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Abstract
We introduce an elementary way of constructing princigg$)-bundles over
compact smooth manifolds. In addition, we will define a gahewotion of locally
standard Z,)™-actions on closed manifolds for ath > 1, and then give a general
way to construct all suchZ)™-actions from the orbit space. Some related topology
problems are also studied.

1. Introduction

If the group Z2)™ acts freely and smoothly on a closed manifdWl’, the orbit
spaceQ" is also a closed manifold. We can think M" either as a principalZ;)™-
bundle overQ" or as a regular covering ové)" with deck transformation grouZg)™.

In algebraic topology, we have a standard way to recd¥érfrom Q" using the uni-
versal covering space @" and the monodromy map of the covering (see [1]). However,
it is not very easy to visualize the total space of the coggrising that construction.
Considering the speciality ofz6)™, it is desirable to have a new way of constructing
such regular coverings from the orbit spaces which canyédw®lp us to visualize the
total space more easily. In this paper, such a constructitirbes given with the name
glue-back constructian

Another source of nic&,-torus actions on manifolds are locally standard actions
(see [2]). SupposeM" is a closed manifold with a smooth locally standafh)(-
action, letX" = M"/(Z,)" be the orbit space and: M" — X" be the orbit map. It is
well known thatX" is a nicen-manifold with corners, and if the action is not freé"!
will have boundary. TheZ,)"-action determines a&haracteristic functionv, (taking
values in Z,)") on the facets ofX", which encodes the information of isotropy sub-
groups of the non-free orbits. In particular, wh&f is a convex simple polytope, there
is a standard construction to recov@” (up to equivariant homeomorphism) from the
characteristic function, on X" (see [2]). But in general, iH(X", Z,) is not trivial,
we need an additional piece of data to recodt—a principal €,)"-bundle&, over

2000 Mathematics Subject Classification. Primary 57R22pSéary 57R91, 57S17.
This work is supported by the PAPD (priority academic progrdevelopment) of Jiangsu higher
education institutions and by a grant from NSFC (No. 1082504



168 L.Yu

X" which encodes the information of the free orbits of the aciisee [3]). However,
the bundle informatior, has a quite different flavor from the characteristic funetio
v, and is not so easy to be visualized in the orbit spx€e In this paper, we will
combine the characteristic function, and the Z)"-bundle&, on X" into a compos-
ite (Z,)"-valued colorings X, 1) on a new manifoldU" (called aZ,-core of X"),
which is a nice manifold with corners obtained frokf' (but not uniquely). And up
to equivariant homeomorphisms, we can recaviEr from the compositeZ,)"-coloring
(A, nz) ON U™ from a generalized glue-back construction.

Moreover, we can define a general notion of locally stand#&g)™-action on
n-dimensional manifolds for allm > 1, which includes all free Z,)™-actions on
n-dimensional manifolds. The glue-back construction canapglied in this general
setting as well. So actually we do not assume= n at all in this paper.

The paper is organized as following. In Section 2, we will lakp how to get a
Zo,-core V" from a closed manifoldQ" and introduce an important structure o
called involutive panel structureWe will introduce several definitions concerning this
structure to make our subsequent discussions precise amerient. Some explicit
examples will be analyzed to illustrate these definitiomsSéction 3, we will introduce
the glue-back construction from Z&,-core V" of Q" with a (Z,)M-colorings. And we
will show that any principal Z,)™-bundles overQ" can be obtained in this way. Also
the glue-back construction makes sense for any nice mdnifdth corners equipped
with an involutive panel structure. Some properties of toastruction will be studied
along with some explicit examples. In Section 4, we will gatiee the notion ofZ,-
core and glue-back construction to compact manifolds wihridary as well. Then in
Section 5 we define a general notion of locally stand&kg){-actions on closed-
manifolds for anym > 1 and apply the glue-back construction to this generalrggtti
Especially, the notion of involutive panel structure isdise unify all our constructions.
In addition, we will state some classification theorems chlly standardZ,)™-actions
on closedn-manifolds up to (weak) equivariant homeomorphisms. IntiSec6, we
will discuss how to get some topological information (e.lge thumber of connected
components and orientability) of the glue-back constaciof locally standardZ;)™-
actions from the Z,)™-colorings. In the end, we will propose some problem for the
further study.

The main idea of the paper is inspired by the description oélly standardz,-
torus manifolds in [3]. An aim of this paper is to establishranfiework for studying
general locally standardzé)™-actions onn-manifolds in the future. In particular, the
author will use the glue-back construction to study the HEaip-Carlsson conjecture
for free (Z,)™M-actions on compact manifolds in a sequel paper. Also, thelutve
panel structure defined in this paper might have some indigmrvalue.

In this paper, we denote the quotient grazi2Z by Z, and always think of Z,)™
as an additive group. In addition, we will use the followingnegentions:

(1) any manifold and submanifold in this paper is smooth;
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(2) we always identify an embedded submanifold with its iejag
(3) any @,)™-actions on manifolds in this paper are smooth and effective

2. Zy-core of a closed manifold and involutive panel structure

SupposeM" is an n-dimensional closed manifold with a fre@4)™-action (n is
an arbitrary positive integer), 169" = M"/(Z,)™ be the orbit space and: M" — Q"
be the orbit map. The®" is also a closed manifold. In addition, we always assume
Q" is connected in this paper.

We can consider the orbit map: M" — Q" either as a regularZ,)™ covering or
as a principal Z2)™-bundle map. Note thamM" may not be connected in general.

It is well-known that up to bundle isomorphism, princip@,J™-bundles overQ"
are one-to-one correspondent with elementsHI(Q", (Z,)™). Thenz: M" — Q"
determines an element

A € HY(Q, (Z2)™) = Hom(Hy(Q", Z), (Z2)™).

From another viewpoint, as a regular covering spaceM" — Q" is determined
by its monodromy mapH,, : 71(Q") — (Z2)™. Since Z,)™ is an abelian group, we
get an induce group homomorphisk®: Hi(Q", Z,) — (Z2)™ which is exactly the
A, above. Moreover, by the Poincaré duality, we ha¥g 1(Q", Z,) =~ H1(Q", Z»).
So we obtain a group homomorphisii : H,_1(Q", Z2) — (Z2)™.

The above analysis suggests us to construct a new geomejeict rom Q" which
can carry all the information of\, (or AZ). First, we recall a well-known theorem in
algebraic topology.

Theorem 2.1 (Hopf). Let f: M™ — N" be a smooth map between closed ori-
ented manifolds and P ¢ N" a closed oriented submanifold of codimension p such
that f is transverse to L. Write @ HP(N) for the Poincaré dual ofL]y, that is
un[N] =[L]n. Then[f~X(L)]y = f*(u)N[M]. In other words If u is Poincaré dual
to [L]n, then f*(u) € HP(M) is Poincaré dual to[ f 1(L)]m. If using Z, coefficient
we do not need to assume that™ and N" are orientable.

Proof. Use the naturality of the Thom class of the tangendlan []

If HY(Q", Z,) = 0, then any principal Z,)™-bundle overQ" is trivial. So in the
rest of this paper, we always assurlé(Q", Z,) # 0. let {¢1, ..., ¢} be a basis of
H(Q",Z,), and let{ay,...,ax} be the basis oH,_1(Q",Z,) that is dual to{¢s,..., ¢k}
under the Poincaré duality.

Lemma 2.2. «y, ..., ax can be represented by codimension one connected em-
bedded submanifolds of "Q
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Proof. SinceH(Q",Z,) = [Q",K(Z,,1)] = [Q",RP>*] = [Q",RP"*!], an elem-
enty € HY{(Q", Z,) corresponds to a homotopy class of map$: [Q" — RP"+! such
that ¢ = f*(®) where ® is a generator oH(RP"*1, Z,). Then theZ,-homology
class represented by a canonically embedRé&' ¢ RP"*! is the Poincaré dual of
®. We can always assume thaétis smooth and transverse ®P". Then by above
theorem,~ = f~1(RP") is a codimension 1 embedded submanifold@i which is
Poincaré dual tgp. So we can find codimension one embedded submanifBids., X

which are Poincaré dual tgy, ..., ¢k respectively. In addition, we can always choose
31, ..., Xk to be connected. Indeed, for= 1, 2, this is obviously true. And when
n > 3, if somey; is not connected, we can connect all its components via ties
in Q", which will not change the homology class &f in Hy—1(Q", Z>). O

A collection of codimension-one embedded closed submisifpz,, ..., X} is
called aZ,-cut systenof Q" if they satisfy the following conditions:
(1) the homology classe<], ..., [Zk] form a Z,-linear basis ofH,_1(Q", Z,).
(2) X4,..., Xk are in general position Q" which means that:

(@) Xz, ..., Xk intersect transversely with each other and,

(b) if =i, N---N X, is not empty, then it is an embedded submanifoldWf with

codimensions.

Now we choose a small tubular neighborhoNds;) of each; in Q", and then
remove the interior of eachl(Z;) from Q". The manifold that we get is:

k
Vi = Q" - [Jint(N(:)

i=1

which is called aZ,-core of Q" from cutting Q" open alongZy, ..., Xx. The boundary
of V" is 9(lJ; N(Zi)). We call aN(;) the cut sectionof ¥ in Q".

Notice that the projectiom;: dN(%;) — % is a double cover, either trivial or non-
trivial. Let 7; be the generator of the deck transformationnpf Then 7 is a free
involution on dN(Z;), i.e. 7 is @ homeomorphism with no fixed point anfi = id.

The boundary olV" is tessellated byn— 1)-dimensional compact connected mani-
folds (with boundary) calledacetsof V". Any connected component of the inter-
section of some facets is called elgsed face of V". SinceXy,..., X are in general
position in Q", so V" is a nice manifold with cornerswhich means that each co-
dimensionl face of V" is in the intersection of exactly facets. For a comprehensive
introduction of manifolds with corners and related consggee [4] and [5].

REMARK 2.3. V" might not havevertices (0-dimensional strata) on the bound-
ary. for example, ifQ" = S % x St (n > 3), cutting Q" along S™*! x {1} gives a
Zy-core V" = S 1 x [0, 1] of Q" whose boundary consists of two disjoist .
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Fig. 2. A Z,-core of torus.

In addition, we call the union of facets &f" that belong todN(%;) a panel de-
noted byP, (see Fig. 2). SdPy,..., P} forms a panel structure ov". Recall that a
panel structureon a topological spac¥ is a locally finite family of closed subspaces
{Ye}eea indexed by some sefl. EachY, is called apanelof Y (see [5]).

Notice that the involutionz; may not mapP, C dN(%;) into P,. This is because
that there might be somd(X;) so that7; and7; do not commute at the intersections
IN(Zi) N ON(Z;) (see the left picture in Fig. 1). But the following lemma wiso

that we can always deforri and 7; locally by isotopies to make them commute at
IN(Z) NAN(Z)).

Lemma 2.4. We can defornt;’s around the intersections @fN(XZ;)’s so that af-
ter the deformationswe have
(i) eacht is still a free involutiondN(X;) — aN(%;) and the quotiendN(Z;)/ (X ~
Ti(x)) = &j;
(i) foranyl=<i,j =<k, aN(Zi)N9oN(XZ;) becomes an invariant set of both and z;;
(iii) for any point xe IN(Z;) N IN(Z;), 7i(7j(X)) = 7 (Ti(X)).

Proof. ForVp € %, let TyX; be the tangent plane of; at p in Q". Sup-
pose;, N---N X is nonempty. For anyp € %;, N--- N X, there exists an open
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neighborhoodJ of p and a homeomorphism: U — R" such thatg(p) = 0 and for
anyi € {iy,...,Is}, we have
e ¢(Z NU) is the coordinate hyperplane;, = {(x3, ..., X,) € R" | x; = 0}. So
o, N---NE . NU)=H,N---NH;
e O(N(Z)NU)=H x[-1, 1]C R
e in the chart {, ¢), 7; defines a homeomorphisrfy: H; x {1} — H; x {—1}.

Then we can deforntj’s via some isotopies itJ such that they satisfy our re-
quirements (i)—(iii) locally inU. Indeed, letr; be the reflection oR" about the hyper-
plane H;. Then we can isotopd; such that for anyj € {iy,...,is} with j #i, we have

(1) fi(x) =ri(x), forany xe Hj;x{£l1l}NnH x{1}.

Then theseti’s obviously meet our requirements. Moreover, since the(i{i)—are
coordinate-independent properties, we can carry out thamations of thesg&;’s chart

by chart aroundx;, N---N %;_ until the (i)—(iii) are satisfied at all places. In addition,
we should do the deformation &f’s in the charts around the higher degree intersection
points first, then extend to the charts around lower degréssiection points. In the
end, we will getz;’s which satisfy all the requirements (i)—(iii). We remarkat do-

ing the isotopy off’s in a chart might slightly alter what we have previous done i
another chart, but since the (i)—(iii) are coordinate-pefedent properties, the altering
will not cause any inconsistency in our construction. ]

After the local deformations of;’s described in the preceding lemma, the restric-
tion of eachz; on P, C aN(X;) defines a free involution o, denoted byr;. Because
of the existence of thesg's, we call the set of panels &f" aninvolutive panel struc-
ture. We will always assume tha¥" has this involutive panel structure in the rest of
the paper. Note thafri: P — P }1<j<x Satisfy:
e 7 maps a facef of P, to a facef’ of B (it is possible thatf’ = f though);
e (RNP)CRNPjforall=<i,j=<Kk;
° tioTjZTjOTiiﬂﬂPj—)HﬂPjfOI’a”lfi,jfk.

For anyl = {ig,...,is} C{1,...,k} with ||| =s> 1, we define:

(2) P §=P|lﬂ--'ﬂP|SCVn, 2 :=Zilﬂ---ﬂEiSCQn.

When | = @, we definePy = V" and 5 = Q". If P, with |I| > 2 is nonempty, it
is called asubpanelof V". Notice that theP, is empty whenevefl| > n. Although
Q" is assumed to be connected, the may not be connected.

For any pointx € B, let x5 = 7i(x) € . We call x5 the twin point of x in P,
Obviously, xg # x sincer; here is free.

Generally, for a facef C B, if the face f5 = 7 (f) is disjoint from f, it is called
the twin faceof f in P. Otherwise,f is calledself-involutivein P, in the sense that
7j(f) = f. In particular, if a facetr of V" is not self-involutive, it has a unique twin
facet F* which belongs to the same panel Bs We call F := F U F* a facet pair
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Fig. 3. A Z,-core of real projective plane.

As an embedded submanifold Qf", X; could be two-sided or one-sided, which is
determined by the orientability of the normal bundle Xf in Q". If % is two-sided,
any facetF in P has a twin facet* (see Fig. 2). But if%; is one-sided, some facet
in B might be self-involutive (see Fig. 3).

REMARK 2.5. The facets in the same panel \6f' are pairwise disjoint since
each; in the Z,-cut system has no self-intersections. But a paneV/dfmay consist
of more than one facet pair (see the Example 1 below).

If we identify any points ofV" with all their twin points inV", we will get a
manifold denoted byQ". Let o: V" — Q" be the quotient map.

Lemma 2.6. There exists a homeomorphism " — Q" with h(o(P})) = %,
forany | C {1,...,k}.

Proof. By our construction ofj, it is easy to see thai(P) =~ %; for 1 < Vi <k.
In addition, there exists a neighborhodt{aV") of aV" in V" with N(dV") =~ aV" x
[0, €] so that o(N(8V")) c Q" is homeomorphic th!‘zl N(Z) € Q". LetU" =
Q" — int(Uik:l N(Zi)). Then we can think of®" (or Q") as the gluing ofN(3V")
(or UX_, N(=i)) with U™ along their boundary, that is:

k
Q" =o(NEVM) Ju", Q"= <U N(&)) Jun,
@1 i=1 @2

whereg;: 9(o(N(@V"))) — oU" and ¢,: a(Uik:l N(Zi)) — 90U" are homeomorphisms.
If we identify d(o(N(@V")) with 3({J<_, N(Zi)), ¢1 and ¢, are actually isotopic be-
cause the local deformations we make ®s are all isotopies of homeomorphisms. So
we can construct a homeomorphism Q" — Q" from an isotopy betweem; and ¢,,
which satisfies our requirement. []

We call p = hop: V" — Q" the restoring mapof V". Then P, = p~1(%,) for
any | C {1,...,k}. Obviously, for any pointx in the relative interior ofP, N---N B,
we have:

PHp0)) = (5if o or(x): 65 € (0, 1, 1< j <5},
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Fig. 4. A Z,-core of RP2#RP?#RP?.
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Fig. 5. A Z,-core of T2#T2.

Whereri? :=id. It is easy to see thai~1(p(x)) consists of exactly 2different points in
V", Any pointx’ € p~(p(x)) (including x itself) is called aduplicate pointof x in V™.

EXAMPLE 1. SupposeQ" is a small cover over some simple polytope. It is well
known that theZ,-homology classes ofQ" can all be represented by some special
embedded submanifolds @", called facial submanifoldgsee [2] and [6]). And cut-
ting Q" open along a collection of facial submanifolds @" will give us a con-
nectedZ,-core V" of Q". Fig. 4 shows such an example in dimension 2 wh@fe=
RP?#RP?#RP? is a small cover over a pentagon. Zy-core of Q? is an octagon
where the four edges marked b™ belong to the same panel.

REMARK 2.7. A closed connected manifol®" may have aZ,-core V" with
H(V", Z,) # 0. For example, thé&,-core of Q? = T?2#T? shown in Fig. 5 is homeo-
morphic to an annulus.

Next, we define a general notion of involutive panel struetfor any nice mani-
folds with corners. The involutive panel structure orZgcore V" constructed above
is just a special case of this general notion.

DEFINITION 2.8 (Involutive panel structure). Suppog#' is a nice manifold with
corners (may not be connected). Suppose the boundaw"ois the union of several
panelsPy, . .., P« which satisfy the following conditions:

(@) each paneP is a disjoint union of facets oV" and each facet is contained in ex-
actly one panel,
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Fig. 6. Three different involutive panel structures on aaqu

(b) there is an involutiorr; on eachP; (i.e. 7; is a homeomorphism Withiz = idp)

which sends a facé C P, to a facef’ C B (it is possible thatf’ = f);

(C) for all'i 75 j, ‘L’i(P| N Pj)C RPN Pj andr; OTj] =TjOT: PN Pj —- BN Pj.
Then we say thatW" has aninvolutive panel structurelefined by{P,, 7j}1<i<x on

the boundary. Note here, we do not require that the invaiutjcon P, is free.

Similar to theZ,-core V", for any x € B, ¢ W", we call 7j(X) the twin pointx
in PB. Moreover, ifx is in the relative interior of®, N---N R_, any Tiis o0-+-0 rfll(x)
whereg; € {0, 1} is called aduplicate pointof x in W". But in this case, it is not
necessarily thak has exactly 2 duplicate points (even if each on P, is free, see

Fig. 10). Also we can define subpanels ¥ as in (2).

REMARK 2.9. A nice manifold with corner®W" may admit many different in-
volutive panel structures on the boundary (for example dge @j.

EXAMPLE 2. SupposeX" is a nice manifold with corners, and I€%, ..., / be
all the facets ofX". We can think of X" having atrivial involutive panel structure
which is defined by: for any ¥i <I, P = F and the involutions; = idg: K — F.
In this case, we call each, areflexive panebf X". Obviously, in the trivial involutive
panel structure, any point 0" has only one duplicate point—itself.

In general, supposgP,, 7i }1<i<k IS an involutive panel structure on a nice manifold
with cornersW". If the 7j: P, — B is the identity map, we calP, a reflexive panel
of W",

ExXAMPLE 3. SupposeV" is a Z,-core of Q". Use the notations above, for any
panel B of V", B itself is a nice manifold with corners and has an involutiangl
structure on its boundary induced froMf', which is given by:

{Pjﬂpl;THPjﬁP,: Pjﬂp| —>Pjﬁp| for1<Vj <Kk, j#i}
More generally, for anyl = {i1, ..., is} C {1,..., Kk}, the subpaneP, is an f — s)-
dimensional nice manifold with corners (may not be conrgd¢tand P, has an involu-

tive panel structure on its boundary induced fraffi which is given by:

{Pjﬂp| #* T, ‘L’j|pjnp|1 Pjﬂp| —>Pjﬂp| forl<Vj=<Kk, jé¢l}.
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Obviously, theZ,-core of a closed manifoldQ" is far from unique. The topo-
logical type of aZ,-core depends on the correspondidig-cut system inQ". For an
arbitrary Z,-cut system ofQ", it is fairly possible that the correspondir&p-core of
Q" is not connected. But we can prove the following statemertidfw will not be
used in any other place in this paper).

Theorem 2.10. For any closed connected manifold®Ghere always exists a con-
nectedz,-core for Q.

Proof. Forn =1 and 2, the statement is obviously true. So assarre3 in the
rest of the proof.

First, let us choose @,-cut systemZy, ..., Xx of Q" with eachXZ; being con-
nected. We claim that eadd, is non-separating iiQ". let {['1],...,[T'k]} € H1(Q",Z2)
be the dual basis of[%Z4], ..., [Zk]} € Hy 1(Q", Z,) under theZ,-intersection form
of Q", i.e.

#(T ﬂEJ)Z(SiJ‘ mod 2.

So the curvel; must intersec®; odd number of times. LeN(X;) be a small tubular
neighborhood ofZ; in Q". SinceX; is connectedQ" —int(N(Z;)) is either connected
or has exactly two connected-component. but the later castadicts #(; N %) = 1
mod 2. SoX; must be non-separating iQ".

Let Q] be the manifold we get by cuttin@" open along{Zy, ..., X;}, i.e.

j
Q= Q"— [ Jint(N(x)).

i=1

In addition, forj +1< Vi <k let 5 := % n QM andr := 1, n Q.
AssumeQ’j1 is connected and we c@’j‘ open alongzj('ll.
section number ofz}le and Fﬁjjl in H.(Q", 0Q", Z,) is 1 (mod 2), if):}ﬁl is con-

nected inQ’j‘, then 2}’21 must be non-separating i@? for the same reason as above.

If Ej(jll is not connected irQ?, we can connect all the componentsX)ﬂ1

thin tubes inQ’j‘ which are transverse to othéi‘i(”’s. This operation will change the
original X1 in Q" simultaneously, but it will not change the homology classgf 1
in Hn-1(Q", Z2). Now, cutting Q" open along the nevEJ(jJZl, we get a nice manifold
with cornersQ', ; which remains connected.

By iterating the above argument frojhn= 1 to j = k, we will get a connected
nice manifold with corners/". By definition, V" is the Z,-core of Q" from cutting
Q" open along aZ,-cut system{Xj, ..., X;}, which is obtained from the original
Z,-cut system by some homology preserving operations. O

Since the relative inter-

via some
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3. Construction of free (Z,)™-actions on closed manifolds

Supposer: M" — Q" is a principal Z,)™-bundle over a closed connected manifold
Q". Let V" be aZ,-core of Q" from cutting Q" along aZ,-cut system{Xy,..., Ik} in
Q" (we do not assume that" is connected). We have shown that the princi#l){-
bundler is classified by an element

®) Az € HY(Q", (Z2)™) = Hom(Hy(Q", Z2), (Z2)™).

By the Poincaré duality, there is an isomorphigm Hy_1(Q", Z;) =~ Hi1(Q", Z5).
So we get an elemem € Hom(H,_1(Q", Z>), (Z,)™) defined by:

A;;: {[Elli e [Ek]} g (ZZ)m;
[Zi] = Az (¥ ([Zi]).

Let B C aV" be the panel corresponding . So we have a map

Ar i {P1, ..., P — (Z2)",
P> AL([E]) = A-(V([Zi])

Az IS called theassociated(Z,)™-coloring of 7: M" — Q" on V". In general, any
mapir: {Pi, ..., P} — (Z,)™ is called a %;)™-coloring on V', and any element in
(Z,)™ is called acolor.

In addition, if we considerr: M" — Q" as a regular covering, the map; :
H1(Q",Z;,) — (Z,)™ is just the abelianization of the monodromy nHp: 71(Q",qo) —
(Z,)™, whereqg € Q" is a base point andzp)™ is identified with the deck transform-
ation group of this coveringr. Indeed, let{[T"1], ..., [[k]} € Hi(Q", Z,) be the dual
basis of{[Z1], ..., [Zk]} under theZ,-intersection form ofQ" where eachl is a
closed curve that intersects allj’s transversely. If we fix a poink, € 7 (qo), and let
T: [0, 1] — M" be a lifting of I'; with T;(0) = xo, then

4 [i(1) = Ha(Ti) - X0 = Ax([T]) - Xo-

Conversely, given an arbitraryZ$)™-coloring A on V", we can construct a princi-
pal (Z,)™-bundle overQ" by the following rule:

Q) M(V™ P, 7}, 2) = VT x (Z2)" )~

where §, g) ~ (X, @) wheneverx’ = 7;(x) for someP, andg = g + A(R) € (Z)™.
It is easy to see that ik is in the interior of B, N---N R, (X, 9) ~ (X, @) if and

only if (X', @) = (t°0---07(x), g + £1A(P1) + - - - + esA(Ps)) whereeg;j € {0, 1 for
1<Vj<s.
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We call M(V", {R, i}, 1) the glue-back constructiofirom (V", A). Also, we use
M(V", 1) to denoteM(V", {P, 7}, 1) if there is no ambivalence about the involutive
panel structure ov" in the context.

Let [(x,g)] € M(V", 1) denote the equivalence class af §) defined in (5). Then
we can define a naturafZg)™-action onM(V", 1) by:

(6) 9-[(x, 9] :=[(x, g+ Qo). Vx € V", Vg, go € (Z2)"

It is easy to check that theZg)™-action is well defined. And for any element
g # 0 (Z2)", g-[(x, 9)] = [(X, g+ go)] # [(X, Qo)l. This is because:
(i) when x is in the interior of V", (X, g + go) and &, go) are not equivalent under
~ for any g # O;
(i) when x is in the relative interior ofP, N---N B, (X, 9 + o) ~ (X, go) would
force X, g+ o) = (rf; o---07}(X), go + e1A(Pr) + -+ - + esA(Ps)). Notice thatg # 0
implies that at least one of thg, ..., s is not 0. But sincex has exactly 2 duplicate
points inV", ©* o...07}(x) # x as long as some; # 0.

So the action ofZ,)™ on M(V", 1) defined by (6) is always a free group action.
In the rest of this paper, we will always assume tMatV", 1) is equipped with this
free (Z,)™-action.

REMARK 3.1. SinceQ" is smooth, theM(V", 1) is naturally a smooth manifold
and the naturalZ;)™-action onM(V", 1) defined in (6) is smooth.

REMARK 3.2. A similar idea to the glue-back construction was usedotastruct
cyclic and infinite cyclic covering spaces of the complemehknots in S°* (see [7]).

Theorem 3.3. M(V", 1) is a closed n-manifold and the orbit space of the free
(Zp)™-action on MV", 1) defined in(6) is homeomorphic to Q

Proof. Observe that each orbit of thiZ,)M-action has some representative in
V" x {0}. And for any pointx in the relative interior of R, N --- N P_, a point
(x’, 0) € V" x {0} is in the same orbit asx( 0) under the aboveZ;)™-action if and
only if X' =7 0---07(x) for someey, ..., es € {0, 1} (in other words,x' is a du-
plicate point ofx in V"). So the orbit space is homeomorphic to the space of gluing
all points of V" with their duplicate points together, which is homeomocpin Q" by

Lemma 2.6. And sinc&" is a closed manifold, so i#(V", ). O

Following are some explicit examples of freB,j™-actions on manifolds from the
glue-back construction.

EXAMPLE 4. A meridian and a longitude of the tord& forms aZ,-cut system
of T2. The correspondind.,-core of T? is a squareV2. Given a coloring of the edges
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Fig. 7. Examples of the glue-back construction.

Fig. 8. Examples of the glue-back construction.
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of V2 by elements inZ,)? = (e;) ® (&) such that opposite edges ¥f are colored by
the same element ofzg)?, we can construct all principalZe)?-bundles overT? (see
Figs. 7 and 8 for such examples).

EXAMPLE 5. Let M? be a disjoint union of twoS?. Fig. 9 shows a freeZ)?-
action onM? whose orbit space iRP2. A Z,-core V? of RP? is a disk with only
one panelP = 3V?2. Let {e}, &)} be a basis ofZ,)?>. Then M? = M(V?, 1) where A
is a (Z»)?-coloring onV?2 given by A(P) = e; (or &).

More generally, for any nice manifold with corne¥8" with an involutive panel
structure{z;: P — P }1<i<k, any mapu: {Py,...,P} — (Z)™ is called a Z,)™-coloring
on W". We can define the glue-back constructi®{W", 1) by the same rule as in (5).
Also we have a naturalZy)™-action on M(W", 1) defined by (6). But thisZ,)™-
action onM(W", 1) may not be free. Indeed, suppogg: W" x (Z2)™ — M(W", )
is the quotient map. For a point in the relative interior of a codimensios face
of W", it is possible thatx has less thanS2duplicate points inW". In that case,
0,.(x x (Z2)™) would consist of less than™points, which implies thad,(x x (Z2)™)
can not be a free orbit under the naturzb)™-action onM(W", 1) defined in (6) (see
the examples below).
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P, T?
Fig. 10.

EXAMPLE 6. For a simple polytope/", consider each facet of" as a panel
and V" has the trivial involutive panel structure (see Example THen a small cover
over V" can be thought of as the glue-back constructM@v", 1) where i is a char-
acteristic functionon V" with value in @,)" (see [2]). But the natural action of§)"
defined by (6) on a small cover is exactly the locally standaection defined in [2],
which is not free.

REMARK 3.4. From the Example 6, we can see that the significance mafdint-
ing the general notion of involutive panel structure in Diiom 2.8 is that: it allows
us to unify the constructions of fre&{)™-actions and non-free locally standat@,j™-
actions on manifolds from the orbit spaces (see Section Hiétails).

EXAMPLE 7. Suppose a square [021 equipped with an involutive panel struc-
ture as indicated by the arrows in Fig. 10. ForZa)e-coloring A defined by (Py) = ey,
A(P,) = e where{ey, &)} is a basis of Z,)?, the glue-back constructioM ([0, 1]?, 1)
is homeomorphic tar2. But the natural Z,)?-action onT? defined by (6) is not free.

For a nice manifold with corner®V" equipped with an involutive panel structure,
if for any s > 0, any point in the relative interior of any codimensisrface of W"
has exactly 2 duplicate points inW", the involutive panel structure is callgmerfect
For example: the involutive panel structure on akprcore V" of Q" constructed from
Lemma 2.4 above is perfect.

We can easily show that if the involutive panel structure Wf is perfect, the
natural Z,)™-action on M(W", i) defined by (6) is free for allZ;)™-coloring A on
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W?". However, even if the involutive panel structure W' is not perfect, it is still
possible that there exists some nontrividk)Y™-coloring 2 on W" so that the natural
(Z,)™-action onM(W", 1) is free. For example, although the involutive panel strcet
on the square in Fig. 10 is not perfect, if we color the two [mioé the square both by
e € (Z,)?, we will obtain a disjoint union of two sphere®® U S from the glue-back
construction. Obviously, the naturaZ£)?-action on thisS? U S is free.

Let V" be aZ,-core of a closed manifoldQ" described as above. As in Ex-
ample 3, we can think of a pan& c V" itself as a nice manifold with corners with
an involutive panel structure defined ;NP ;1< j <k, j #1i}. Then we have an
induced E;)™-coloring A‘Fr,j of P, defined by

AR(P N R):=A(P), Vj#i, NP #2.

Furthermore, for anyt = {iy,...,is} C {1,...,k}, the subpaneP, = B, N---N R,
has an involutive panel structure on its boundary defined RyN P, # @; 1 < j <Kk,
j ¢ 1}. Theinduced(z,)™-coloring A\ of P is

7 AR(PINP) =MP) € (Z)", 1<j<k j¢l, PNP #2.

If we apply the glue-back construction (5) t§’|(Ai,QI), we will get a closed mani-
fold M(P;,A{%). Notice that wherjl| > 1, by the definition ofM(P;, A12), the relative
interior points of the 2 copies of P, are not glued together like they are M(V", 1).
In fact, it is easy to see tha¥l(Pi, Aj5) is homeomorphic to a disjoint union of 2
copies of;71(%)), whered,: V" x (Z)™ — M(V", 1) is the quotient map defined
in (5).

Theorem 3.5. For any principal (Z;)™-bundlez: M"™ — Q", let A be the asso-
ciated (Z,)™-coloring of # on V". Then there is an equivariant homeomorphism from
M(V", 1) to M™ which covers the identity of Q

Proof. Let6;: V" x(Zy)™ — M(V", 1) be the quotient map ang: M(V", 1) —
Q" be the orbit map of the naturaZ§)™-action defined by (6). It suffice to show that
&, and r defines the same monodromy map as regular coverings @VerSo let us
first compute the monodrom¥,, ([I']) for any closed curvd™: [0, 1] — Q".

Supposel'(t) meetss;, ..., ; consecutively inQ" as the timet goes from 0
to 1. When cuttingQ" open along{Xy, ..., Zx}, the cut-open image of is y :=
'NV". Note that the curver might be disconnected iN". When the time parameter
increasesy will meet the panels?,, ..., B, of V" consecutively. Then when we glue
the 2" copies of V" together in the glue-back construction, the cupven different
copies of V" are fit together which gives all the liftings df in M(V", 1). Indeed, if
we choose the start point of a lifting daf in 9, (V" x go) wheregy € (Z,)™, the end
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point of the lifting would be ing, (V" x(go+A(P,) +---+A(P,))). So the monodromy
He, of & is:

(8) He, (ITD) = A(R,) + -+ + A(R) € (Z)™.

Now let {[T1], ..., [[k]} € H1(Q", Z,) be the dual basis of[Z4], ..., [Zk]} C
Hn_1(Q", Z,) under theZ,-intersection form ofQ". Then

(9) #I N Xj) =46; mod 2.

We can assume that eaéh: [0, 1] — Q" is a closed curve which intersects all;’s
transversely and starts at the same base ppirt Q". Supposey;, = I N V" is the
cut-open image of’; in V". Then by (9),y; will meet P, odd number of times and
meet all otherP; (j # i) even number of times. So by (8), we have:

(10) He (D) = M(R) = Ha (D], 120 <k,
This implies thatHe, = H,.. So the theorem is proved. 0

REMARK 3.6. For aZjy-core V" of Q" with H(V", Z,) # 0, a principal £,)™-
bundle overV" is not necessarily trivial. If we apply the gluing rule (5) @n arbitrary
principal Z,)™-bundle overV", we may get a principalZ,)™-bundle overQ" too. The
significance of Theorem 3.5 is that we can actually use tiwalkr{Z,)™-bundle over
V" (i.e. V" x (Z,)™) and the gluing rule (5) to construct all principa{)™-bundles
over Q", which is enough for our purpose in this paper.

For a ;)™-coloring A on the panelsP, ..., P of V", define:
(12) L, := the subgroup ofZ,)™ generated by{A(Py), ..., A(P)},
(12) rank@) := dimg,L;.

Since A encodes all the structural information df(V", ), so any topological in-
variant of M(V",1) (e.g. homology groups) should be completely determine{M3y1.).
But if we try to compute theZ,-homology groups oM (V", 1) via the Serre-spectral
sequence, the problem of twisted local coefficients coulduoavhen the orbit space
is not simply-connected. This problem is hard to get aroundgeneral. However, we
can at least computélo(M(V", 1), Z5), i.e. the number of connected components of
M(V", 1), from the @,)™-coloring A.

Theorem 3.7. For any (Z,)™-coloring A of V", M(V",1) has2™ k&) connected
components which are pairwise homeomorphic. &etV" x (Zo)™ — M(V", 1) be
the quotient map. Then each connected component @f"M.) is homeomorphic to
6, (V" x L;). And there is a free action of ;L= (Z,)@k#) on each connected compo-
nent of MV", 1) whose orbit space is Q
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Proof. Let6;: V" x (Zy)™ — M(V", 1) be the quotient map defined by (5). Here
we do not assum&" is connected. Then by the definition df(V", 1), for two arbi-
trary connected components, K’ of V" and Vg, g’ € (Z,)™, we have:

(@) 6,(K x g) and 6,(K’ x @) are in the same connected componentMfV", 1) if
and only if there is a sequence

(K, 9) = (Ko, 90) < (K1, 01) < -+« (K1, & 1) < (Kr, o) = (K, )

where eachK; is a connected component &f", g € (Z,)™, and 6;,(K; x gj) and
0,(Ki;11 x giy+1) share anrf — 1)-dimensional face ifM(V", 1).

(b) 6,(K x g) and 6;,(K’ x g) share anr{ — 1)-dimensional face irM(V", 1) if and
only if there is a facet~ of K with its twin facetF* ¢ K’ andg' — g = A(F).

So if 6,(K x g) and 9, (K’ x g) are in the same connected componentM(V", 1), it
is necessary thag’ € g + L;.

Conversely, we claim: for ang’ € g+ L;, 6,(K x g) and6,(K’ x g') are always
in the same connected componentM{V", 1) for any connected componenks and
K’ of V.

Indeed, sinceQ" is connected, for any connected componeiitsand K’ of V",
there always exists a sequenée,= Ko, K1, ..., Ki_1, Ky = K’, such that some facet
Fa C Ki while F; C Kj;1. So by the above argument; (K x g) lies in the same
connected component ag (K’ x g*) in M(V", 1) for someg* € g + L. Then it
remains to show tha#;, (K’ x g*) and 0,(K’ x g') are always in the same connected
component ofM(V", 1) wheneverg — g* € L;.

To see this, letl": [0, 1] — Q" be an arbitrary closed curves based at a point
o € K’ € V". For anyg* € (Zy)™, there is a lifting of" in M(V", 1) which goes
from a point in6,(K’ x g*) to a point in6, (K’ x (9" + He, ([T']))), where He, ([T'])
is the monodromy ofl" with respect to the covering,: M(V", A) — Q" (see (4)).
So 6,(K’ x g*) and 6, (K’ x (9* + Hg ([T']))) are in the same connected component
of M(V", A).

Let I'y,..., Tk be some closed curves @" based atyp so that{[T"1],...,[Tk]} C
H:(Q", Z,) is the dual basis of thg[X;], ..., [Zk]} € Hn_1(Q", Z;) under the
Z,-intersection form ofQ". Then by (10), we have

(13) = (He,(ITaD), - . ., He, ([TK)) C (Z2)"
So any element of; can be realized by ([T']) for some closed curv&. Then the
above claim is proved.

So06, (K xg) and6, (K'xg") belong to the same connected componenti¢¥",1) <
g € g+L;. Since dim,L; =rank(.), each connected componentM{V",1) is made up
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of 23k copies ofV" from V" x (Z,)™. Indeed, SUpposeZe)™ = L; & (w1) ®-- - B (wg)
whereq = m—rank@). ThenM(V", 1) has 2-a&) connected components which are
given by:

O,(V" x (L +tiwr + -+ +tqwg)), ti € {0, 1}, 1<i =<q,

each of which is equipped with a natural free actionlby= (Z,)2"® defined in (6)
whose orbit space iQ". ]

REMARK 3.8. In the above proof, lek: (Z,)™ — L, = (Z,)@®) be a quo-
tient homomorphism. Then for anyZ{)™-coloring A on V", we can think ofx o A
as a )@ ®_coloring onV". It is easy to see that each connected compoieruf
M(V", 1) is homeomorphic tavI(V", k o A).

In general, forl = {iq,...,is} C{1,...,k}, the submanifoldZ;, ¢ Q" may not
be connected. Suppos® is a connected component &,. Then Sis an f — s)-
dimensional embedded submanifold Q. We also want to compute the number of
components irg;1(S), where&,: M(V", 1) — Q" is the quotient map defined by (5).

REMARK 3.9. Two connected componeng&and S of X, may not be homeo-
morphic to each other, and tie(S) and £71(S) may not have equal number of con-
nected components either.

If we cut S open along the transversely intersected embedded sulmiasnits; N
S| ¢I1}, we wil get a nice manifold with corners, denoted M. Similar
to the Z,-core of Q", we can construct a (perfect) involutive panel structuretlom
boundary ofVs from the cut sections ofX;NS# @ | j ¢ |}. And any »)™-coloring
A on V" induces a Z;)™-coloring A‘Q on the panels o¥/s by: if E is the panel ofVs
corresponding taz; N'S,

AD(E) := A(Pj).

It is easy to see that the glue-back constructiétis, ') is homeomorphic t&; 1(9).

But Vs may not be aj-core of S, since the homology classes @£, NS# @ | j ¢ 1}

may not form a basis oH,_s 1(S, Z,). So we can not directly apply the formula in
Theorem 3.7 to compute the number of component® s, A‘S[‘). In fact, the number

of components oM (Vs, ){Q) also depends on what homology classes are represented
by {ZiNS#a|j¢1}in Hi_s-1(S Zz). So we need to modify the proof of The-
orem 3.7 to deal with this case. In the following, we will trehis problem in a very
general setting orQ".

Suppose{ Ny, ..., N } is an arbitrary collection of codimension one embedded sub-
manifolds of a closed manifold" which lie in general position. CuttindQ" open
along Ng, ..., N; gives us a nice manifold with cornel&". As before, we can con-
struct a (perfect) involutive panel structuRs, ..., P, on the boundary ofV" from the
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cut sections ofNg, ..., N;. In addition, supposé'y, ..., Iy are simple closed curves
in Q" whose homology classes form a basis f(Q", Z,), and eachl’; intersects
{N1, ..., N/} transversely. Let;j € Z, be the mod 2 intersection number betwdgn

and N;j. Note that for any fixedj, {&;} is completely determined by the homology
class ofNj in H,_1(Q", Z). Indeed, if{Xy, ..., Xk} is a Z,-cut system ofQ" whose
homology classes is a dual basis {§f'1], ..., [['k]} under theZ,-intersection form,
then for each X j <r, the homology classN;] = >; aj[Zi] € Hn-1(Q").

For any @,)™-coloring A: {P4, ..., P;} — (Z2)™ on W", we can show thabl (W™, 1)
is a closed manifold with a natural fre@4)™-action defined by (6) whose orbit space
is Q". The proof of this fact is exactly the same as Theorem 3.3cdamitted. In
addition, by a similar argument as in the proof Theorem $1&,rhonodromy of each;
with respect to the coverinyl(W", A) — Q" is given by:

(14) H (M) =) aM(Py) € (Zo)™.

j=1
Now, we define a newZ,)™-coloring . on the panels of\V" by:

WP =H(M), 1<i<r.
L; := the subgroup ofZ,)™ generated by{A(Py), ..., A(P;)}.

Theorem 3.10. For any (Zy)™-coloring A on the panels of W, the number of
connected components of (M", 1) equals2™, where | = dimg, L;. In addition all
the connected components of(\M", A) are homeomorphic to each othend there is
free L; = (Z,)'-action on each component of (W", 1) whose orbit space is Q

Proof. The argument here is parallel to that in Theorem 3cegixthat in (13),
the monodromy ofl; should be replaced bﬁk(l“i) in (14). So the proof is left to
the reader. O

4. Generalize to compact manifolds with boundary

We can generalize the notion @f,-core and glue-back construction to any com-
pact manifold with boundary. Suppos€' is ann-dimensional compact connected nice
manifold with corners andH(X",Z,) # 0. Let {Fy,..., R} be the set of facets ok".

A Z,-cut systenof X" is a collection of | — 1)-dimensional embedded submanifolds
21, ..., 2k (possible with boundary) oK" which satisfy:

(i) Xi,..., X are in general position iX"; and

(i) the (relative) homology classesXf], . .., [Zk] form a Z,-linear basis of
Hn,l(X“, axn, Zg) = H1(X”, Zz) 7é 0.

Moreover, we can choose eakh to be connected. If we cX" open alond X4,..., 3},
we get a nice manifold with corner§", called a Z,-core of X". Similar to
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Theorem 2.10, we can show that there always exists a codneatre for X". Note that
the boundary stratification ¢d" is a mixture of the facets in the cut sectionXjfand the
facets fromd X". So we define the panel structure 0 by {Py, ..., P, P{, ..., B},
whereP, consists of the facets in the cut sectionXgfand Pj’ consists of the facets in the
cut open image of;.

By a similar argument as in Lemma 2.4, we can construct a freelltion 7; on
eachP, (1 <i < k) which satisfies the conditions (a), (b) and (c) in DefinitiarB.
If we do not define any involution o/, we say that{zj: P — P }1<j<x along with
{P/,..., P’} is apartial involutive panel structuren the boundary otJ".

Let P(U") = {Py, ..., P} be the set of all panels " that are equipped with
involutions. Any map fromP(U") to (Z,)™ is called a Zy)™-coloring on U". It is
easy to see that the glue-back constructM(lU", .) makes perfect sense far" with
a (Z;)M-coloring . Indeed,M(U", 1) is got by glue 2' copies ofU" only along those
panels equipped with involutions according to the rule in (5

By a parallel argument as Theorem 3.3, we can show that (@)eteé natural free
(Z,)™-action onM(U", A) whose orbit space is homeomorphic X&. And similarly,
we can prove the following.

Theorem 4.1. Suppose X is a compact connected nice manifold with corners
and U" is a Zy-core of X'. Then we have
(1) any principal (Z;)™-bundle: M"™ — X" determines gZ,)™-coloring 1, on U";
(2) there is an equivariant homeomorphism from th€UM, 1) to M" which covers
the identity of X.

In addition, we can similarly definé; and rankg) for any (Z,)™-coloring A on
U" (see (11) and (12)) and extend the results in Theorem 3.M@d", 1) as well.
Here we only give the statement below and leave the proof @¢ord¢fader.

Theorem 4.2. For any (Z,)™-coloring » on U", the M(U", 1) has 2™ "a"&) con-
nected components which are pairwise homeomorphicoLet" x (Z,)™ — M(U", 1)
be the quotient map. Then each connected component(bf"M.) is homeomorphic
to 6,(U" x L,). And there is a free action of ;L= (Z,)@®) on each connected com-
ponent of MU", 1) whose orbit space is X

5. Locally standard (Z,)™-action on closedn-manifolds

First, let us define the meaning sfandard actionof (Z,)™ in dimensionn for
any m> 1. Supposey = (01, . . ., Om) iS an arbitrary element ofZ()™.
(1) If m <n, the standardZ,)™-action onR" is:

(X1, - .., Xn) = (19X, .oy (D)%%, Xmads - - - Xn),

whose orbit space iR }" := {(X1, ..., Xn); Xi =0 for 1< Vi < m}.
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(2) Form > n, the standardZ,)™-action onR" x (Z)™ ™" is:

((Xll s ey Xn), (h].’ LR | hm_n))
= (D)%%, - (FD%0), @nga + e, G+ Pimn),s

whose orbit space i®"".

Suppose Z,)™ acts effectively and smoothly on a closeemanifold M". A local

isomorphismof M" with the standard action (defined above) consists of:

(1) a group automorphisra: (Z)™ — (Z)™;

(2) a @,)"-stable open seV in M" andU in R" (if m < n) or R" x (Zy)™™" (if
m > n);

(3) a o-equivariant homeomorphisnfi: V. — U, i.e. f(g-v) = o(g) - f(v) for any
ge(Zy)™andv e V.

A (Zy)M-action onM" is calledlocally standardif each point ofM" is in the do-
main of some local isomorphism. Thévi" is called alocally standard(Z,)™-manifold
over M"/(Z,)™. Note that here we generalize the notionlo€ally standard2-torus
manifold defined in [3] wherem is required to be equal to.

Now, suppose we have a locally standa#}){"-action on a closed manifold1".
Then the orbit spac&X" = M"/(Z,)™ is a nice manifold with corners (in the rest of
the paper, we always assum@ is connected). Letr: M" — X" be the orbit map.
Suppose the set of all facets ¥f' is 7(X") = {Fy,..., R}. The characteristic function
vy F(X") — (Z,)™ of the action is defined by:

v, (Fj) = the element of Z,)™ that fixes:r‘l(F,-) pointwise.

Observe that whenevefj, N --- N Fj, # @, {v:(Fj,), ..., v=(F;.)} should be linearly
independent vectors inZg)™ over Z,. And the isotropy group of the set=*(Fj, N
---N Fj,) is the subgroup ofZ%,)™ generated byv.(Fj,), ..., v (Fj)}.

In addition, M" determines a principalZ)™-bundle overX", denoted byg,. If
HY(X", Z,) = 0, &, is always trivial. So we assumBE?(X", Z,) # 0 in the rest of
this section.

REMARK 5.1. If m < n, the dimension of any face oX" is at leastn —m.

We will see that the characteristic functiop and the principal Z2)™-bundle &,
encode all the structural information of th&,|™-action, and we can classify locally
standard Z;)™-manifolds7: M" — X" by v, and&, up to some natural equivalence
relations. The following discussions are parallel to thos¢3].

First of all, we say that two locally standarZ4)™-manifolds M" and N" over X"
are equivalentif there is a homeomorphisni : M" — N" together with an element
o € GL(m, Z,) such that
1) f(g-x)=o0(g)- f(x) for all g € (Z,)™ andx € M", and
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(2) f induces the identity map on the orbit space.

In addition, we call two locally standar@.¢)™-manifoldsM" andN" over X" equiv-
ariantly homeomorphidf there is a homeomorphism: M" — N" such thatf (g- x) =
g- f(x) for all g € (Z2)™ andx € M". Such a homeomorphisrhis called arequivariant
homeomorphisnbetweenM" and N". Notice that f will induce a homeomorphism
h¢: X" — X" which preserves the manifold with corners structurexéf But h; may
not be the identity map oK".

LetU" be aZ,-core of X" from cutting X" open along &,-cut system{X,..., Xk}
in X" as described in Section 4. The panel structur® bfis {Py, ..., P, P, ..., B’}
where P, corresponds to the cut section Bf and P/ is the cut open image of the facet
F;j, and there is a partial involutive panel structure P — B, on U". Moreover, if we
definerj’ =id: Pj/ — Pj’ forany 1< j <I, then{P, 1 }1<i<« and{Pj/,Tj/}lsjg together
define a complete involutive panel structure @h. We call {Py, .. ., Py} the principal
panelsof U™ and call{P;,..., P’} thereflexive panel®f U". And we assum&" having
this involutive panel structure in the rest of this paper.

By Theorem 4.1, the principal bundie determines aZ,)™-coloring 1, on the set
of principal panels{P, ..., P}, and the characteristic function, induces a Z,)™-
coloring i on the reflexive panel$Py, ..., B’} by u.(Pj) = v.(Fj), 1= j <I. So
wheneverP| N---N P} # @, we should have:

(15) tx (P, - -+, nx(P;) is linearly independent vectors ifZ4)™ over Z,.

The glue-back construction dfi" with respect to the compositeZ{)™-coloring
(Ax, z) 0N the panels ofJ" gives us a closed manifold, denoted M(U", A, 1t).
The natural Z,)M-action onM(U", ., i) is also defined by:

(16) 9-[(x, 9] :=[(x, g+ go)l. VxeU" Vg, go € (Z2)™.

The following theorem is parallel to that in [3].

Theorem 5.2. The action(Z;)™ ~ M(U",A,,u,) defined in(16) is locally stand-
ard and there is an equivariant homeomorphism fronU¥, A, 1) to M"™ which cov-
ers the identity of X.

Proof. It is easy to check the action is locally standard. Axyda parallel ar-
gument as the proof of Theorem 3.3, the orbit spaceZz) ~ M(U", A, u.) is
X". Moreover, £)" ~ M(U", A, u,) defines the same principaZ{)™-bundle over
X" and the same characteristic function ¥A as the locally standardz¢)™-action on
M". Then it is easy to construct an equivariant homeomorphisemm M(U", A, 1,)
to M" which covers the identity oX". ]
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Fig. 11.

Denote byE(U", (Z,)™M) the set of all eligible compositeZg)™-colorings onU",

EU", (Z2)™) := {(r, ) | A is a (Z,)™-coloring on the principal panels a";
u is a (Z»)M-coloring on the reflexive panels &f"
which satisfies the condition (15)

Then by Theorem 5.2, any locally standat#,)"-action on a closed-manifold
with X" as the orbit space can be obtained froffh and some compositéZg)™-coloring
() € E(U, (Z2)").

By the definition ofU", it is easy to see that we can identi§(U", (Z,)™) with
HY(X",(Z2)™) x V(X",(Z2)™) as a set, wher®(X",(Z2)™) is the set of all characteristic
functions onX", i.e.

VX", (Zo)™) = {v: F(X") = (Z2)™; v(Fj,), - .., v(Fj,) are linearly
independent vectors inzg)™ whenever
Fjlﬂ---ﬂ Fjs#g}.

EXAMPLE 8. SupposeP" is a convex simple polytope witin facets{Fy,...,Fn}.
Let {e1, ..., en} be a basis ofZ,)™. If we color F; by g, the glue-back construction
for P" with the trivial involutive panel structure (see Example @yes us a mani-
fold RZpn, called thereal moment-angle manifoldver P" (see [2] and [6]). The
Z,-coefficient equivariant cohomology ring ®Zpn with respect to the naturalzg)™
action is isomorphic to the face ring &" (see [2]). The ordinaryZ,-cohomology
groups ofRZpn were calculated by XiangYu Cao and zhi LU in [8].

EXAMPLE 9. In Fig. 11, we have three differenZ£)3-colorings of a pentagon
which is equipped with the trivial involutive panel structu(see Example 2). The glue-
back construction for the left picture givés’> # T2 (connected sum of two tori). For
the other two pictures, the glue-back constructions botk gie connected sum of two
Klein bottles (these examples are taken from [9]).

EXAMPLE 10. Let X2 = T2 — P? where P? is a zigzag polygon orif2. In
Fig. 12, we have three differerf,-cores of X2, each of whoseZ,-cut system con-
sists of a (broken) longitude and a (broken) meridianXéf Then any locally standard
(Z,)™-action on a closed manifold witl? as the orbit space can be obtained by the
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Fig. 12.

glue-back construction from any one of the thigg-cores with some suitable com-
posite Z,)™-coloring. Note that the zigzag boundary in each of the tt#e&ores de-
notes their reflexive panel which corresponds to the noa-émbits of a locally standard
(Z,)™-action.

Next, let us classify the locally standard)™-manifolds overX" up to the equiva-
lence from the viewpoint of glue-back construction. By aikmargument as in [3],
we can prove:

Theorem 5.3. The set of equivalence classes in locally standg@g)™-manifolds
over X" bijectively corresponds to the cos&(U", (Z,)™)/GL(m, Z,), where the
GL(m, Z,) acts onE(U", (Z,)™) via automorphisms of the coefficient gro(®,)™.

Moreover, similar to [3], we can classify locally standa#b)™-manifolds overX"
up to equivariant homeomorphisms as following. Let AXX( be the group of self-
homeomorphisms oK" which preserve the manifold with corners structureXdf. An
elementh € Aux(X") will induce a permutation odF(X") denoted by®d(h): F(X") —
F(X™). So h naturally acts onV(X", (Z,)™) by sending anyv € V(X", (Z2)™) to
v o ®(h).

Theorem 5.4. Supposer: M" — X" and z’: N" — X" are two locally standard
(Z,)™-manifolds over X. M" and N" are equivariantly homeomorphic if and only if
there is an he Aux(X") such thatv,, = v, o ®(h) and h*(&,) = &, where K (&) is
the pull-back bundle by h.

Theorem 5.5. The set of equivariant homeomorphism classes of all n-diioral
locally standard(Z;)™-manifolds over X bijectively corresponds to the coset

(HY (X", (Z2)™) x V(X, (Z2)™)/Aux(X")
where Aux(X") acts diagonally on the two factors.

In addition, we say that two locally standard,}™-manifolds M" and N" over X"
areweakly equivariantly homeomorphiicthere is a homeomorphism: M"™ — N" and
an element € GL(m,Z,) such thatf(g-x) = o(g)- f(x) for all g € (Z,)™ andx € M".
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Theorem 5.6. The set of weakly equivariant homeomorphism classes of all
n-dimensional locally standar¢z,)™-manifolds over X bijectively corresponds to the
double coset

GL(M, Z2)\(H' (X", (Z2)™) x V(X", (Z2)™))/ Aux(X")
where bothGL(m, Z,) and Aux(X") act diagonally on the two factors.

6. Some topological information of locally standard Z,)™-manifolds from the
(Z,)™-colorings

SupposeU" is a Z,-core of a connected nice manifold with cornex§, and the
principal panels and reflexive panels Of' are {Py, ..., P} and{P;, ..., P’} as de-
scribed in the preceding section. Similar to Theorem 3.7 cex®@ compute the number
of connected components in ahy(U", &, ) from the compositeZ,)™-coloring @, )
on U" as following.

Theorem 6.1. For any (A, u) € E(U", (Z2)M), the number of connected compo-
nents in MU", A, u) is 2™"ake.11) where

rank@., u) = dimg, (A(P1), . .., A(Pa), w(Py), - . ., u(P))).

The connected components of WX, &, 1) are pairwise homeomorphi@and there is an
induced locally standardz,)@"ké-#)-action on each component of (M", A, 1) whose
orbit space is X.

Proof. Suppose we glue thé Zopies ofU" only along the principal panels first
according to the coloring, we will get a manifold with boundary denoted b§(U", 1).
By the same argument as in the proof of Theorem BIQU", 1) has 2"~"2"&) connected
components which are pairwise homeomorphic. Let= (A(Py), ..., A(P)) C (Zo)™
and leto, : U" x (Zo)™ — M(U", 1) be the quotient map. Then an arbitrary connected
component ofM(U", 1) is of the following form

Ng= [J 6.(U"xg) for some fixed g e (Z;)™
gegtL,

So M(U™, 1) = Ng, U -+- U Ng wherer = 2m%&) and g — g ¢ L, for any
1<i,i’ <r. The boundary ofM(U", 1) consists of those facets from the reflexive
panels ofU" x ¢'s.

Next, we glue the facets in the boundary Mf(U", 1) together according to (5)
and the coloringu on the reflexive panels, which will give us thd(U", A, u). Let
0,: M(U", 1) - M(U", A, ) denote the corresponding quotient map. In addition, let
L, = (u(P), ..., u(P)) C (Zx)™. It is easy to see that,(Ng) and6,(Ng,) are in
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the same connected componenthd{U", A, u) if and only if g — g € L,,. So for any
0,9 € (Z)™, the two blocks,(6;(U" x g)) and6,(6,(U" x g')) are in the same con-
nected component d#1(U",x,u) if and only ifg'—g € L, +L,,. Since theZ,-dimension
of L, + L, is rank@, n), so each connected componentM{U", A, u) is the gluing
of 2ranke.1) copies ofUM" from the glue-back construction. Thevi(U", A, 1) has ex-
actly 2n-"anké-1) connected components which are pairwise homeomorphicioQsly,
the restricted action off»)™ to L, + L, on each component a¥1(U", X, u) is locally
standard. So our theorem is proved. O

In addition, if X" is orientable, using the same argument as the Theorem 11Djn |
we can prove the following.

Theorem 6.2. For a basis{ey, ..., ey} of (Zo)™, there is a group homomorphism
€: (Z,)™ — Z, defined by:(g) = 1 for all i. Suppose Xis orientable. Then NU", A, i)
is orientable if and only if there exists a bagis, ..., en} of (Z)™ such thate(u(P;)) =
---=¢(u(R")) = 1. So in this casethe orientability of MU", A, i) is determined only
by the coloringu on the reflexive panels.

It was shown in [2] that theZ,-coefficient cohomology ring of any small cover
can be computed from the combinatorial structure of thetmpace and the associ-
ated characteristic function. But for a general locallyngrd Z,)™-manifold M" over
X", it is not clear how to compute th&,-homology group or cohomology ring d¥"
from X". From our preceding discussions, the simplest case in tlublgm would
be whenX" has aZ,-core U" whose faces are all contractible. So we propose the
following problem.

ProBLEM. for a locally standard Z,)™-manifold M(U", A, u) where @, u) €
E(U", (z,)™M), if each face ofU" is contractible (or aZ,-homology ball), find some
way to compute théZ,-homology group and cohomology ring ™M (U", A, «) from the
data U", A, w).
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