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Abstract

In this paper, we prove an analogue of Beurling’s theoremafoarbitrary simply
connected nilpotent Lie group extending then earlier cases

1. Introduction

It is a well-known fact in classical Fourier analysis thatuadtion f and its Fourier
transform f, defined onR by:

f(0) = / FYP™ dy, X eR,
R

cannot simultaneously decay very rapidly. As illustrasiaof this, one has Beurling’s
theorem, the Gelfand—Shilov theorem, the Cowling—Priceotem, Hardy’s theorem,
etc. (see [7], [9], [11], [17] and references therein). TheuBing’s theorem, for the
real line, can be stated as follows:

Theorem 1.1 (Beurling). Let f e L?(R), such that

(1.1) f f|f(x)| | f ()€™ dx dy < +o0.
R /R

Then f = 0 almost everywhere.

This result is actually generalized by Bonami et al. [1]:

Theorem 1.2 (Bonami, Demange, Jaming)Let f € L?(R) and N> 0. Then

[T (X)] [ f(y)l 7 Ixy]
(1.2) / / Arix T |y|)Nez Ydx dy < +oo

implies f(x) = P(x)e*txz, where t> 0 and P is polynomial function with deg R
(N —1)/2.
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Considerable attention has been paid to prove analoguesewiops theorems in
setup of non-commutative Lie groups. Specifically, anaébogti Theorem 1.2 have been
established for semi-simple Lie groups (see [16]), for nhgimensional Euclidean mo-
tion group (see [13]) and for Riemannian symmetric spaces (84]). The perfect
symmetry of conditions (1.1) and (1.2) is a serious obstatlestablishing analogues
of Theorem 1.1 and Theorem 1.2 for an arbitrary nilpotent drieups. However, some
attempts to generalize these theorems to special classepatent Lie groups have al-
ready been made (see [2], [3] and [15]). The aim of this papdo iprove the follow-
ing analogue of Theorem 1.1 for an arbitrary connected amgblgi connected nilpotent
Lie group.

Theorem 1.3. Let G be a connected simply connected nilpotent Lie groupg. Le
f be a function on B(G) such that

(1.3) / /|f(x)| 1 (F)lls €7 11PEC dx dll < +oc.
w JG

Then f = 0 almost everywhere.

Here )V is a suitable cross-section for the generic coadjoint srhitg*, the vector

space dual ofy. To prove our main result, we need to compute the Hilberta8dh

norm and the matrix coefficients of the group Fourier tramafe;(f). The third sec-

tion of the paper is devoted to these computations. In Seetigve present an explicit
proof of our main result. In Section 5 we indicate how the otlnecertainty principles
follow from our main result.

2. Preliminaries and notations

In this section we are going to review some useful facts andtioms for a nil-
potent Lie group. We refer the reader to [10] for details.

2.1. Coadjoint orbits. Let G = expg be a connected simply connected nilpotent
Lie group. Letg* be the vector dual space @f The Lie algebrag acts ong by the
adjoint representation gdi.e.,

ady(X)Y = adX)Y =[X, Y], VX, Y eg.
The groupG acts ong by the adjoint representation Adi.e.,
Adg(Q)Y = Ad(g)Y = XY, g=expX G, Y g,
and ong* by the coadjoint representation Adi.e.,

(Adg(g)lr X) = (gl! X) = (la Adg(g_l)X), ge G! | € g*! X € g.
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The setG -1 = {g-l, g e G} =: O is called the coadjoint orbit of. Let g(I) =
{(X eg, (I, [X, g]) = {0}} be the stabilizer of € g* in g, it's also the Lie algebra of
G ={geG, g-1 =1}. Forp C g, definept = {f € g*, f|, = 0}, the annihilator

of p in g*. We say that the coadjoint orbi®, of | € g* is saturated with respect to
a one codimensional idegl, = Lie Gg in g, if g(I) C go. In such case, we have that
G:1=G-l +g5 and dimGo-lg) =dim(G 1) =2, lg = I|g,.

2.2. Induced representations. The irreducible unitary representations of the
group G are obtained in the following way: Ldte g* (dual of g) and leth = h(l)
be a polarization fot in g, i.e., a subalgebrg of maximal dimension such that:

I([b, b]) = 0.

So we can consider the unitary characgerof H = exph associated td defined by:
x(expX) =X X ep.
We consider the space:

K, (G) = {F: G — C, continuous and with compact support modito
such that F(hg) = x (h)F(g), V(g, h) € G x H}.

If Fisin K,(G), the mappingg — |F(g)|?> belongs toC¢(H/G). This relation allows
us to define arL?-norm onK, (G) in the following way:

IFl = ( / /G|F(g)|2dv(g))1/2,

wherev is the uniqueG-invariant measure ol /G. The induced representation =
M,y = Indﬁ x is defined by lettingG act on the right on the completion?(H /G, x)
of C;(H/G) with respect to the nornf . || defined above, i.e.,

(IndS x)X)E)Y) = £(yx), VX, Y€ G, £ € L¥(H/G, x).

2.3. The orbit theory. The induced representation ; is irreducible and uni-
tary. Different polarizations for the sanlegive equivalent representations. In addition,
two different linear formsl an |’ give equivalent representations if and only if they
belong to the same coadjoint orbit. Lgt/G denote the orbit space with the quo-
tient topology and letG denote the set of equivalence classes of unitary irredecibl
representations ofs. If G is endowed with an appropriate topology (Fell topology),
theng*/G and G are homeomorphic under the mép — [x], where fr] denotes the
equivalent class ofry (see [10] and [12]).
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2.4. The Plancherel formula. Let B = {Xg,..., X;} be a strong Malcev basis
of g andg; = R-spariXy,..., Xj}. Forl € g*, O, denotes the coadjoint orbit &f An
index j € {1,...,n} is a jump index forl if

g() +g; #a() + gj 1.
We let
e(l) ={j: ] is a jump index forl}.

This set contains exactly digX) indices, which is necessarily an even number. Even
more, there are two disjoint sets of indic& T with SUT = {1,...,n}, and a
G-invariant Zariski open sel/ of g* (set of generic elements in the sense of Pukan-
szky) such thag(l) = S for all | € U. Define the PfaffiarPf(l) of the skew-symmetric
matrix Ms(l) = (I([Xi, Xj]))i,jes. Then, one has that

IP(1)|2 = detMs(l).

Let V; = R-spar{Xj*; i € T}, Vs =R-sparfX;"; i € S} andd| be the Lebesgue meas-
ure onVr such that the unit cube spanned pX;"; i € T} has volume 1. Theg* =
Vr @ Vs, V; meetst/ and W = U N Vr is a cross section for the coadjoint orbits
through points in{. So, everyG-orbit in I/ related to a representation meets\V

in a single unique element. Furthermore,dif is the Lebesgue measure of, then
du = |Pf(1)| dl is a Plancherel measure f@. Let dg be the Haar measure o@,
then the Plancherel formula reads:

lol2 = /G 9@ dg = /Wllm(w)llesdu(l), v € LYG) N L2(G)

where m(¢) = [; ¢(9)m(g)dg and |m(¢)|lws denotes the Hilbert—Schmidt norm
of m(¢p).

2.5. Euclidean norms on nilpotent Lie groups. Let B = {Xy,..., X,} be a

strong Malcev basis ofi. We introduce anorm functionon G by setting, forx =
expiyXs+ -+ X Xpn) € G, X; € R:

IXIE = /O + -+ 4+ 7).

The composed map:

n n
R"—>g—>G, (Xg,...,%)H ijxj — exp(ijXj)
j=1 j=1
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is a diffeomorphism and maps the Lebesgue measur®'bio the Haar measure on
G. In this setup, we shall identify and G, as sets witiR". We shall also identifyg*
with R" via the mapé = (&1,..., &) — Z’j‘:l i X7 We consider the euclidean norm
of g* with respect to the basiB*, that is,

= V& -+ = &l

REMARK 2.5.1. The condition (1.3) in Theorem 1.3, implies that: o strong
Malcev based3;, B, of g,

n
D&%
j=1

/’ l/|faﬂHﬂKfWHsehww&mhﬂPﬂDldxdl<—Hm.
W, JG

2.6. The generalized Minkowski inequality. We recall the generalized
Minkowski inequality for integrals. For > 1, for two measure spaceX(u), (Y, v)
we have for any measurable functiéh: X xY — C

[F(x, y)l dv(y) rOIM(X) " =< [F O W) du(x) ! du(y).
X Y Y X

3. Group Fourier transform

We consider two cases:

FIRST cASE We suppose thag(l) C [g, g] for all | e 4. Let B = {Xq,..., Xn}
be a strong Malcev basis @f passing throughg|, g]. Let g; = R-spariXy, ..., X},
1 <i < n. Then, all the general position orbits are saturated witipeet tog,_,. So,
for | € U, the coadjoint orbitO; of | is given by:

O =0 + g#,l =0 |£ln71 + 9#71'

Let's define different stabilizers:
G(l) = expg(l) = {g € G: Ad*(9)(l) =},
gh1=1Xeg:{,[X goal) =0},
G, = exp@_y) = {g € G: Ad*(Q)()lg, , = g,.}-
Then, we have
O = {Ad*(g™H)(1): g € G(1)/G}
= {Ad*(@ Y)lg, . +9: g€ G}, 1/G, g € gy 4}
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Furthermore, the map‘;'nfl/G X g1 — O (8,9) = Ad* (g H()]g, , +9 is a param-
etrization of the orbit®;. We shall compute the Hilbert—Schmidt norm of the group
Fourier transformm (f). If f € LY(G) N L3(G), thenm (f) is a Hilbert—Schmidt oper-
ator and

(3.1 I ()Ifis = trim (f + £7)) = /O((f * %) o exp)'(q) déi (a),

where g is the uniqueG-invariant measure o, (up to a constant). Identifying; ,
with RX?. As the measures dj is G-invariant onG! ,/G x R,

Il ()

- / / ((F 1) 0 exp) (Ad* (G )(D)]g, , + SX7) ds
G _,/G JR

= / / / / fx £*(explY + tXy)e? A @0l VIg27ts dy dt ds g
Gln 1/G R JR On-1

:/ / f % f*(epr)eZi”(Ad*(gfl)(l)bn,er) dy Cg
Gln 1/G In-1

= / / / f f(eXp(S Xn) eXpZ ) f *(exp( Z) eXp( an) epr)
3In—l/G g1 YR Jgyh g
x e2i7T(Ad*(9’1)(l)|gn71,Y) dZ dsdY '

- /G'M/e /g /R /g T(exp6X) expZ) 1(exp(-2) expY exp(-sX)

x @TAT (@ePEX) H0lsr 1Y) 4 Z ds dY g,

Using the right invariance of the measutg, we get that:
(3.2)

I (F)l2s = f f / / F (eXpE X,) €XpZ) F*(eXp(-Z) expY exp(-sXy))
G /G Jg1 JR Jg, g
« ATATE 05,V 47 ds dY g,

Remark that, the Lebesgue measdseon g, anddg on G| ,/G are normalized in
such a way that the equation (3.1) holds.

With respect to the basi8, we will let S={j; <---< g}, T={t1 < - <t}
denote the collection of jump and non-jump indices respelsti As g(l) C [g, g] for
all I e, we havejg = n and jg_1 = n— 1. The index setS, for G, ; is equal
to S\ {j1, ja}. Furthermore,g(l) is a codimension one ideal ig, ;(lg,_,) = {X €
gn_1: (I, [X,gn_1]) =0} and [Xj,, g,_4] lies in ked for all | e ¢/. Finally, g, 1(l1q,_,) =
g(l) + RX;, and Pf(l) = I([Xj,, Xu]) Pf(l|4,_,) (for more details, see [8]). Considering
the coadjoint action ofs on g*, we get parametrization of generic orbitsZih From
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Theorem 3.1.9 of [10], there is a diffeomorphigin ¢/ N Vr x Vs — U such that the
Jacobian determinant is identically 1. If we identify X) = (3_{_, i X{, > A XE)

with (I3, ..., Iy, A1, ..., Ag) € R" x RY, we havey(l, 1) = Z?:l P; (I, A) X3, where:
(i) The P; are rational, non singular off N Vr x RY,
@ I j=t, P, A) = +Rj(ls,...,li—1, A1, ..., &) wherek is the largest index

such thatjyx < tj. Moreover, Py(l, 1) = |;.

@iy Py, A) =2, 1<i=d.

Let S = {j1,..., ja—1}, Vs =R-sparfX*: i € S} andi/’ = {l|,_,: | e U}, theng’ , =
Vr @ Vs. SincePj(l, 1), 1 < j <n—1, does not depend oky, the mapl/ N V1 x
Vg > U": (I, 1,..., 2¢-1) = ¥(, X1,..., A¢g_1, 0) is a diffeomorphism. We have the
following lemma:

Lemma 3.1. Let¢ € LY(Gy1). For g€ gi 4, let

d@) = [ PlexpX)e? i dX
On-1
Then
. IPf()[? - _ .
l, dr= ———2 Ad*(g~1)( 2dg,
| B = S J A @ e, D dg

where d. is the Lebesgue measure o .V

Proof. Let
S={1<i=<n: gi_1 +g|r171 7& i +g|r171}-
As gh ;= g, 1(lg, ,) We have

S={1=i=n:gg+0n1llg,) # 8 + 0na(lg, )}
={l=i=n-1:g1+0gn1(lg ) # g + na(lg, )} U {ia}
=S U{ja} =1{j2 <--- < ]a}.
Let C(1) = (I([Xi, XjD)¢,j)esxs- Recall thatX;, is a central vector iry,_;, then
0
0 c'()
Cl)=

X X)) x e



134 K. Smaoul

where C'(1) = (I([Xi, Xj)i.pesxs. From these computations one deduces that the
Jacobian determinant of the m@/G'n_l — {I} x Vg : g — yv~YAd*(g)(l lg.,) is

[det(Ad" (I ([Xi, XjD)d,hesxs| = [detl([Xi, XiD))q,jesxs|
= [detC())] = [I([X;,, Xj,])| [detC'()].

Then,
| 1600020 6 = 10 XDl detC O] [ 160" (@), )7 g
Vg G/Gn—l

As Pf(1)? = [I([X],, Xa]) 2 Pf(llg, ,)? = [I([X],, Xn])|? |detC’(l)], we get that

Pf(1)1?

L S S n d* | Zd',
e ool R CIIME:

[V B, 1) di =

which is the desired formula. O

Thus from equation (3.2) and Lemma 3.1,

I (F) I3

I([X;,, X
= M 2l / [ [ f (exp6Xn) expZ) f*(exp(=Z) expY exp(=s X))
Pf(l) Vg Jgng /R Jgy g
x @7WINY) 47 dsdY d.
Forq e g;_,, let xq be the function defined oG,_; by:
Xa(expX) = 70X, X eg, ;.

Hence,

I ()l

|I([XJ1' n])| —1- .
oOPHI? /v /R/ /R <exp(sxn>exp<§axl>)
x f* <exp<z_: Vi Xi) exp(-s Xn))
i=1

n-1 n-1
><X¢(|,x)<eXp<Zzi Xi)eXp< Vi Xi))dZdeyd.

i=1 i=1
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Now, remark that
n—1 n-1 n-1
exp(Z z Xi) exp(Z Yi Xi) = exp(Z Qi(z, y)Xa),
i=1 i=1 i=1

where, for 1<i <n -1, Qij(z, y) is a polynomial function depending on,. ..,
Zn-1, Yiy - - -, Yn_1. Furthermore, one can write

(3.3) QzY)=z+¥%+Qi(zn-1, .-, Zii1, Yoot - oo Yi+1),
where Q; is a polynomial function depending @, 1,...,Zn-1, ¥i+1,..., Yn—1. Moreover,
Qn-1(z, YY) = zn-1+ Y1

It results that,

I (F)I%s

“([Xh XnD| n-1 -
O /v /R/ /R (eXP(SX'ﬂ exp(i; zm.))
n—-1
x f* (exp(z Vi Xi) expls xn))
i=1

x @7(Zi@YPI() 47 ds dy d.
Recall thatjq_1 = n—1, so in view of equations (3.3), (ii) and (iii),

I (F)I%s

_ X, XaD) =5
=R /v /R/ /R (eXp@Xn)exp<Zz.X.>>
x f* (exp(Zy. )exp( an)>

s @2 (Ziea @y +¥)lk+ T3 @i +i )

P% e2i”((Zn—1+yn—1))\d—1+A(Zryrl ) d z ds dy d',

where A(z, v, 1, A) is a real function depending an, ...,z 1, Y2,--.» ¥n-1, l1,.-., 2k,
A, ..., Ad—2. On the other hand, we have

n-1 n-2
exps Xn) exp(z z Xi) = exp(z Hi(s, 2Xi 4+ zn-1 X1 + sxn),

i=1 i=1



136 K. Smaoul

where, for 1<i < n-2, Hi(s, 2) is a real polynomial function depending an..., z,_1, S.
In addition, one can write

(3.4) Hi(s, 2) = z + H/(s, 2),
where H/ is a polynomial function depending only on the variab®s,, ..., z,-1, S.
It follows that,
721 (F) I
_ IH@X5 XaDI / / / /
Pf(|)2 Vg R R-1 f(Hl(S Z) anz(si Z)v anla S)
X f (_Hl(sa _y)v ey _HI"I—2(S! _y)y yn—11 _S)

. @7 (Ta@ e+ T @ +vi)n)
x @271ty tAzYLY) 47 ds dy d,

where—y = (—vi,...,—Yn-1).- Then, by substitutingd; (s, z) for z (respectivelyH; (s, —Y)
for —y;), by means of equation (3.4),4i < n— 2, we get that:

EAG S

- ||([)Iijfl(,l))z(n])| /\;y /l;n 1 / /}Rn ) f(ze,. .., 21, 9) (Y, - - -y Y1, —9)

w @7 (Thea @ 3+ T @i +Yi0he)

x AT ZY.L D HE1+yn-0ka) g7 ds dy d,

where A'(s, z, y, |, A) is a function depending only on the variablesz, ..., z,_1,
Vo, ooy Yooty Iy ooy Iry A1, oo, Ag—2. It results that,
IIm(f)Ilﬁs

x f*(y1, .-, Yn-1, —S)

« @7 (Chea @+ Yl T2 Y3 e

« e2in(kd,lzn—l"rA/(S,Zz,---:Zn—Z:Zn—l_YHflvyvlv)L)) dz ds dy d

x f*(y1, ..., Yn-1, —S)

x e? 7(Xhea (2 et s +Yj)h)

x @2z dz ds dy d
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(by substitutingryg_1z,-1 + A'(S, Z2, - - -y Zn—2, Zn-1 — ¥n-1, ¥, |, X) for Ag_1z,_1).

Note that the Jacobian determinant of the previous substitus equal to one,
since the real functiolN'(s, 22, . . ., Zn_2, Zn-1— Yn-1, ¥, |, A) does not depend oRy_;.
Now, by substitutingz,_1 — yn-1 for z,_;, we have

I (F)lfis

_ ||([>F<>1f1(,|)2n])|/vg /Rnl//RM f(z,. .20 1,9 F* (Y, .- ¥n 1, —S)

@7 (Chea @y 3N+ L (@i i)

x @701t dz ds dy d,

and therefore

| :
@5 m(HlEs = "™ [ [ 160, R ds o,

where fg is the function defined oG,_; by:
fs(expm) = f(expMm + sX,)), M€ gn_;.

SECOND CASE We suppose thai(l) £ [g,g] for all | e 4. Let B = {Xy,..., Xy}
be a strong Malcev basis @f passing through(g) = R-spar{ Xy, ..., Xa} and through
3(9) +[g, 0] = R-spariXy,..., Xp}. Let g; = R-sparfXy,..., Xj}, 1< j <n. Forl in
W, letl; =1y andg;(i;) = (X € gj: [;[X, g;] = 0}. Then,b' =3"1_, g;(I}) is a po-
larizing subalgebra fol called Vergne’s polarization. We shall compute the matox c
efficients of (). For this we need to construct a weak Malcev baisf g passing
through'. We proceed as in [5]. LetXy, ..., Xa} the firsta vectors of the basi#'.
Fora+1=<j =n, construct thej-th basis vectors as follows: if; (Tj) C gj_l(r]’_l), set
s = j and call Xg thei-th external basis vector. We note thég is not in b'. Now,
if g;_1(j-1) C g;(Tj), setty = j. In this case, there is a vector if(j) of the form

Y= X, + Zwt, ()X,

where the coefficientsu;, (1) are rational functions depending on the components of
lq,q7- We may further triangularize this basis by assuming that:

YI'I = xtr + Z wtryS(I)xS’

s <t

for a distinct indicedy, ..., t,. Remark that, the set dfin g* such that the rational
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functionswy, s are not singular is a Zariski open set. Furthermore,
(X1, oo Xan Vi, oo, Y, Xy oy Xs )

is a weak Malcev basis fog passing throughy' = R-spar{X, ..., Xa, Y}, ..., Yo}. In
fact, for each I<r <b, the subspac®-spar Xy,..., Xa,Y{,...,Yr'} is a subalgebra. On
the other hand, ag, is an ideal,R-sparfXy,..., Xs} = B + g4 is also a subalgebra.

Now, we are going to calculate the action of the represemtati ;i ~ m. We
need some preliminary lemmas.

Lemma 3.2 (see [5]). The mapy: R® — G given by

v =y ... 8= eXP(ZSXs),

i=1
is a cross-section for H G, H = H(l) = exph'.
Lemma 3.3. There existsge T such that X ¢ [g, g].

Proof. We have to treat two cases:
i) 3(9) Z[g, g]: it is easy to remark that there exists € {1,...,a} C T such that

Xro ¢ [9, 0l.
i) 3(g) C[g, g]: sinceg(l) Z [g, g], there existsy > m such that

L=X,+ Z o)Xk € g(l),
k<r0
where the coefficientsk(l) are rational non singular functions énThen, for allx € R,
)‘Xfo + gro—l + g(l)
= A(Xro + 3 ck(l)xk> =2 )X+ grom1 + 9(0) C grgms + 0(0),

k<rg k<rg

and sorg e T. O
Let T=(1,...,aty,...,tp) andS={1,....,n}\T ={sy,...,&}. Then,Tc T

andSc S. Using Lemma 3.3 and the Campbell-Baker—Hausdorff formnuka get the
following two lemmas:

Lemma 3.4. Let x=-exp(}[_; X Xi) € G and g= y(gs,, - - -, Gs) in the cross-
section of H\ G. The product gx is given by

gx = exp(Z Qu(x, g)Xk>,

k=1
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where the polynomials Qsatisfy
Qs (X, ¥) =Xs + 05 + 05 (Xs+1, -+ -+ Xny G500 - - -+ Os)s
Q(X, Y) = Xk + Ok(%ks1s - o> Xn: G5 1§ > k), if keT.
Moreovef O, (X1, - -+ Xn; Os 0 S > o) = 0 and Q,(X, ¥) = X,-
Lemma 3.5. Leta =exp(Ya_; axXk+ Y p_ron Yy) €' and g =exp(35_; s Xs)

in cross-section of H, G. The productyg has polynomial coordinates o, S5 and
rational coordinates on the components §f ;. In addition

af = exp(z Py(a, B, I)Xk>.
k=1
where
Ps(er, B, 1) = Bs + Ps (ot tr >S5 Bsoyy - -y Bsi D),
Poa, B 1) =+ (e s i e T and i>k; Bs:s >k l), if keT\({ro)
and

P (o, B, 1) = .

Forx =exp(}_[_; X Xi) € G andg = y(gs,, ..., Gs,) in the cross-section dfi \ G,

we choose the unique = exp(Yp_; e Xk + Y -1, i) € b and g = exp(35_, s Xs)
in cross-section oH \ G such thatgx = «f. Then forl € W, the action of the repre-
sentationr, is given by:

(3.6) m(X)E(Q) = £(gX) = &(ap) = @79%g(B), & € LA(RO).

We need to calculatey, and s in terms of the coordinateg, and gs. In view of
Lemma 3.4 and Lemma 3.5, we obtain:

Qk(x, g9) = P«(e, B8,1), for k=1,...,n.

Use this to solve fore and . By triangular dependencies of the polynomiax
and P, there are functions®y and By (polynomial onxy, gk and rational onl iy o)
such that:

8.7) Bs(X, 0, 1) =Xg + 05 + Bs(Xg+1, - - -+ Xns Os405 - - - » Fser 1),
(3.8) ak(X, 9, 1) = X+ ACksts - %3 G5 1 § > kil), for ke T\ {ro)

and

(3.9 aro (X, 9, 1) = X
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It follows using equation (3.6) that:
71 (X)§(g) = (i o0+ K an coD)g (g (x, g, 1), .., s (X, 9, 1),

Now, sinceSc S,

|(Y||<) = (th + Z wtan(I)Xs) =1(Xy) = {E :]f tke T\T,

= . teT.
It results that,

(3.10)  m(0E(g) = e (olot Tienig a a8 (x, g, 1),.. ., B (X, 0, ).

The next step consists in integrating the representatjorThe matrix coefficients
of = (f) is given by: for&, n € Hn,,

(D = [ 100tm (9, n) dx
G
= [ [ 10m(05(00i(@) dg dx

G JH/G

Using equation (3.10),
(D = [ 0 e (B0, D) el D))
X eZi”(Xfolfo"‘ZkeT\(ro) “k(x'g'l)lk) dg dx
Now, by substitutingak(x, g, |) for xx, k € T \ {ro}, using equation (3.8),
(D) = [ T Er I 1R, 0.1, R, 9 )
RI’H—C

X S(Ds_l(xl g, |), st DSc(Xi g, |))T_](g) dg dX,

where
Ds(X,9,1) =Xg + 05 + 05 (Xg+1, -+ Xn, G545+ -+ Os, 1)
(dg is a polynomial function OnXs.1,..., Xn, Gs,,,--., 05 and a rational function
on l|ig,g1),
R«(X, g, 1) =x¢, if ke SU/{rg}
and

(3.11) Re(X, 9, 1) = Xk — Ac(Xk41y - -5 Xn3 Os 0 S > ki 1), if ke T\ {ro}.



BEURLING’S THEOREM FORNILPOTENT LIE GROUPS 141

Let ¢ , be the function defined oR by:
(3.12)

Ve, n(Xro)
= /Rl " (eenia ' £ (Ry(x, g, 1), . .., Ra(X, 0, 1))
x&(Dg,(x, 9, 1), ..., Ds(X, 9, 1)ii(9) dg dx - - - dXg—1 AXr1 - - - Uy,
for fixed Ix e R, k€ T \ {ro}. Then obviously
(3.13) (m ()&, 1) = ey (Iro).

Lemma 3.6. If & and n are part of an orthonormal basis for AR°), then the
function v, belongs to E(R) N L2(R).

Proof. We have
[ 19010,

R

= fR| f(Ru(X, g, 1), ..., Ra(x, 9, 1))&(Ds (X, 9, 1), .., Ds (%, g, 1))7i(g)| dg dx

- /R' (X, X (B (X, 01, -, Bs (X, 9,1))ii(Q)] dg dx

(by substitutingR«(x, g, I) for xi, k € T \ {ro}, using equation (3.11))

12
<l [ ([ 1£0 - (Bt a1 Bt g D dg) - dx
= Il g1z 1

(by substitutinggs (x, g, 1) for g5, using equation (3.7)). It remains to show that, €
L?(R). We will show that1/}§,,] € L2(R). Using Plancherel formula, we get that:

/|<m(f)s,n>|2|Pf(l)|dls/ Im(F)Is IPE)]
w w

=[] < +oc.

As |Pf(l)| depends only on the componentslgf 4,
[ et di, = [1m(te i dl, <+
R R

for almost alll, € R, k € T \ {ro}. Hence,: , € L3(R) and soy:,, € L4(R). O]
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4. Proof of the Theorem

We begin this section by proving a mild generalization of dieen 1.1.

Theorem 4.1. Let f € L2(R), such that

[ / ()] | F ()] [P dx dy < +oc,
R JR

where « is positive number and P is a polynomial function. Thén= 0 almost
everywhere.

Proof. First of all, we mention that the hypothesis implidsziously that f be-

longs to LY(R) N L?(R). Hence, f is continuous. We can choose > 0 such that
|[P(y)|* > 1 for all |y| > B. It follows that,

£ 21| Xy
(4.1) /|y>ﬂ /R|f(x)| | f(y)le dx dy < +o0.

On the other hand, foy € [-8, B], let
50y, x) = 11001 [ f (n)|eZ .
The function& is continuous ony, in addition
[€(y, X)| = C| f (x)|&?" %),
for some positive constant ang € 18, +oo[ chosen by (4.1) such that

/|f(x)|e2”‘xy°‘ dx < +o0.
R

It results that, the integrand is a continuous functionyprand then

//|f(x)| | f(y)|e@PY dx dy < +o0.
R JR

Therefore,f satisfies the hypothesis of Theorem 1.1 and heinee0 almost everywhere.
O

Now, we are going to prove our main result. The mechanism ofpyaof basically
consists in bringing the study of the functidndefined on the grouf to the study of
new function defined o satisfying an equivalent condition. We consider two cases:
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FIRST CASE We suppose thag(l) C [g, g] for all I € W. From equation (3.5),
we have

+oo>B(f)=f /|f<x)| (1)l s €271 1 PEQ) dx dl
w JG

R 1/2
Z/W/GIf(x)I(/R s | fs(l, 2)|% dA ds) XN (X, XaD)[Y2 dx dl.

Using the generalized Minkowski inequality, one gets:

2 1/2
B(f)z(/R/V (/R Rn|f(x1,...,xn)||fs(l,k)|e2”X'”"|I([le,xn])|1/2dxdl) dkds) .

It follows that,

AAﬁ#%EWW

for almost alls € R and A € Vg. Hence, there exists a conull sub&ktc R such that:

REC )

for almost alls € R, i € Vg and for allx, € U. As the function| fy, (exp(Zi“jxi Xi))|
depends only on the variables, . . ., Xn, the setU does not depend os, A. Then,

RERR)

for almost alls € R and A € Vg. This implies that:

(4.2) »
L[ {enfS0))

for almost allse R, A € Vg andl; eR, i =2,...,r.

| ol MIEPRI(IX g, XaD) Y2 dx dl < o0,

| fs(1, 2)[€Z P X,, Xal) Y2 dxg - - - dxy 1 dl < 00,

| fs(1, M) PRNIIX,, Xal) Y2 dXq - - - dX_g dI < o0,

| fo(l, AP ([X,, Xal) Y2 dX - - - dXq dly < +o0,

Lemma 4.2. Let K be the function defined oR by:.

n-1
Fs(xq) = /RH fs (exp(Z Xi )(i))QZirr(ZL2 Xk 20 X he) A% -+ dXo 1,
i=1

for almost all se R, A eVg and l eR,i =2,...,r. Then
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a) Fse L?(R), for almost all se R.
b) The function Eis zero almost everywhere if and only if the functianist

Proof. An easy computation shows tiage L1(R) and Fs(l1) = fs(l, 1). As fs €
LY(Gh_1) N L%(Gp_1) for almost alls € R,

(4.3) / | fs(1, A2 dl da = || fs])3 < +o0.
RN-1

It follows that,
/|F;(|1)|2d|1 _ /|f;(|,x)|2dll < 400,
R R

for almost alll; e R, i = 2,...,r and € Vg. Hence,Fs € L2(R) and thenFs € L2(R).
On the other hand, it is easy to see that b) follows from thendigfih of the func-
tion Fs and equation (4.3). ]

Finally, remark that

/R / IFa(xa)] [B(12) &P 1 ([X . Xa])[¥2 dx, dly

<[ L e(oo(E0))

which is finite by (4.2). Hence by Theorem 4.E; = 0 almost everywhere. Then,
fs = 0 almost everywhere and sb = 0 almost everywhere.

SECOND CASE We suppose thai(l) Z [g,¢g] for all | e W. Let {&} be an ortho-
normal basis ofL2(R®). The hypothesis (1.3) implies that: for &ll k € N*,

+oo>/ [|f(x1 ..... xo)| [(m (F)g;, &1 XINIPEQ)] dx
W JRN

[ fs(l, R[N ([X,, Xa]) |2 dXy - - - dXg_q dly

(using equation (3.13))
= / [ F O, X)W (1) (€U PE(] dx dl.
W JR"
As |Pf(l)| does not depend ol,,
[ [ fea s Gl dx al, < o
R JR"
for almost alll, € R, k € T \ {ro}. Therefore,

(4.4) / 00 - %) () [€27 0l dx b, < o0,
R JR"
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for almost allly € R, k € T \ {ro}. Finally remark that,

/R [R W, 6 Oo)| [V, 0 (o) | €27 Vol e, g

x €7 Xolol dgdx d,

(by using equation (3.12))

S// (X0 X0)§5 (Bsy (%, G 1) B (X, G D)EK(@) Ve (1)
R ]RTH»C
x € kol dg dx dl,

(by substitutingR«(x, g,1) for %, k € T \ {ro}, using equation (3.11))

< [ [ ([aGaton. .eanias) ([ Gords)

X | (Xay - X)W, g (1) | €27 oMol d x

= llalcll [ [ 17000 0 ()l ol ax,

which is finite by (4.4). Using Beurling's theorem d we obtainy, ¢ (x,) = 0 for
almost everyly, k € T \ {ro}. It follows that, for all j, k € N*, (m(f)&;, &) =0
and then||m (f)||us = 0. Finally, the Plancherel formula gives us that= 0 almost
everywhere.

5. Consequences of Beurling’s theorem

We have already mentioned that our theorem implies some otieertainty prin-
ciples. First we recall the most important results obtaif@dan arbitrary nilpotent
Lie group. Recently, Kaniuth and Kumar [6] proved the anakgersion of Hardy’'s
theorem for nilpotent Lie groups. They proved the following

Theorem 5.1 (Hardy type). Let G be a connected simply connected nilpotent Lie
group and f be a measurable function on G such :that
(i) [l < cearlxF,
(i) |m(f)ns < ce™ M for all | € W.
Then f= 0 almost everywhere if ab 1.

This theorem was generalized later by A. Baklouti and N. Bafal$ [4]:
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Theorem 5.2 (Cowling—Price type). Let G be a connected simply connected nil-
potent Lie group and f be a measurable function on G. 2et p,q < +o0, and
a, b e R such that
(i) Jo e £ (0P dx < +oo,
@iy [ eqb”“”|2||m(f)||ﬁ,s|Pf(|)| dl < +o0.
Then f= 0 almost everywhere if ab 1.

Note this result is proved for any nilpotent Lie group withethestriction 2< p, q <
+o00. We can have the analogue version of the Cowling—Price &meawrith the orig-
inal condition 1< p, g < 400, as a consequence of Theorem 1.3. In fact, flebe

a measurable function o8 which satisfies the conditions (i) and (ii) of Theorem 5.2.
Then we can choose @ & < a such thata’b > 1. We havee?™IXI” f ¢ LY(G). Let

b’ = 1/a’ then O< b’ < b and €I ||, (f)|lus € LYW, |Pf()|dI). It follows that,

/ /|f(x)| 1 (F)llws €71 1PEQY]| dx di
w JG

= / / ea’JTIIXH2| f(x)|€ /””I”zHTfl(f)HHs e (Ve |x||-vb’ \||||)2|pf(|)| dx dI
w JG

5/ ea’”"X”z|f(x)|dx/ eI |17, (£)[|lus [PEQ)| dI < +o00.
G w

So f satisfies the Beurling condition and thén= 0 almost everywhere by Theorem 1.3.
Another consequence of Theorem 1.3 is the following anaogersion of the
Gelfand—Shilov theorem: Iff € L%(G) satisfies the conditions:
() Jol f ()| XIP/Pdx < +oo,
(i) Syllm(F)ns eI a Pt dI < +oo,
where 1< p < +o0, 1/p+1/q = 1.

Then f = 0 almost everywhere, iab > 1. In fact, the inequality

aPix|® b
+

ab||x|| 1] <
(Il o q

and the previous conditions (i) and (ii) imply the conditioh Theorem 1.3.
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