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Abstract
We introduce an elementary way of constructing principal (Z2)m-bundles over

compact smooth manifolds. In addition, we will define a general notion of locally
standard (Z2)m-actions on closed manifolds for allm � 1, and then give a general
way to construct all such (Z2)m-actions from the orbit space. Some related topology
problems are also studied.

1. Introduction

If the group (Z2)m acts freely and smoothly on a closed manifoldMn, the orbit
spaceQn is also a closed manifold. We can think ofMn either as a principal (Z2)m-
bundle overQn or as a regular covering overQn with deck transformation group (Z2)m.
In algebraic topology, we have a standard way to recoverMn from Qn using the uni-
versal covering space ofQn and the monodromy map of the covering (see [1]). However,
it is not very easy to visualize the total space of the covering using that construction.
Considering the speciality of (Z2)m, it is desirable to have a new way of constructing
such regular coverings from the orbit spaces which can really help us to visualize the
total space more easily. In this paper, such a construction will be given with the name
glue-back construction.

Another source of niceZ2-torus actions on manifolds are locally standard actions
(see [2]). SupposeMn is a closed manifold with a smooth locally standard (Z2)n-
action, letXn D Mn=(Z2)n be the orbit space and� W Mn ! Xn be the orbit map. It is
well known thatXn is a nicen-manifold with corners, and if the action is not free,Xn

will have boundary. The (Z2)n-action determines acharacteristic function�� (taking
values in (Z2)n) on the facets ofXn, which encodes the information of isotropy sub-
groups of the non-free orbits. In particular, whenXn is a convex simple polytope, there
is a standard construction to recoverMn (up to equivariant homeomorphism) from the
characteristic function�� on Xn (see [2]). But in general, ifH1(Xn, Z2) is not trivial,
we need an additional piece of data to recoverMn—a principal (Z2)n-bundle �� over
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Xn which encodes the information of the free orbits of the action (see [3]). However,
the bundle information�� has a quite different flavor from the characteristic function�� and is not so easy to be visualized in the orbit spaceXn. In this paper, we will
combine the characteristic function�� and the (Z2)n-bundle �� on Xn into a compos-
ite (Z2)n-valued colorings (�� , �� ) on a new manifoldUn (called aZ2-core of Xn),
which is a nice manifold with corners obtained fromXn (but not uniquely). And up
to equivariant homeomorphisms, we can recoverMn from the composite (Z2)n-coloring
(�� , �� ) on Un from a generalized glue-back construction.

Moreover, we can define a general notion of locally standard (Z2)m-action on
n-dimensional manifolds for allm � 1, which includes all free (Z2)m-actions on
n-dimensional manifolds. The glue-back construction can beapplied in this general
setting as well. So actually we do not assumemD n at all in this paper.

The paper is organized as following. In Section 2, we will explain how to get aZ2-core Vn from a closed manifoldQn and introduce an important structure onVn

called involutive panel structure. We will introduce several definitions concerning this
structure to make our subsequent discussions precise and convenient. Some explicit
examples will be analyzed to illustrate these definitions. In Section 3, we will introduce
the glue-back construction from aZ2-core Vn of Qn with a (Z2)m-colorings. And we
will show that any principal (Z2)m-bundles overQn can be obtained in this way. Also
the glue-back construction makes sense for any nice manifold with corners equipped
with an involutive panel structure. Some properties of thisconstruction will be studied
along with some explicit examples. In Section 4, we will generalize the notion ofZ2-
core and glue-back construction to compact manifolds with boundary as well. Then in
Section 5 we define a general notion of locally standard (Z2)m-actions on closedn-
manifolds for anym � 1 and apply the glue-back construction to this general setting.
Especially, the notion of involutive panel structure is used to unify all our constructions.
In addition, we will state some classification theorems of locally standard (Z2)m-actions
on closedn-manifolds up to (weak) equivariant homeomorphisms. In Section 6, we
will discuss how to get some topological information (e.g. the number of connected
components and orientability) of the glue-back construction of locally standard (Z2)m-
actions from the (Z2)m-colorings. In the end, we will propose some problem for the
further study.

The main idea of the paper is inspired by the description of locally standardZ2-
torus manifolds in [3]. An aim of this paper is to establish a framework for studying
general locally standard (Z2)m-actions onn-manifolds in the future. In particular, the
author will use the glue-back construction to study the Halperin–Carlsson conjecture
for free (Z2)m-actions on compact manifolds in a sequel paper. Also, the involutive
panel structure defined in this paper might have some independent value.

In this paper, we denote the quotient groupZ=2Z by Z2 and always think of (Z2)m

as an additive group. In addition, we will use the following conventions:
(1) any manifold and submanifold in this paper is smooth;
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(2) we always identify an embedded submanifold with its image;
(3) any (Z2)m-actions on manifolds in this paper are smooth and effective.

2. Z2-core of a closed manifold and involutive panel structure

SupposeMn is an n-dimensional closed manifold with a free (Z2)m-action (m is
an arbitrary positive integer), letQn D Mn=(Z2)m be the orbit space and� W Mn ! Qn

be the orbit map. ThenQn is also a closed manifold. In addition, we always assume
Qn is connected in this paper.

We can consider the orbit map� W Mn ! Qn either as a regular (Z2)m covering or
as a principal (Z2)m-bundle map. Note thatMn may not be connected in general.

It is well-known that up to bundle isomorphism, principal (Z2)m-bundles overQn

are one-to-one correspondent with elements ofH1(Qn, (Z2)m). Then � W Mn ! Qn

determines an element

3� 2 H1(Qn, (Z2)m) � Hom(H1(Qn, Z2), (Z2)m).

From another viewpoint, as a regular covering space,� W Mn ! Qn is determined
by its monodromy mapH� W �1(Qn) ! (Z2)m. Since (Z2)m is an abelian group, we
get an induce group homomorphismHab� W H1(Qn, Z2) ! (Z2)m which is exactly the3� above. Moreover, by the Poincaré duality, we haveHn�1(Qn, Z2) � H1(Qn, Z2).
So we obtain a group homomorphism3�� W Hn�1(Qn, Z2) ! (Z2)m.

The above analysis suggests us to construct a new geometric object from Qn which
can carry all the information of3� (or 3�� ). First, we recall a well-known theorem in
algebraic topology.

Theorem 2.1 (Hopf). Let f W Mm ! Nn be a smooth map between closed ori-
ented manifolds and Ln�p � Nn a closed, oriented submanifold of codimension p such
that f is transverse to L. Write u2 H p(N) for the Poincaré dual of[L]N , that is,
u\ [N] D [L]N . Then[ f �1(L)]M D f �(u)\ [M]. In other words: If u is Poincaré dual
to [L]N , then f�(u) 2 H p(M) is Poincaré dual to[ f �1(L)]M . If using Z2 coefficient,
we do not need to assume that Mm and Nn are orientable.

Proof. Use the naturality of the Thom class of the tangent bundle.

If H1(Qn, Z2) D 0, then any principal (Z2)m-bundle overQn is trivial. So in the
rest of this paper, we always assumeH1(Qn, Z2) ¤ 0. let {'1, : : : , 'k} be a basis of
H1(Qn,Z2), and let{�1,: : : ,�k} be the basis ofHn�1(Qn,Z2) that is dual to{'1,: : : ,'k}

under the Poincaré duality.

Lemma 2.2. �1, : : : , �k can be represented by codimension one connected em-
bedded submanifolds of Qn.
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Proof. SinceH1(Qn,Z2)� [Qn,K (Z2,1)]D [Qn,RP1] D [Qn,RPnC1], an elem-
ent ' 2 H1(Qn,Z2) corresponds to a homotopy class of maps [f ] W Qn ! RPnC1 such
that ' D f �(8) where8 is a generator ofH1(RPnC1, Z2). Then theZ2-homology
class represented by a canonically embeddedRPn � RPnC1 is the Poincaré dual of8. We can always assume thatf is smooth and transverse toRPn. Then by above
theorem,6 D f �1(RPn) is a codimension 1 embedded submanifold inQn which is
Poincaré dual to'. So we can find codimension one embedded submanifolds61,:::,6k

which are Poincaré dual to'1, : : : , 'k respectively. In addition, we can always choose61, : : : , 6k to be connected. Indeed, forn D 1, 2, this is obviously true. And when
n � 3, if some6i is not connected, we can connect all its components via thin tubes
in Qn, which will not change the homology class of6i in Hn�1(Qn, Z2).

A collection of codimension-one embedded closed submanifolds {61, : : : , 6k} is
called aZ2-cut systemof Qn if they satisfy the following conditions:
(1) the homology classes [61], : : : , [6k] form a Z2-linear basis ofHn�1(Qn, Z2).
(2) 61, : : : , 6k are in general position inQn which means that:

(a) 61, : : : , 6k intersect transversely with each other and,
(b) if 6i1\� � �\6is is not empty, then it is an embedded submanifold ofQn with
codimensions.
Now we choose a small tubular neighborhoodN(6i ) of each6i in Qn, and then

remove the interior of eachN(6i ) from Qn. The manifold that we get is:

Vn D Qn � k[
iD1

int(N(6i ))

which is called aZ2-core of Qn from cutting Qn open along61, : : : ,6k. The boundary
of Vn is ��Si N(6i )

�
. We call �N(6i ) the cut sectionof 6i in Qn.

Notice that the projection�i W �N(6i )! 6i is a double cover, either trivial or non-
trivial. Let N�i be the generator of the deck transformation of�i . Then N�i is a free
involution on �N(6i ), i.e. N�i is a homeomorphism with no fixed point andN�2

i D id.
The boundary ofVn is tessellated by (n�1)-dimensional compact connected mani-

folds (with boundary) calledfacets of Vn. Any connected component of the inter-
section of some facets is called a (closed) face of Vn. Since61, : : : ,6k are in general
position in Qn, so Vn is a nice manifold with corners, which means that each co-
dimensionl face of Vn is in the intersection of exactlyl facets. For a comprehensive
introduction of manifolds with corners and related concepts, see [4] and [5].

REMARK 2.3. Vn might not havevertices (0-dimensional strata) on the bound-
ary. for example, ifQn D Sn�1 � S1 (n � 3), cutting Qn along Sn�1 � {1} gives aZ2-core Vn D Sn�1 � [0, 1] of Qn whose boundary consists of two disjointSn�1.
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Fig. 1. Local deformation ofN�i ’s.

Fig. 2. A Z2-core of torus.

In addition, we call the union of facets ofVn that belong to�N(6i ) a panel, de-
noted byPi (see Fig. 2). So{P1, : : : , Pk} forms a panel structure onVn. Recall that a
panel structureon a topological spaceY is a locally finite family of closed subspaces
{Y�}�2A indexed by some setA. EachY� is called apanel of Y (see [5]).

Notice that the involutionN�i may not mapPi � �N(6i ) into Pi . This is because
that there might be someN(6 j ) so that N�i and N� j do not commute at the intersections�N(6i ) \ �N(6 j ) (see the left picture in Fig. 1). But the following lemma shows
that we can always deformN�i and N� j locally by isotopies to make them commute at�N(6i ) \ �N(6 j ).

Lemma 2.4. We can deformN�i ’s around the intersections of�N(6i )’s so that af-
ter the deformations, we have:
(i) each N�i is still a free involution�N(6i ) ! �N(6i ) and the quotient�N(6i )=hx �N�i (x)i � 6i ;
(ii) for any 1� i , j � k, �N(6i )\�N(6 j ) becomes an invariant set of bothN�i and N� j ;
(iii) for any point x2 �N(6i ) \ �N(6 j ), N�i ( N� j (x)) D N� j ( N�i (x)).

Proof. For 8p 2 6i , let Tp6i be the tangent plane of6i at p in Qn. Sup-
pose6i1 \ � � � \ 6is is nonempty. For anyp 2 6i1 \ � � � \ 6is, there exists an open
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neighborhoodU of p and a homeomorphism� W U ! Rn such that�(p) D 0 and for
any i 2 {i1, : : : , is}, we have
• �(6i \ U ) is the coordinate hyperplaneHi D {(x1, : : : , xn) 2 Rn j xi D 0}. So�(6i1 \ � � � \6is \U ) D Hi1 \ � � � \ His;
• �(N(6i ) \U ) D Hi � [�1, 1]� Rn;
• in the chart (U, �), N�i defines a homeomorphismfi W Hi � {1} ! Hi � {�1}.

Then we can deformN�i ’s via some isotopies inU such that they satisfy our re-
quirements (i)–(iii) locally inU . Indeed, letr i be the reflection ofRn about the hyper-
plane Hi . Then we can isotopefi such that for anyj 2 {i1, : : : , is} with j ¤ i , we have

(1) fi (x) D r i (x), for any x 2 H j � {�1} \ Hi � {1}.

Then theseN�i ’s obviously meet our requirements. Moreover, since the (i)–(iii) are
coordinate-independent properties, we can carry out the deformations of theseN�i ’s chart
by chart around6i1 \ � � � \6is until the (i)–(iii) are satisfied at all places. In addition,
we should do the deformation ofN�i ’s in the charts around the higher degree intersection
points first, then extend to the charts around lower degree intersection points. In the
end, we will get N�i ’s which satisfy all the requirements (i)–(iii). We remark that do-
ing the isotopy of N�i ’s in a chart might slightly alter what we have previous done in
another chart, but since the (i)–(iii) are coordinate-independent properties, the altering
will not cause any inconsistency in our construction.

After the local deformations ofN�i ’s described in the preceding lemma, the restric-
tion of eachN�i on Pi � �N(6i ) defines a free involution onPi , denoted by�i . Because
of the existence of these�i ’s, we call the set of panels ofVn an involutive panel struc-
ture. We will always assume thatVn has this involutive panel structure in the rest of
the paper. Note that{�i W Pi ! Pi }1�i�k satisfy:
• �i maps a facef of Pi to a face f 0 of Pi (it is possible thatf 0 D f though);
• �i (Pi \ Pj ) � Pi \ Pj for all 1� i , j � k;
• �i Æ � j D � j Æ �i W Pi \ Pj ! Pi \ Pj for all 1� i , j � k.

For any I D {i1, : : : , is} � {1, : : : , k} with jI j D s� 1, we define:

(2) PI WD Pi1 \ � � � \ Pis � Vn, 6I WD 6i1 \ � � � \6is � Qn.

When I D ¿, we defineP¿ D Vn and6¿ D Qn. If PI with jI j � 2 is nonempty, it
is called asubpanelof Vn. Notice that thePI is empty wheneverjI j > n. Although
Qn is assumed to be connected, the6I may not be connected.

For any pointx 2 Pi , let x�Pi
D �i (x) 2 Pi . We call x�Pi

the twin point of x in Pi .
Obviously, x�Pi

¤ x since�i here is free.
Generally, for a facef � Pi , if the face f �Pi

D �i ( f ) is disjoint from f , it is called
the twin faceof f in Pi . Otherwise, f is calledself-involutivein Pi in the sense that�i ( f ) D f . In particular, if a facetF of Vn is not self-involutive, it has a unique twin
facet F� which belongs to the same panel asF . We call OF WD F [ F� a facet pair.
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Fig. 3. A Z2-core of real projective plane.

As an embedded submanifold ofQn, 6i could be two-sided or one-sided, which is
determined by the orientability of the normal bundle of6i in Qn. If 6i is two-sided,
any facetF in Pi has a twin facetF� (see Fig. 2). But if6i is one-sided, some facet
in Pi might be self-involutive (see Fig. 3).

REMARK 2.5. The facets in the same panel ofVn are pairwise disjoint since
each6i in the Z2-cut system has no self-intersections. But a panel ofVn may consist
of more than one facet pair (see the Example 1 below).

If we identify any points ofVn with all their twin points in Vn, we will get a
manifold denoted byOQn. Let % W Vn ! OQn be the quotient map.

Lemma 2.6. There exists a homeomorphism hW OQn ! Qn with h(%(PI )) D 6I

for any I � {1, : : : , k}.

Proof. By our construction of�i , it is easy to see that%(Pi )� 6i for 1� 8i � k.
In addition, there exists a neighborhoodN(�Vn) of �Vn in Vn with N(�Vn) � �Vn �
[0, "] so that %(N(�Vn)) � OQn is homeomorphic to

Sk
iD1 N(6i ) � Qn. Let Un D

Qn � int
�Sk

iD1 N(6i )
�
. Then we can think of OQn (or Qn) as the gluing ofN(�Vn)

(or
Sk

iD1 N(6i )) with Un along their boundary, that is:

OQn D %(N(�Vn))
[
'1

Un, Qn D
 

k[
iD1

N(6i )

![
'2

Un,

where'1W �(%(N(�Vn))) ! �Un and'2W ��Sk
iD1 N(6i )

�! �Un are homeomorphisms.

If we identify �(%(N(�Vn))) with ��Sk
iD1 N(6i )

�
, '1 and '2 are actually isotopic be-

cause the local deformations we make on�i ’s are all isotopies of homeomorphisms. So
we can construct a homeomorphismhW OQn ! Qn from an isotopy between'1 and'2,
which satisfies our requirement.

We call � D h Æ % W Vn ! Qn the restoring mapof Vn. Then PI D ��1(6I ) for
any I � {1, : : : , k}. Obviously, for any pointx in the relative interior ofPi1 \ � � � \ Pis,
we have:

��1(�(x)) D {� "s
is
Æ � � � Æ � "1

i1
(x)I " j 2 {0, 1}, 1� j � s},
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Fig. 4. A Z2-core ofRP2 #RP2 #RP2.

Fig. 5. A Z2-core of T2 # T2.

where� 0
i j
WD id. It is easy to see that��1(�(x)) consists of exactly 2s different points in

Vn. Any point x0 2 ��1(�(x)) (including x itself) is called aduplicate pointof x in Vn.

EXAMPLE 1. SupposeQn is a small cover over some simple polytope. It is well
known that theZ2-homology classes ofQn can all be represented by some special
embedded submanifolds ofQn, called facial submanifolds(see [2] and [6]). And cut-
ting Qn open along a collection of facial submanifolds ofQn will give us a con-
nectedZ2-core Vn of Qn. Fig. 4 shows such an example in dimension 2 whereQ2 DRP2 #RP2 #RP2 is a small cover over a pentagon. AZ2-core of Q2 is an octagon
where the four edges marked by “A ” belong to the same panel.

REMARK 2.7. A closed connected manifoldQn may have aZ2-core Vn with
H1(Vn,Z2)¤ 0. For example, theZ2-core of Q2 D T2 #T2 shown in Fig. 5 is homeo-
morphic to an annulus.

Next, we define a general notion of involutive panel structure for any nice mani-
folds with corners. The involutive panel structure on aZ2-core Vn constructed above
is just a special case of this general notion.

DEFINITION 2.8 (Involutive panel structure). SupposeWn is a nice manifold with
corners (may not be connected). Suppose the boundary ofWn is the union of several
panelsP1, : : : , Pk which satisfy the following conditions:
(a) each panelPi is a disjoint union of facets ofWn and each facet is contained in ex-
actly one panel;



LOCALLY STANDARD Z2-TORUS ACTIONS 175

Fig. 6. Three different involutive panel structures on a square.

(b) there is an involution�i on eachPi (i.e. �i is a homeomorphism with� 2
i D idPi )

which sends a facef � Pi to a face f 0 � Pi (it is possible thatf 0 D f );
(c) for all i ¤ j , �i (Pi \ Pj ) � Pi \ Pj and�i Æ � j D � j Æ �i W Pi \ Pj ! Pi \ Pj .

Then we say thatWn has aninvolutive panel structuredefined by{Pi , �i }1�i�k on
the boundary. Note here, we do not require that the involution �i on Pi is free.

Similar to theZ2-core Vn, for any x 2 Pi � Wn, we call �i (x) the twin point x
in Pi . Moreover, if x is in the relative interior ofPi1 \ � � � \ Pis, any � "s

is
Æ � � � Æ � "1

i1
(x)

where "i 2 {0, 1} is called aduplicate pointof x in Wn. But in this case, it is not
necessarily thatx has exactly 2s duplicate points (even if each�i on Pi is free, see
Fig. 10). Also we can define subpanels forWn as in (2).

REMARK 2.9. A nice manifold with cornersWn may admit many different in-
volutive panel structures on the boundary (for example see Fig. 6).

EXAMPLE 2. SupposeXn is a nice manifold with corners, and letF1, : : : , Fl be
all the facets ofXn. We can think ofXn having a trivial involutive panel structure
which is defined by: for any 1� i � l , Pi D Fi and the involution�i D idFi W Fi ! Fi .
In this case, we call eachPi a reflexive panelof Xn. Obviously, in the trivial involutive
panel structure, any point ofXn has only one duplicate point—itself.

In general, suppose{Pi ,�i }1�i�k is an involutive panel structure on a nice manifold
with cornersWn. If the �i W Pi ! Pi is the identity map, we callPi a reflexive panel
of Wn.

EXAMPLE 3. SupposeVn is a Z2-core of Qn. Use the notations above, for any
panel Pi of Vn, Pi itself is a nice manifold with corners and has an involutive panel
structure on its boundary induced fromVn, which is given by:

{Pj \ Pi I � j jPj\Pi W Pj \ Pi ! Pj \ Pi for 1� 8 j � k, j ¤ i }.

More generally, for anyI D {i1, : : : , is} � {1, : : : , k}, the subpanelPI is an (n � s)-
dimensional nice manifold with corners (may not be connected), and PI has an involu-
tive panel structure on its boundary induced fromVn which is given by:

{Pj \ PI ¤ ¿I � j jPj\PI W Pj \ PI ! Pj \ PI for 1� 8 j � k, j � I }.
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Obviously, theZ2-core of a closed manifoldQn is far from unique. The topo-
logical type of aZ2-core depends on the correspondingZ2-cut system inQn. For an
arbitrary Z2-cut system ofQn, it is fairly possible that the correspondingZ2-core of
Qn is not connected. But we can prove the following statement (which will not be
used in any other place in this paper).

Theorem 2.10. For any closed connected manifold Qn, there always exists a con-
nectedZ2-core for Qn.

Proof. Forn D 1 and 2, the statement is obviously true. So assumen � 3 in the
rest of the proof.

First, let us choose aZ2-cut system61, : : : , 6k of Qn with each6i being con-
nected. We claim that each6i is non-separating inQn. let {[01], :::,[0k]} � H1(Qn,Z2)
be the dual basis of{[61], : : : , [6k]} � Hn�1(Qn, Z2) under theZ2-intersection form
of Qn, i.e.

#(0i \6 j ) D Æi j mod 2.

So the curve0i must intersect6i odd number of times. LetN(6i ) be a small tubular
neighborhood of6i in Qn. Since6i is connected,Qn� int(N(6i )) is either connected
or has exactly two connected-component. but the later case contradicts #(0i \6i ) D 1
mod 2. So6i must be non-separating inQn.

Let Qn
j be the manifold we get by cuttingQn open along{61, : : : , 6 j }, i.e.

Qn
j D Qn � j[

iD1

int(N(6i )).

In addition, for j C 1� 8i � k, let 6( j )
i WD 6i \ Qn

j and0( j )
i WD 0i \ Qn

j .

AssumeQn
j is connected and we cutQn

j open along6( j )
jC1. Since the relative inter-

section number of6( j )
jC1 and 0( j )

jC1 in H�(Qn
j , �Qn

j , Z2) is 1 (mod 2), if6( j )
jC1 is con-

nected inQn
j , then6( j )

jC1 must be non-separating inQn
j for the same reason as above.

If 6( j )
jC1 is not connected inQn

j , we can connect all the components of6( j )
jC1 via some

thin tubes inQn
j which are transverse to other6( j )

i ’s. This operation will change the
original 6 jC1 in Qn simultaneously, but it will not change the homology class of6 jC1

in Hn�1(Qn, Z2). Now, cutting Qn
j open along the new6( j )

jC1, we get a nice manifold
with cornersQn

jC1 which remains connected.
By iterating the above argument fromj D 1 to j D k, we will get a connected

nice manifold with cornersVn. By definition, Vn is the Z2-core of Qn from cutting
Qn open along aZ2-cut system{60

1, : : : , 60
k}, which is obtained from the originalZ2-cut system by some homology preserving operations.
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3. Construction of free (Z2)m-actions on closed manifolds

Suppose� W Mn ! Qn is a principal (Z2)m-bundle over a closed connected manifold
Qn. Let Vn be aZ2-core of Qn from cutting Qn along aZ2-cut system{61, : : : ,6k} in
Qn (we do not assume thatVn is connected). We have shown that the principal (Z2)m-
bundle� is classified by an element

(3) 3� 2 H1(Qn, (Z2)m) � Hom(H1(Qn, Z2), (Z2)m).

By the Poincaré duality, there is an isomorphism W Hn�1(Qn, Z2) � H1(Qn, Z2).
So we get an element3�� 2 Hom(Hn�1(Qn, Z2), (Z2)m) defined by:

3�� W {[61], : : : , [6k]} ! (Z2)m,

[6i ] 7! 3� ( ([6i ])).

Let Pi � �Vn be the panel corresponding to6i . So we have a map

�� W {P1, : : : , Pk} ! (Z2)m,

Pi 7! 3�� ([6i ]) D 3� ( ([6i ]))

�� is called theassociated(Z2)m-coloring of � W Mn ! Qn on Vn. In general, any
map � W {P1, : : : , Pk} ! (Z2)m is called a (Z2)m-coloring on Vn, and any element in
(Z2)m is called acolor.

In addition, if we consider� W Mn ! Qn as a regular covering, the map3� W
H1(Qn,Z2)! (Z2)m is just the abelianization of the monodromy mapH�W �1(Qn,q0)!
(Z2)m, whereq0 2 Qn is a base point and (Z2)m is identified with the deck transform-
ation group of this covering� . Indeed, let{[01], : : : , [0k]} � H1(Qn, Z2) be the dual
basis of {[61], : : : , [6k]} under theZ2-intersection form ofQn where each0i is a
closed curve that intersects all6 j ’s transversely. If we fix a pointx0 2 ��1(q0), and letQ0i W [0, 1] ! Mn be a lifting of 0i with Q0i (0)D x0, then

(4) Q0i (1)D H� (0i ) � x0 D 3� ([0i ]) � x0.

Conversely, given an arbitrary (Z2)m-coloring � on Vn, we can construct a princi-
pal (Z2)m-bundle overQn by the following rule:

(5) M(Vn, {Pi , �i }, �) WD Vn � (Z2)m=�
where (x, g) � (x0, g0) wheneverx0 D �i (x) for some Pi and g0 D gC �(Pi ) 2 (Z2)m.
It is easy to see that ifx is in the interior of Pi1 \ � � � \ Pis, (x, g) � (x0, g0) if and
only if (x0, g0) D (� "s

is
Æ � � � Æ � "1

i1
(x), gC "1�(P1)C � � � C "s�(Ps)) where" j 2 {0, 1} for

1� 8 j � s.
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We call M(Vn, {Pi , �i }, �) the glue-back constructionfrom (Vn, �). Also, we use
M(Vn, �) to denoteM(Vn, {Pi , �i }, �) if there is no ambivalence about the involutive
panel structure onVn in the context.

Let [(x, g)] 2 M(Vn, �) denote the equivalence class of (x, g) defined in (5). Then
we can define a natural (Z2)m-action onM(Vn, �) by:

(6) g � [(x, g0)] WD [(x, gC g0)], 8x 2 Vn, 8g, g0 2 (Z2)m.

It is easy to check that the (Z2)m-action is well defined. And for any element
g ¤ 0 2 (Z2)m, g � [(x, g0)] D [(x, gC g0)] ¤ [(x, g0)]. This is because:
(i) when x is in the interior ofVn, (x, gC g0) and (x, g0) are not equivalent under� for any g ¤ 0;
(ii) when x is in the relative interior ofPi1 \ � � � \ Pis, (x, g C g0) � (x, g0) would
force (x, gC g0) D �� "s

is
Æ � � � Æ � "1

i1
(x), g0C "1�(P1)C � � � C "s�(Ps)

�
. Notice thatg ¤ 0

implies that at least one of the"1, : : : , "s is not 0. But sincex has exactly 2s duplicate
points in Vn, � "s

is
Æ � � � Æ � "1

i1
(x) ¤ x as long as some" j ¤ 0.

So the action of (Z2)m on M(Vn, �) defined by (6) is always a free group action.
In the rest of this paper, we will always assume thatM(Vn, �) is equipped with this
free (Z2)m-action.

REMARK 3.1. SinceQn is smooth, theM(Vn,�) is naturally a smooth manifold
and the natural (Z2)m-action onM(Vn, �) defined in (6) is smooth.

REMARK 3.2. A similar idea to the glue-back construction was used toconstruct
cyclic and infinite cyclic covering spaces of the complementof knots in S3 (see [7]).

Theorem 3.3. M(Vn, �) is a closed n-manifold and the orbit space of the free
(Z2)m-action on M(Vn, �) defined in(6) is homeomorphic to Qn.

Proof. Observe that each orbit of this (Z2)m-action has some representative in
Vn � {0}. And for any point x in the relative interior ofPi1 \ � � � \ Pis, a point
(x0, 0) 2 Vn � {0} is in the same orbit as (x, 0) under the above (Z2)m-action if and
only if x0 D � "s

is
Æ � � � Æ � "1

i1
(x) for some"1, : : : , "s 2 {0, 1} (in other words,x0 is a du-

plicate point ofx in Vn). So the orbit space is homeomorphic to the space of gluing
all points of Vn with their duplicate points together, which is homeomorphic to Qn by
Lemma 2.6. And sinceQn is a closed manifold, so isM(Vn, �).

Following are some explicit examples of free (Z2)m-actions on manifolds from the
glue-back construction.

EXAMPLE 4. A meridian and a longitude of the torusT2 forms aZ2-cut system
of T2. The correspondingZ2-core of T2 is a squareV2. Given a coloring of the edges
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Fig. 7. Examples of the glue-back construction.

Fig. 8. Examples of the glue-back construction.

of V2 by elements in (Z2)2 D he1i�he2i such that opposite edges ofV2 are colored by
the same element of (Z2)2, we can construct all principal (Z2)2-bundles overT2 (see
Figs. 7 and 8 for such examples).

EXAMPLE 5. Let M2 be a disjoint union of twoS2. Fig. 9 shows a free (Z2)2-
action on M2 whose orbit space isRP2. A Z2-core V2 of RP2 is a disk with only
one panelP D �V2. Let {e1, e2} be a basis of (Z2)2. Then M2 � M(V2, �) where�
is a (Z2)2-coloring on V2 given by �(P) D e1 (or e2).

More generally, for any nice manifold with cornersWn with an involutive panel
structure{�i W Pi ! Pi }1�i�k, any map�W {P1,:::,Pk}! (Z2)m is called a (Z2)m-coloring
on Wn. We can define the glue-back constructionM(Wn,�) by the same rule as in (5).
Also we have a natural (Z2)m-action on M(Wn, �) defined by (6). But this (Z2)m-
action on M(Wn, �) may not be free. Indeed, suppose�� W Wn � (Z2)m ! M(Wn, �)
is the quotient map. For a pointx in the relative interior of a codimensions face
of Wn, it is possible thatx has less than 2s duplicate points inWn. In that case,��(x � (Z2)m) would consist of less than 2m points, which implies that��(x � (Z2)m)
can not be a free orbit under the natural (Z2)m-action onM(Wn,�) defined in (6) (see
the examples below).



180 L. Y U

Fig. 9.

Fig. 10.

EXAMPLE 6. For a simple polytopeVn, consider each facet ofVn as a panel
and Vn has the trivial involutive panel structure (see Example 2).Then a small cover
over Vn can be thought of as the glue-back constructionM(Vn, �) where� is a char-
acteristic functionon Vn with value in (Z2)n (see [2]). But the natural action of (Z2)n

defined by (6) on a small cover is exactly the locally standardaction defined in [2],
which is not free.

REMARK 3.4. From the Example 6, we can see that the significance of introduc-
ing the general notion of involutive panel structure in Definition 2.8 is that: it allows
us to unify the constructions of free (Z2)m-actions and non-free locally standard (Z2)m-
actions on manifolds from the orbit spaces (see Section 5 fordetails).

EXAMPLE 7. Suppose a square [0, 1]2 is equipped with an involutive panel struc-
ture as indicated by the arrows in Fig. 10. For a (Z2)2-coloring� defined by�(P1)D e1,�(P2) D e2 where{e1, e2} is a basis of (Z2)2, the glue-back constructionM([0, 1]2, �)
is homeomorphic toT2. But the natural (Z2)2-action onT2 defined by (6) is not free.

For a nice manifold with cornersWn equipped with an involutive panel structure,
if for any s � 0, any point in the relative interior of any codimensions face of Wn

has exactly 2s duplicate points inWn, the involutive panel structure is calledperfect.
For example: the involutive panel structure on anyZ2-core Vn of Qn constructed from
Lemma 2.4 above is perfect.

We can easily show that if the involutive panel structure onWn is perfect, the
natural (Z2)m-action on M(Wn, �) defined by (6) is free for all (Z2)m-coloring � on
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Wn. However, even if the involutive panel structure onWn is not perfect, it is still
possible that there exists some nontrivial (Z2)m-coloring � on Wn so that the natural
(Z2)m-action onM(Wn,�) is free. For example, although the involutive panel structure
on the square in Fig. 10 is not perfect, if we color the two panels of the square both by
e1 2 (Z2)2, we will obtain a disjoint union of two spheresS2 [ S2 from the glue-back
construction. Obviously, the natural (Z2)2-action on thisS2 [ S2 is free.

Let Vn be a Z2-core of a closed manifoldQn described as above. As in Ex-
ample 3, we can think of a panelPi � Vn itself as a nice manifold with corners with
an involutive panel structure defined by{Pj \ Pi I 1� j � k, j ¤ i }. Then we have an
induced (Z2)m-coloring �in

Pi
of Pi defined by

�in
Pi

(Pj \ Pi ) WD �(Pj ), 8 j ¤ i , Pj \ Pi ¤ ¿.

Furthermore, for anyI D {i1, : : : , is} � {1, : : : , k}, the subpanelPI D Pi1\� � �\ Pis

has an involutive panel structure on its boundary defined by{Pj \ PI ¤ ¿I 1� j � k,
j � I }. The induced(Z2)m-coloring �in

PI
of PI is

(7) �in
PI

(Pj \ PI ) D �(Pj ) 2 (Z2)m, 1� j � k, j � I , Pj \ PI ¤ ¿.

If we apply the glue-back construction (5) to (PI ,�in
PI

), we will get a closed mani-

fold M(PI ,�in
PI

). Notice that whenjI j � 1, by the definition ofM(PI ,�in
PI

), the relative
interior points of the 2m copies ofPI are not glued together like they are inM(Vn,�).
In fact, it is easy to see thatM(PI , �in

PI
) is homeomorphic to a disjoint union of 2s

copies of ��1� (6I ), where �� W Vn � (Z2)m ! M(Vn, �) is the quotient map defined
in (5).

Theorem 3.5. For any principal (Z2)m-bundle� W Mn ! Qn, let � be the asso-
ciated (Z2)m-coloring of � on Vn. Then there is an equivariant homeomorphism from
M(Vn, �) to Mn which covers the identity of Qn.

Proof. Let�� W Vn � (Z2)m ! M(Vn, �) be the quotient map and�� W M(Vn, �) !
Qn be the orbit map of the natural (Z2)m-action defined by (6). It suffice to show that�� and � defines the same monodromy map as regular coverings overQn. So let us
first compute the monodromyH��([0]) for any closed curve0 W [0, 1] ! Qn.

Suppose0(t) meets6i1, : : : , 6i r consecutively inQn as the timet goes from 0
to 1. When cuttingQn open along{61, : : : , 6k}, the cut-open image of0 is 
 WD0\Vn. Note that the curve
 might be disconnected inVn. When the time parameter
increases,
 will meet the panelsPi1, : : : , Pi r of Vn consecutively. Then when we glue
the 2m copies of Vn together in the glue-back construction, the curve
 in different
copies ofVn are fit together which gives all the liftings of0 in M(Vn, �). Indeed, if
we choose the start point of a lifting of0 in ��(Vn � g0) where g0 2 (Z2)m, the end
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point of the lifting would be in��(Vn� (g0C�(Pi1)C� � �C�(Pi r ))). So the monodromy
H�� of �� is:

(8) H��([0]) D �(Pi1)C � � � C �(Pi r ) 2 (Z2)m.

Now let {[01], : : : , [0k]} � H1(Qn, Z2) be the dual basis of{[61], : : : , [6k]} �
Hn�1(Qn, Z2) under theZ2-intersection form ofQn. Then

(9) #(0i \6 j ) D Æi j mod 2.

We can assume that each0i W [0, 1] ! Qn is a closed curve which intersects all6 j ’s
transversely and starts at the same base pointq0 2 Qn. Suppose
i D 0i \ Vn is the
cut-open image of0i in Vn. Then by (9),
i will meet Pi odd number of times and
meet all otherPj ( j ¤ i ) even number of times. So by (8), we have:

(10) H�� ([0i ]) D �(Pi ) D H� ([0i ]), 1 � i � k.

This implies thatH�� D H� . So the theorem is proved.

REMARK 3.6. For aZ2-core Vn of Qn with H1(Vn,Z2) ¤ 0, a principal (Z2)m-
bundle overVn is not necessarily trivial. If we apply the gluing rule (5) toan arbitrary
principal (Z2)m-bundle overVn, we may get a principal (Z2)m-bundle overQn too. The
significance of Theorem 3.5 is that we can actually use the trivial (Z2)m-bundle over
Vn (i.e. Vn � (Z2)m) and the gluing rule (5) to construct all principal (Z2)m-bundles
over Qn, which is enough for our purpose in this paper.

For a (Z2)m-coloring � on the panelsP1, : : : , Pk of Vn, define:

L� WD the subgroup of (Z2)m generated by{�(P1), : : : , �(Pk)},(11)

rank(�) WD dimZ2 L�.(12)

Since� encodes all the structural information ofM(Vn, �), so any topological in-
variant of M(Vn,�) (e.g. homology groups) should be completely determined by(Vn,�).
But if we try to compute theZ2-homology groups ofM(Vn, �) via the Serre-spectral
sequence, the problem of twisted local coefficients could occur when the orbit space
is not simply-connected. This problem is hard to get around in general. However, we
can at least computeH0(M(Vn, �), Z2), i.e. the number of connected components of
M(Vn, �), from the (Z2)m-coloring �.

Theorem 3.7. For any (Z2)m-coloring � of Vn, M(Vn,�) has2m�rank(�) connected
components which are pairwise homeomorphic. Let�� W Vn � (Z2)m ! M(Vn, �) be
the quotient map. Then each connected component of M(Vn, �) is homeomorphic to��(Vn � L�). And there is a free action of L� � (Z2)rank(�) on each connected compo-
nent of M(Vn, �) whose orbit space is Qn.
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Proof. Let�� W Vn � (Z2)m ! M(Vn, �) be the quotient map defined by (5). Here
we do not assumeVn is connected. Then by the definition ofM(Vn, �), for two arbi-
trary connected componentsK , K 0 of Vn and8g, g0 2 (Z2)m, we have:
(a) ��(K � g) and ��(K 0 � g0) are in the same connected component ofM(Vn, �) if
and only if there is a sequence

(K , g) D (K0, g0) $ (K1, g1) $ � � � $ (Kr�1, gr�1) $ (Kr , gr ) D (K 0, g0)
where eachK i is a connected component ofVn, gi 2 (Z2)m, and ��(K i � gi ) and��(K iC1 � giC1) share an (n� 1)-dimensional face inM(Vn, �).
(b) ��(K � g) and ��(K 0 � g0) share an (n � 1)-dimensional face inM(Vn, �) if and
only if there is a facetF of K with its twin facet F� � K 0 and g0 � g D �(F).
So if ��(K � g) and ��(K 0 � g0) are in the same connected component ofM(Vn, �), it
is necessary thatg0 2 gC L�.

Conversely, we claim: for anyg0 2 gC L�, ��(K � g) and ��(K 0 � g0) are always
in the same connected component ofM(Vn, �) for any connected componentsK and
K 0 of Vn.

Indeed, sinceQn is connected, for any connected componentsK and K 0 of Vn,
there always exists a sequence,K D K0, K1, : : : , Kr�1, Kr D K 0, such that some facet
Fai � K i while F�

ai
� K iC1. So by the above argument,��(K � g) lies in the same

connected component as��(K 0 � g�) in M(Vn, �) for some g� 2 g C L�. Then it
remains to show that��(K 0 � g�) and ��(K 0 � g0) are always in the same connected
component ofM(Vn, �) wheneverg0 � g� 2 L�.

To see this, let0 W [0, 1] ! Qn be an arbitrary closed curves based at a point
q0 2 K 0 � Vn. For any g� 2 (Z2)m, there is a lifting of0 in M(Vn, �) which goes
from a point in ��(K 0 � g�) to a point in ��(K 0 � (g� C H�� ([0]))), where H��([0])
is the monodromy of0 with respect to the covering�� W M(Vn, �) ! Qn (see (4)).
So ��(K 0 � g�) and ��(K 0 � (g� C H�� ([0]))) are in the same connected component
of M(Vn, �).

Let 01, : : : ,0k be some closed curves inQn based atq0 so that{[01], : : : , [0k]} �
H1(Qn, Z2) is the dual basis of the{[61], : : : , [6k]} � Hn�1(Qn, Z2) under theZ2-intersection form ofQn. Then by (10), we have

(13)

Im(H��) D {H��([0]) j 0 W [0, 1] ! Qn, 0(0)D 0(1)D q0}

D hH��([01]), : : : , H��([0k])i � (Z2)m

D h�(P1), : : : , �(Pk)i D L�.
So any element ofL� can be realized byH�� ([0]) for some closed curve0. Then the
above claim is proved.

So��(K�g) and��(K 0�g0) belong to the same connected component ofM(Vn,�),
g0 2 gCL�. Since dimZ2 L�D rank(�), each connected component ofM(Vn,�) is made up
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of 2rank(�) copies ofVn from Vn�(Z2)m. Indeed, suppose (Z2)mD L��h!1i�� � ��h!qi
whereq Dm� rank(�). Then M(Vn, �) has 2m�rank(�) connected components which are
given by:

��(Vn � (L� C t1!1 C � � � C tq!q)), ti 2 {0, 1}, 1� i � q,

each of which is equipped with a natural free action byL� � (Z2)rank(�) defined in (6)
whose orbit space isQn.

REMARK 3.8. In the above proof, let� W (Z2)m ! L� � (Z2)rank(�) be a quo-
tient homomorphism. Then for any (Z2)m-coloring � on Vn, we can think of� Æ �
as a (Z2)rank(�)-coloring on Vn. It is easy to see that each connected componentK of
M(Vn, �) is homeomorphic toM(Vn, � Æ �).

In general, forI D {i1, : : : , is} � {1, : : : , k}, the submanifold6I � Qn may not
be connected. SupposeS is a connected component of6I . Then S is an (n � s)-
dimensional embedded submanifold ofQn. We also want to compute the number of
components in��1� (S), where�� W M(Vn, �) ! Qn is the quotient map defined by (5).

REMARK 3.9. Two connected componentsS and S0 of 6I may not be homeo-
morphic to each other, and the��1� (S) and ��1� (S0) may not have equal number of con-
nected components either.

If we cut S open along the transversely intersected embedded submanifolds {6 j \
S¤ ¿ j j � I }, we will get a nice manifold with corners, denoted byVS. Similar
to the Z2-core of Qn, we can construct a (perfect) involutive panel structure onthe
boundary ofVS from the cut sections of{6 j \S¤ ¿ j j � I }. And any (Z2)m-coloring� on Vn induces a (Z2)m-coloring �in

S on the panels ofVS by: if E is the panel ofVS

corresponding to6 j \ S,

�in
S (E) WD �(Pj ).

It is easy to see that the glue-back constructionM(VS,�in
S ) is homeomorphic to��1� (S).

But VS may not be aZ2-core of S, since the homology classes of{6 j \S¤ ¿ j j � I }
may not form a basis ofHn�s�1(S, Z2). So we can not directly apply the formula in
Theorem 3.7 to compute the number of components ofM(VS,�in

S ). In fact, the number
of components ofM(VS, �in

S ) also depends on what homology classes are represented
by {6 j \ S¤ ¿ j j � I } in Hn�s�1(S, Z2). So we need to modify the proof of The-
orem 3.7 to deal with this case. In the following, we will treat this problem in a very
general setting onQn.

Suppose{N1, : : : , Nr } is an arbitrary collection of codimension one embedded sub-
manifolds of a closed manifoldQn which lie in general position. CuttingQn open
along N1, : : : , Nr gives us a nice manifold with cornersWn. As before, we can con-
struct a (perfect) involutive panel structureOP1, : : : , OPr on the boundary ofWn from the



LOCALLY STANDARD Z2-TORUS ACTIONS 185

cut sections ofN1, : : : , Nr . In addition, suppose01, : : : , 0k are simple closed curves
in Qn whose homology classes form a basis ofH1(Qn, Z2), and each0i intersects
{N1, : : : , Nr } transversely. Letai j 2 Z2 be the mod 2 intersection number between0i

and N j . Note that for any fixedj , {ai j } is completely determined by the homology
class ofN j in Hn�1(Qn,Z2). Indeed, if{61, : : : ,6k} is a Z2-cut system ofQn whose
homology classes is a dual basis of{[01], : : : , [0k]} under theZ2-intersection form,
then for each 1� j � r , the homology class [N j ] DP

i ai j [6i ] 2 Hn�1(Qn).

For any (Z2)m-coloring�W { OP1,: : : , OPr } ! (Z2)m on Wn, we can show thatM(Wn,�)
is a closed manifold with a natural free (Z2)m-action defined by (6) whose orbit space
is Qn. The proof of this fact is exactly the same as Theorem 3.3, hence omitted. In
addition, by a similar argument as in the proof Theorem 3.5, the monodromy of each0i

with respect to the coveringM(Wn, �) ! Qn is given by:

(14) OH�(0i ) WD rX
jD1

ai j �( OP j ) 2 (Z2)m.

Now, we define a new (Z2)m-coloring O� on the panels ofWn by:

O�( OPi ) WD OH�(0i ), 1� i � r .

L O� WD the subgroup of (Z2)m generated by{O�( OP1), : : : , O�( OPr )}.

Theorem 3.10. For any (Z2)m-coloring � on the panels of Wn, the number of
connected components of M(Wn, �) equals2m�l , where lD dimZ2 L O�. In addition, all
the connected components of M(Wn, �) are homeomorphic to each other, and there is
free LO� � (Z2)l -action on each component of M(Wn, �) whose orbit space is Qn.

Proof. The argument here is parallel to that in Theorem 3.7 except that in (13),
the monodromy of0i should be replaced byOH�(0i ) in (14). So the proof is left to
the reader.

4. Generalize to compact manifolds with boundary

We can generalize the notion ofZ2-core and glue-back construction to any com-
pact manifold with boundary. SupposeXn is ann-dimensional compact connected nice
manifold with corners andH1(Xn,Z2) ¤ 0. Let {F1, : : : , Fl } be the set of facets ofXn.
A Z2-cut systemof Xn is a collection of (n � 1)-dimensional embedded submanifolds61, : : : , 6k (possible with boundary) ofXn which satisfy:
(i) 61, : : : , 6k are in general position inXn; and
(ii) the (relative) homology classes [61], : : : , [6k] form a Z2-linear basis of
Hn�1(Xn, �Xn, Z2) � H1(Xn, Z2) ¤ 0.
Moreover, we can choose each6i to be connected. If we cutXn open along{61, : : : ,6k},
we get a nice manifold with cornersUn, called a Z2-core of Xn. Similar to
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Theorem 2.10, we can show that there always exists a connectZ2-core for Xn. Note that
the boundary stratification ofUn is a mixture of the facets in the cut section of6i and the
facets from�Xn. So we define the panel structure onUn by {P1, : : : , Pk, P0

1, : : : , P0
l },

wherePi consists of the facets in the cut section of6i andP0
j consists of the facets in the

cut open image ofF j .
By a similar argument as in Lemma 2.4, we can construct a free involution �i on

each Pi (1 � i � k) which satisfies the conditions (a), (b) and (c) in Definition2.8.
If we do not define any involution onP0

j , we say that{�i W Pi ! Pi }1�i�k along with
{P0

1, : : : , P0
l } is a partial involutive panel structureon the boundary ofUn.

Let P(Un) D {P1, : : : , Pk} be the set of all panels inUn that are equipped with
involutions. Any map fromP(Un) to (Z2)m is called a (Z2)m-coloring on Un. It is
easy to see that the glue-back constructionM(Un, �) makes perfect sense forUn with
a (Z2)m-coloring �. Indeed,M(Un,�) is got by glue 2m copies ofUn only along those
panels equipped with involutions according to the rule in (5).

By a parallel argument as Theorem 3.3, we can show that (6) defines a natural free
(Z2)m-action on M(Un, �) whose orbit space is homeomorphic toXn. And similarly,
we can prove the following.

Theorem 4.1. Suppose Xn is a compact connected nice manifold with corners
and Un is a Z2-core of Xn. Then we have:
(1) any principal (Z2)m-bundle� W Mn ! Xn determines a(Z2)m-coloring �� on Un;
(2) there is an equivariant homeomorphism from the M(Un, �� ) to Mn which covers
the identity of Xn.

In addition, we can similarly defineL� and rank(�) for any (Z2)m-coloring � on
Un (see (11) and (12)) and extend the results in Theorem 3.7 toM(Un, �) as well.
Here we only give the statement below and leave the proof to the reader.

Theorem 4.2. For any (Z2)m-coloring � on Un, the M(Un,�) has 2m�rank(�) con-
nected components which are pairwise homeomorphic. Let��W Un� (Z2)m ! M(Un,�)
be the quotient map. Then each connected component of M(Un, �) is homeomorphic
to ��(Un � L�). And there is a free action of L� � (Z2)rank(�) on each connected com-
ponent of M(Un, �) whose orbit space is Xn.

5. Locally standard (Z2)m-action on closedn-manifolds

First, let us define the meaning ofstandard actionof (Z2)m in dimensionn for
any m� 1. Supposeg D (g1, : : : , gm) is an arbitrary element of (Z2)m.
(1) If m� n, the standard (Z2)m-action onRn is:

(x1, : : : , xn) 7! ((�1)g1x1, : : : , (�1)gmxm, xmC1, : : : , xn),

whose orbit space isRn,mC WD {(x1, : : : , xn)I xi � 0 for 1� 8i � m}.
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(2) For m> n, the standard (Z2)m-action onRn � (Z2)m�n is:

((x1, : : : , xn), (h1, : : : , hm�n))

7! (((�1)g1x1, : : : , (�1)gn xn), (gnC1 C h1, : : : , gm C hm�n)),

whose orbit space isRn,nC .
Suppose (Z2)m acts effectively and smoothly on a closedn-manifold Mn. A local

isomorphismof Mn with the standard action (defined above) consists of:
(1) a group automorphism� W (Z2)m ! (Z2)m;
(2) a (Z2)m-stable open setV in Mn and U in Rn (if m � n) or Rn � (Z2)m�n (if
m> n);
(3) a � -equivariant homeomorphismf W V ! U , i.e. f (g � v) D � (g) � f (v) for any
g 2 (Z2)m and v 2 V .

A (Z2)m-action onMn is called locally standardif each point ofMn is in the do-
main of some local isomorphism. ThenMn is called alocally standard(Z2)m-manifold
over Mn=(Z2)m. Note that here we generalize the notion oflocally standard2-torus
manifold defined in [3] wherem is required to be equal ton.

Now, suppose we have a locally standard (Z2)m-action on a closed manifoldMn.
Then the orbit spaceXn D Mn=(Z2)m is a nice manifold with corners (in the rest of
the paper, we always assumeXn is connected). Let� W Mn ! Xn be the orbit map.
Suppose the set of all facets ofXn is F (Xn)D {F1, : : : , Fl }. The characteristic function�� W F (Xn) ! (Z2)m of the action is defined by:

�� (F j ) D the element of (Z2)m that fixes��1(F j ) pointwise.

Observe that wheneverF j1 \ � � � \ F js ¤ ¿, {�� (F j1), : : : , �� (F js)} should be linearly
independent vectors in (Z2)m over Z2. And the isotropy group of the set��1(F j1 \� � � \ F js) is the subgroup of (Z2)m generated by{�� (F j1), : : : , �� (F js)}.

In addition, Mn determines a principal (Z2)m-bundle overXn, denoted by�� . If
H1(Xn, Z2) D 0, �� is always trivial. So we assumeH1(Xn, Z2) ¤ 0 in the rest of
this section.

REMARK 5.1. If m< n, the dimension of any face ofXn is at leastn�m.

We will see that the characteristic function�� and the principal (Z2)m-bundle ��
encode all the structural information of the (Z2)m-action, and we can classify locally
standard (Z2)m-manifolds� W Mn ! Xn by �� and �� up to some natural equivalence
relations. The following discussions are parallel to thosein [3].

First of all, we say that two locally standard (Z2)m-manifolds Mn and Nn over Xn

are equivalent if there is a homeomorphismf W Mn ! Nn together with an element� 2 GL(m, Z2) such that
(1) f (g � x) D � (g) � f (x) for all g 2 (Z2)m and x 2 Mn, and
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(2) f induces the identity map on the orbit space.
In addition, we call two locally standard (Z2)m-manifoldsMn andNn over Xn equiv-

ariantly homeomorphicif there is a homeomorphismf W Mn ! Nn such that f (g � x) D
g � f (x) for all g 2 (Z2)m andx 2 Mn. Such a homeomorphismf is called anequivariant
homeomorphismbetweenMn and Nn. Notice that f will induce a homeomorphism
h f W Xn ! Xn which preserves the manifold with corners structure ofXn. But h f may
not be the identity map ofXn.

Let Un be aZ2-core ofXn from cutting Xn open along aZ2-cut system{61,:::,6k}

in Xn as described in Section 4. The panel structure ofUn is {P1, : : : , Pk, P0
1, : : : , P0

l }

wherePi corresponds to the cut section of6i and P0
j is the cut open image of the facet

F j , and there is a partial involutive panel structure�i W Pi ! Pi on Un. Moreover, if we
define� 0j D idW P0

j ! P0
j for any 1� j � l , then{Pi , �i }1�i�k and{P0

j , � 0j }1� j�l together
define a complete involutive panel structure onUn. We call {P1, : : : , Pk} the principal
panelsof Un and call{P0

1, : : : , P0
l } the reflexive panelsof Un. And we assumeUn having

this involutive panel structure in the rest of this paper.
By Theorem 4.1, the principal bundle�� determines a (Z2)m-coloring �� on the set

of principal panels{P1, : : : , Pk}, and the characteristic function�� induces a (Z2)m-
coloring �� on the reflexive panels{P0

1, : : : , P0
l } by �� (P0

j ) D �� (F j ), 1� j � l . So
wheneverP0

j1
\ � � � \ P0

js
¤ ¿, we should have:

(15) �� (P0
j1), : : : , �� (P0

js) is linearly independent vectors in (Z2)m over Z2.

The glue-back construction ofUn with respect to the composite (Z2)m-coloring
(�� , �� ) on the panels ofUn gives us a closed manifold, denoted byM(Un, �� , �� ).
The natural (Z2)m-action onM(Un, �� , �� ) is also defined by:

(16) g � [(x, g0)] WD [(x, gC g0)], 8x 2 Un, 8g, g0 2 (Z2)m.

The following theorem is parallel to that in [3].

Theorem 5.2. The action(Z2)m Õ M(Un,�� ,�� ) defined in(16) is locally stand-
ard and there is an equivariant homeomorphism from M(Un,�� ,�� ) to Mn which cov-
ers the identity of Xn.

Proof. It is easy to check the action is locally standard. Andby a parallel ar-
gument as the proof of Theorem 3.3, the orbit space of (Z2)m Õ M(Un, �� , �� ) is
Xn. Moreover, (Z2)m Õ M(Un, �� , �� ) defines the same principal (Z2)m-bundle over
Xn and the same characteristic function onXn as the locally standard (Z2)m-action on
Mn. Then it is easy to construct an equivariant homeomorphism from M(Un, �� , �� )
to Mn which covers the identity ofXn.
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Fig. 11.

Denote by4(Un, (Z2)m) the set of all eligible composite (Z2)m-colorings onUn,

4(Un, (Z2)m) WD {(�, �) j � is a (Z2)m-coloring on the principal panels ofUnI� is a (Z2)m-coloring on the reflexive panels ofUn

which satisfies the condition (15)}.

Then by Theorem 5.2, any locally standard (Z2)m-action on a closedn-manifold
with Xn as the orbit space can be obtained fromUn and some composite (Z2)m-coloring
(�, �) 2 4(Un, (Z2)m).

By the definition ofUn, it is easy to see that we can identify4(Un, (Z2)m) with
H1(Xn,(Z2)m)�V(Xn,(Z2)m) as a set, whereV(Xn,(Z2)m) is the set of all characteristic
functions onXn, i.e.

V(Xn, (Z2)m) WD {� W F (Xn) ! (Z2)m I �(F j1), : : : , �(F js) are linearly
independent vectors in (Z2)m whenever
F j1 \ � � � \ F js ¤ ¿}.

EXAMPLE 8. SupposePn is a convex simple polytope withm facets{F1,:::,Fm}.
Let {e1, : : : , em} be a basis of (Z2)m. If we color Fi by ei , the glue-back construction
for Pn with the trivial involutive panel structure (see Example 2)gives us a mani-
fold RZPn , called thereal moment-angle manifoldover Pn (see [2] and [6]). TheZ2-coefficient equivariant cohomology ring ofRZPn with respect to the natural (Z2)m

action is isomorphic to the face ring ofPn (see [2]). The ordinaryZ2-cohomology
groups ofRZPn were calculated by XiangYu Cao and Zhi Lü in [8].

EXAMPLE 9. In Fig. 11, we have three different (Z2)3-colorings of a pentagon
which is equipped with the trivial involutive panel structure (see Example 2). The glue-
back construction for the left picture givesT2 # T2 (connected sum of two tori). For
the other two pictures, the glue-back constructions both give the connected sum of two
Klein bottles (these examples are taken from [9]).

EXAMPLE 10. Let X2 D T2 � P2 where P2 is a zigzag polygon onT2. In
Fig. 12, we have three differentZ2-cores of X2, each of whoseZ2-cut system con-
sists of a (broken) longitude and a (broken) meridian ofX2. Then any locally standard
(Z2)m-action on a closed manifold withX2 as the orbit space can be obtained by the
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Fig. 12.

glue-back construction from any one of the threeZ2-cores with some suitable com-
posite (Z2)m-coloring. Note that the zigzag boundary in each of the threeZ2-cores de-
notes their reflexive panel which corresponds to the non-free orbits of a locally standard
(Z2)m-action.

Next, let us classify the locally standard (Z2)m-manifolds overXn up to the equiva-
lence from the viewpoint of glue-back construction. By a similar argument as in [3],
we can prove:

Theorem 5.3. The set of equivalence classes in locally standard(Z2)m-manifolds
over Xn bijectively corresponds to the coset4(Un, (Z2)m)=GL(m, Z2), where the
GL(m, Z2) acts on4(Un, (Z2)m) via automorphisms of the coefficient group(Z2)m.

Moreover, similar to [3], we can classify locally standard (Z2)m-manifolds overXn

up to equivariant homeomorphisms as following. Let Aux(Xn) be the group of self-
homeomorphisms ofXn which preserve the manifold with corners structure ofXn. An
elementh 2 Aux(Xn) will induce a permutation onF (Xn) denoted by8(h)W F (Xn) !
F (Xn). So h naturally acts onV(Xn, (Z2)m) by sending any� 2 V(Xn, (Z2)m) to� Æ8(h).

Theorem 5.4. Suppose� W Mn ! Xn and � 0 W Nn ! Xn are two locally standard
(Z2)m-manifolds over Xn. Mn and Nn are equivariantly homeomorphic if and only if
there is an h2 Aux(Xn) such that�� 0 D �� Æ8(h) and h�(�� 0) D �� where h�(�� 0) is
the pull-back bundle by h.

Theorem 5.5. The set of equivariant homeomorphism classes of all n-dimensional
locally standard(Z2)m-manifolds over Xn bijectively corresponds to the coset

(H1(Xn, (Z2)m) � V(Xn, (Z2)m))=Aux(Xn)

whereAux(Xn) acts diagonally on the two factors.

In addition, we say that two locally standard (Z2)m-manifolds Mn and Nn over Xn

areweakly equivariantly homeomorphicif there is a homeomorphismf W Mn ! Nn and
an element� 2GL(m,Z2) such that f (g�x)D � (g) � f (x) for all g 2 (Z2)m and x 2 Mn.
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Theorem 5.6. The set of weakly equivariant homeomorphism classes of all
n-dimensional locally standard(Z2)m-manifolds over Xn bijectively corresponds to the
double coset

GL(m, Z2)n(H1(Xn, (Z2)m) � V(Xn, (Z2)m))= Aux(Xn)

where bothGL(m, Z2) and Aux(Xn) act diagonally on the two factors.

6. Some topological information of locally standard (Z2)m-manifolds from the
(Z2)m-colorings

SupposeUn is a Z2-core of a connected nice manifold with cornersXn, and the
principal panels and reflexive panels ofUn are {P1, : : : , Pk} and {P0

1, : : : , P0
l } as de-

scribed in the preceding section. Similar to Theorem 3.7, wecan compute the number
of connected components in anyM(Un,�,�) from the composite (Z2)m-coloring (�,�)
on Un as following.

Theorem 6.1. For any (�, �) 2 4(Un, (Z2)m), the number of connected compo-
nents in M(Un, �, �) is 2m�rank(�,�) where

rank(�, �) D dimZ2h�(P1), : : : , �(Pk), �(P0
1), : : : , �(P0

l )i.
The connected components of M(Un,�,�) are pairwise homeomorphic, and there is an
induced locally standard(Z2)rank(�,�)-action on each component of M(Un, �, �) whose
orbit space is Xn.

Proof. Suppose we glue the 2m copies ofUn only along the principal panels first
according to the coloring�, we will get a manifold with boundary denoted byM(Un,�).
By the same argument as in the proof of Theorem 3.7,M(Un,�) has 2m�rank(�) connected
components which are pairwise homeomorphic. LetL� WD h�(P1), : : : , �(Pk)i � (Z2)m

and let�� W Un � (Z2)m ! M(Un, �) be the quotient map. Then an arbitrary connected
component ofM(Un, �) is of the following form

Ng D [
g02gCL� ��(U

n � g0) for some fixed g 2 (Z2)m.

So M(Un, �) D Ng1 [ � � � [ Ngr where r D 2m�rank(�) and gi 0 � gi � L� for any
1 � i , i 0 � r . The boundary ofM(Un, �) consists of those facets from the reflexive
panels ofUn � g0s.

Next, we glue the facets in the boundary ofM(Un, �) together according to (5)
and the coloring� on the reflexive panels, which will give us theM(Un, �, �). Let�� W M(Un, �) ! M(Un, �, �) denote the corresponding quotient map. In addition, let
L� D h�(P0

1), : : : , �(P0
l )i � (Z2)m. It is easy to see that��(Ngi ) and ��(Ngi 0 ) are in
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the same connected component ofM(Un, �, �) if and only if gi 0 � gi 2 L�. So for any
g, g0 2 (Z2)m, the two blocks��(��(Un � g)) and ��(��(Un � g0)) are in the same con-
nected component ofM(Un,�,�) if and only if g0�g 2 L�CL�. Since theZ2-dimension
of L� C L� is rank(�, �), so each connected component ofM(Un, �, �) is the gluing
of 2rank(�,�) copies ofUn from the glue-back construction. ThenM(Un, �, �) has ex-
actly 2m�rank(�,�) connected components which are pairwise homeomorphic. Obviously,
the restricted action of (Z2)m to L� C L� on each component ofM(Un, �, �) is locally
standard. So our theorem is proved.

In addition, if Xn is orientable, using the same argument as the Theorem 1.7 in [10],
we can prove the following.

Theorem 6.2. For a basis{e1, : : : , em} of (Z2)m, there is a group homomorphism�W (Z2)m ! Z2 defined by�(ei )D 1 for all i . Suppose Xn is orientable. Then M(Un,�,�)
is orientable if and only if there exists a basis{e1, : : : , em} of (Z2)m such that�(�(P0

1)) D� � � D �(�(P0
l )) D 1. So in this case, the orientability of M(Un, �, �) is determined only

by the coloring� on the reflexive panels.

It was shown in [2] that theZ2-coefficient cohomology ring of any small cover
can be computed from the combinatorial structure of the orbit space and the associ-
ated characteristic function. But for a general locally standard (Z2)m-manifold Mn over
Xn, it is not clear how to compute theZ2-homology group or cohomology ring ofMn

from Xn. From our preceding discussions, the simplest case in this problem would
be when Xn has aZ2-core Un whose faces are all contractible. So we propose the
following problem.

PROBLEM. for a locally standard (Z2)m-manifold M(Un, �, �) where (�, �) 24(Un, (Z2)m), if each face ofUn is contractible (or aZ2-homology ball), find some
way to compute theZ2-homology group and cohomology ring ofM(Un,�,�) from the
data (Un, �, �).
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