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Abstract
In this paper, Kra’s distancedK and the hyperbolic distanced

D

are compared on
the unit diskD. It is shown that 2dK < d

D

< (�2
=8) expdK on D � D n {diagonal},

where the constants 2 and�2
=8 are sharp. As a consequence, this result gives a

negative answer to a question posed by Martin [7] in a strongersense.

1. Introduction

Let D be the unit disk{jzj < 1} in the complex planeC and let�(z)jdzj denote
the hyperbolic metric, i.e.,

�(z)jdzj D
1

1� jzj2
jdzj, z 2 D.

Then the hyperbolic distanced
D

(z1, z2) between two pointsz1, z2 induced by�(z) is

d
D

(z1, z2) D
1

2
log

1C j(z1 � z2)=(1� Nz1z2)j

1� j(z1 � z2)=(1� Nz1z2)j
.

Let R be a hyperbolic Riemann surface covered byD. Let ! W D ! R be the
canonical holomorphic universal covering ofR. Thend

D

induces a quotient hyperbolic
distancedR on R that satisfies

dR(!(a), q) D min{d
D

(z, a) W !(z) D q}

for all a 2 D and q 2 R.
A Teichmüller shift mapping onR is the uniquely extremal quasiconformal map-

ping Tp1, p2 which sendsp1 to p2 and is homotopic to the identity mapping modulo
the ideal boundary�R. It is a Teichmüller mapping with Beltrami coefficient�p1, p2

such that, forp1 D p2, �p1, p2 D 0, while for p1 ¤ p2, �p1, p2 D kp1, p2j�p1, p2j=�p1, p2,
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wherekp1, p2 2 (0, 1) is a constant and�p1, p2 is a holomorphic quadratic differential in
R� {p1}, which has a first order pole atp1 and has unitL1-norm.

When studying the self-maps of Riemann surfaces and the geometry of Teichmüller
spaces, Kra [4] introduced a distancedK on every hyperbolic Riemann surfaceR by
the Teichmüller shift mapping, which is defined as follows: for any two pointsp1 and
p2 in R,

dK (p1, p2) D
1

2
log

1C kp1, p2

1� kp1, p2

.

Kra [4] compareddR with dK for certain Riemann surfaces:

Theorem A. When R is of analytic finite type and is not conformally equivalent
to C n {0, 1}, there exists a universal constant c> 0 such that

(1.1) cdR < dK < dR,

on R� R n {diagonal}.

Earle and Lakic [2] proved

Theorem B. If R is not conformally equivalent toCn{0,1}, then the identity map
id W (R, dR)! (R, dK ) is not an isometry, moreover, dK < dR on R� R n {diagonal}.

REMARK . Liu [5] proved Theorem B for all hyperbolic Riemann surfaces with
three exceptions:D, D� D D n {0}, or an annulus.

In this paper, we comparedR with dK on the unit disk and give sharp inequalities
between them.

Theorem 1. For the unit diskD, the hyperbolic distance d
D

and Kra’s distance
satisfy

(1.2) 2dK < d
D

<

�

2

8
expdK

on D � D n {diagonal}, where the constants2 and �2
=8 are sharp.

We now introduce a basic concept. A sense preserving homeomorphism f of a
domain� � C is called K -quasiconformal (1� K < 1), if f is an L2-solution of
the equation

N

� f D � � f,
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where� is a measurable function with

k�k

1

�

K � 1

K C 1
< 1.

There is a classical result of Teichmüller’s concerning thedistortion of normalized
quasiconformal mappings [9]. We state Teichmüller’s theorem as follows.

Theorem C. Let �(z, w) denote the hyperbolic metric of constant curvature�4
in the three punctured sphereC n {0, 1}. We have
(a) if f is a K -quasiconformal mapping of the Riemann sphere fixing 0, 1 and1,
then for any z2 C n {0, 1},

(1.3) �(z, f (z)) � log K ,

(b) if z,w 2 C n {0, 1} satisfy�(z,w) � log K , then there is a K -quasiconformal map
of the Riemann sphere fixing0, 1 and1 such thatw D f (z).

In [7], Martin used holomorphic motions to extend the (b) partof Teichmüller’s
theorem to any planar domain. He obtained the following theorem.

Theorem D. Let � be a planar domain with at least three boundary points and
let �

�

(z,w) be the hyperbolic metric of� with constant curvature�1. Suppose z,w 2
� and

�

�

(z, w) � log K .

Then there is a K -quasiconformal self-homeomorphism f of� such that
(1) f (� ) D � for all � 2 ��,
(2) f (z) D w.

Martin also asked if the (a) part of the theorem can be extendedlikewise. His
question is precisely described as follows.

Let R be a planar domain with at least three boundary points and suppose that f
is a K -quasiconformal mapping ofR such that f (� )D � for all � 2 �R. Does it follow
that 2dR(z, f (z)) � log K for all z 2 R? (Notice that the curvature of the hyperbolic
metric determined bydR is �4.)

In [3], Huang and Cho gave a negative answer to this question for any planar
simply-connected domain. Actually, Martin’s question can be reduced to whetherdR �

dK holds on R� R. Evidently it has a negative answer by Theorem B. WhenRD D,
our Theorem 1 implies a negative answer in a stronger sense.
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Theorem 2. For any given c> 0 and z2 D, there exists a K -quasiconformal
mapping f ofD fixing all boundary points ofD such that

(1.4) d
D

(z, f (z)) > c log K ,

where K depends only on c.

We note that it might be hard, but would be very interesting tocompared
D

� and
dK on D�.

2. 2dK < d
D

In fact, on the unit disk, we have the following exact formula:

(2.1) log
expdK C 1

expdK � 1
D �

�

exp(2d
D

) � 1

exp(2d
D

)C 1

�

,

where �(r ) is the conformal module of the Grötzsch ring domain whose boundary
components are the unit circle and the line segment{x W 0 � x � r }. Since dK and
d
D

are invariant under Möbius transformations, we only need to prove that

2dK (0, r ) < d
D

(0, r )

for r 2 (0, 1).
By the result in [6],�(r ) satisfies

(2.2) log
(1C

p

1� r 2)2

r
< �(r ) < log

4

r
.

Therefore,�(r ) has the asymptotic behavior: asr ! 0,

(2.3) �(r ) D log
4

r
C s(r ),

where

(2.4) 0> s(r ) > log
(1C

p

1� r 2)2

r
� log

4

r
> �

r 2

2
C o(r 3).

Thus, we obtain the asymptotic behavior ofdK (0, r ):

dK (0, r ) D log
exp�(r )C 1

exp�(r ) � 1
D log

(4=r ) exps(r )C 1

(4=r ) exps(r ) � 1

D log
exps(r )C r =4

exps(r ) � r =4
D log

1C r =4C s(r )C o(r 3)

1� r =4C s(r )C o(r 3)
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D

�

� r

4
C s(r )

�

�

1

2

� r

4
C s(r )

�2
C

1

3

� r

4
C s(r )

�3
C o(r 3)

�

�

�

�

�

r

4
C s(r )

�

�

1

2

�

�

r

4
C s(r )

�2
C

1

3

�

�

r

4
C s(r )

�3
C o(r 3)

�

D

r

2
�

r

2
s(r )C

r 3

96
C o(r 3), as r ! 0.

Using (2.4), we obtain

dK (0, r ) D
r

2
C O(r 3), as r ! 0.

On the other hand, it is easy to check that

(2.5) d
D

(0, r ) D
1

2
log

1C r

1� r
D r C

r 3

3
C o(r 3), as r ! 0.

Thus, we have

(2.6) lim
r!0C

dK (0, r )

d
D

(0, r )
D

1

2
.

So, for any givenc > 1=2, there exists somer (c) 2 (0, 1) such that

(2.7) dK (0, r ) < cd
D

(0, r )

holds wheneverr 2 (0,r (c)). Now, we show that (2.7) holds for allr 2 (0, 1). Let O A
denote the line segment{x W 0 � x � r } in D, where O is the origin zD 0 and A is
the endpointzD r . Choose orderlynC 1 (sufficiently large) pointsA0, A1, : : : , An in
O A from O to A such thatO D A0, AD An and

(2.8) d
D

(Ak, AkC1) < d
D

(0, r (c))

for k D 0, 1,: : : , n� 1. By the invariance ofdK and d
D

under Möbius transformations
and inequality (2.7), we have

dK (AK , AKC1) < cd
D

(AK , AKC1).

Thus,

dK (0, r ) D dK (O, A) �
n�1
X

kD0

dK (Ak, AkC1)

< c
n�1
X

kD0

d
D

(Ak, AkC1) D cd
D

(O, A) D cd
D

(0, r ).
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Sincec is arbitrarily chosen in (1=2,1), we conclude that

(2.9) 2dK (0, r ) � d
D

(0, r ).

Observe that

2dK (0, r ) � 2dK (0, r 0)C 2dK (r 0, r )

� d
D

(0, r 0)C d
D

(r 0, r ) D d
D

(0, r ).

If the equality in (2.9) holds for somer 2 (0, 1), then

(2.10) 2dK (0, x) D d
D

(0, x)

for all x 2 (0, r ]. This gives

�(x) D log
4
p

1C x C 4
p

1� x
4
p

1C x � 4
p

1� x
, x 2 (0, r ]

in terms of (2.1). However, it is impossible because the representation of�(r ) is not
an elementary function in (0,r ). Thus, we obtain 2K < d

D

on D � D n {diagonal}.
Finally, it follows that the constant 2 is sharp from (2.6).

Examining the argument above carefully, we actually prove that the hyperbolic dis-
tance has the maximal property in the following sense.

Theorem 3. Let d( � , � ) be a distance function defined onD � D. If d( � , � ) is
invariant under Möbius transformations ofD and satisfies

(2.11) lim sup
r!0C

d(0, r )

d
D

(0, r )
D � > 0,

then

(2.12) d(z, w) � �d
D

(z, w),

for all (z, w) 2 D � D.

3. d
D

< (�2
=8) expdK

It suffices to show that

(3.1) d
D

(0, r ) <
�

2

8
expdK (0, r )

for r 2 (0, 1).
We need two lemmas.



COMPARING HYPERBOLIC DISTANCE WITH KRA’ S DISTANCE 355

Lemma 1. g(r ) D �(r ) d
D

(0, r ) is an increasing function from(0, 1) onto
(0, �2

=4).

Proof. Observeg(r )D �(r ) log((1C r )=(1� r ))=2. Theorem 11.21 in [1] indicates
that g(r ) satisfies the desired condition.

Lemma 2. h(r ) D 1=(�(r ) expdK (0,r )) is an increasing function from(0, 1) onto
(0, 1=2).

Proof. Observe

h(r ) D
1

�(r )

exp�(r ) � 1

exp�(r )C 1
.

Consider two auxiliary functionsx D �(r ) and

Qh(x) D
1

x

expx � 1

expx C 1
, x 2 (0,1).

We have

Qh0(x) D
1C 2x expx � exp(2x)

(x C x expx)2
.

It is not difficult to verify that

1C 2x expx � exp(2x) < 0, x 2 (0,1),

and henceh(x) is a decreasing function in (0,1). On the other hand, it is well-known
that x D �(r ) is a decreasing function from (0, 1) onto (0,1). Thus, h(r ) is an in-
creasing function in (0, 1). In addition,

lim
r#0

h(r ) D lim
x"1
Qh(x) D 0

and

lim
r"1

h(r ) D lim
x#0
Qh(x) D

1

2
.

This completes the proof of this lemma.

Combining Lemmas 1 and 2, we get

Theorem 4. F(r ) D g(r )h(r ) D d
D

(0, r )=expdK (0, r ) is an increasing function
from (0, 1) onto (0, �2

=8).
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Now, we obtaind
D

< (�2
=8) expdK on D � D n {diagonal}, where�2

=8 is sharp.
Moreover, Theorem 2 is naturally derived from Theorem 4 and the definition of
Teichmüller shift mapping.

ACKNOWLEDGEMENTS. The author wishes to thank the referee for his/her help-
ful comments. The referee also noticed that Martin’s result has been generalized to the
setting of mappings of finite distortion on the unit disk [8].

References

[1] G.D. Anderson, M.K. Vamanamurthy and M.K. Vuorinen: Conformal Invariants, Inequalities,
and Quasiconformal Maps, Wiley, New York, 1997.

[2] C.J. Earle and N. Lakic:Variability sets on Riemann surfaces and forgetful maps between
Teichmüller spaces, Ann. Acad. Sci. Fenn. Math.27 (2002), 307–324.

[3] H. Xinzhong and N.E. Cho:On the distortion theorem for quasiconformal mappings withfixed
boundary values, J. Math. Anal. Appl.256 (2001), 694–697.

[4] I. Kra: On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta Math.
146 (1981), 231–270.

[5] L.X. Liu: Invariant metrics in infinite-dimensional Teichmüller space, Complex Variables The-
ory Appl. 25 (1994), 337–349.

[6] O. Lehto and K.I. Virtanen: Quasiconformal Mappings in the Plane, second edition, Springer,
New York, 1973.

[7] G.J. Martin: The distortion theorem for quasiconformal mappings, Schottky’s theorem and holo-
morphic motions, Proc. Amer. Math. Soc.125 (1997), 1095–1103.

[8] G.J. Martin: The Teichmüller problem for mean distortion, Ann. Acad. Sci. Fenn. Math.34
(2009), 233–247.

[9] O. Teichmüller:Untersuchungen über konforme und quasiconforme Abbildung, Deutsche Math.
3 (1938), 621–678.

Department of Mathematical Sciences
Tsinghua University
Beijing, 100084
P.R. China
e-mail: gwyao@math.tsinghua.edu.cn


