COMPARING HYPERBOLIC DISTANCE WITH KRA'S DISTANCE ON THE UNIT DISK

Guowu YAO

(Received June 9, 2009, revised October 27, 2010)

Abstract

In this paper, Kra's distance d_{K} and the hyperbolic distance $d_{\mathbb{D}}$ are compared on the unit disk \mathbb{D}. It is shown that $2 d_{K}<d_{\mathbb{D}}<\left(\pi^{2} / 8\right) \exp d_{K}$ on $\mathbb{D} \times \mathbb{D} \backslash\{$ diagonal $\}$, where the constants 2 and $\pi^{2} / 8$ are sharp. As a consequence, this result gives a negative answer to a question posed by Martin [7] in a stronger sense.

1. Introduction

Let \mathbb{D} be the unit disk $\{|z|<1\}$ in the complex plane \mathbb{C} and let $\rho(z)|d z|$ denote the hyperbolic metric, i.e.,

$$
\rho(z)|d z|=\frac{1}{1-|z|^{2}}|d z|, \quad z \in \mathbb{D} .
$$

Then the hyperbolic distance $d_{\mathbb{D}}\left(z_{1}, z_{2}\right)$ between two points z_{1}, z_{2} induced by $\rho(z)$ is

$$
d_{\mathbb{D}}\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \frac{1+\left|\left(z_{1}-z_{2}\right) /\left(1-\bar{z}_{1} z_{2}\right)\right|}{1-\left|\left(z_{1}-z_{2}\right) /\left(1-\bar{z}_{1} z_{2}\right)\right|}
$$

Let R be a hyperbolic Riemann surface covered by \mathbb{D}. Let $\omega: \mathbb{D} \rightarrow R$ be the canonical holomorphic universal covering of R. Then $d_{\mathbb{D}}$ induces a quotient hyperbolic distance d_{R} on R that satisfies

$$
d_{R}(\omega(a), q)=\min \left\{d_{\mathbb{D}}(z, a): \omega(z)=q\right\}
$$

for all $a \in \mathbb{D}$ and $q \in R$.
A Teichmüller shift mapping on R is the uniquely extremal quasiconformal mapping $T_{p_{1}, p_{2}}$ which sends p_{1} to p_{2} and is homotopic to the identity mapping modulo the ideal boundary ∂R. It is a Teichmüller mapping with Beltrami coefficient $\mu_{p_{1}, p_{2}}$ such that, for $p_{1}=p_{2}, \mu_{p_{1}, p_{2}}=0$, while for $p_{1} \neq p_{2}, \mu_{p_{1}, p_{2}}=k_{p_{1}, p_{2}}\left|\phi_{p_{1}, p_{2}}\right| / \phi_{p_{1}, p_{2}}$,

[^0]where $k_{p_{1}, p_{2}} \in(0,1)$ is a constant and $\phi_{p_{1}, p_{2}}$ is a holomorphic quadratic differential in $R-\left\{p_{1}\right\}$, which has a first order pole at p_{1} and has unit L^{1}-norm.

When studying the self-maps of Riemann surfaces and the geometry of Teichmüller spaces, Kra [4] introduced a distance d_{K} on every hyperbolic Riemann surface R by the Teichmüller shift mapping, which is defined as follows: for any two points p_{1} and p_{2} in R,

$$
d_{K}\left(p_{1}, p_{2}\right)=\frac{1}{2} \log \frac{1+k_{p_{1}, p_{2}}}{1-k_{p_{1}, p_{2}}} .
$$

Kra [4] compared d_{R} with d_{K} for certain Riemann surfaces:
Theorem A. When R is of analytic finite type and is not conformally equivalent to $\mathbb{C} \backslash\{0,1\}$, there exists a universal constant $c>0$ such that

$$
\begin{equation*}
c d_{R}<d_{K}<d_{R} \tag{1.1}
\end{equation*}
$$

on $R \times R \backslash$ \{diagonal $\}$.
Earle and Lakic [2] proved
Theorem B. If R is not conformally equivalent to $\mathbb{C} \backslash\{0,1\}$, then the identity map id: $\left(R, d_{R}\right) \rightarrow\left(R, d_{K}\right)$ is not an isometry, moreover, $d_{K}<d_{R}$ on $R \times R \backslash\{$ diagonal $\}$.

Remark. Liu [5] proved Theorem B for all hyperbolic Riemann surfaces with three exceptions: $\mathbb{D}, \mathbb{D}^{*}=\mathbb{D} \backslash\{0\}$, or an annulus.

In this paper, we compare d_{R} with d_{K} on the unit disk and give sharp inequalities between them.

Theorem 1. For the unit disk \mathbb{D}, the hyperbolic distance $d_{\mathbb{D}}$ and Kra's distance satisfy

$$
\begin{equation*}
2 d_{K}<d_{\mathbb{D}}<\frac{\pi^{2}}{8} \exp d_{K} \tag{1.2}
\end{equation*}
$$

on $\mathbb{D} \times \mathbb{D} \backslash\{$ diagonal $\}$, where the constants 2 and $\pi^{2} / 8$ are sharp.
We now introduce a basic concept. A sense preserving homeomorphism f of a domain $\Omega \subset \mathbb{C}$ is called K-quasiconformal $(1 \leq K<\infty)$, if f is an L^{2}-solution of the equation

$$
\bar{\partial} f=\mu \partial f
$$

where μ is a measurable function with

$$
\|\mu\|_{\infty} \leq \frac{K-1}{K+1}<1
$$

There is a classical result of Teichmüller's concerning the distortion of normalized quasiconformal mappings [9]. We state Teichmüller's theorem as follows.

Theorem C. Let $\rho(z, w)$ denote the hyperbolic metric of constant curvature -4 in the three punctured sphere $\mathbb{C} \backslash\{0,1\}$. We have
(a) if f is a K-quasiconformal mapping of the Riemann sphere fixing 0,1 and ∞, then for any $z \in \mathbb{C} \backslash\{0,1\}$,

$$
\begin{equation*}
\rho(z, f(z)) \leq \log K, \tag{1.3}
\end{equation*}
$$

(b) if $z, w \in \mathbb{C} \backslash\{0,1\}$ satisfy $\rho(z, w) \leq \log K$, then there is a K-quasiconformal map of the Riemann sphere fixing 0,1 and ∞ such that $w=f(z)$.

In [7], Martin used holomorphic motions to extend the (b) part of Teichmüller's theorem to any planar domain. He obtained the following theorem.

Theorem D. Let Ω be a planar domain with at least three boundary points and let $\rho_{\Omega}(z, w)$ be the hyperbolic metric of Ω with constant curvature -1 . Suppose $z, w \in$ Ω and

$$
\rho_{\Omega}(z, w) \leq \log K .
$$

Then there is a K-quasiconformal self-homeomorphism f of Ω such that
(1) $f(\zeta)=\zeta$ for all $\zeta \in \partial \Omega$,
(2) $f(z)=w$.

Martin also asked if the (a) part of the theorem can be extended likewise. His question is precisely described as follows.

Let R be a planar domain with at least three boundary points and suppose that f is a K-quasiconformal mapping of R such that $f(\zeta)=\zeta$ for all $\zeta \in \partial R$. Does it follow that $2 d_{R}(z, f(z)) \leq \log K$ for all $z \in R$? (Notice that the curvature of the hyperbolic metric determined by d_{R} is -4 .)

In [3], Huang and Cho gave a negative answer to this question for any planar simply-connected domain. Actually, Martin's question can be reduced to whether $d_{R} \leq$ d_{K} holds on $R \times R$. Evidently it has a negative answer by Theorem B. When $R=\mathbb{D}$, our Theorem 1 implies a negative answer in a stronger sense.

Theorem 2. For any given $c>0$ and $z \in \mathbb{D}$, there exists a K-quasiconformal mapping f of \mathbb{D} fixing all boundary points of \mathbb{D} such that

$$
\begin{equation*}
d_{\mathbb{D}}(z, f(z))>c \log K \tag{1.4}
\end{equation*}
$$

where K depends only on c.

We note that it might be hard, but would be very interesting to compare $d_{\mathbb{D}^{*}}$ and d_{K} on \mathbb{D}^{*}.

2. $2 d_{K}<d_{\mathbb{D}}$

In fact, on the unit disk, we have the following exact formula:

$$
\begin{equation*}
\log \frac{\exp d_{K}+1}{\exp d_{K}-1}=\mu\left(\frac{\exp \left(2 d_{\mathbb{D}}\right)-1}{\exp \left(2 d_{\mathbb{D}}\right)+1}\right) \tag{2.1}
\end{equation*}
$$

where $\mu(r)$ is the conformal module of the Grötzsch ring domain whose boundary components are the unit circle and the line segment $\{x: 0 \leq x \leq r\}$. Since d_{K} and $d_{\mathbb{D}}$ are invariant under Möbius transformations, we only need to prove that

$$
2 d_{K}(0, r)<d_{\mathbb{D}}(0, r)
$$

for $r \in(0,1)$.
By the result in [6], $\mu(r)$ satisfies

$$
\begin{equation*}
\log \frac{\left(1+\sqrt{1-r^{2}}\right)^{2}}{r}<\mu(r)<\log \frac{4}{r} \tag{2.2}
\end{equation*}
$$

Therefore, $\mu(r)$ has the asymptotic behavior: as $r \rightarrow 0$,

$$
\begin{equation*}
\mu(r)=\log \frac{4}{r}+s(r) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
0>s(r)>\log \frac{\left(1+\sqrt{1-r^{2}}\right)^{2}}{r}-\log \frac{4}{r}>-\frac{r^{2}}{2}+o\left(r^{3}\right) \tag{2.4}
\end{equation*}
$$

Thus, we obtain the asymptotic behavior of $d_{K}(0, r)$:

$$
\begin{aligned}
d_{K}(0, r) & =\log \frac{\exp \mu(r)+1}{\exp \mu(r)-1}=\log \frac{(4 / r) \exp s(r)+1}{(4 / r) \exp s(r)-1} \\
& =\log \frac{\exp s(r)+r / 4}{\exp s(r)-r / 4}=\log \frac{1+r / 4+s(r)+o\left(r^{3}\right)}{1-r / 4+s(r)+o\left(r^{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\left(\frac{r}{4}+s(r)\right)-\frac{1}{2}\left(\frac{r}{4}+s(r)\right)^{2}+\frac{1}{3}\left(\frac{r}{4}+s(r)\right)^{3}+o\left(r^{3}\right)\right] } \\
& -\left[\left(-\frac{r}{4}+s(r)\right)-\frac{1}{2}\left(-\frac{r}{4}+s(r)\right)^{2}+\frac{1}{3}\left(-\frac{r}{4}+s(r)\right)^{3}+o\left(r^{3}\right)\right] \\
= & \frac{r}{2}-\frac{r}{2} s(r)+\frac{r^{3}}{96}+o\left(r^{3}\right), \quad \text { as } \quad r \rightarrow 0 .
\end{aligned}
$$

Using (2.4), we obtain

$$
d_{K}(0, r)=\frac{r}{2}+O\left(r^{3}\right), \quad \text { as } \quad r \rightarrow 0
$$

On the other hand, it is easy to check that

$$
\begin{equation*}
d_{\mathbb{D}}(0, r)=\frac{1}{2} \log \frac{1+r}{1-r}=r+\frac{r^{3}}{3}+o\left(r^{3}\right), \quad \text { as } \quad r \rightarrow 0 . \tag{2.5}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{d_{K}(0, r)}{d_{\mathbb{D}}(0, r)}=\frac{1}{2} \tag{2.6}
\end{equation*}
$$

So, for any given $c>1 / 2$, there exists some $r(c) \in(0,1)$ such that

$$
\begin{equation*}
d_{K}(0, r)<c d_{\mathbb{D}}(0, r) \tag{2.7}
\end{equation*}
$$

holds whenever $r \in(0, r(c))$. Now, we show that (2.7) holds for all $r \in(0,1)$. Let $O A$ denote the line segment $\{x: 0 \leq x \leq r\}$ in \mathbb{D}, where O is the origin $z=0$ and A is the endpoint $z=r$. Choose orderly $n+1$ (sufficiently large) points $A_{0}, A_{1}, \ldots, A_{n}$ in $O A$ from O to A such that $O=A_{0}, A=A_{n}$ and

$$
\begin{equation*}
d_{\mathbb{D}}\left(A_{k}, A_{k+1}\right)<d_{\mathbb{D}}(0, r(c)) \tag{2.8}
\end{equation*}
$$

for $k=0,1, \ldots, n-1$. By the invariance of d_{K} and $d_{\mathbb{D}}$ under Möbius transformations and inequality (2.7), we have

$$
d_{K}\left(A_{K}, A_{K+1}\right)<c d_{\mathbb{D}}\left(A_{K}, A_{K+1}\right)
$$

Thus,

$$
\begin{aligned}
d_{K}(0, r) & =d_{K}(O, A) \leq \sum_{k=0}^{n-1} d_{K}\left(A_{k}, A_{k+1}\right) \\
& <c \sum_{k=0}^{n-1} d_{\mathbb{D}}\left(A_{k}, A_{k+1}\right)=c d_{\mathbb{D}}(O, A)=c d_{\mathbb{D}}(0, r)
\end{aligned}
$$

Since c is arbitrarily chosen in $(1 / 2, \infty)$, we conclude that

$$
\begin{equation*}
2 d_{K}(0, r) \leq d_{\mathbb{D}}(0, r) \tag{2.9}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
2 d_{K}(0, r) & \leq 2 d_{K}\left(0, r^{\prime}\right)+2 d_{K}\left(r^{\prime}, r\right) \\
& \leq d_{\mathbb{D}}\left(0, r^{\prime}\right)+d_{\mathbb{D}}\left(r^{\prime}, r\right)=d_{\mathbb{D}}(0, r)
\end{aligned}
$$

If the equality in (2.9) holds for some $r \in(0,1)$, then

$$
\begin{equation*}
2 d_{K}(0, x)=d_{\mathbb{D}}(0, x) \tag{2.10}
\end{equation*}
$$

for all $x \in(0, r]$. This gives

$$
\mu(x)=\log \frac{\sqrt[4]{1+x}+\sqrt[4]{1-x}}{\sqrt[4]{1+x}-\sqrt[4]{1-x}}, \quad x \in(0, r]
$$

in terms of (2.1). However, it is impossible because the representation of $\mu(r)$ is not an elementary function in $(0, r)$. Thus, we obtain $2_{K}<d_{\mathbb{D}}$ on $\mathbb{D} \times \mathbb{D} \backslash\{$ diagonal $\}$. Finally, it follows that the constant 2 is sharp from (2.6).

Examining the argument above carefully, we actually prove that the hyperbolic distance has the maximal property in the following sense.

Theorem 3. Let $d(\cdot, \cdot)$ be a distance function defined on $\mathbb{D} \times \mathbb{D}$. If $d(\cdot, \cdot)$ is invariant under Möbius transformations of \mathbb{D} and satisfies

$$
\begin{equation*}
\limsup _{r \rightarrow 0^{+}} \frac{d(0, r)}{d_{\mathbb{D}}(0, r)}=\lambda>0 \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
d(z, w) \leq \lambda d_{\mathbb{D}}(z, w) \tag{2.12}
\end{equation*}
$$

for all $(z, w) \in \mathbb{D} \times \mathbb{D}$.

3. $d_{\mathbb{D}}<\left(\pi^{2} / 8\right) \exp d_{K}$

It suffices to show that

$$
\begin{equation*}
d_{\mathbb{D}}(0, r)<\frac{\pi^{2}}{8} \exp d_{K}(0, r) \tag{3.1}
\end{equation*}
$$

for $r \in(0,1)$.
We need two lemmas.

Lemma 1. $g(r)=\mu(r) d_{\mathbb{D}}(0, r)$ is an increasing function from $(0,1)$ onto (0, $\left.\pi^{2} / 4\right)$.

Proof. Observe $g(r)=\mu(r) \log ((1+r) /(1-r)) / 2$. Theorem 11.21 in [1] indicates that $g(r)$ satisfies the desired condition.

Lemma 2. $h(r)=1 /\left(\mu(r) \exp d_{K}(0, r)\right)$ is an increasing function from $(0,1)$ onto ($0,1 / 2$).

Proof. Observe

$$
h(r)=\frac{1}{\mu(r)} \frac{\exp \mu(r)-1}{\exp \mu(r)+1} .
$$

Consider two auxiliary functions $x=\mu(r)$ and

$$
\tilde{h}(x)=\frac{1}{x} \frac{\exp x-1}{\exp x+1}, \quad x \in(0, \infty) .
$$

We have

$$
\tilde{h}^{\prime}(x)=\frac{1+2 x \exp x-\exp (2 x)}{(x+x \exp x)^{2}}
$$

It is not difficult to verify that

$$
1+2 x \exp x-\exp (2 x)<0, \quad x \in(0, \infty),
$$

and hence $h(x)$ is a decreasing function in $(0, \infty)$. On the other hand, it is well-known that $x=\mu(r)$ is a decreasing function from $(0,1)$ onto $(0, \infty)$. Thus, $h(r)$ is an increasing function in $(0,1)$. In addition,

$$
\lim _{r \downarrow 0} h(r)=\lim _{x \uparrow \infty} \tilde{h}(x)=0
$$

and

$$
\lim _{r \uparrow 1} h(r)=\lim _{x \downarrow 0} \tilde{h}(x)=\frac{1}{2} .
$$

This completes the proof of this lemma.
Combining Lemmas 1 and 2, we get

Theorem 4. $F(r)=g(r) h(r)=d_{\mathbb{D}}(0, r) / \exp d_{K}(0, r)$ is an increasing function from $(0,1)$ onto $\left(0, \pi^{2} / 8\right)$.

Now, we obtain $d_{\mathbb{D}}<\left(\pi^{2} / 8\right) \exp d_{K}$ on $\mathbb{D} \times \mathbb{D} \backslash\{$ diagonal $\}$, where $\pi^{2} / 8$ is sharp. Moreover, Theorem 2 is naturally derived from Theorem 4 and the definition of Teichmüller shift mapping.

ACKNOWLEDGEMENTS. The author wishes to thank the referee for his/her helpful comments. The referee also noticed that Martin's result has been generalized to the setting of mappings of finite distortion on the unit disk [8].

References

[1] G.D. Anderson, M.K. Vamanamurthy and M.K. Vuorinen: Conformal Invariants, Inequalities, and Quasiconformal Maps, Wiley, New York, 1997.
[2] C.J. Earle and N. Lakic: Variability sets on Riemann surfaces and forgetful maps between Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 27 (2002), 307-324.
[3] H. Xinzhong and N.E. Cho: On the distortion theorem for quasiconformal mappings with fixed boundary values, J. Math. Anal. Appl. 256 (2001), 694-697.
[4] I. Kra: On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231-270.
[5] L.X. Liu: Invariant metrics in infinite-dimensional Teichmüller space, Complex Variables Theory Appl. 25 (1994), 337-349.
[6] O. Lehto and K.I. Virtanen: Quasiconformal Mappings in the Plane, second edition, Springer, New York, 1973.
[7] G.J. Martin: The distortion theorem for quasiconformal mappings, Schottky's theorem and holomorphic motions, Proc. Amer. Math. Soc. 125 (1997), 1095-1103.
[8] G.J. Martin: The Teichmüller problem for mean distortion, Ann. Acad. Sci. Fenn. Math. 34 (2009), 233-247.
[9] O. Teichmüller: Untersuchungen über konforme und quasiconforme Abbildung, Deutsche Math. 3 (1938), 621-678.

Department of Mathematical Sciences Tsinghua University
Beijing, 100084
P.R. China
e-mail: gwyao@math.tsinghua.edu.cn

[^0]: 2010 Mathematics Subject Classification. 30C62, 30F60, 32G15.
 The author was supported by a Foundation for the Author of National Excellent Doctoral Dissertation (Grant No. 200518) and the National Natural Science Foundation of PR China.

