncompact. The spaddP(M, dM; E,) can be identified with
the cohomology group of compactly supportég-valued p-forms on M; hence, an
element §] € HP(M, dM; E,) is represented by a closed compactly supported ferm
on M. Therefore, Theorem 2.1 implies that for= 1, 2 the image of d] under the
map HP(M, dM; E,) — HP(M; E,) induced by the inclusion is zero.

The theorem now follows from the long exact sequence of the pad Poincaré
duality. Indeed the long exact sequence of the pllifaM) gives short exact sequences

0— HYM; E,) — H'@M; E,) - H3M, dM; E, ) — O,
0— H*M; E,) — H*OM; E,,) — H3M, dM; E, ).

By Poincaré duality we have dikh'(M;E,,) = dimH?(M,dM;E,,), and dimH3(M,aM;
E,,) = dimHO(M; E, ) = 0, by Lemma 3.5. O]

Raghunathan’s original proof of the theorem, a particulasecof which is The-
orem 2.1, uses two results as starting points. The first oeedlowing theorem due
to Andreotti and Vesentini [2]. Although the original thean is for complex manifolds,
there is an adaptation of Garland [12, Theorem 3.22] to tla case.
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Theorem 2.3 (Andreotti—Vesentini [2], Garland [12])Suppose that M is complete.
Assume that there exists>c0 such that for every € QP(M; E) with compact support
(Aa, @) > ¢(o, @), where(, ) denotes the hermitiator inner) product on the space of
E-valued forms. Then every square-integrable closed pHfisrexact.

The second point is the work of Matsushima—Murakami concgriiire theory of
harmonic forms in a locally symmetric manifold [21]. One tietgoals of that work
consists in proving a Weitzenbock formula for the Laplaciéising that formula, the
strong-positivity hypothesis of the Laplacian requiredTimeorem 2.3 can be proved by
establishing the positivity of a certain linear operatofirted on a finite dimensional
space, see Subsection 2.1. Although this is an importanteginal reduction, it re-
mains to prove the positivity of that operator. Raghunathas able to prove it for a
large family of locally symmetric manifolds and represeiotas, see [24].

The rest of this section is divided into two parts. The firseda a review of
the work of Matsushima and Murakami concerning the Laplacia@m docally sym-
metric manifold. The material presented here is almostagptbased on Matsushima—
Murakami [21], and Raghunathan’s book [25]. Although it doeg bring in a new
conceptual approach, seeking completeness, we hope tlosigsp given here will be
more accessible to the non-expert. Using this material, we @ simple proof of The-
orem 2.1 in Subsection 2.2.

2.1. Review of harmonic forms on a locally symmetric manifal. Let G be a
connected semisimple Lie group ahd < G a maximal compact subgroup &. The
respective Lie algebras are denoted ¢oyand ¢, with the convention that they are the
Lie algebras of left invariant vector fields dd and K, respectively.

Let B denote the Killing form ofg. We recall that it is defined by

B(V, W) = tr(ad, o ady),

for V, W € g. Cartan’s criterion implies thaB is nondegenerate if, and only if is
semisimple. In that case, we have a canonical decompogitierm &€, wherem is the
orthogonal complement té respect toB. This decomposition satisfies the following
properties: B is negatively defined ott; B positively defined omm; [¢, m] C m; and
[m, m] C ¢

The Killing form defines a pseudo-Riemannian metric@nwhich is invariant by
the action ofG by right translations, and is positively (resp. negatiyalgfined onm
(resp.t). Therefore, the Killing form defines a Riemannian metrictbe homogeneous
spaceX = G/K. Note thatG acts on the left orX by orientation preserving isometries.

Let ' be a discrete subgroup @ that acts freely onX. SinceTl acts by iso-
metries, the quotien = I'\ X is a Riemannian manifold. It is said thit is alocally
symmetric manifold
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For our purposes, it will be convenient to regard the unafec®veringX — M
as a principal bundle oveM with structure groupl’. We follow the convention that
the action of the structure group of a principal bundle is loa tight. Hence we only
need to convert the action df into a right action (ifg € T, thenx-g = g~*- x, for
x € X). We will also regardX as a flat bundle.

Consider theG-principal bundleP = X x G over M (see Appendix A for nota-
tion) endowed with the flat connection induced from the &liionnection of the product
X x G. We can embe on P using the sectiolX — X x G whose second coordinate
is constant and equal to the identity element. We can think @fs a reduction of the
structure group. Obviously, the horizontal leavesXofare also horizontal leaves ¢,
so the connection o is reducible toX.

On the other hand, the principal bundkehas a canonical reduction of its structure
group fromG to K. In order to get such a reduction, consider the embedtirig —

X x G given byi(g) = (gK, g). The image ofG by this embedding is invariant by the
bundle action ofK, so it defines an embedding\G <« X xr G, which will be also
denoted hyi. Therefore,Q = i(I"'\G) is a reduction of the structure group.

The connection defined oR is not reducible toQ, because its horizontal distri-
bution is not tangent t@Q (a curve onX x G whose second component is constant,
gives an horizontal curve oR; hence, if the horizontal distribution were tangentQo
this curve would be contained i@, and this does not happen). Nevertheless, since the
action of K on g respects the decompositign= m & ¢, we can state the following.

Proposition 2.4. Let n € QY(P; g) be the connection form of the connection de-
fined on P above. Puf = n, + ne, wheren,,, and n, are them and ¢ components of
n respectively. Therthe restriction ofpe to Q is a connection form on Q.

OBSERVATION. We can identifyg with the space of vector fields of\G that
are projection of left invariant vector fields da. In what follows, we will tacitly do
this identification.

Let w € QY('\G:; g) be the left Maurer—Cartan form dB. It is easily checked
thati*(n) = w. Hence, if we decompose = w,, + w; into the m-component and the
g-component,w; is the connection form of the connection defined BYG, and the
horizontal distribution is given byn.

Consider a finite linear representation G — Aut(V), and the associated vector
bundle E = X xr V (note thatE is canonically identified withP xg V and Q xk V).

The flat connection orP defines an exterior covariant differenti@ on the space
Q*(M; E). Via the canonical isomorphism betwej,, (I'\G; V)X and Q*(M; E), we
can transfer the operatal, to an operatorD,, in such a way that this isomorphism
is a chain complex isomorphism. If we denote Dythe exterior covariant differential
defined by the connectiow: on Q, then the relation betweeDd and D, is given by
the following proposition.
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Proposition 2.5. Leta be a form inQf, (I"\G; V)X. We have the following de-
composition

D,a¢ = Da + Ta,
where Ta = p(wm) A a.

Proof. On P the differential covariant is given bda + p(n) A « (see Propos-
ition A.2). Hence, if we transfer it t&Q via i, we getD,a = da + p(i*n) A «, and
the proposition follows from the fact thatn = w. [l

Let’s fix an orientation ort andm, and take an orthonormal basis fgr (Xs, ...,
Xn, Y1,...,Ym), such that X,...,X,) and (Y1,...,Yy) are positively oriented orthonormal
bases fort and m, respectively. Here, orthonormality means that

B(Xi, Xj) = —=dj, B(Yi,Y;)=4;, B(Xi,Yj)=0.

NoTATION. We will follow the following conventions. LeV be a finite dimen-
sional vector space. i, ..., e, is a basis forV, then its dual basis will be denoted
by el, ..., € € V*, with €(g)) = &;. If Ae ® V* is anr-times covariant ten-
sor, then its components relative to the basis definede'y. ., €" will be denoted
by A,..i . Concerning the exterior product of* V*, we will follow the convention

1<ij<w<iy<r

From now on, all the tensors will be written in the basisgajiven by { X,..., X,
Y1, ...y Yol

Proposition 2.6. For « € Qf,,(I"\G; V)X, the operators D and T are given by
the following equations.

r+1

1) (Da)iy,.ir s =Z(—1)k“Yikai1 ..... iy o1
k=1
r+1

) Ty = O (D) 5 i
k=1

Proof. Puta = (1/r)ai,. i Y* A--- A Y. By definition, D« is the horizontal

component ofle. It is immediate thatlY¥ has no horizontal componert:YX(Y; Yj) =
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indices we get equation (1). The other equation follows imigitely from the definition
of T. O

Let us define the form®x = X1 A---A X" andQy = YL A--- A Y™ It is clear
that these forms are independent of the orthonormal basesech HenceQ2x and Q
are well defined forms om"\G. Note thatQg is vertical and2y, is horizontal, and
both are rightK-invariant (it is a consequence of the fact the right actibrkoon g
leaves both the Killing form and the decompositigr= ¢ & m invariant). Observe that
Qum defines a volume form oM, which is compatible with the metric structure bf.

Next we want to define an inner product on the fibersEofIn order to do that,
fix a K-invariant inner product , )y onV, and use it to define a metric on the fibers
of E = Q xx V. Then define an inner product a*(M; E) as usual: ifa, B €
Q*(M; E) then

(@.8) = [ (@60, 0,
where (, )x is the inner product defined on the fibBg, and Qy is interpreted as a

form on M. On the other hand, we can define the inner product of two fazms e
Qo (I\G: V) by

@ B) = ﬁ [ 60, B2 A 2

where (, )y is the inner product o\" H* ® V induced by the Killing form, and the
inner product onV, and u(K) = fK Qk the volume ofK. Proposition A.4, gives the
relation between these two products.

Proposition 2.7. The canonical isomorphism betweef}, (I'\G; V)X and
Q*(M; E) is an isometry.

Using the Hodge dual operator on the horizontal bundle
1 Qo (P\G; V) — QL (N\G; V)X,

we can give a characterization of the formal adjoint of theraforsD and T.

Proposition 2.8. Leta € Qf,,(I"\G; V)X with compact support. Then

3) D*a = (-1) ' D xa,
(4) Tra = (1) "+ 1 p(@) A (*a).
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Proof. We want to use Proposition A.5. We claim that

/ Da A B A Qk = (=1) / a A DB A Q,

P P

for « and g forms of &}, (I"'\G; V) with compact support of degree— 1 andm —r
respectively. Indeed, sind@« is the horizontal component @, we haveDa A Qg =
da A Q. Then,

dla ABAQK) =daABAQ + (1) ta AdB A Qx,

for Qk being closed. Therefore, by Stokes’ theorem we get the iguwed wanted to
prove. Now, Proposition A.5 gives Formula (3).
Now, let us prove (4). By Proposition A.5, it suffices to pramat

(o(@) Aa) A B = (=1) " A (p(@)* A B).

If we take an orthonormal basis fof, thena and 8 are column vectors of forms of
degreer — 1 andm —r respectively, antb(w) a matrix of one forms. Hence, in this
basis p(w) A @) A B is (p(w)a) B, but (p(w)a)'f = (-1) Laip(w)!B, as we wanted
to prove. ]

A similar proof of Proposition 2.6, using the formulae fouindthe previous prop-
osition, gives the following.

Proposition 2.9. For o € Qf, (T'\G; V)X with compact suppoytthe operators
D* and T* are given by the following equations.

m
(5) (D*@iyois = D =Yy, po
k=1
m
(6) (T*®iyis =, PV i, s
k=1

Lemma 2.10. If the inner product on V is symmetric respect to the action of
m, then the operator S TD* + T*D + DT* + D*T is zero for every form with
compact support.

Before proving the lemma, we need the following result.

Lemma 2.11. For every function f with compact supppgnd Y € g,

(Y f)QM A Qg = 0.
r\G
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Proof. SinceY is an infinitesimal isometry we havey (f Qu AQk) = (Y f)Qu A
Q. On the other hand, the formulay = iy od + d o iy gives Ly(fQu A Qk) =
d(iy fQm A Qk), and Stokes’ theorem implies

0:/ Ly(fQM/\QK):/ (Yf)QM/\QK,
e G

as we wanted to prove. []

Proof of Lemma 2.10. Sinc& is a self-adjoint operatorS = 0 if, and only if,
(S, @) = 0 for everya with compact support. Let's take € @, (T'\G; V)X with
compact support. We must show that

(S, o) = (D, Ta) + (T, Da) + (D*a, T*a) + (T*a, D*a) = 0

Observe that it suffices to prove thdd¢, Ta) + (D*«, T*«) = 0. Moreover, using the
m-symmetry of the inner product and the fact that the Hodg®perator is an isometry,
we must prove IDa Ta) + (D(xa), T(xa)) = 0. Let's compute Do, Te). Puta =

o, i ®Y'TA---AY", If we use the expression d and T given in Proposition 2.6,

we see that Il)a, Ta) is the sum of terms of the form
(_1)I+J /Ii\ (Ylj I1 ..... J ..... irs1? p(Yik)ail ..... fk ..... ir+1>V dMG

It is convenient to group the summands according to whetheratoided sub-indices
fj and fk are equal or not. Therefore, one term is a sum of factors offdha

/ ity i o0t v dug, ¢ i, i),

G

and the rest is a sum of terms of the form

(7) (_1)j+k (Yija' ..... TR DR ,p(Y,k)Ol ..... Fi ek ir>dMG’
G i i

with ij # ix. We can apply this formula te« to compute D(x«), T (xw)). The for-
mula we get is just the above formula with the range of theceslichanged by their
complementary; that is, one one hand we get terms of the form

/ Yiaty,is POty diie € fina e ir),
MG
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for ij #ix. By Lemma 2.11, this last term is the opposite of 7. Henceuifices to
prove that for everyy e m, and f € C(I'\G; V), we have

/ (Y £, p(Y) F)y dug = O.
e

But it is also an immediate consequence of Lemma 2.11 andyimnstry of p(Y).
The lemma now follows from the fact thaD(w, T*«) = (D(xa), T (*xw)). [l

Corollary 2.12 (Matsushima—Murakami formula).Assume the inner product on
V is symmetric respect to the action waf Then

A, =A+H,
whereA = DD* + D*D, and H, = TT* + T*T.
Proof. We haveA, = D,D; + D;D, = A+ H, + S, and Lemma 2.10.  [J

Let's denote byT, T*, H, the restriction toV ® APm* of T, T* and H, respect-
ively. SinceT is an operator of degree zero, essentially all informatibrTpT* and
H, is contained inT, T*, H,. In particular, H, is positive definite if and onlyH,
is so.

Proposition 2.13. Leta € V ® AP m*. Then we have

k=1 j=1
Proof. Putgi, ., = (Ta)i, i, and y,, = (T*a)i,,.. .- Then, on one
hand we have
(TT i, —Z( Do)y

= Z( 1)k+lp(Ylk) Z ,O(Y])Olj i1,

k=1
and on the other hand,

(T Ty iy = D AY)Bjin..ois
1

J:

= Z,O(YJ)(,O(YJ)OIM ..... i + Z( 1) p(Y|k)aJ [P P )

J:]_ k=1
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And the proposition follows. [

2.2. Proof of Theorem 2.1. We want to apply the criterion of Andreotti—Vesentini
of Theorem 2.3. For this purpose, we will use Matsushima—Mamals formula (Corol-
lary 2.12) for the representation of SL(), Since for every compactly supported 1-fo#m

(A(@), @) = (D(a), D(«)) + (D*(e), D*(«)) = 0,

using Corollary 2.12, the criterion of Theorem 2.3 reduaeshow that H,(«), o) >
c(a, @) for some uniformc > 0 and every compactly supported 1-fokm

Notice that since the linear operatét, on 1-forms is induced from a linear op-
eratorH, on V @ m*, if H, is positive definite, then there is a positive constarsio
that (H,(«), ) > c(o, ) holds for every compactly supported one foom The proof
will follow from Lemma 2.14.

In order to apply Matsushima—Murakami’s formula to the repngéations of SL(27),
first we need to choose an orthonormal basissfd@R) respect to the Killing form (in fact,
respect to a constant multiple of it). Let’s define

ool ) x5 ) = (05)

Then (X1, X2, X3) is an orthonormal basis fosu(2). The orthogonal complement to
su(2) with respect to the Killing form is given byy = iXi, for k =1, 2, 3. On the
other hand, we haveXj, Xi 1] = 2Xj,2, for i = 1, 2, 3, where the indices are taken
modulo 3.

Lemma 2.14. Let p: sl(2,C) — End(V) a complex finite dimensional irreducible
representation dim(V) > 2. Then the operatoH, is positively defined on degrek
and 2.

Proof. SinceH, =T,T, +T,T,, to show thatH, is positive definite is equiva-
lent to show that its kernel is trivial. Let € V ®@m*. We havex = 32 o; ® Y!, with

aj € V. AssumeH,« = 0. ThenT ,« = 0 must vanish too, and from Proposition 2.6
(2) we obtain

(8) 0= (TpO()(Yi, Yj) = p(Yi)O[j - ,O(Yj)(xi, i, j =1,2,3.
Proposition 2.13 yields
3

(H,a)(Y)) = Y _(0(Y)%ej + p([Yj, Y ).
k=1
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Taking the indices modulo 3, and using the Lie algebra m@hati we get

3

Y oYy Y e = (1Y YD ejia + oY) YiraD ez
k=1

= 2(p(—=Xj+2)aj+1 + p(Xj+1)ej+2)

=2i(p(Yj+2)aj+1— p(Yj+1)etj+2).
Notice that in the last equality we have used the complexctira. Hence, using (8),
we get H,a)(Y;) = Yo_, p(Yi)%e;, and then

3 /3
0= (H,u, @) Z<Zp(Yk)2aj,aj>

j=1 \k=1

3
= 2 (b(M)ej, p(M)ey),

j.k=1

that impliesp(Y;)ax = 0 for j,k =1, 2, 3. Hence, for a fixe#t, we havep(Z)ax =0
for every Z € sl(2, C). Since we are assuming thatis irreducible and nontrivial, we
get ax = 0O for all k. It proves the lemma in degree 1. Singg =~ /\2 m*, the same
proof holds true in degree 2. O

3. Cohomology of the ends and lifts of the holonomy

Assume thatM is a noncompact, nonelementary, orientable hyperbolicifisldn
with finite topology, in particular it is the interior of a cqract manifold with bound-
ary M. The aim of this section is to analyse the cohomology grodpsl qaM, E,,).
This will be done in Subsection 3.1. When the ends of the ro&hiére cusps, this
cohomology happens to be related to the lift of the holonothgt we study in Sub-
section 3.2. Finally, this is used to prove Theorem 0.2.

3.1. Cohomology of the ends.

DEFINITION. Let G be a group acting on a vector spade The subspace of
invariants of V, denoted byV®, is the subspace consisting of elementsvothat are
fixed by G. That is,

={veV]|g-v=nu, forall ge G}.

Lemma 3.1. Let F be a connected componenta¥. For every n> 1 we have

dimc HO(F; E,,) = dimc V),
dimc HY(F; E,,) = 2 dimc V7P —ny(F),
dimc H2(F; E,) = dimc V7P,
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Proof. SinceF is a K(m1(F), 1) space H(F; E,,) = HOm1(F); E,,), and this is
identified with V(). It proves the first equality. The third one follows from Pciné
duality, and the second one from an Euler characteristioraegt. []

Therefore, all the cohomological information comes frora sfubspace of invariants
vm(F), We distinguish two cases according to whetlfehas genugy > 2, or F is a
torus. In order to analyse the case whens a torus, we make the following definition.
If we have a torusT2 c aM, then the holonomy maps,(T?) to a parabolic subgroup;
hence, up to conjugation every elementrif(T?) is mapped by a lift of the holonomy

representation to
1 %
+ .
(6 1)

DEFINITION. Let us fix a lift to SL(2,C) of the holonomy representation. We
say that this lift ispositive on 71(T?) if every element ofr1(T?) has trace+2.

Proposition 3.2. Let F a connected component 6M, and n> 1. If F has
genus g> 2, then \{*(™ = 0,
If F is a torus T2, then we have the following cases

0 for n even and a nonpositive lift
v = ICc for n even and a positive lift
C for n odd.

Before proving it, we need the following lemmas. The first e be found in
standard references about Kleinian groups (cf. [18]):

Lemma 3.3. Let M be a hyperbolic three manifold. Then the following are
equivalent
— M is elementaryits holonomy is reducible iPSL(2,C)).
—  m1(M) is abelian.
— M is homeomorphic to either the product of the plane with ralei R? x St, or
to the product of a2-torus with a ling St x St x R.

Lemma 3.4. Let F be a connected component @f. If F has genus g~ 2,
then ’H\o’I(m(F)) is an irreducible subgroup ofSL(2,C).

Proof. WhenF is mi-injective (i.e. whenry(F) injects intor;(M)) then the holo-
nomy restricts to a discrete and faithful representatiomdf), and irreducibility fol-
lows becauser;(F) is nonabelian. Otherwise, whel is not w1-injective, according
to Bonahon [5] and McCullough—Miller [22] there are two pod#ibs: either M is a
handlebodyor F is a boundary component of @aracteristic compression body C
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M. A handlebody is the result of attaching one handles to all34baparticular when
M is a handlebody then;(F) surjects ontari(M), thus Holg:(F)) = Hol(r1(M)) and
irreducibility comes from the hypothesis thht is nonelementary. Next, assume that
F is the positive boundary of a characteristic compressialy o, namelyC € M is a
codimension 0 closed submanifold, whose boundary split @siondC = d_CUd, C,
so thatd, C = F, the components 0f_C are m;-injective in M, and C is the result
of gluing 1-handles t®_C x [0, 1] alongd_C x {1}. In particularz,(F) surjects onto
71(C) and Holfr1(F)) = Hol(z1(C)). Thus, if F = 9,C and one of the components
of 0_C has genus> 2, then we are done by the -injective case. Finally iff =3, C
and all components of_C are tori, since incompressible tori ikl are boundary par-
allel, then the inclusiorC € M is a homotopy equivalence. Thug(F) surjects onto
w1(M) and irreducibility follows again becaudd is nonelementary. ]

Lemma 3.5. Let M be a nonelementarprientable and hyperbolic three mani-
fold. Then for n > 2 the subspace of invariants of, \s trivial:

VM = 0.

Proof. Let us fix a basis fo¥W,. Let e; = ((1)) ande, = (g) so that{ey, &}
is the standard basis for, = C2. Thus

{eT_li erl]_zezi AR ] %n_l}

is a basis forV,, = Sy ().
Since M is nonelementary, there exists at least one elemert 7;(M) whose
holonomy is nonparabolic (cf. [18, Corollary 3.25]). Up tonjugation, it is

L 0
(5 22)

for somea € C, with |A| > 1. This means that the vectoes ande, of the standard ba-
sis for C? are eigenvectors. Sincdé, is the f—1)-symmetric power of?, for n even
the only element ofV,, y-invariant is zero. Fom odd, the subspace gf-invariants

of V, is the line generated bg"/?e{"™"/2 Any other matrix of SL(2C) that fixes
e 2el=D/2 g either diagonal or antidiagonal (zero entries in the oled). Anti-

diagonal matrices have trace zero, hence they have order $outhey cannot occur
because the holonomy d¥l has no torsion elements. Also, any elemente 7;(M)
that does not commute with has nondiagonal holonomy, thus 0 is the only element
of V, invariant by bothy andy’. O

Proof of Proposition 3.2. WhernF has genusg > 2, then by Lemma 3.4
Hol(1(F))\H?® is a nonelementary hyperbolic 3-manifold. We apply Lemma ®.
conclude thatv(® = 0.
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Assume now thatF is a torusT2. After conjugation, elements at.(T2) have
holonomy

1
i(o 1) € SL(2,C).

The previous matrix maps]~ 1€, to (£1)"‘e]~'"Y(e, + reyr)', and it follows easily
that there is no invariant subspace whens even and the lift is nonpositive or it is
generated bye]~! otherwise. Ll

Applying Lemma 3.1, Proposition 3.2, Theorem 0.1 and Lemnia ®e get the
following corollaries.

Corollary 3.6. Let M be a hyperbolic manifold with k cusps and | ends of in-
finite volume of genusig..., g, and let n> 2. Then

dimec H°(OM; E,,) = a,
|
dime H'(9M: E,,) = > 2n(g — 1) + 2a,
i=1
dimec H3(OM; E,,) = a,

where a is equal to k if n is odénd equals to the number of cusps for which the lift
of the holonomy is positive if n is even.

Corollary 3.7. Let M be as inCorollary 3.6 Then H(M; E, ) =0,

dime H(M: E,) = > "n(g —1)+a,
i=1

and dimec H3(M; E,,) = a.
3.2. Lifts of the holonomy representation.

Proposition 3.8 ([10]). The holonomy representation of a hyperbadenanifold
M lifts to SL(2,C). In addition there is a natural bijection between the set of lifts
and the set of spin structures.

This is proved in Section 2 of [10]. Essentially the idea iatth spin structure
on M has a section, becaudé is parallelizable, and this section lifts to a equivariant
section of the spin bundle on the universal coveringhdf Identifying the universal
covering of M with H3, the spin bundle corresponds to SL(), and equivariance of
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the section gives the lifted representationm{M) in SL(2,C). Notice that on both
sets, the set of spin structures and the set of lifts, theeedsnply transitive action of
H(M:Z/2Z). We view elements irH1(M;Z/2Z) as homomorphisms;(M) — Z/2Z
that describe the difference between signs of two diffetiist

Assume thatM hask cusps, and choosg, ..., € m1(M) k elements so that
eachy; is represented by a simple closed curve in one of the toruhefctisp, and
different curves go to different cusps.

Lemma 3.9. For any choice of curves as abgvihere exists a lift
p: w1 (M) — SL(2,C)
of the holonomy representation such thetcep(y;)) = -2, fori =1,...,k.

Proof. We denote the peripheral torus By, ..., T2 Let u; € 71(T?) be rep-
resented by a simple closed curve intersectingn one point, so thay; and u; gen-
eratenl(Tiz). We can replace; by y,pf“‘, for any integern;, as multiplying by an
even power ofuj does not change the sign of the trace. We chosenthsufficiently
large so that Thurston’s hyperbolic Dehn filling applies hese slopes. More precisely,
we require that there is a continuous path of cone manifalactires with cone angle
a € [0, 27], so thata = 0 is the complete structure oM and « = 27 is the filled
manifold (cf. [26, 17]). Now we chose the lift of the hypertaoktructure on the filled
manifold, using Culler's theorem [10], and consider theuiced lifts corresponding to
changing continuously the cone angle. The m&M, SL(2,C)) — X(M, PSL(2,C))
is a local homeomorphism except at characters of reduciyeesentations or repre-
sentations that preserve a (unoriented) geodesid®of14]. Thus we get a continuous
path of representations iK(M, SL(2,C)) parametrized by the cone anglec [0, 2r],
cf. [10, Theorem 4.1].

The holonomy ofy; is conjugate to

(1
exp(—) 0
. O2 ex —i—a
2

and its trace ist2 cosf/2). The sign+ must be constant by continuity. This is clear
whena # 7 because then the trace is nonzero. Whegs 7, we use the local rigidity
theorem of [16, 28], that says that this path is locally patimed by«, and since the
derivative of £2 cosfr/2) ato = 7 is £ sin(r/2) = +1, the trace is monotonic ot
wheno = 7.
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Finally, since we have chosen a lift that is trivial gnwheno = 2, the choice
of sign is

o
—2C0S—,
2

and whena = 0 we get the result. O

We obtain the following well known result, proved by Caldgar[8], that applies
for instance to the longitude of a knot.

Corollary 3.10. Lety be a simple closed curve in a torus ®M homotopically
nontrivial. If y is homologous to zero in §M;Z/2Z), then for every lift p: 7;(M) —
SL(2,C) of the holonomy representatipn

tracef(y)) = —2.

Proof. The proof follows from the fact that the sign @fy) cannot be changed
by taking different lifts, and by applying Lemma 3.9. []

Corollary 3.11. Let M be a hyperbolic manifold with a single cusp. Then all
lifts of the holonomy representation are nonpositivergifo M).

Proof. Since the inclusion in homology
Hi(U;Z/2Z) — Hy(M; Z/2Z)

has rank one, there exists a simple closed curve repregeatimontrivial element in
Hy(T?Z2/27Z) = Hy(U;Z/2Z) that is Z/2Z-homologous to zero irM. Thus Corol-
lary 3.10 applies here, and every lift of the holonomy restd to the peripheral group
is nonpositive. O

Proof of Theorem 0.2. Apply Corollaries 3.7 and 3.11. O

4. Infinitesimal rigidity
Here we prove Theorem 0.3, that we restate.
Theorem 4.1. Let M be a complete hyperbolig-manifold that is topologically

finite. If 9M is the union of k tori and | surfaces of genus, g.., g > 2, and n>
2, then

dime HY(M: Edop,) = k(N = 1) + ) (g — 1)(n* — 1).

In particular, if M is closed then H(M; Eago,,) = 0. In addition all nontrivial elem-
ents in H(M; Eagop,) are nontrivial in H}(3M), Eag.,,) and have no B representative.
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Proof. By Lemma 1.4 we havel(n, C) =~ Vo,_1 & Von_3--- ® V3. Hence,
9) HY(M; Eagop,) = HY(M; E,, ) @ HY(M; E,, ) @ -+ ® HY(M; E,).
The theorem now follows from this isomorphism, Corollar$ &nd Theorem 0.1.[]

Next we want to prove Theorem 0.4. See [20] for basic restitaiarepresentation
and character varieties. The variety of representations,(¥1) in SL(n, C) is

R(M, SL(n, C)) = hom(z(M), SL(, C)).

Since r1(M) is finitely generated, this is an algebraic affine set. TheugrSL, C)
acts by conjugation ofR(M, SL(n, C)) algebraically, and the quotient in the algebraic
category is the variety of characters:

X(M, SL(n, C)) = R(M, SL(n, C))//SL(n, C).
For a representatiop € R(M, SL(n, C)) its character is the map

Xp: m(M) - C

y b tracefp(y)).

The projectionR(M, SL(n, C)) — X(M, SL(n, C)) maps each representatignto its
charactery,.

Weil’s construction gives a natural isomorphism between Zlariski tangent space
to a representatioﬁfarR(M, SL(n, C)) and Z(1(M), Vag.,), the space of group co-
cycles valued in the lie algebral(n, C), which asm;(M)-module is also written as
Vadop- Namely, Z1(rr1(M), Vagop) is the set of maps: 71(M) — Vag., that satisfy the
cocycle relation

d(y1y2) = d(y1) + Adpnd(y2), Vi, v2 € mi(M).

Notice thatR(M, SL(n, C)) may be a non reduced algebraic set, so the Zariski tangent

space may be larger than the Zariski tangent space of thellyimndealgebraic variety.
The space of coboundarieB(r1(M), Vad.,) is the set of cocycles that satisfy

d(y) = Ad,ym —m for all y € 71(M) and for some fixedn € Vaq,,. The space

of coboundaries is the tangent space to the orbit by coriugaso under some hy-

pothesis the cohomology may be identified with the tangeacespof the variety of

characters (Proposition 4.2). Sindé is aspherical, the group cohomology of(M)

Hl(ﬂl(M): VAdop) = Zl(ﬂl(M), VAdop)/Bl(T[l(M)v VAdop)

is naturally isomorphic taH(M; Eag.,,).
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DEFINITION. A representatiorp: 71(M) — SL(n, C) is semisimplef every sub-
space ofC" invariant by p(71(M)) has an invariant complement.

Thus a semisimple representation decomposes as direct Egimpule representa-
tions, where simple means without proper invariant subspac

The following summarizes the relation between tangent epand cohomology.
See [20] for a proof.

Proposition 4.2. Let p € R(M, SL(n, C)).
1. There is a natural isomorphism

ZY(1(M), Vagep) 2= TZR(M, SL(n, C)).
2. If p is semisimplethen it induces an isomorphism
H(1(M): Vade) = TZX(M, SL(n, C)).

3. If p is semisimple and a smooth point of R, SL(n, C)), then its charactery,, is
a smooth point of XM, SL(n, C)).

A point in an algebraic affine set is smooth iff it has the sarmedsion that its
Zariski tangent space. So to prove smoothness we need touterttpese dimensions.

Lemma 4.3. Let p, be as inTheorem 0.4,and T?> a component ofdM cor-
responding to a cusp. Then the restriction pf to 71(T?) is a smooth point of
R(T?2, SL(n, C)).

Proof. Knowing that dinR(T?2, SL(n, C)) < dim Z(T?, Vadsp,), We want to show
that equality of dimensions holds. Before the cocycle spacee first compute the di-
mension of the cohomology group. By Equation (9) in the probfTheorem 4.1:

n
dim HY(T?; Eagep,) = »_ dimHY(T% E,, ).
i=2
Hence, by Corollary 3.6,
dim HY(T?% Eadop,) = 2(n — 1).

We apply the same splitting for computing the dimension & ¢tloboundary space. It
is the sum of terms diB'(T?, E,,), for k odd from 3 to 2 — 1. Since we have an
exact sequence

0— V™ 5 v - BYT% E,) — 0,
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dim BY(T2, E,) = k — dim ;"™ =k — 1, by Lemma 3.2. Thus
dim BY(T?, Eadop,) = (2N —2)+(2n—4) +--- +2=n?—n.

Hence asH(T?; Eadop,) = ZX(T?, Eadop,)/BX (T2, Eadop,), We have:

dim ZY(T2, Eadep,) = dim HY(T?, Eadop,) + dim BY(T2, Eagop,)
=n?4+n—2.

Now we look for a lower bound of difR(T?, SL(n, C)). Fix {y1, 1»} a generating
set of 71(T?). The representatiop, restricted tor1(T?) has eigenvalues equal tol.
By deforming the representation af(T2) to SL(2,C), and by composing it with the
representation of SL(Z) to SL(n,C), there exists a representatiphe R(T?2,SL(n,C))
arbitrarily close top, such that all eigenvalues ¥ (y;) are different, in particular
o'(y1) diagonalises. Now, to find deformations pf, notice thatp’(y;) can be de-
formed withn? —1 = dim(SL(n, C)) parameters, and having all eigenvalues different is
an open condition. A®'(y2) has to commute with'(y4), it has the same eigenspaces,
but one can still chose — 1 eigenvalues fop’(y,). This proves that the dimension of
some irreducible component &(T?2, SL(n, C)) that containsp, is at least

n—1+n—1=n>4n-2.
As this is dimZY(T?2, Eadop,), it is @ smooth point. O]

Proof of Theorem 0.4. Using Proposition 4.2, we just prova i, is a smooth
point of the variety of representations.

Given a Zariski tangent vectar € ZY(M, Vag.p,), We have to show that it is inte-
grable, i.e. that here is a path in the variety of represemsitwhose tangent vector is
v. For this, we use the algebraic obstruction theory, seeld]3, There exist an infinite
sequence of obstructions that are conomology classé$?{M, Vag.,,), each obstruc-
tion being defined only if the previous one vanishes. Theseralated to the analytic
expansion in power series of a deformation of a representasind to Kodaira’s theory
of infinitesimal deformations. Our aim is to show that thiinite sequence vanishes.
This gives a formal power series, that does not need to cgeyvéaut this is sufficient
for v to be a tangent vector by a theorem of Artin [3] (see [15] fotads). We do
not give the explicit construction of these obstructions, just use that they are natural
and that they live in the second cohomology group.

By Theorem 0.1 we have an isomorphism:

(10) Hz(Mv EAdopn) = HZ(BM, EAdopn)-

Now, H2(dM; Eag.p,) decomposes as the sum of the connected componernidviof
If Fy has genusy > 2 then H?(Fg; Eagop,) = 0. Thus, only the components oM
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that are tori appear itH2(3M; Eago,,). By Lemma 4.3 and naturality, the obstructions
vanish when restricted t61%(T2; Eagop,), hence they vanish itd?(M; Eagop,) by the
isomorphism (10). []

A. Some results on principal bundles

Throughout this sectior® will denote aG-principal bundle over a manifoldi.
REMARK. We will follow the convention that the action @ is on the right.

Assume we have a connection d¢h with connection formw € Q'(P;g). This
connection defines a horizontal vector bunédeon P. The differential of the bundle
projectionzp: P — M is an isomorphism when restricted td. Hence, givenX, €
TM andu € 7;(p), there exists a uniqu, € Hy that is projected toXp. The vector
X, is called the horizontal lift ofX, atu. A vector field onP is called horizontal if
it is tangent toH.

All these definitions can be extended in a natural way to thangent bundle,
exterior powers, tensor powers, etc. Therefore, it makeses¢o talk about horizontal
forms, horizontal tensors, etc.

Let’s recall a common construction. L& be a differentiable manifold on which
G acts on the left. The associated bundle, denotedPlxs F, is the quotient ofP x V
by the diagonal right action o6 (i.e. if (u, x) € P x F, then (@, x) - g = (ug, g~x)).
The spaceP xg F has in a natural way a structure of fiber bundle ovemwith typical
fiber F.

OBSERVATION. The definition of P xg F allows us to interpret a point in P
as an isomorphism betwedn and the fiber ofP xg F at mp(u). Let’s say, if 7 de-
notes the quotient map x V — P xg F, thenxz(u, -) is an isomorphism. Note that
7(u-g, X) =mn(u, gx).

We can generalize the notion of associated bundle just titwgisF"; that is, we
can take as a starting point an arbitrary bundle oRewith typical fiber F, instead
of just the product bundld® x F. Let 7g: Q — P be a bundle ovelP with typical
fiber F. Assume that we have a fiber-preserving action (on the rights on Q that
is compatible with the action o (i. e.7o(q - g) = mq(q) - g). The quotientQ/G
is in a natural way a fiber bundle ovéd with typical fiber F. In this case, a point
u € P can be interpreted as an isomorphism between the fib€ af u, and the fiber
of Q/G at m(u).

Proposition A.1. There is a canonical isomorphism between the space of
G-equivariant sections of Qand the space of sections of the associated bundl&.Q
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Now we want to specialize all these things to the c€se= \' H* ® V, where
V is a fixed vector space. Let’s fix a linear representatianG — Aut(V), in such
a way thatV becomes a leftG-module. We then let acG on Q on the right as
follows: if ap ® wp belongs toQp, then fp ® wp) - g = R ap ® p(9) 1wy € Qpg.
Using horizontal lifts we can identifyQ/G with A" T*M ® E. More precisely, let
pe M, uer(p), and H;: T,M — H, the horizontal lift map. Then, if we interpret
u an isomorphism betweew and Ep, we obtain the isomorphism,: H ® u: Q, —
A" Tp * M ® Ep. Since horizontal lift andi commute with the action o6, we have
@u(v) = @ug(vg), for all v € Q. Therefore, we get an isomorphism betweenQ/G
and \' T*M ® E.

We will denote byS;,.(P; V)€ the space of horizontal -valued differential forms
over P that areG-equivariant, or, equivalently, the space @fequivariant sections of
the bundle/\" H* ® V.

OBSERVATION. A form « is horizontal if, and only if, it vanishes on vertical
directions, that isjxe = 0 for any vertical vector fieldX. Also, « is G-equivariant
if, and only if, Ry = p(@ Y for all g € G. Therefore,a € Q" (P; V) belongs to
Q. (P; V)€ if, and only if,

(11) Ry = p(g) e, forall geG,

(12) iva =0, forall Yeg.

Note that we are identifyingy with the space ofG-invariant vertical vectors over a
fixed fiber of P.

The connection onP defines an exterior covariant differential d@&-equivariant
horizontal forms. Namely,

Do = (da)ommy, for « e Q. (P;V)®

where m, is projection on the horizontal distribution defined by theniection. On
the other hand, a connection é¢hinduces a connection on the vector bunéle<, V,

and hence an exterior covariant differentéhl on Q'(M; E). It is easily verified that
the canonical isomorphism between the spaegs(P; V)© and @*(M; E), “commute”
with exterior covariant differentiation (see [19, p. 76]).

Proposition A.2. Let w € QY(P;g) be the connection form of the connection de-
fined on P. Then the following formula holds

Da = da + p(w) A «.
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REMARK. If Vi, ..., Vpy1 are vector fields orP, by definition,

p+1

(o A @) (Ve Vi) = D 1 oY) (Ve - Vi V).
i=1

Taking a base oW, p(w) is just a matrix of 1-formse a column vector ofp-forms,
and the producp(w) A « is just the product of a matrix by a vector.

Proof of Proposition A.2. We must prove the fom + p(w) A « is horizontal,
and that on horizontals vectors coincides widlx. The second fact is obvious from the
definition of D and the fact that» vanishes on horizontal vectors. Hence we only need
to prove thatda + p(w) A @ vanishes on vertical vectors. Let b€ the fundamental
vector field associated t&X e g, using Cartan’s identity L(} = di} + i d)) we get
ix(do + p(w) A a) = Lo —d(ia) + p(X)). The infinitesimal version of thés-
equivariance oix states that_jo = —p(X)a. Then we conclude thade + p(w) A «
is vertical. []

Now assume thaM is a Riemannian manifold, and that we have a metric on the
vector bundleE = P xg V. These metrics induce an inner product on the space of
E-valued forms overM.

(@ ) = /M ((X), BO))xom.

On the other hand, the Riemannian metric lghdefines a metric tensor on the
horizontal bundleH, in such a way that horizontal lifts are isometries. Als@ thetric
defined onE defines a metric on the trivial vector bunde x V. A right invariant
volume formwg on G defines a right invariant volume form along the fibers Rf
Therefore, we can define an inner product @f(P; V)€ by

@ f) = /P (@), AU (m) A 3.

We want to study how the metrics defined @1(M; E) and Qf,,(P; V)¢ are re-
lated by the canonical isomorphism. However, this comparidoesn’t make sense if
G is not assumed to be compact éife Q"(M; E) has compact support, then the cor-
responding formz in Qf,.(P;V)® has compact support if, and only i& is compact).
From now on we will assume th& is compact. In order to avoid confusions we will
denoteG by K in this case. In this case we can simplify things a little Biirst, take
a K-invariant metric onV, and use it to define a “constant” metric #hx V. Since
this metric is K-invariant, we get a metric on the vector bundte Under these hy-
pothesis, we get a nice relation between these two metmicerder to get this relation,
we need the following lemma.
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Proposition A.3. Letwy be a volume form on Mand wgk a right invariant vol-
ume form on K. Denote byj the right invariant volume form on the fibers of P
defined bywk. If f is a function defined on Pthen the functionf (u) = Ji fug)ok
is invariant along the fibersand hence can be seen as a function on M. With these
hypothesiswe have

/ f(u)mh(wm) A wg =/ f(X)wowm.
P M

Proof. Take an open sé&t C M that trivializesP, and a trivializing map/: U x
K — n,;l(U). Let's denote byry and i the projection ofU x K on the first and on
the second factor respectively. We havg = (¥ *)~1(z} (wk)). The change of variable
formula gives

/ FU)s (om) A 0 = / F (0 (%, Q)78 (m) A 5 ().
nH(U) UxK

By Fubini’s theorem, the last integral is,

[U(/K fx g))wK)wM = [ 0o

The result follows by taking a partition of unity subordiedtto a trivializing open cover.
O

The function(a(u), B(u))v is constant along the fibers, and equalgd@x), 8(X))x,
wherex = zp(u). The above lemma then implies the following proposition.

Proposition A.4. With the above notatign

(@ B) = n(K)(e, B),
where i denotes the measure defined by the volume fogm

Consider the pairing

Qo (P VYK x Q= (P: V)X 5 R

Hor

(a,ﬂ)HfP(Ol/\ﬂ)/\wK,

where the wedge product of ¥-valued is defined using the usual wedge product on
scalar-valued forms, and the inner product\nOn the other hand, the metric on the
horizontal bundle, and the orientation we have on it, allesvta define a Hodge star
operator on the space of horizontal forms,

*: QL (P VYK — Qir(P; V)X,
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Note that we haveo| B) = ¢(«, *pB).

Proposition A.5. Let T: QI,,(P; V)X — QLIK(P; V)X be a linear operator that
decreases supports. Assume we have a linear operator

S: TP V) — Qi (Pr V)X

r Hor

such thatg(Ta, B) = ¢(«, SB). Then the formal adjoint of T is

T = (1™ 4 Sk: QUIK(P; VK — Qb (P; V)K.

Hor

Proof. Let's denotel,,(P; V)X by M. We have the following commutative
diagram,

T(
* *
r+k Mr

|

T
Mk ——> M,

M

where the vertical arrows are the isomorphisms given by tletrios, T' is the dual
map of T, and T* its adjoint. We can factor the metric isomorphism ¢, ). We
have the following commutative diagram

T! *
r+k ? Mr

¢(-,)T ¢(-,)T
S

Mmf(r +k) —> Mm r

Mr+k T% Mr.

M*

The proposition now follows from the fact that on degreme haves—1 = (—1) (M ")x,
O
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