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Abstract

The purpose of this paper is to study the limit distribution of individual eigen-
value of 1-dimensional Schrödinger operators with random potentials derived from
the derivatives of compound Poisson processes possessing purely positive jumps or
purely negative jumps. The central limit theorem for “middle eigenvalue” is also
investigated.

1. Introduction

Consider a one-dimensional Schrödinger operator

L D � d2

dx2
C d Qx

dx

on an interval [0,a], where Qx is a one dimensional compound Poisson process. Im-
posing a suitable boundary condition, the operatorL has countably many eigenvalues
denoted by

f�1(a) < �2(a) < � � � < �k(a) < � � � g.
In this paper, we investigate limit behavior of individual eigenvalue. This problem has
been considered by [3], [5]. In [5], McKean studiedL with Gaussian white noise po-
tential and showed

aN(�1(a))
weakly����! e�x dx

as a !1, where N is the integrated density of states studied by [2]

N(�)�1 D p
2� Z 1

0
e�(x3=6C2�x) dxp

x
.
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His result shows, whatever boundary condition we impose at the boundary of [0,a],
the limit distribution remains unchanged. However our Theorem 3.9 asserts that ifQ
has only positive jumps, then the limit distribution depends on the boundary condition.
If the process has purely negative jumps, then the situationapproaches to the Gaussian
white noise case. Although we have to assume the exponentialdistribution for random
variables describing jumps for a technical reason, we couldprove Theorem 4.6. We
remark they expressed in [1] the distribution of�1(a) by using the drift formula.

In [3], Grenkova et al. tried to show the joint distribution of f�k(a)g has a limit
distribution after a suitable normalization. They assumedthat the magnitude of jumps
of the compound Poisson process obeys an exponential distribution with parameter�.
What they pointed out was the independence on� of the limit distribution of individual�k(a). However the reality is contrary, and their method does notseem to work to
obtain a joint limit distribution. It would be interesting if we could obtain some results
in this respect.

The above problems are related to some properties of the spectrum of L defined
on R in infinitesimal neighborhood of the bottom. When we look then-th eigenvalue,
assumingn increases according to the expansion of [0,a], the situation changes dras-
tically and we can obtain a central limit theorem, namely Theorem 5.1.

A beautiful introduction to this and related field is given byMinami [6]. We are
grateful to professor Minami for his kind suggestion when we were preparing this paper.

2. Eigenvalues and zeros of eigenfunctions

Let fQ(x)I x 2 [0,1)g be a function which is of bounded variation on each finite
interval of [0,1). Then we can define a selfadjoint operatorL formally given by

L D � d2

dx2
C d Q(x)

dx
,

on each finite interval [0,a] if we impose a boundary condition

� (0) cos� C � 0(0) sin� D 0, � (a) D 0.

The boundary condition atx D 0 is general, however atx D a we assume the Dirichlet
condition for technical reason. For any� 2 C, let �� be a solution of the follow-
ing equation

(2.1) L� D �� and � (0)D � sin� , � 0(0)D cos� .

��(x) is an analytic function of�. The eigenvalues of the operatorL coincide with

f� 2 R W ��(a) D 0g
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and we denote them byf�1(a)< �2(a)< � � �< �k(a) < � � �g. Each�k(a) is a decreasing
function of a. Put ��(x) D � 0�(x) and � (x) D (��(x), ��(x)). Then � (x) satisfies

(2.2)

�
d� (x) D �(x) dx,
d�(x) D ��� (x) dxC � (x) d Q(x).

Let G be a continuous map fromR2 n f0g to R [ f1g defined by

G(� ) D ��� for � D (� , �).

Setting Z(x) D G(� (x)), we see thatZ(x) satisfies

(2.3)

�
d Z(x) D (�C Z(x)2) dx� d Q(x),
Z(0)D zD cot� ,

as far as� (x) does not vanish. Since��(x) is a solution ofL� D �� , it is known that
the set of zeros of��(x) has no accumulating points. Let�k(�) be thek-th zero from
the left end point 0 of��(x):

��1(�) D inffx > 0I Z(x) D 1g,�k(�) D inffx > �k�1I Z(x) D1g, k D 2, 3,: : : .
The following lemma can be proved easily (see [4]).

Lemma 2.1. If � > lima!1 �k(a), then �k(�) <1 and we have
1. For any fixed� , �k(�) is a decreasing continuous function of�;
2. Z(x) is continuous at�n(�) and

Z(�k(�) � 0)D1, Z(�k(�)C 0)D �1.

Owing to the Sturm oscillation theorem, we can replace the study of �k(a) with
that of �k(�) as follows.

Proposition 2.2. For each a and�, �k(a) > � if and only if �k(�) > a.

3. Limit theorem of eigenvalue: positive jump case

From now on we assumefQ(x)gx�0 be a compound Poisson process whose de-
rivative is formally expressed as

Q0(x) D 1X
jD1

q j Æ(x � x j ),
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where fq j g j�1are i.i.d. random variables andfx j g j�1 are random variables such that

(3.1)

�
0D x0 < x1 < x2 < � � � < x j < � � � andfx jC1 � x j g j�0 are i.i.d. with P(x jC1 � x j > x) D e�mx.

We assume also that two families of random variables are independent.fQ(x)gx�0 be-
comes a Lévy process with a Lévy measure

n(du) D mF(du),

where F is the distribution ofq j . From the equation (2.3), the generatorA of the
strong Markov processZ(x) has the form8�<

�:
Af (z) D (z2 C �) f 0(z)C Z 1

0
f f (z� u) � f (z)gn(du), for z¤ 1

Af (1) D � lim
z!1 zf f (z) � f (1)g.

In this section we assume the measuren(du) has non-negative support, i.e.

(3.2) suppn(du) � [0, C1) (, q j � 0 a.s.).

In order to get the asymptotics of�k, we employ the method used by Kotani in ([4]) when
he obtained the asymptotics ofE�1(�1). His method is illustrated as follows. AssumeZ

u>1
(log u)n(du) <1.

For any z 2 R [ f1g and � > 0, Ez(�1) is finite and f (z) D Ez(�1) is the unique
solution of

(3.3)

8�<
�:

(z2 C �) f 0(z)C Z 1
0

[ f (z� u) � f (z)]n(du) D �1,

f (C1, �) D 0, j f (�1, �)j <1.

To investigate the equation (3.3) we apply Fourier transformation to the both sides
and obtain

(3.4) '00(s) D �� �  (s)

is

�'(s), '(0)D 1, '(�1) D 0,

where 8���<
���:
'(s) D Z

R e�iszT(z) dz with T(�z) D � f 0(z)

E�1�1
,

 (s) D Z 1
0

(eisu � 1)n(du).
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The integrated density of statesN(�) is equal to (E�1�1)�1 and can be identified with

N(�) D � 1� Re'0(0C),

To study the asymptotic behavior ofN(�) near� D 0, it is more convenient to make
analytic continuation of (3.4) up to the positive imaginaryaxis and we reach an equation

8�<
�:

f 00�(x, �) D f��CU (x)g f�(x, �),

f�(x, �) � exp

��i
Z x

x0

p� �U (y) dy

�
as x !C1,

where x0 is any positive number such that� �U (x0) ¤ 0 and

U (x) D 1

x

Z 1
0

(1� e�ux)n(du).

With this f� we have

(3.5) E�1�1(�) D � j f�(0, �)j2p� ,

and after non-trivial calculation we can see thatE�1�1(�) (D N(�)�1) has the asymptotics

(3.6) E�1�1(�) � � j f0(0)j2 exp

�
n�p�

�
as � # 0,

wheren D R1
0 n(du) and f0 is a unique solution of the equation

(3.7)

8<
:

f 000 (x) D U (x) f0(x),

f0(x) � U (x)�1=4 exp

�� Z x

0

p
U (y) dy

�
as x !C1.

Now we turn to the study of the distribution of�1. Set

N(�) D (E�1(�1))�1.

What we should investigate is the normalized random variable N(�)�1. Let us denote
by �� its Laplace transform:

��(z) D Eze
��N(�)�1 for � � 0.

Then ��(z) can be interpreted by the following lemma. The proof is analogous to that
of Kotani ([4]) and is omitted.
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Lemma 3.1. ��(z) is a unique solution of the equation

(3.8)

8�<
�:

(z2 C �) f 0(z)C Z 1
0

f f (z� u) � f (z)gn(du) D �N(�) f (z),

f (C1) D 1, j f (�1)j < 1.

Let us introduce a functionT�(z) by

T�(�z) D � 0�(z)[1 � ��(�1)]�1.

Then T�(z) dz becomes a probability measure and satisfies

(3.9) (z2 C �)T�(z) � Z 1
0

n(du)
Z zCu

z
T�(y) dyD ��(�z)�N(�)

1� ��(�1)
.

Set

'�(s) D Z 1
�1 e�iszT�(z) dz.

(3.9) implies

(3.10)

8<
:
'00�(s) D f�C �N(�) � V(s)g'�(s),

'�(�1) D 0, '�(0)D 1,

where

V(s) D 1

is

Z 1
0

(eius � 1)n(du), (U (s) D V(is)).

One can show an equation

(3.11)

8�<
�:

f 00(x) D f� � �N(�) �U (x)g f (x),

f (x) � exp

��i
Z x

x0

p� � �N(�) �U (y) dy

�
as x !C1,

has a unique solution, which is denoted byf�(x). The lemma below can be proved
similarly as Theorem 3.2 and Theorem 4.7 in [4].

Lemma 3.2. Under the condition
R

u>1(logu)n(du) <1, the followings are valid

(3.12)

8��<
��:
'�(s) D f�(�is)

f�(0)
,

Im
f 0�(0)

f�(0)
� � 1j f0(0)j2 exp

�� n�p� � �N(�)

�
as � # 0.



EIGENVALUES FOR RANDOM SCHRÖDINGER OPERATORS 75

Now we can connect��(�1) with f�(0).

Lemma 3.3. For each� > 0 it holds that

��(�1)

1� ��(�1)
D �1��N(�)

Im
f 0�(0)

f�(0)
.

Proof. From (3.9), lettingz!C1, we see

(3.13)

�N(�)��(�1)

1� ��(�1)
D lim

z!C1(z2 C �)T�(z)

D lim
z!C1(z2 C �)

1

2�
Z 1
�1 eisz'�(s) ds.

The identity'�(s) D '�(�s) implies
R1�1 eisz'�(s) dsD 2 Re

R1
0 eisz'�(s) ds. On the

other hand, the equation (3.4) shows that'� is a holomorphic function inCC with
exponential type at most

p� and is bounded oniRC for fixed � > 0. This together
with the boundedness of'� on RC implies that'�(z) is bounded on the first rectangle
of the plane, which guarantees an identity

(3.14)
Z 1

0
eisz'�(s) dsD i

Z 1
0

e�sz'�(is) ds for z> 0.

Hence, by (3.12) we obtain

�N(�)��(�1)

1� ��(�1)

D � 1� lim
z!C1(z2 C �)

Z 1
0

e�sz Im

�
f�(s)

f�(0)

�
ds

D � 1� lim
z!C1(z2 C �)

1

z

Z 1
0

e�t t

z
Im

�
f�(t=z) � f�(0)

f�(0)
� z

t

�
dt

D � 1� Im
f 0�(0)

f�(0)
.

Then

Lemma 3.4. As �! 0

��(�1) ! 1

1C � .

Proof. Let f0(x) be the unique solution of (3.7). Then from (3.6) and (3.12) it
follows that as�! 0

��(�1)

1� ��(�1)
D � 1��N(�)

Im
f 0�(0)

f�(0)
! 1� .
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Now we proceed to the study of��(z). By the definition ofT�(z) we have

(3.15)
��(z) D 1� (1� ��(�1))

Z �z

�1 T�(y) dy

D ��(�1)C (1� ��(�1))F�(�z),

where F�(z) D R1
z T�(y) dy. Therefore, to get the asymptotics of��(z), it is sufficient

to find the behavior ofF�(z) as �! 0. First we have

Lemma 3.5. For all fixed z2 [0, 1), it holds that as�! 0

lim�!0
F�(z) D 0.

Proof. Rewrite the equation (3.9) in terms ofF�(z)

�F 0�(z) D ���(�1)N(�)

(z2 C �)[1 � ��(�1)]
C �F�(z)N(�)

z2 C �
�
R1

0 [F�(zC u) � F�(z)]n(du)

z2 C � .

Or equivalently

(3.16) [eg(z) F�(z)]0 C c(�)[eg(z)]0 D eg(z)

R1
0 F�(zC u)n(du)

z2 C � ,

where

g(z) D Z z

�1
(nC �N(�))

y2 C � dy, c(�) D ���(�1)N(�)

[1 � ��(�1)](nC �N(�))
.

Integrating both sides of (3.16) fromz to C1, we have

F�(z) D c(�)[eg(C1)�g(z) � 1] � Z 1
z

eg(y)�g(z)

y2 C � dy
Z 1

0
n(du)F�(yC u)

� c(�)[eg(C1)�g(z) � 1].

Moreover, note that as�! 0, we have

c(�) � N(�)

n
� const� exp

�� n�p�
�

and as�! 0

g(C1) � g(z) D (nC �N(�))p�
Z 1

z=p�
dx

x2 C 1
�
8��<
��:

n

z
if z> 0,

n�
2
p� i zD 0.
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Consequently we see that 0� F�(z) ! 0 as�! 0.

Now, we consider lim�!0 F�(z) for z 2 [�1, 0). The equation (3.17) below for-
mally comes from (3.16) by integrating both sides and then letting �! 0.

Lemma 3.6. The following equation has a unique solution f on(0,1) satisfying
0� f (z) � 1.

(3.17) f (z) D e�n=z C e�n=z Z 1
z

en=y

y2
dy
Z y

0
f (y� u)n(du).

Proof. First we show (3.17) has a solution 0� f (z) � 1. Introduce an integral
operator

K f (z) D e�n=z Z 1
z

en=y

y2
dy
Z y

0
f (y � u)n(du).

Define a sequence of functionsf fm(z)gm�0 by

f0(z) D e�n=z, fmC1(z) D f0(z)C K fm(z) for m� 0.

We show for allm� 0

0< e�n=z D f0(z) � f1(z) � � � � � fm(z) � 1.

Since the operator preserves the positivity, the above increasing property is trivial. On
the other hand,

K1(z) D e�n=z Z 1
z

en=y

y2
dy
Z y

0
n(du)

� ne�n=z Z 1
x

en=y

y2
dyD 1� e�n=z

is valid. Hence fm(z) � 1 holds for anym� 0. Therefore there exists

lim
m!C1 fm(z) D f �(z)

and en=z � f �(z) � 1. Clearly it satisfies (3.17) on (0,1). The uniqueness of solution
is easy to prove.

Lemma 3.7. For all fixed z2 (�1, 0), as �! 0, it holds that

lim�!0
F�(z) D f (�z),

where f(z) is the unique solution of(3.17).
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Proof. Integrating both sides of (3.16) from�1 to z, we have

F�(z) D e�g(z) � c(�)[1 � e�g(z)] C Z z

�1
eg(y)�g(z)

y2 C � dy
Z �y

0
F�(yC u)n(du)

C Z z

�1
eg(y)�g(z)

y2 C � dy
Z C1
�y

F�(yC u)n(du).

Moreover, the factg(z) D �n=zC o(1) as�! 0 and Lemma 3.5 imply

F�(z) D en=z C en=z Z z

�1
e�n=y

y2
dy
Z �y

0
F�(yC u)n(du)C o(1).

Hence, from Lemma 3.6 it follows that lim�!0 F�(z) D f (�z).

Corollary 3.8. For z 2 [�1, 1), as �! 0

N(�)�k(�)
weakly���!

8��<
��:

1

(k � 1)!
xk�1e�x dx if z2 [�1, 0],

1� f (z)

(k � 1)!
xk�1e�x dxC f (z)

(k � 2)!
xk�2e�x dx if z2 (0,1),

where the last term should be understood as f(z)Æ0(dx) if k D 1.

Proof. Combining (3.15) and Lemmas 3.4, 3.5, 3.7, we can showthe result as
follows. For z 2 [�1, 0]

lim�!0
Eze

��N(�)�1 D 1

1C �
is valid, hence the distribution ofN(�)�1 converges to the exponential distribution with
parameter 1. Forz> 0, similarly, from (3.15)

lim�!0
Eze

��N(�)�1 D 1

1C � C �
1C � f (z)

D f (z)C 1� f (z)

1C �
we seeN(�)�1 converges tof (z)Æ0(dx)C (1� f (z))e�x dx. Hence, we have the proof
for k D 1. For k � 2, we know that underPz, the random variablesf�kC1 � �kgk�1

are identically distributed with distributionP�1(�1(�) < x). Therefore the conclusion
is clear.

Now the asymptotic of�k(a) can be obtained without difficulty. Recall we are
treating a random Schrödinger operator

L D � d2

dx2
C d Q(x)

dx
,
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on a finite interval [0,a] imposing the boundary conditions

� (0) cos� C � 0(0) sin� D 0, � (a) D 0,

and we are setting

zD cot� .

Theorem 3.9. Assume Z 1
1

(log u)n(du) <1.

For k � 1, as a!C1,

aN(�k(a))
weakly���!

8��<
��:

1

(k � 1)!
xk�1e�x dx if z2 [�1, 0],

1� f (z)

(k � 1)!
xk�1e�x dxC f (z)

(k � 2)!
xk�2e�x dx if z2 (0,1),

where f(z) is introduced in(3.17),and the last term should be understood as f(z)Æ0(dx)
if k D 1.

Proof. Proposition 2.2 implies

Pz(aN(�k(0))< x) D Pz

��k(a) < N�1

�
x

a

�� D Pz(N(�)�k(�) < x),

where� is introduction byN(�) D x=a for fixed x > 0. Then the rest of the proof is
obvious from Corollary 3.8.

REMARK 3.10. One can replaceN(�) with its asymptotic from

��1j f0(0)j�2 exp

�� n�p�
�

in the statement of Theorem 3.9.

4. Negative jump case

The method used in the positive jump case may not work here, since some diffi-
culties arise in analyzing the equations (3.3) or (3.4). Therefore, in this case we restrict
ourselves only in a special case

Pf�qi > xg D �
1 if x � 0,
exp(��x) if x > 0,
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where� is a positive constant. We assumen D 1 in (3.1), hencen(du) takes a spe-
cial form:

n(du) D �
0 ifu > 0,�e�u du if u � 0.

Thus, the generatorA of the processZ(x) becomes

8�<
�:

Af (z) D � f (z)C (z2 C �) f 0(z)C � Z 0

�1 f (z� y)e�y dy, for z¤ 1,

Af (1) D � lim
z!1 zf f (z) � f (1)g.

To get the asymptotics of�k, we use the method of moments. Set

u(z) D u(z, �) D Eze
���1.

u(z) is support to be a unique solution of the equation

8�<
�:
�u(z)C (z2 C �)u0(z)C � Z 0

�1 u(z� y)e�y dyD �u(z),

u(C1) D 1, 0� u(z) � 1,

which is non-trivial to be shown. For the time being we proceed by assuming the ex-
istence. Introduce a new function by

v(z) D � Z 0

�1 u(z� y)e�y dyD �e�z
Z 1

z
u(x)e��x dx.

We get the boundary value problem foru(z), v(z):

8<
:

(z2 C �)u0(z)C v(z) � (1C �)u(z) D 0,v0(z) D �(v(z) � u(z)),
u(C1) D 1, v(1) D 1.

Hence, by excludingv(z) we get an equation foru(z)

(4.1)

�
(z2 C �)u00(z)C (��z2 C 2z� �� � 1� �)u0(z)C ��u D 0,
u(1) D 1, u0(1) D 0.
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This procedure was found in [3]. Introducing

uk(z) D �ku(z, �)��k

�����D0

,

we see that �
u0(z) D 1,
uk(z) D (�1)kEz� k

1 , k � 1.

Differentiating (4.1) with respect to� and setting� D 0, we come to a system
of equations

(z2 C �)u00k(z)C (��z2 C 2z� �� � 1)u0k(z) � k(u0k�1(z) � �uk�1(z)) D 0.

For simplicity we set

� D p��.

Lemma 4.1. For k � 1 the equation

(4.2)

�
(z2 � �2)u00k C (��z2 C 2zC ��2 � 1)u0k � k(u0k�1 � �uk�1) D 0,
uk(1) D 0, u0k(1) D 0, u0(z) D 1.

have unique continuous and bounded solution.

Proof. Since the coefficient of the second derivative has singularity, we separate
the equations in three cases below by transforming them intointegral forms.
1. z 2 (�, 1)

uk(z) D k
Z 1

z

e�x(x � �)1=(2�)�1

(x C �)1=(2�)C1
dx
Z 1

x
[u0k�1(t) � �uk�1(t)]e��t

�
t C �
t � �

�1=(2�)

dt.

2. z 2 (��, �)

uk(z) D k
Z �

z

e�x(� � x)1=(2�)�1

(� C x)1=(2�)C1
dx

� Z x

�� [u0k�1(t) � �uk�1(t)]e��t

�� C t� � t

�1=(2�)

dt C uk(�).

3. z 2 (�1, ��)

uk(z) D k
Z ��

z

e�x(� � x)1=(2�)�1

(�� � x)1=(2�)C1
dx

� Z ��
x

[u0k�1(t) � �uk�1(t)]e��t

��� � t� � t

�1=(2�)

dt C uk(��).
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Then it is not difficult to show thatuk (��) are finite and these integrals are convergent,
which shows the lemma.

Now to simplify the situation we introduce

Quk(z) D uk(�z).

Lemma 4.2 (z� 1 case). For each k� 1, there exists a constant ck such that

j Quk(z)j � ck

holds for all z� 1 and � � 1.

Proof. The formula forQuk(z) is

Quk(z) D k
Z 1

z

e��x(x � 1)1=(2�)�1

(x C 1)1=(2�)C1
dx

� Z 1
x

� Qu0k�1(t)� � � Quk�1(t)

�
e���t

�
t C 1

t � 1

�1=(2�)

dt.

By induction, we will show for eachk � 1, there exist two constantsd1,k, ck which
depend only onk such that for allz 2 [1, 1]

j Qu0k(z)j � d1,k� (z� 1)1=(2�)�1

(zC 1)1C1=(2�)

(
k�1X
mD0

1�m

�
log

zC 1

z� 1

�m
)

,(4.3)

j Quk(z)j � ck

holds for all z, � � 1. For k D 1, we have

Qu01(z) D �e��z(z� 1)1=(2�)�1

(zC 1)1=(2�)C1

Z 1
z

e���t

�
t C 1

t � 1

�1=(2�)

dt.

Changing variablet D zC s=(��) leads us to

Qu01(z) D 1� (z� 1)1=(2�)�1

(zC 1)1=(2�)C1

Z 1
0

e�s

�
zC s=(��)C 1

zC s=(��) � 1

�1=(2�)

ds

� d1� (z� 1)1=(2�)�1

(zC 1)1=(2�)C1
.

Then Qu1(z) is bounded and (4.3) is valid fork D 1. Now for k � 2, suppose (4.3) is



EIGENVALUES FOR RANDOM SCHRÖDINGER OPERATORS 83

true for k � 1. Observing log((zC 1)=(z� 1)) is decreasing, we have forz> 1

j Qu0k(z)j � k
e��z(z� 1)1=(2�)�1

(zC 1)1=(2�)C1

Z 1
z

j Qu0k�1(t)j� e���t

�
t C 1

t � 1

�1=(2�)

dt C kck�1j Qu01(z)j
� k

(z� 1)1=(2�)�1

(zC 1)1=(2�)C1

(
k�2X
mD0

d1,k�1�mC1

�
log

zC 1

z� 1

�m Z 1
z

dt

(t � 1)(t C 1)
C ck�1

)

� d1,k
(z� 1)1=(2�)�1

(zC 1)1=(2�)C1

k�1X
mD0

1�m

�
log

zC 1

z� 1

�m

,

with d1,k D k(d1,k�1 _ ck�1d1). Noting for fixed " > 0 and large�
Z 1C"

1

(x � 1)1=(2�)�1

(x C 1)1=(2�)C1

�
log

x C 1

x � 1

�m

dx � (2�)mC1m!

Z 1
1C"

(x � 1)1=(2�)�1

(x C 1)1=(2�)C1

�
log

x C 1

x � 1

�m

dx � 1

mC 1

�
log

2C ""
�mC1

,

we seeQuk is bounded and (4.3) is true fork as well, which completes the proof.

Lemma 4.3 (�1� z< 1 case). For any k� 1, as � !1, we have

Quk(z) � (�1)kk! exp(2k��).

Proof. In this case

Quk(z) D k
Z 1

z

e��x(1� x)1=(2�)�1

(x C 1)1=(2�)C1
dx

� Z x

�1

� Qu0k�1(t)� � � Quk�1(t)

�
e���t

�
1C t

1� t

�1=(2�)

dt C Quk(�)

is valid. We show by induction that for� � 1

(4.4)

8�<
�:
j Qu0k(z)j � d2,ke��(2k�1Cz)(1� z)1=(2�)�1

(
k�1X
mD0

jlog(1� z)jm�m

)
,

Quk(z) � (�1)kk! e2k�� as � !1
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holds. Fork D 1, changing the variables leads us to

Qu1(z)

D��Z 1

z

e��(1�x)1=(2�)�1

(1Cx)1C1=(2�)
dx
Z x

�1
e���t

�
1Ct

1�t

�1=(2�)

dtC Qu1(1)(4.5)

� e2��
�
Z 2��

0
e�ydy

Z (y=(��))^(1�z)

0

s1=(2�)�1

(2�s)1C1=(2�)

�
y=(��)�s

2Cs�y=(��)

�1=(2�)

dsC Qu1(1)

� e2��
2�

Z 1
0

e�xdx
Z (x=(��))^(1�z)

0
s1=(2�)�1ds��e2��,(4.6)

since we already know from the last lemma thatQu1(1) remains bounded. Conse-
quently, from

(4.7)
Z z

�1
e���t

�
1C t

1� t

�1=(2�)

dt � 2e��(zC 1)1=(2�)C1

(4.4) follows for k D 1. Suppose the statement is true fork � 1 (k � 2). Since

Qu0k(z)

D �k
e��z(1� z)1=(2�)�1

(zC 1)1=(2�)�1

Z z

�1

� Qu0k�1(t)� � � Quk�1(t)

�
e���t

�
1C t

1� t

�1=(2�)

dt,

using (4.4) fork � 1, we seeZ z

�z

j Qu0k�1(t)j� e���t

�
1C t

1� t

�1=(2�)

dt

� d2,k�1
e��(2k�3)

� (zC 1)1=(2�)C1

(
k�2X
mD0

jlog(1� z)jmC1

(mC 1)�m

)
.

Moreover, by (4.7) we have

Z z

�1
�j Quk�1(t)je���t

�
1C t

1� t

�1=(2�)

dt � const� e��(2k�1)(zC 1)1=(2�)C1.

Therefore

j Qu0k(z)j � d2,ke��(2k�1Cz)(1� z)1=(2�)�1

(
k�1X
mD0

jlog(1� z)jm�m

)

with some constantd2,k, which proves (4.4). Noting

Z 1

0
(1� x)1=(2�)�1(� log(1� x))m dt D (2�)mC1m!,
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similarly as (4.6) we see

Quk(z)

k!

D (�1)ke2(k�1)��� Z 1

z

e��x(1� x)1=(2�)�1

(x C 1)1=(2�)C1

Z x

�1
e���t

�
1C t

1� t

�1=(2�)

dt C o(e2k��)

� (�1)ke2k�� ,

which completes the proof.

Lemma 4.4 (�1 � z< �1 case). As � !1, we have

Quk(z) � (�1)kk! e2k�� [1C o(1)].

Proof. It is enough to show that for� large,

(4.8)

�j Qu0k(z)j � d3,k � e2(k�1)�� ,Quk(z) � Quk(�1)D o(e2k��)

holds for all z 2 [�1, �1], whered3,k is a constant depending only onk.
In this case we have

Quk(z) D k
Z �1

z

e�x�(�x C 1)1=(2�)�1

(�x � 1)1=(2�)C1
dx

� Z �1

x

� Qu0k�1(t)� � � Quk�1(t)

�
e���t

��t � 1�t C 1

�1=(2�)

dt C Quk(�1).

The estimate (4.8) can be shown by induction onk as follows. Fork D 1,

Qu1(z) � Qu1(�1)

D �� Z �1

z
e��x (�x C 1)1=(2�)�1

(�x � 1)1=(2�)C1
dx
Z �1

x
e���t

��t � 1�t C 1

�1=(2�)

dt

D � 1�
Z �(1Cz)��

0
e�s ds

Z �1�s=(��)

z

(�x C 1)1=(2�)�1

(�x � 1)1=(2�)C1

��x � s=(��) � 1�x � s=(��)C 1

�1=(2�)

dx

D O

�
log��

�
.

Moreover, it is easy to see that

(4.9)

Z �1

z
e���t

��t � 1�t C 1

�1=(2�)

dt

� e���z (�C 1)�� [(�zC 1)1=(2�)C11[�1�1=�,�1](z)C 1(�1,�1�1=�)].
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Then we have

j Qu01(z)j � 2(�C 1)� .

Therefore we know the statement (4.8) is true fork D 1. Now suppose (4.8) is true
for k � 1 (k � 2). The estimate (4.9) shows

�j Qu0k(z)j � k! e2(k�1)�� j Qu01(z)j,j Quk(z) � Quk(�1)j � k! e2(k�1)�� j Qu1(z) � Qu1(��)j,
which concludes the proof.

The integrated density stateN(�) is equal to (E�1�1(�))�1. Lemma 4.4 implies.

N(�) � e�2�p�� as � # �1.

Corollary 4.5. For z 2 [�1, 1) and k� 1, as �! �1 the random variables
N(�)�k(�) converge weakly to

1

(k � 1)!
xk�1e�x dx.

Proof. Since we have for allz 2 [�1, 1) and m� 1, as� !1
Ez�m

1 D m! e2m��[1C o(1)],

the conclusion holds fork D 1. For k � 2, since underPz, f�nC1 � �ngn�1 are identi-
cally distributed and the distribution coincides with thatof �1(�) underP�1, we have
the proof.

Now the asymptotics of�n(a) can be obtained similarly as Theorem 3.9.

Theorem 4.6. For z 2 [�1, 1) and k� 1, as a!1 it holds that

aN(�k(a))
weakly����! 1

(k � 1)!
xk�1e�x dx.

5. Central limit theorem for “middle eigenvalue”

In this section we consider a limiting property of�n(nc) for a fixed constantc.
Since we have

Pz(�n(nc) < �) D Pz(�n(�) < nc).
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and under Pz, f�kC1(�) � �k(�)gk�1 are identically distributed with distributionP�1(�1(�) < a), therefore

�n(�)

n
! E�1(�1(�)) D N(�)�1 a.s.

holds, hence we see, asn !1
�n(nc) ! N�1(c�1) or equivalently cN(�n(nc)) ! 1

in probability. Now we consider the central limit theorem for the difference.
Let 6 be the spectrum of globally definedL and set

�0 D inf 6.

Assume

E�1�1(�) is C1-class and E�1� 2
1 (�) is continuous on (�0, 1).(A)

In most cases including the two cases treated in the above argument, this condition is
satisfied. Let us introduce�1(�) by

E�1�1(� C �) D E�1�1(�)C ��1(�)C o(�) as � ! 0.

Actually

�1(�) D d

d�E�1�1(�).

For simplicity of the notation, set

� D N�1(c�1).

Define �� 2 D E�1�1(�)2 � c2 (D Varf�1(�)g),
M D ��1(�) > 0.

Denoting by8(x) the standard normal distribution, we have

Theorem 5.1. Under the assumption(A), for any c> 0 and z2 [�1, 1) it
holds that

lim
n!C1 Pz(

p
n(�n(nc) � N�1(c�1)) < �) D 8� �� M

�
.
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Proof. Note

Pz(
p

n(�n(nc) � N�1(c�1)) < �) D Pz

��n(nc) < �p
n
C ��

D Pz

��n

� �p
n
C �� < nc

�

D Pz

�
Xn

p
n� < �� M

�
,

where

Xn D �n(�=pnC �)

n
� cC �p

n
M.

We compute their characteristic functions. Sincef�i � �i�1g are i.i.d., we see

Ez

�
exp

�
i �Xn

p
n�
�� D Ez

�
exp

�
i
��pn

Y

���E�1
�

exp

�
i
��pn

Y

���n�1

,

where

Y D �1

� �p
n
C �� � cC �p

n
M.

Apparently the first term converges to 1 asn ! 1. To compute the second term,
we remark

(5.1) ei x D 1C i x � 1

2
x2Æ(x)

with a smooth function satisfying

(5.2) jÆ(x)j � 1 for all x 2 R and Æ(x) ! 1 as x ! 0.

Applying (5.1) yields

exp

�
i
��pn

Y

� D 1C i
��pn

Y � 1

2

�2

� 2n
Y2Æ� ��pn

Y

�
.

Taking its expectation, we have

E�1
�

exp

�
i
��pn

Y

�� D 1C i
��pn

I1 � 1

2

�2

� 2n
I2.
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Each term can be computed as follows:

I1 (D E�1Y) D E�1�1

� �p
n
C �� � cC �p

n
M

D E�1�1(�)C �1(�)
�p
n
� cC �p

n
M C o

�
1p
n

�

D o

�
1p
n

�
,

and by (5.2), (A)

I2

�D E�1
�

Y2Æ� ��pn
Y

��� D E�1Y2 C E�1Y2

�Æ� ��pn
Y

� � 1

�
D E�1�1(�)2 � c2 C o(1).

Consequently it follows that

E�1
�

exp

�
i
��pn

Y

�� D 1� �2

2n
C o

�
1

n

�
,

which implies the present central limit theorem.
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