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Abstract
Let S be a smooth open rational surface withN�(S) D Npg(S) D 0 and NP2(S) > 0.

We construct a certain minimal model ofS, which is called a strongly minimal model
of S in [15], and determine the strongly minimal model in the casewhere S has
non-contractible boundary at infinity. As an application, we classify the log affine
surfaces withN� D Npg D 0 and NP2 > 0 under the minimality condition.

0. Introduction

Throughout the present article, we work over the complex number fieldC.
In the theory of logarithmic Kodaira dimension due to Iitaka, the class of (not ne-

cessarily complete) algebraic varieties with logarithmicKodaira dimension zero is very
important because such varieties can appear as general fibers of Iitaka fiber spaces. It
is clear that a smooth open (non-complete) algebraic curve with logarithmic Kodaira
dimension zero isA1� WD A1 � {0}. Open algebraic surfaces with logarithmic Kodaira
dimension zero have been studied by several authors. Irrational open algebraic sur-
faces with N� D 0 were studied in Iitaka [7], Sakai [22, Section 2], Miyanishi[15, The-
orem 6.4.1 (p. 184)], etc. Tsunoda [23] proved that, for a smooth open algebraic sur-
face S with N�(S) D 0, NPn(S) D 1 for somen, 1� n � 66. Iitaka [7] and Zhang [24]
considered open rational surfaces withN� D 0 and Npg > 0 and Zhang [24] classified the
Iitaka surfaces which are almost minimal open rational surfaces withN� D 0 and Npg > 0.
Log Enriques surfaces (normal projective rational surfaces with only quotient singular
points and with numerically trivial canonical divisors), whose smooth parts are inter-
esting examples of open algebraic surfaces withN� D Npg D 0, were studied by Blache,
Kudryavtsev, Oguiso and Zhang. For more details, see Blache[3], Kudryavtsev [12]
and [13], Oguiso–Zhang [19], [20] and [21], Zhang [25], [26], [27], [28] and [29].
In [9] and [10], the author established a classification theory of smooth open rational
surfaces with N� D 0 and with connected boundaries at infinity in any characteristic
and gave a classification of the strongly minimal smooth affine surfaces withN� D 0,
which gives a generalization of Fujita’s result concerningthe smooth affine surfaces
with N� D 0 and with finite Picard groups (see [4, Section 8]).
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The purpose of the present article is to study smooth open rational surfaces withN� D Npg D 0 and NP2 > 0. Let S be a smooth open rational surface withN�(S)D Npg(S)D 0
and NP2(S) > 0 and let (X, B) be a pair of a smooth projective rational surfaceX and
a simple normal crossing divisorB on X such thatSD X � B (we call such a pair
(X, B) an SNC-completion ofS). In Sections 1 and 2, following [15, Chapter 2] (see
also [16]), we construct an almost minimal model (W, C) and a strongly minimal model
(V, D) of the pair (X, B). Here the pairs (W,C) and (V, D) are SNC-pairs and there exist
birational morphismsf W X ! W andgW W ! V such that f�(B) D C andg�(C) D D.
Further, in Section 1, we give a rough classification of possible connected components
of SuppC. In Section 3, we determine the pair (V, D) whenbD#
 ¤ 0. The main result
of the present article is Theorem 3.6 which gives a classification of the strongly minimal
models. In Section 4, by using the result in Section 3, we classify the strongly minimal
log affine surfaces withN� D Npg D 0 and NP2 > 0 (cf. Theorem 4.4).

In a forthcoming paper, we study smooth open rational surfaces with N� D NP2 D 0.

1. Preliminaries

The terminology is the same as the one in [15]. By a (�n)-curve, we mean a
smooth complete rational curve (on a smooth algebraic surface) with self-intersection
number�n. A reduced effective divisorD is called an NC-divisor (resp. an SNC-
divisor) if D has only normal crossings (resp. simple normal crossings).Let V be a
smooth projective surface, letD, D1 and D2 be divisors onV and let S be a smooth
open algebraic surface. We then employ the following notations. For the definitions ofN�, Npg and NPm, see [15, Chapter 2].

KV : the canonical divisor onV .�(V): the Picard number ofV .N�(S): the logarithmic Kodaira dimension ofS.Npg(S) (or NP1(S)): the logarithmic geometric genus ofS.NPm(S) (m� 2): the logarithmicm-genus ofS.Fn (n � 0): a Hirzebruch surface of degreen.
Mn (n � 0): a minimal section ofFn.NMn (n � 0): a section of the fixed ruling onFn with NMn � Mn D 0.
#(D): the number of all irreducible components in SuppD.
f �(D): the total transform ofD.
f�(D): the direct image ofD.
f 0(D): the proper transform ofD.
D1 � D2: D1 and D2 are linearly equivalent.
D1 � D2: D1 and D2 are numerically equivalent.bD#
: the integral part of aQ-divisor D#.
Now we recall some basic notions in the theory of peeling. Formore details, see

[15, Chapter 2] and [16, Chapter 1].
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Let (X, B) be a pair of a smooth projective surfaceX and an SNC-divisorB. We
call such a pair (X, B) an SNC-pair. A connected curveT consisting of irreducible
components ofB (a connected curve inB, for short) is atwig if each irreducible com-
ponent ofT is rational, the dual graph ofT is a linear chain andT meetsB � T in
a single point at one of the end components ofT , the other end ofT is called thetip
of T . A connected curveR (resp. F) in B is a rational rod (resp. arational fork) if
R (resp.F) is a connected component ofB and consists only of rational curves and if
the dual graph ofR (resp.F) is a linear chain (resp. the dual graph of the exceptional
curves of the minimal resolution of a non-cyclic quotient singular point). A connected
curve E in B is admissibleif there are no (�1)-curves in SuppE and the intersection
matrix of E is negative definite. An admissible rational twigT in B is maximal if
T is not extended to an admissible rational twig with more irreducible components of
B. By a (�2)-rod (resp. a (�2)-fork), we mean a rod (resp. a fork) consisting only of
(�2)-curves.

Let {T�} (resp. {R�}, {F�}) be the set of all maximal admissible rational twigs
(resp. all admissible rational rods, all admissible rational forks), where no irreducible
components ofT�’s belong to R�’s or F� ’s. Then there exists a unique decomposition
of B as a sum of effectiveQ-divisors B D B# C Bk(B) such that the following two
conditions (i) and (ii) are satisfied:
(i) Supp(Bk(B)) D �S� T�� [ �S� R�� [ �S� F��.
(ii) ( B# C KX) � Z D 0 for every irreducible componentZ of Supp(Bk(B)).
We call the divisor Bk(B) the bark of B and say thatB# C KX is produced by the
peeling of B. Let � W X ! NX be the contraction of Supp(Bk(B)) to quotient singular
points and put NB WD ��(B). Then, by the condition (ii) as above, we have��( NB C
K NX) D B# C KX.

Lemma 1.1. Each connected component of B� (B#)red is either a (�2)-rod or a
(�2)-fork.

Proof. See [15, p. 94].

DEFINITION 1.2. An SNC-pair (X, B) is almost minimalif, for every irreducible
curve C on X, either (B# C KX) � C � 0 or (B# C KX) � C < 0 and the intersection
matrix of C C Bk(B) is not negative definite.

Lemma 1.3. Let (X, B) be an SNC-pair. Then there exists a birational morphism�W X ! W onto a smooth projective surface W such that the following four conditions
(1)–(4) are satisfied:
(1) C WD ��(B) is an SNC-divisor.
(2) ��(Bk(B)) � Bk(C) and ��(B# C KX) � C# C KW.
(3) NPn(X � B) D NPn(W � C) for every integer n� 1. In particular, N�(X � B) DN�(W � C).
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(4) The pair (W, C) is almost minimal.

Proof. See [15, Theorem 3.11.1 (p. 107)].

We call the SNC-pair (W,C) as in Lemma 1.3 analmost minimal modelof (X, B).

Lemma 1.4. Let (W, C) be an almost minimal SNC-pair withN�(W � C) D 0.
Then n(C# C KW) � 0 for some integer n> 0. In particular, C# C KW � 0.

Proof. See [15, Chapter 2, Section 6]. (See also [8].)

Hereafter in the present section, let (W, C) be an almost minimal SNC-pair withN�(W�C) D 0. Then�(W) � 0, where�(W) denotes the Kodaira dimension ofW. We
prove the following two lemmas, which are well-known for experts.

Lemma 1.5. Assume that�(W) D 0. Then the following assertions hold.
(1) W is minimal.
(2) If C ¤ 0, then each connected component of C is either a(�2)-rod or a (�2)-fork.

Proof. Let H be an ample divisor onW. Since �(W) D 0 and C# C KW � 0
by Lemma 1.4, we haveH � KW D 0. So the assertion (1) follows. Moreover, since
C# � H D 0, we haveC# D 0. So the assertion (2) follows from Lemma 1.1.

Lemma 1.6 (cf. [15, Theorem 6.4.1 (2) (p. 184)]).Assume that W is an irrational
ruled surface. Let pW W ! B be aP1-fibration onto a smooth projective curve B of
genus q(W) (� 1) and let C1, : : : , Cs (s � 0) be all the irrational components of C.
Then the following assertions hold true.
(1) sD 1 or 2.
(2) For a fiber F of p, we have

�Ps
iD1 Ci

� � F D 2.
(3) Each Ci (1 � i � s) is an elliptic curve and becomes a connected component of
C, i.e., Ci � (C � Ci ) D 0.
(4) q(W) D 1, i.e., W is an elliptic ruled surface.
(5) If C �Ps

iD1 Ci ¤ 0, then each connected component of C�Ps
iD1 Ci is either a

(�2)-rod or a (�2)-fork.
(6) If sD 1 (resp. sD 2), then C#CKW � 0 and 2(C#CKW)� 0 (resp. C#CKW � 0).

Proof. Let F be a fiber ofp.
(1) If sD 0, then every irreducible component ofC is contained in a fiber ofp.

Then N�(W�C) D �1, a contradiction. So,s� 1. SinceC#CKW � 0 by Lemma 1.4,
we have

F � C# D �F � KW D 2.
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Note that the coefficient ofCi (1 � i � s) in C# is equal to one becauseCi is an
irrational curve. HencesD 1 or 2.

(2) Since each irreducible component ofC �Ps
iD1 Ci is contained in a fiber of

p, we haveF � C# D F � �Ps
iD1 Ci

�
. So, F � �Ps

iD1 Ci
� D 2 sinceC# C KV � 0.

(3) SinceC# C KW � 0 and the coefficient ofCi (1 � i � s) in C# is equal to
one, we have

0D Ci � (C# C KW) D Ci � (C# � Ci )C Ci � (Ci C KW)

� Ci � (Ci C KW)

� 0

for 1� i � s. So, Ci is a smooth elliptic curve andCi � (C# �Ci ) D Ci � (C �Ci ) D 0
for 1� i � s.

(4) The assertion easily follows from the assertion (3).
(5) The assertion (2) and [15, Theorem 2.5.1 (p. 76)] imply that N��W�Ps

iD1 Ci
� �

0. In particular, N��W � Ps
iD1 Ci

� D 0. SinceC# C KW � 0 and some multiple ofPs
iD1 Ci C KW is linearly equivalent to an effective divisor, we deduce that C# �Ps
iD1 Ci D 0. Hence the assertion follows from Lemma 1.1.

(6) See [15, Lemma 6.4.3 (p. 186)]. Here we note that ifsD 1 then H0(W,C#C
KW) D H0(W, C1 C KW) D 0 by [7, Proposition 20] (see also [22, (2.7) Theorem]).
HenceC# C KW � 0 if sD 1.

In Lemmas 1.7 and 1.8, we consider the case whereW is a rational surface.

Lemma 1.7. Assume that W is a rational surface. Let I be the smallest positive
integer such that IC# is an integral divisor. Then

NPn(W � C) D �
1, if I j n,
0, if otherwise.

Proof. SinceN�(W � C) D 0, NPn(W � C) � 1 for any positive integern. By [15,
Lemma 3.10.1 (p. 106)], we have

NPn(W � C) D h0(W, n(C C KW)) D h0(W, bn(C# C KW)
).
Since W is a rational surface andC# C KW � 0, we know that

NPn(W � C) > 0� n(C# C KW) � 0� I j n.

Lemma 1.8. With the same notations and assumptions as inLemma 1.7,assume
further that Npg(W � C) D 0 and NP2(W � C) > 0 (H) NP2(W � C) D 1). Let NC be

a connected component of C. Assume thatNC is neither a(�2)-rod nor a (�2)-fork.
Then we have:



1068 H. KOJIMA

Fig. 1.

Fig. 2.

(1) If b NC#
 D 0, then NC is either a single(�4)-curve or an admissible rational rod
with (�3)-curves as tip components and m(m� 0) (�2)-curves as middle components.
In particular, the weighted dual graph ofNC is given as one of(i) and (ii) in Fig. 1.
(2) If b NC#
 ¤ 0, then each component of C is a rational curve and the configuration
of C is given as one of(i) and (ii) in Fig. 2.

Proof. Note thatC# D (C� NC)#C NC# becauseNC is a connected component ofC.
Since W is a rational surface andNpg(W �C) D h0(W, CC KW) D 0, each irreducible
component ofC is a (smooth) rational curve and the dual graph of each connected
component ofC is a tree by [14, Lemma I.2.1.3]. It follows from Lemma 1.7 andthe
assumption NP2(W � C) > 0 that 2C# is an integral divisor. Hence, the coefficient of
each irreducible component of Supp(C#) in C# is equal to 1=2 or 1.

Assume thatb NC#
 D 0. Then NC can be contracted to a quotient singular point.
Since NC is neither a (�2)-rod nor a (�2)-fork, NC# ¤ 0. So, NC# D (1=2) NC. It then
follows from [25, Lemma 1.8] thatNC is either a single (�4)-curve or an admissible
rational rod with (�3)-curves as tip components andm (m � 0) (�2)-curves as mid-
dle components.

Assume thatb NC#
 ¤ 0. Then, since (CC KW) �C D Bk(C) �C, it follows from [4,
Lemma (8.7) and Corollary (8.8)] thatNC is of type (O), type (H ), type (Y) or type
(X) (for more details, see [4, Corollary (8.8)]). Since the dual graph of NC is a tree
and 2NC# is an integral divisor, we know thatNC is of type (H ) or (X). Hence, the
configuration of NC is given as one of (i) and (ii) in Fig. 2.

DEFINITION 1.9. Let C be a connected SNC-divisor on a smooth surface such
that each component ofC is a rational curve. Then we say thatC is of type (K1)
(resp. (Kn) (n � 2), (X), (Hr ) (r � 2)) if C is a single (�4)-curve (resp.C is an
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admissible rational rod with (�3)-curves as tip components and (n � 2) (�2)-curves
as middle components, #(C) D 5 and the configuration ofC is given as in Fig. 2-(i),
#(C) D r C 4 and the configuration ofC is given as in Fig. 2-(ii)).

2. Construction of strongly minimal models

In this section, we construct strongly minimal models of smooth open rational sur-
faces with N� D Npg D 0 and NP2 > 0.

Let S be a smooth open rational surface withN� D Npg D 0 and NP2 > 0 and let (X,B)
be an SNC-pair such thatX � B � S. We call the pair (X, B) an SNC-completion of
S. Let (W, C) be an almost minimal model of (X, B). Then Lemma 1.8 implies that
each connected component of Supp(C#) is of type (Kn) (n � 1), (X) or (Hr ) (r � 2).
Throughout the present section, we retain this situation.

Lemma 2.1. Assume that(W, C�bC#
) is not almost minimal. Then there exists
a (�1)-curve E such that E� ((C � bC#
)# C KW) < 0 and the intersection matrix of
E C Bk(C � bC#
) is negative definite. Moreover, the following assertions hold true.
(1) E � C D 1 or 2.
(2) Assume that E� C D 1 and E� SuppC. Let Ci be the irreducible component of
C meeting E. Then the coefficient of Ci in C# is equal to one.
(3) If E � C D 1 and E� SuppC, then the connected component C0 of C containing
E is of type(Hr ), r � 3 and ED Di (2 � i � r � 1) with the same notations as in
Fig. 2-(ii).
(4) If E � C D 2, then E� SuppC and E meets two connected components C0 and
C00 of C such that C0 is of type(X) or (Hr ), C00 is an admissible rational rod and E
meets one of the tip components of C00. Furthermore, we have:

(4-i) If E � bC0#
 > 0 (then E� C0 D E � C0# D 1), then C00 is a (�2)-rod.
(4-ii) If E �bC0#
 D 0, then C00 is of type(Kn) and E meets one of the four terminal
components of C0.
Proof. Since (W, C � bC#
) is not almost minimal, there exists an irreducible

curve E such thatE � ((C � bC#
)# C KW) < 0 and the intersection matrix ofE C
Bk(C � bC#
) is negative definite. ThenE2 < 0. Here we note that every connected
component ofC � bC#
 is a (�2)-rod, a (�2)-fork or a divisor of type (Kn) (see Def-
inition 1.9). ThenE � Supp(C� bC#
) and soE � KW < 0. Hence,E is a (�1)-curve.
By [15, Lemma 3.6.3 (p. 96)],E � (C � bC#
) � 2. We consider the following three
cases separately.

CASE 1: E � (C � bC#
) D 0. If E � Supp(bC#
), then E � C D E � C# D�E �KV D 1 and soE meets only one irreducible component, sayCi , of C. Moreover,
the coefficient ofCi in C# is equal to one. IfE � Supp(bC#
), then E �C D E �C# D 1
and E � (C � E) D 2. We can easily see that the connected componentNC of C con-
taining E is of type (Hr ), r � 3 and E D Di (2� i � r � 1) with the same notations
as in Fig. 2-(ii).
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CASE 2: E � (C � bC#
) D 1. In this case, letQC be the connected component of
C � bC#
 meetingE. Suppose thatQC is a divisor of type (Kn). Then

1D �E � KW D E � C# D E � bC#
 C 1

2
E � QC D E � bC#
 C 1

2
,

which is a contradiction. Hence,QC is a (�2)-rod andE meets a terminal component
of QC, here we note that the intersection matrix ofE C QC is negative definite. If QC �
Supp(C#), then

(bC#
 C KW) � E D �1

2
E � QC D �1

2
,

which is a contradiction. Hence,QC is a connected component ofC. Then E � bC#
 D
E � C# D �E � KW D 1 and soE � C D 2.

CASE 3: E �(C�bC#
)D 2. ThenE meets two connected componentsQC1 and QC2

of C�bC#
 (see [15, Lemma 3.7.1 (p. 97)]). Since the intersection matrix of ECBk(C)
is negative definite andE � ((C�bC#
)#C KV ) < 0, we may assume thatQC1 is a (�2)-
rod and QC2 is a divisor of type (Kn). Moreover,E meets a terminal component ofQC1.
If QC1 is a connected component ofC, then

1D �E � KW D E � C# D E � bC#
 C 1

2
E � QC2 D E � bC#
 C 1

2
,

which is a contradiction. So,QC1 � Supp(C#). In particular, QC1 is a (�2)-curve. Since
the intersection matrix ofE C (C � bC#
) is negative definite andE � (C#C KW) D 0,
we know thatE � C D E � (C � bC#
) D 2 and E meets a terminal component ofQC2.

As seen from the arguments as in Cases 1–3, we obtain the assertions (1)–(4).

Now, let E be a (�1)-curve onW such thatE � ((C � bC#
)# C KW) < 0 and
the intersection matrix ofE C Bk(C � bC#
) is negative definite. Letg W W ! W1

be a successive contraction of (�1)-curves in Supp(E C (C � bC#
)) starting with the
contraction ofE such that the image ofEC(C�bC#
) has no (�1)-curves. PutC(1) WD
g�(C). From Lemma 2.1, we know thatC(1) is an SNC-divisor, (C(1))# D g�(C#) and
2((C(1))# C KW1) D g�(2(C# C KW)) � 0. In particular, the pair (W, C(1)) is an almost
minimal SNC-pair with N�(W � C(1)) D Npg(W � C(1)) D 0 and NP2(W � C(1)) > 0. By
repeating this process, we obtain the following lemma.

Lemma 2.2. With the same notations as above, there exists a birational mor-
phism� W X ! V onto a smooth projective rational surface V such that the following
conditions(1)–(4) are satisfied:
(1) D WD ��(B) is an SNC-divisor.
(2) ��(Bk(B)) � Bk(D) and ��(B# C KX) � D# C KV .
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(3) NPn(V � D) D NPn(X � B) for any integer n� 1. In particular, N�(V � D) DN�(X � B) D 0.
(4) The pairs(V, D) and (V, D � bD#
) are almost minimal.

We call the pair (V, D) (resp. the surfaceV � D) as in Lemma 2.2 anstrongly
minimal modelof (X, B) (resp. the surfaceSD X � B).

3. Classification

In this section, we classify the strongly minimal open rational surfaces ofN� DNpg D 0 and NP2 > 0 with non-contractible boundaries at infinity (cf. Theorem3.6). First
of all, we give some examples (Examples 3.1–3.5). In the following examples, letMn

be a minimal section of the fixed ruling on a Hirzebruch surface Fn of degreen (n� 0)
and let NMn be a section of the ruling onFn with NMn � Mn D 0.

EXAMPLE 3.1. Let V0 D P1 � P1 and let C1 be an irreducible curve such that
C1 � 2M0 C l , where l is a fiber of the fixed ruling� on V0. Let P1 and P2 be the
two ramification points of a double covering� jC1 W C1 ! P1 and let l i (i D 1, 2) be
the fiber of � passing throughPi . Let l j ( j D 3, 4) be a fiber of� meetingC1 in
distinct two points, sayPj and P0

j . Let f W V ! V0 be a composite of blowing-ups
over P1, : : : , P4 such that the following conditions are satisfied:
(i) For i D 1, 2, r i WD #( f �(l i )red) ¤ 2. Moreover, if r i � 3, then Supp(f �(l i )) con-
sists entirely of a (�1)-curve Ei and (�2)-curvesDi ,2, : : : , Di ,r i and f �(l i ) D 2(Ei C
Di ,2C � � � C Di ,r i�2)C Di ,r i�1 C Di ,r i .
(ii) For i D 3, 4, f �(l i ) D Di C 2Ei C D0

i , where Di and D0
i are (�2)-curves andEi

is a (�1)-curve.
Put D0 WD f 0(C1). Then (D0)2 D 4� (r1 C r2). For i D 1, 2, we put

D(i ) WD
8�<
�:

r iX
kD2

Di ,k if r i ¤ 1,

0 if r i D 1.

The divisor D(i ) (i D 1, 2) can be contracted to two rational double points of typeA1

(resp. one rational double point of typeA3, one rational double point of typeDr i�1) if
r i D 3 (resp.r i D 4, r i � 5). Put

D WD D0 C D(1) C D(2) C D3 C D0
3 C D4 C D0

4.

Then it is easy to see thatD# D D0 C (1=2)
P4

jD3(D j C D0
j ) and D# C KV � 0. So,

N�(V � D) D Npg(V � D) D 0 and NP2(V � D) D 1. We say that the pair (V, D) is of
type X[4� (r1C r2)] C F1C F2, where Fi D 0 (resp.Fi D 2A1, Fi D A3, Fi D Dr i�1)
if r i D 1 (resp.r i D 3, r i D 4, r i � 5) for i D 1, 2. Note that (V, D) is the pair as in
[10, Example 2.1] ifr1 D r2 D 1.
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EXAMPLE 3.2 (cf. [10, Example 2.2]). LetV0 D Fn (n � 1) and letl0, l1 and l2
be three distinct fibers of the ruling onV0. Put Pi WD l i \ NMn (i D 1, 2). Let�0W V1 !
V0 be the blowing-up with centersP1 and P2. Put Ei WD ��1

0 (Pi ) (i D 1, 2). Further-
more, let�1W V2 ! V1 be the blowing-up with centersE1\�00(l1) and E2\�00(l2). Put
V WD V2 and

D WD �01(E1 C E2 C �00(l0 C l1 C l2 C Mn C NMn)).

Then N�(V � D) D Npg(V � D) D 0 and NP2(V � D) D 1. Further, the configuration ofD
is given as in Fig. 2-(ii), wherer D 3, (D1)2 D �n, (D2)2 D 0 and (D3)2 D n� 2. We
note that if n > 1 then the elementary transformations with centers atP0 WD l0 \ NMn

and its infinitely near points will reduce the casen > 1 to the casenD 1. We say that
the pair (V, D) is of type H [�1, 0,�1].

EXAMPLE 3.3 (cf. [10, Examples 2.3 and 2.4]). LetV0 D Fn (n � 0). Let C1 D
Mn and let C2 be a smooth irreducible curve such thatC2 � Mn C (nC 1)l , where l
is a fiber of the fixed ruling onFn. Let l1 and l2 be fibers of the ruling withPi WD
l i \C2 � C1 \C2 (i D 1, 2). Let�0 W V1 ! V0 be the blowing-up with centersP1 and
P2. Put Ei WD ��1

0 (Pi ) (i D 1,2), l 0i WD �00(l i ) (i D 1,2) andC0
i WD �00(Ci ) (i D 1,2). Let�1W V2 ! V1 be the blowing-up with centersQi WD Ei \ l 0i (i D 1, 2). PutV WD V2 and

D WD �01(E1 C l 01 C C0
1 C E2 C l 02 C C0

2).

Then N�(V � D) D Npg(V � D) D 0 and NP2(V � D) D 1. Further, the configuration of
D is given as in Fig. 2-(ii), wherer D 2, (D1)2 D �n and (D2)2 D n. We say that the
pair (V, D) is of type H [n, �n].

EXAMPLE 3.4. Let (W, C) be an SNC-pair of typeH [1, �1] constructed as in
Example 3.3 such that the configuration ofC is given as in Fig. 2-(ii), wherer D 2,
(D1)2 D �1 and (D2)2 D 1. Then F WD 2D1 C C1 C C2 defines aP1-fibration 8 WD8jF j W W ! P1 and D2 becomes a 2-section of8. Let G be the fiber of8 containing
C3. Since�(W) D 6, we can easily see thatG D C3CC4C 2E0, where E0 is a (�1)-
curve andE0 � C3 D E0 � C4 D 1. Since8jD2 W D2 ! P1 is a double covering and
P D SuppF \ D2 is a ramification point of8jD2, there exists uniquely a fiberH of 8
such thatQ WD SuppH \ D2 is the ramification point of8jD2 other thanP. It is clear
that H is irreducible. Let�W V ! W be a composite of blowing-ups overQ such that��(H ) D 2(E C H1 C � � � C Hs�2)C Hs�1 C Hs, wheres � 2, E is a (�1)-curve and
H1, : : : , Hs are (�2)-curves. Put

D WD �0(C)C sX
iD1

Hi .

Then, D# D �0(C#) D �0(D1 C D2) C (1=2)�0�P4
iD1 Ci

�
and D# C KV � 0. So,N�(V � D) D Npg(V � D) D 0 and NP2(V � D) D 1. We say that the pair (V, D) is of
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type H [1� s,�1]C F , whereF D 2A1 (resp.F D A3, F D Ds) if sD 2 (resp.sD 3,
s � 4).

EXAMPLE 3.5. Let V0 D Fn (n � 0) and letl1, : : : , l4 be distinct four fibers of
the fixed ruling onV0. Put Pi WD l i \ NMn for i D 1, 2 andPj WD l j \ Mn for j D 3, 4.
Let �1 W V1 ! V0 be the blowing-up with centersP1, : : : , P4. Put Ei WD ��1(Pi ) and
Qi WD Ei \ �01(l i ) (i D 1, : : : , 4). Let �2 W V2 ! V1 be the blowing-up with centers
Q1, : : : , Q4. Put V WD V2 and

D WD �02
 

4X
iD1

Ei C �01
 

Mn C NMn C 4X
iD1

l i

!!
.

Then D consists of two connected components and each connected component ofD is
of type (X). We can easily see thatD# D (�2 Æ �1)0(C1 C Mn)C (1=2)�02�P4

iD1 Ei C�01�P4
iD1 l i

��
and D#C KV � 0. So, N�(V � D) D Npg(V � D) D 0 and NP2(V � D) D 1.

We say that the pair (V, D) is of type 2Xn.

The following theorem is the main result of the present article.

Theorem 3.6. Let (W, C) be an almost minimal SNC-pair such that W is a ra-
tional surface, N�(W�C) D Npg(W�C) D 0, NP2(W�C) > 0 and bC#
 ¤ 0. Let (V, D)
be a strongly minimal model of(W, C). Then the pair(V, D) is one of the pairs enu-
merated inExamples 3.1–3.5.

In what follows, we prove Theorem 3.6.
Let (V,D) be the same pair as in Theorem 3.6. By Lemma 1.8, we can decompose

D as a sum of connected components

D D rX
iD1

D(i ) C sX
jD1

D(rC j ) C tX
kD1

D(rCsCk) (r, s, t � 0),

where D(i ) (1 � i � r ) is a divisor of type (X) (if r1 D 1) or type (Hr i ) (if r i � 2),
D(rC j ) (1� j � s) is a (�2)-rod or a (�2)-fork, and D(rCsCk) (1� k � t) is a divisor
of type (Knk ). By the hypothesisbC#
 ¤ 0 and the construction of strongly minimal
models (see Section 2), we know thatbD#
 ¤ 0, i.e., r > 0. For 1� i � r , let

D(i ) D r iX
i 0D1

D(i )
i 0 C

4X
lD1

C(i )
l

be the irreducible decomposition ofD(i ) such that the configuration ofD(i ) is given as
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in Fig. 2, wherer D r i , Di 0 D D(i )
i 0 and Cl D C(i )

l . Then,

D# D rX
iD1

 
r iX

i 0D1

D(i )
i 0 C 1

2

4X
lD1

C(i )
l

!
C 1

2

tX
kD1

D(rCsCk).

Let �1 W V 0 ! V be the blowing-up of all the singular points (the intersection
points of the irreducible components) ofD(rCsC1), : : : , D(rCsCt). Then �01(D(rCsCk))
(k D 1, : : : , t) is a disjoint union ofnk (�4)-curves. Since 2(D# C KV ) � 0 and
D# DPr

iD1

�Pr i
i 0D1 D(i )

i 0 C (1=2)
P4

lD1 C(i )
l

�C (1=2)
Pt

kD1 D(rCsCk), we have

�01
 

rX
iD1

 
4X

lD1

C(i )
l

!
C tX

kD1

D(rCsCk)

!
� �2

 
rX

iD1

 
r iX

i 0D1

�01(D(i )
i 0 )

!
C KV 0

!
.

Hence, there exists a double covering�2 W V 00 ! V 0 with the branch locus�01�Pr
iD1

�P4
lD1 C(i )

l

�CPt
kD1 D(rCsCk)

�
, hereV 00 is a smooth projective surface.

Put � WD �2 Æ�1. Then�0�Pr
iD1

�P4
lD1 C(i )

l

��
(resp.�0(D(rCsCk)) (1� k � t)) is a

disjoint union of 4r (�1)-curves (resp.nk (�2)-curves). Further, for eachi (1� i � r ),�0�Pr i
i 0D1 D(i )

i 0 � is a smooth elliptic curve (resp. a loop of 2(r i � 1) smooth rational

curves) ifr i D 1 (resp.r i � 2). Let �W V 00! QV be the contraction of the 4r (�1)-curves�0(C(i )
l )’s (1� i � r , 1� l � 4). Put D QV WD ��(��1(D)). Then we can easily see that

D QV is an SNC-divisor,D#QV D ����0�Pr
iD1

�Pr i
i 0D1 D(i )

i 0 ��� and D#QV C K QV � 0. In particu-

lar, ( QV , D QV ) is an almost minimal SNC-pair withN�( QV � D QV ) D 0 and Npg( QV � D QV ) D 1.

Lemma 3.7. With the same notations and assumptions as above, we have:
(1) r D 1 or 2.
(2) If r D 1, then QV is a rational surface. In particular, the pair ( QV , D QV ) is an Iitaka
surface(see[24]).
(3) If r D 2, then QV is an elliptic ruled surface and r1 D r2 D 1.

Proof. By the hypothesisr � 1, D QV contains either a smooth elliptic curve or a

loop of smooth rational curves. We infer from Lemma 1.5 (2) that �( QV) D �1.
Assume that QV is a rational surface. Then the pair (QV , D QV ) is an Iitaka surface. It

follows from [24, Lemma 1.5] thatbD#QV
 is connected. Hence,r D 1.

Assume that QV is an irrational ruled surface. Then Lemma 1.6 (4) implies that QV
is an elliptic ruled surface. Moreover, sinceD#QV C K QV � 0, bD#QV
 is a disjoint union

of two elliptic curves by Lemma 1.6 (6). Hence,r D 2 andr1 D r2 D 1.

Lemma 3.8. The SNC-pair(V, D � bD#
) is almost minimal andN�(V � (D �bD#
)) D �1.
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Proof. Since (V, D) is a strongly minimal model of (W, C), the first assertion
is clear. We prove the second assertion. We can easily see that (D � bD#
)# D
(1=2)

Pt
kD1 D(rCsCk) D D# �Pr

iD1(D(i ))#. Then

(D � bD#
)# C KV D D# � rX
iD1

(D(i ))# C KV � � rX
iD1

(D(i ))#

and so (D�bD#
)#CKV is not nef. Hence, the second assertion follows from the first
assertion and [15, Theorem 3.15.1 (p. 116)].

Lemma 3.9. Let � W V ! NV be the contraction ofSupp(D � bD#
) to quotient
singular points. Then, there exists aP1-fibration hW NV ! P1 such that every fiber of
h is irreducible. In particular,

�(V) D 2C #(D � bD#
).
Proof. As seen from the proof of Lemma 3.8, we know that (D � bD#
)# C KV

is not nef. Since (D � bD#
)# C KV � ��(K NV ), K NV is not nef, neither. Hence there
exists an extremal rational curveNl on NV . Let l be the proper transform ofNl on V .
Since (V, D � bD#
) is almost minimal, we infer from [15, Lemma 3.14.3 (p. 113)]
that one of the following two cases takes place:
(a) The intersection matrix oflCBk(D�bD#
) is negative semi-definite, but not nega-
tive definite. Furthermore, (Nl )2 D 0.
(b) �( NV) D 1 and�K NV is ample. Namely,NV is a rank one log del Pezzo surface (for
the definition, see [11, Definition 1.1]).

Suppose that the case (b) takes place. By [1, Proposition 1] (see also [25,
Lemma 1.8]), every singular point ofNV has index� 2. So, NV is a rank one log
del Pezzo surface of index� 2. On the other hand, sincer � 1, NV contains at least four
rational double points of typeA1. This contradicts [17, Lemma 3] and [1] (for more
details, see [2], [11, Theorem 1.1], [18]). Hence, the case (b) does not take place.

By [15, Lemma 3.14.4 (p. 114)], for a sufficiently large integer n, the complete
linear systemjnNl j defines aP1-fibration hW NV ! P1. Since the SNC-pair (V, D�bD#
)
is almost minimal, NV is relatively minimal, i.e., there exist no irreducible curves NC onNV with ( NC)2 < 0 and NC � K NV < 0 (cf. [6, p. 469], [15, Chapter 2, Section 4]). Hence,
every fiber of h is irreducible. This proves the first assertion. Since�( NV) D 2, the
second assertion is clear.

Now, let8D hÆ�W V ! P1. Then8 is aP1-fibration. Let F be a fiber of8. We
infer from Lemma 3.9 thatF is a singular fiber of8 if and only if �(F)\Sing NV ¤ ;.

We prove the following lemma.
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Fig. 3.

Fig. 4.

Lemma 3.10. Let F be a singular fiber of8. Then F consists only of a(�1)-
curve and(�2)-curves. Moreover, the configuration of Fred is given as one of(i) and
(ii) in Fig. 3.

Proof. By Lemma 3.9, we know that SuppF consists of a (�1)-curve and some
connected components ofD � bD#
. Let E be the unique (�1)-curve contained in
SuppF . Note that each connected component ofFred� E is a (�2)-rod, a (�2)-fork
or a divisor of type (Kn).

If every connected component ofFred� E is a (�2)-rod or a (�2)-fork, then we
can easily see that the configuration ofFred is given as one of (i) and (ii) in Fig. 3
(cf. [9, Lemma 5.5]).

Suppose thatFred� E contains divisors of type (Kn). Then, sinceF can be con-
tracted to a smooth rational curve with self-intersection number zero, we know that the
weighted dual graph ofFred is given as in Fig. 4, whereFredD AC EC B1C B2C B3.
Both of A and B1C B2C B3 are connected components ofD. In particular,B1C B2C
B3 D D(rC j ) for some j , 1� j � s. Since

(D � bD#
) � E D E � (AC B1) D 2

and D# C KV � 0, we have

0D E � (D# C KV ) D E � (bD#
 C KV )C 1

2
E � AD E � bD#
 C 1

2
,

which is a contradiction.

As a consequence of Lemma 3.10, we obtain the following lemma.

Lemma 3.11. t D 0. Namely, D contains no divisors of type(Kn).
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By Lemma 3.7,r D 1 or 2. In the following lemma, we consider the caser D 2.

Lemma 3.12. Assume that rD 2. Then the pair(V, D) can be constructed as in
Example 3.5. In particular, sD 0.

Proof. We infer from Lemmas 3.7 (1) and 3.11 that

D# D D(1)
1 C D(2)

2 C 1

2

 
4X

iD1

C(1)
i C 4X

iD1

C(2)
i

!
.

So D� (D(1)
1 CD(2)

2 ) D D�bD#
 is contained in fibers of8. We note that neitherD(1)
1

nor D(2)
1 is a fiber component of8. Indeed, if D(i )

1 (i D 1 or 2) is a fiber component
of 8, then the divisorD(i ) is contained in a fiber of8, which contradicts Lemma 3.10.
Let Fi (i D 1, 2, 3, 4) be the fiber of8 containingC(1)

i . By Lemma 3.10,F1 D C(1)
1 C

2E1 C B0, where E1 is a (�1)-curve, B0 is a (�2)-curve andE1 � C(1)
1 D E1 � B0 D 1.

Claim 1. B0 D C(2)
j for some j, 1� j � 4.

Proof. Suppose thatB0 � Supp(D#). Then the coefficient ofB0 in D# is zero and
E1 � �P4

iD1 C(1)
i CP4

iD1 C(2)
i

� D E1 � C(1)
1 D 1. SinceD# C KV � 0, we have

0D E1 � (D# C KV )

D E1 �
�

D(1)
1 C D(2)

1 C 1

2
C(1)

1 C KV

�

D E1 � (D(1)
1 C D(2)

1 ) � 1

2
,

which is a contradiction. Hence,B0 � Supp(D#). Since neitherD(1)
1 nor D(2)

1 is a fiber

component of8, B0 ¤ D(1)
1 , D(2)

1 .

Suppose thatB0 � Supp(D(1)), i.e., B0 D C(1)
j (2 � j � 4). It then follows from

D#C KV � 0 that E1 � D D E1 � �P4
iD1 C(1)

i

� D 2. So, F1 � D(2) D 0, i.e., Supp(D(2)) is

contained in a fiber of8. This is a contradiction becauseD(2)
1 is not a fiber component

of 8. Hence,B0 � Supp(D(2)).

By Claim 1, we may assume that

Fi D C(1)
i C 2Ei C C(2)

i ,

where Ei is a (�1)-curve with Ei � C(1)
i D Ei � C(2)

i D 1, for i D 1, : : : , 4. Then D(1)
1

and D(2)
1 are sections of8.
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Claim 2. F1,:::,F4 exhaust all the singular fibers of8. In particular, �(V)D 10.

Proof. Suppose to the contrary that8 has a singular fiberG other thanF1,:::,F4.
Then, by Lemma 3.10, SuppG has a unique (�1)-curve E0 and Supp(Gred � E0) �
Supp(D � (D(1) C D(2))). Since 1D E0 � D# D E0 � (D(1)

1 C D(2)
1 ), we haveE0 � D(i )

1 D 1
for i D 1 or 2. However, this is a contradiction because the coefficient of E0 in G is
equal to two andD(1)

1 and D(2)
1 are sections of8

Therefore,8 has no singular fibers other thanF1, : : : , F4. It is then clear that�(V) D 2CP4
iD1(#(Fi ) � 1)D 10.

By Claims 1 and 2, we can easily see that the pair (V, D) can be constructed as
in Example 3.5.

In the subsequent argument, we consider the caser D 1. We put Di WD D(1)
i (1�

i � r1) and C j WD C(1)
j (1� j � 4). Then

D# D r1X
iD1

Di C 1

2

4X
jD1

C j .

Lemma 3.13. Assume that rD 1 and sD 0, i.e., D is connected. Then the pair
(V, D) is of type X[2] (cf. Example 3.1),H [�1, 0,�1] (cf. Example 3.2)or H [n,�n]
(cf. Example 3.3).

Proof. SinceD is connected and the pair (V, D) is a strongly minimal model
of (W, C), we haveD � E � 2 for any (�1)-curve E. So the pair (V, D) is strongly
minimal in the sense of [9, Section 2] (see also [10]). Hence,the assertion follows
from [9, Theorem 4.5] (see also [10, Theorem 2.10]).

From now on, we assume further thats > 0, i.e., D is not connected. LetF1 be
the fiber of8 containingC1. We prove the following lemma.

Lemma 3.14. With the same notation and assumptions as above, we have:
(1) F1 D C1C 2E1C B0, where E1 is a (�1)-curve, B0 is a (�2)-curve and E1 �C1 D
E1 � B0 D 1.
(2) B0 D C j for some j, 2� j � 4.
(3) If r 1 � 2, then B0 D C2.

Proof. (1) If D1 is not a fiber component of8, then the assertion follows from
Lemma 3.10. We assume thatD1 is a fiber component of8. Then D1 andC2 are con-
tained in Supp(F1). If D1 is a (�1)-curve, thenF1 D 2D1CC1CC2, which proves the
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assertion. Suppose that (D1)2 � �2. By virtue of Lemma 3.10,Dr is not a fiber com-
ponent of8 (see the proof of Lemma 3.12). Since (V, D) is a strongly minimal model
of (W, C), none of D2, : : : , Dr�1 are (�1)-curves. It then follows from Lemma 3.10
that F1 D 2(E1 C Ds C Ds�1 C � � � C D1) C C1 C C2, where 1� s � r � 1 and E1

is a (�1)-curve with E1 � Ds D 1. Since D � bD#
 D D � (D1 C � � � C Dr ) is con-
tained in fibers of8 and D# C KV � 0, we know thatE1 � D D E1 � Ds D 1. This is
a contradiction because (V, D) is a strongly minimal model of (W, C). The assertion
is thus verified.

(2) If either B0 is not a component of Supp(D#) or B0 � Supp
�Pr1

iD1 Di
�
, then

E1 � (C1CC2CC3CC4) D E1 �C1 D 1 becauseC j ( j D 2, 3, 4) is contained in a fiber
of 8 different from F1. Since D# C KV � 0, we have

0D E1 � (D# C KV )

D E1 �
 

r1X
iD1

Di C 1

2
C1 C KV

!

D E1 �
 

r1X
iD1

Di

!
� 1

2
,

which is a contradiction. Hence,B0 D C j for some j , 2� j � 4.
(3) Suppose thatB0 ¤ C2. We may assume thatB0 D C3. Then F1 D C1 C

2E1 C C3 and D1 and Dr1 are sections of8. Let F2 be the fiber of8 containing
C2. Then we can easily see thatF2 D C2C 2E2CC4, where E2 is a (�1)-curve with
E2 �C2 D E2 �C4 D 1. By the assumptions> 0, 8 has a singular fiberF other thanF1

and F2. By Lemma 3.10, SuppF has a unique (�1)-curve, sayE, and the coefficient
of E in F is equal to two. If Supp(Fred� E) \ Supp(D(1)) ¤ ;, then we infer from
Lemma 3.10 thatF D 2EC F1C F2, where F1 and F2 are (�2)-curves,F1 is a (�2)-
rod in D and F2 is a component ofD1 C � � � C Dr D D(1) � (C1 C C2 C C3 C C4).
This is a contradiction because (V, D) is a strongly minimal model of (W, C) (see
Lemma 2.1 (4), (4-i)). Hence Supp(Fred� E) \ Supp(D(1)) D ;. Then E must meet
both of D1 and Dr1. However, this is a contradiction becauseD1 and Dr1 are sections
of 8. Therefore,B0 D C2.

In the following lemma, we consider the caser1 D 1.

Lemma 3.15. With the same notation as above, assume further that r1 D 1. Then
the pair (V, D) can be constructed as inExample 3.1.

Proof. By Lemma 3.14 (2), we may assume thatF1 D C1 C 2E1 C C3. Let F2

be the fiber of8 containingC2. Then we can easily see thatF2 D C2 C 2E2 C C4,
where E2 is a (�1)-curve. Note thatD1 is a 2-section of8. Let P1 and P2 be the
two ramification points of a double covering8jD1 W D1 ! P1.
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Since SuppD contains (�2)-curves other thanC1, : : : ,C4, 8 has singular fibers other
than F1 and F2. Let F3, : : : , F2C j ( j � 1) exhaust the singular fibers of8 other thanF1

and F2. Lemma 3.10 then implies that each Supp(F2Ci ) (1 � i � j ) consists only of a
(�1)-curve, sayE2Ci , and (�2)-curves. Since Supp((F2Ci )red� E2Ci ) � Supp(D � D(1))
for any i D 1, : : : , j and D1 is a 2-section of8, we know thatE2Ci � D1 D 1. So,
the point Supp(F2Ci ) \ D1 (1 � i � j ) is a ramification point of8jD1 W D1 ! P1. In
particular, j D 1 or 2.

Let �W V ! V 0 be the successive contraction of the (�1)-curvesE3, : : : , E2C j and
consecutively (smoothly contractible) curves in the fibersF3,:::,F2C j . Then,�(V 0)D 6,��(D# C KV ) D ��((D(1))# C KV ) D ��(D(1))# C KV 0 � 0, 2((��(D(1))# C KV 0) � 0
and��(D(1)) is connected. So the pair (V 0, ��(D(1))) is of type X[2] in Example 3.1.
Therefore, the pair (V, D) can be constructed as in Example 3.1.

Finally, we consider the caser1 � 2.

Lemma 3.16. With the same notation and assumptions as above, assume further
that r1 � 2. Then the following assertions hold true:
(1) r1 D 2.
(2) One of D1 and D2 is a (�1)-curve.

Proof. By Lemma 3.14 (3),F1 D C1C2E1CC2. We consider the following two
cases separately.

CASE 1: E1 D D1. Then D2 is a 2-section of8. Suppose thatr1 � 3. Then
D3 C � � � C Dr1 C C3 C C4 is contained in a (singular) fiberF2 of 8. Since each
Di (3 � i � r1) is not �-exceptional, it follows from Lemma 3.10 thatD3 is a (�1)-
curve andF2 D 2D3 C C3 C C4. In particular,r1 D 3. Then D2 \ Supp(F1) and D2 \
Supp(F2) exhaust the ramification points of a double covering8jD2 W D2 ! P1. Since
D is not connected, there exists another singular fiber, sayF3, of 8. It then follows
from Lemma 3.10 thatF3 contains a unique (�1)-curve E3 and Supp((F3)red� E3) �
Supp(D � D(1)). Since F3 � D(1) D F3 � D2 D 2 and the coefficient ofE3 in F3 is equal
to two, E3 � D2 D 1. So, D2\Supp(F3) becomes a ramification point of8jD2. This is
a contradiction. Therefore,r1 D 2. In this case, the assertion (2) is clear.

CASE 2: E1 ¤ D1. In this case, 0D E1 � (D# C KV ) D E1 � (1=2)(C1 C C2) C
E1 � (D# � (1=2)(C1 C C2))C E1 � KV D E1 � (D# � (1=2)(C1 C C2)). So, E1 � D1 D 0.
We know thatD1 is a 2-section of8 and D2C � � � C Dr1 CC3CC4 is contained in a
fiber F2 of 8. By using the same argument as in Case 1, we know thatr1 D 2, D2 is
a (�1)-curve andF2 D 2D2 C C3 C C4. Thus, in this case, the assertions (1) and (2)
are verified.

From Lemma 3.16 (2), we may assume thatD1 is a (�1)-curve andF1 D 2D1 C
C1CC2. Then D2 is a 2-section of8. Moreover,D2\Supp(F1) is a ramification point
of a double covering8jD2 W D2 ! P1. Let F2 be the fiber of8 containingC3. Then
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we see thatF2 D C3 C C4 C 2E2, where E2 is a (�1)-curve, by using an argument
similar to the proof of Lemma 3.14 (2).

Since D is not connected, by an argument similar to the proof of Lemma3.15, we
obtain the unique singular fiberF3 of 8 other thanF1 and F2. Then D2\Supp(F3) is a
ramification point of the double covering8jD2W D2 ! P1. By Lemma 3.10,F3 consists
of a unique (�1)-curve, sayE3, and (�2)-curves. Let� W V ! V 0 be the successive
contraction of the (�1)-curve E3 and consecutively (smoothly contractible) curves in
the fiber F3. Then,��(D) D ��(D(1)) is a connected SNC-divisor,��(D# C KV ) D
(��(D(1)))# C KV 0 � 0, 2((��(D(1)))# C KV 0) � 0, ��(D1)2 D �1 and�(V 0) D 6. By
using the same argument as in the proof of [10, Theorem 2.10],we know that the pair
(V 0,��(D(1))) is of type H [1,�1] in Example 3.3, here we note that��(D2)2 D 1 since��(D1)2 D �1.

Therefore, we obtain the following result.

Lemma 3.17. Assume that rD 1 and r1 � 2. Then the pair(V, D) can be con-
structed as inExample 3.4.

The proof of Theorem 3.6 is thus completed.

4. Log affine surfaces with N� D Npg D 0 and NP2 > 0

In this section, we study log affine surfaces withN� D Npg D 0 and NP2 > 0 by using
the results in the previous sections.

A log affine surface is, by definition, a normal affine surface with at most quotient
singular points. LetS be a log affine surface and putS0 WD S� Sing(S). Then we
can consider the logarithmicn-genus NPn(S0) (resp. the logarithmic Kodaira dimensionN�(S0)) and call it the logarithmicn-genus (resp. the logarithmic Kodaira dimension) of
S. We write Npg(S), NPn(S) and N�(S) instead of Npg(S0), NPn(S0) and N�(S0), respectively.

Let NX be a normal projective surface such thatS is an affine open subset ofNX,NX is smooth alongNB D NX � S and NB is an SNC-divisor onNX. Let � W X ! NX be the
minimal resolution of singularities onNX. Then QS WD ��1(S) is an Zariski open subset
of X. Since NX is smooth alongNB, we can identify the divisorNB on NX with the divisor��1( NB) on X. Put 1 WD ��1(Sing(S)) and B WD NB C 1. Then the pair (X, B) is an
SNC-completion ofS0. Let (W, C) be an almost minimal model of (X, B). Then there
exists a birational morphism� W X ! W such thatC D ��(B). Let � (1) W W ! NW be
the contraction of Supp(Bk(C)) to quotient singular points and putNC WD � (1)(C). Then
we call the surfaceS(1) WD NW � NC an almost minimal modelof S. We say thatS is
almost minimal if it can be an almost minimal model of itself.Throughout the present
section, we retain this situation.

Lemma 4.1. With the same notation as above, assume that h1(X, OX) D 0 orN�(S) D �1. Then either SD S(1) or S � S(1) and S� S(1) is a disjoint union of
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topologically contractible curves.

Proof. See [6, Lemma 4 and Corollary 5].

Theorem 4.2. Every log affine surface with logarithmic Kodaira dimensionzero
is a rational surface.

Proof. Suppose that the above surfaceS has logarithmic Kodaira dimension zero
and is not a rational surface. Since (W, C) is an almost minimal SNC-pair withN�(W � C) D 0, we infer from Lemmas 1.5 and 1.6 that the pair (W, C) satisfies one
of the following:
(a) W is a minimal surface with�(W) D 0 and each connected component ofC is a
(�2)-rod or a (�2)-fork providedC ¤ 0.
(b) W is an elliptic ruled surface with the rulingpW W ! E over an elliptic curveE.
Moreover,C# D bC#
, bC#
 is either a smooth elliptic curve or disjoint union of two
smooth elliptic curves, and 2(bC#
 C KW) � 0.

SinceS is affine, B is a big divisor. ThenC D ��(B) is also big. Moreover, sincebB#
 D b NB#
 is connected, so isbC#
. Here, we note thatb NC#
 ¤ 0 becauseC is big.
Hence, the pair (W, C) satisfies the condition (b) andbC#
 is a smooth elliptic curve.

On the other hand, since (bC#
)2 D (�KW)2 � 0 andbC#
 is a connected compo-
nent of C (see Lemma 1.6), the divisorC cannot be big. This is a contradiction.

From now on, we assume further thatN�(S) D Npg(S) D 0 and NP2(S) > 0. Then,
there exists a birational morphism� W W ! V such that (V, D) (D D ��(C)) is a
strongly minimal model of (W,C). Let � (2)W V ! NV be the contraction of Supp(Bk(D))
to quotient singular points and putND WD � (2)(D) and S(2) WD NV � ND.

Lemma 4.3. The surface S(2) is an affine open subset of S. Further, if S¤ S(2),
then S� S(2) is a disjoint union of topologically contractible curves.

Proof. Suppose that the pair (W, C) is not strongly minimal, i.e., the SNC-pair
(W,C�bC#
) is not almost minimal. Then Lemma 2.1 implies that there exists a (�1)-
curve E such that eitherE � SuppC or E � SuppC and E � C � 2. Moreover, by
Lemma 2.1, ifE � SuppC then� (1)(E)� ( NC\ � (1)(E)) is a topologically contractible
curve. Thus, we know thatS(2) can be obtained fromS(1) by deleting off topologically
contractible curves. By virtue of [5, Theorem 2], we know that S(2) is an affine open
subset ofS, here we note thatS, S(1) and S(2) has at most quotient singular points.

We call the surfaceS(2) a strongly minimal modelof S and say thatS is strongly
minimal if it can be a strongly minimal model of itself.

Since S is affine, we havebD#
 ¤ 0. It then follows from Theorem 3.6 that the
pair (V, D) is one of the pairs enumerated in Examples 3.1–3.5. We call the surface
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Table 1.

Type e(S) SingS for details, see:
H [�1, 0,�1] 0 smooth Example 3.2
H [n, �n] 1 smooth Example 3.3
H [�1,�1]C 2A1 1 2A1 Example 3.4
H [�2,�1]C A3 1 A3 Example 3.4
H [1 � r, �1]C Dr (r � 4) 1 Dr Example 3.4
X[2] 2 smooth Example 3.1
X[0] C 2A1 2 2A1 Example 3.1
X[�1]C A3 2 A3 Example 3.1

S(2) X[4� (r1C r2)]C F1C F2 (resp.H [�1, 0,�1], H [n,�n] (n � 0), H [1�s,�1]C F ,
2Xn) if (V, D) is of type X[4 � (r1 C r2)] C F1 C F2 (resp. H [�1, 0,�1], H [n, �n]
(n � 0), H [1�s,�1]CF , 2Xn). See Example 3.2 (resp. Example 3.4) for the notations
F1 and F2 (resp. the notationF). We obtain the following result.

Theorem 4.4. Let S be a log affine surface withN�(S) D Npg(S) D 0 and NP2(S) >
0. Assume that S is strongly minimal. Then S is one of the surfaces H[�1, 0,�1],
H [n,�n] (n � 0), H [1�s,�1]C F (s� 2), X[2], X[0]C2A1, X[�1]C A3. Moreover,
we haveTable 1,where e(S) denotes the topological Euler number of S.

Proof. SinceS is affine, D D (� Æ �)�(B) is big. Moreover, sinceS has only
quotient singular points,bD#
 is connected. Hence, the first assertion follows from
Theorem 3.6. The second assertion can be verified easily.
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