
Nomura, A.
Osaka J. Math.
47 (2010), 1159–1165

ON THE EXISTENCE OF UNRAMIFIED p-EXTENSIONS
WITH PRESCRIBED GALOIS GROUP

AKITO NOMURA

(Received April 21, 2009, revised September 1, 2009)

Abstract
We shall prove that for any finitep-group G, there exists an elementary abelian

p-extension k=Q and an unramified extensionK=k such that the Galois group
Gal(K=k) is isomorphic toG.

1. Introduction

Let p be a prime number. For an odd prime numberp, Scholz [9] and Reichardt
[8] proved that every finitep-group G can be realized as the Galois group of some
extensionM of the rational number fieldQ. Fröhlich [2] proved that for any positive
integer n, there exists a number fieldF of finite degree and an unramified extension
K=F such that the Galois group Gal(K=F) is isomorphic to the symmetric groupSn of
degreen. Uchida [11] and Yamamoto [13] studied the existence of an unramified ex-
tension over a quadratic field whose Galois group is isomorphic to the alternating group
An. By using their results, we see that the base fieldF of an unramifiedSn-extension
can be chosen as a quadratic field. These results imply that any finite p-group can
be realized as the Galois group of some unramified extensionK=k. Uchida [12] stud-
ied the Galois groups of maximal unramified solvable extensions of certain algebraic
number fields of infinite degree overQ. His result implies that for any finitep group
G, there exists a cyclotomic fieldk of finite degree overQ having a finite unramified
Galois extension with the Galois groupG. Recently, Ozaki [7] proved that for any fi-
nite p-group G, there exists a number field of finite degree such that the Galois group
of its maximal unramifiedp-extension is isomorphic toG. In [7], he also proved that
for any pro-p-group G, there exists a number field (not necessarily finite degree) such
that the Galois group of its maximal unramified pro-p-extension is isomorphic toG.

In Fröhlich [2], Uchida [11], Yamamoto [13] and Ozaki [7], the degree of the
base fieldk is high in general. In Uchida [12], the degree ofk over Q does not be
explicit. We want to reduce the degree of the base fieldk as much as possible. In
this article, we shall prove that for any finitep-group G, there exists an elementary
abelian p-extensionk=Q and an unramified extensionK=k such that the Galois group
Gal(K=k) is isomorphic toG. More precisely, it follows from the proof that the base
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field k can be chosen such that [k W Q] D pmC1, where jGp[G, G]j D pm.

2. Preliminary from embedding problems

In this section, we quote some results about embedding problems. General studies
on embedding problems can be found in Hoechsmann [4] and Neukirch [5].

Let k be a number field of finite degree andG the absolute Galois group ofk.
Let K=k be a finite Galois extension with the Galois groupG. For a central extension

(")W 1! A! E
j�! G! 1 of finite groups, the embedding problem (K=k, ") is defined

by the diagram

G

' K
(") W 1 K A K E

j KG K 1,

where ' is the canonical surjection. A continuous homomorphism of G to E is
called a solution of (K=k, ") if it satisfies the conditionj Æ  D '. When (K=k, ")
has a solution, we call (K=k, ") is solvable. A solution is called a proper solution
if it is surjective. A field M is called a solution field (resp. a proper solution field) of
(K=k, ") if M is corresponding to the kernel of a solution (resp. a proper solution).

Let p be a prime number. In case whenp D 2, we assume thatk is totally im-
aginary. LetK=k be a p-extension, and let (") W 1! Z=pZ ! E! Gal(K=k)! 1 be
a central extension. We remark that all infinite primes are not ramified in K=k. We
assume that (") and k satisfy these conditions from Lemma 1 to Lemma 4.

Lemma 1 (Neukirch [5, Satz 2.2, Satz 4.7, Satz 5.1]).If K =k is an unramified
extension, then (K=k, ") is solvable.

Lemma 2 (Hoechsmann [4, Satz 2.3]).If (") is a non-split extension, then every
solution of (K=k, ") is a proper solution.

For each primeq of k, we denote bykq (resp.Kq) the completion ofk (resp.K )
by q (resp. an extension ofq to K ). Then the local problem (Kq=kq, "q) of (K=k, ")
is defined by the diagram

Gq

'jGq K
("q) W 1 K A K Eq

j jEq KGq K 1,

where Gq is the Galois group ofKq=kq, which is isomorphic to the decomposition
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group of q in K=k, Gq is the absolute Galois group ofkq, and Eq is the inverse of
Gq by j .

In the same manner as the case of (K=k, "), solutions, solution fields etc. are de-
fined for (Kq=kq, "q).

For a finite setS of primes ofk, we define

Bk(S) D f� 2 k� j (�) D ap for some ideala of k, and� 2 kq
p for q 2 Sg.

For a Galois extensionK=k, we denote byRam(K=k) (resp.RamK (K=k)) the set of
primes ofk (resp.K ) which are ramified inK=k.

Lemma 3 (Neukirch [5, Beispiel 1, Korollar 6.4]). Assume that(K=k,") is solv-
able. Let T be a finite set of primes of k, and M(q) be a solution field of(Kq=kq, "q)
for q of T . Then there exists a solution field M of(K=k, ") such that the completion
of M by q is equal to M(q) for eachq of T .

The following lemma is a special case of the main theorem in Nomura [6]. For
the convenience of the reader, we give a sketch of the proof.

Lemma 4. Let S be a finite set of primes of k satisfying the conditions:
(1) Bk(S) D k� p,
(2) any prime of k lying above p is not contained in S.
Assume that K=k is an unramified p-extension and(") is a non-split central extension.
Then (K=k, ") has a proper solution field M such that M=k is unramified outside S.

Proof. By Lemmas 1 and 2, (K=k, ") has a proper solution. Letp be a prime of
k lying above p. Since K=k is unramified,Kp=kp is an unramified cyclic extension.
Then local extension ("p) is split or Ep is cyclic. Hence (Kp=kp, "p) has a solution
field M(p) such thatM(p)=kp is unramified. By Lemmas 2 and 3, there exists a proper
solution field M1 of (K=k, ") such that any prime ofk lying above p is unramified in
M1=k. If M1=k is unramified outsideS, then M1 is a required solution. Assume that
q � S is ramified in M1=k. By Shafarevich’s formula [10, Theorem 1], there exists a
cyclic extensionF=k of degreep such thatF=k is unramified outsideS[ fqg and that
q is ramified in F=k. Let Q be an extension ofq to M1F , and let M2 be the inertia
field of Q in M1F=k. Then M2 is also a proper solution field andRam(M1=k) [ S©
Ram(M2=k) [ S. By repeating this process, we obtain a required proper solution.

3. Main theorem and some applications

In this section, we shall prove the main theorem and its application to the structure
of ideal class groups.
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Theorem 5. For any finite p-group G, there exist infinitely many number fields
k and unramified Galois extensions K=k satisfying the conditions:
(1) k=Q is an elementary abelian p-extension,
(2) Gal(K=k) is isomorphic to G.

Lemma 6. Let T be any finite set of primes of k. Then there exists a finite set
S of primes of k satisfying the conditions:
(1) S\ T D ;,
(2) Bk(S) D k� p,
(3) N(q) � 1 mod p for q 2 S, where N(q) is the absolute norm ofq.

Proof. Let M D k( p
p�I � 2 Bk(;)). Then M � k(�p) and Gal(M=k(�p)) is an

elementary abelianp-group. By Chevotarev’s density theorem, there exist primes
Q1, Q2, : : : , Qr of M such that the Frobenius [(M=k)=Qi ] (i D 1, 2,: : : , r ) gener-
ate Gal(M=k(�p)) and that the restriction tok are not contained inT . Let qi be the
restriction ofQi to k. Then SD fq1, q2, : : : , qr g is a required set.

For a finite setS of primes of k, we denote bySjQ the set of primes which are
the restriction toQ of q in S.

Lemma 7. Let k=Q be a p-extension and K=k an unramified p-extension. In
case when pD 2 we assume that k is totally imaginary. Let(") W 1! Z=pZ ! E !
Gal(K=k)! 1 be a non-split central extension. Assume that the finite set Sof primes
of k satisfies the conditions:
(1) S\ Ramk(k=Q) D ;,
(2) Bk(S) D k� p,
(3) N(q) � 1 mod p for q 2 S.

Let F=Q be a cyclic extension of degree p such that any prime q2 SjQ is ramified
in F=Q.

Then there exists an unramified Galois extension M=kF such that the Galois group
Gal(M=kF) is isomorphic to E.

Proof. By the condition (3), any prime lying abovep is not contained inS. By
Lemmas 1 and 4, the embedding problem (K=k, ") has a proper solution field which
is unramified outsideS. Namely, there exists a Galois extensionL=K=k satisfying
the conditions:
(a) Gal(L=k) � E,
(b) L=k is unramified outsideS.

By the assumption ofF and the condition (1), we see thatF \ k D Q. Hence
Gal(L F=kF) � Gal(L=k) � E. Let M D L F . Since K=k is unramified, the ramifica-
tion index ofq in L=k is at mostp. By virtue of Abhyankar’s lemma (cf., e.g. Cornell
[1, Theorem 1]),M=kF is unramified.
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Proof of Theorem 5. LetG1 D 8(G) be the Frattini subgroup ofG, which is de-
fined by Gp[G, G]. Let G � G1 � G2 � G3 � � � � � Gm D f1g be a series of normal
subgroups ofG such thatGi =GiC1 � Z=pZ (i D 1, 2,: : : , m� 1). ThenG=G1 is an
elementary abelianp-group and the canonical sequence 1! Gi =GiC1 ! G=GiC1 !
G=Gi ! 1 is a non-split central extension.

We prove the existence of an unramified extension with Galoisgroup isomorphic
to G=Gi . We use induction oni . First, by genus theory (cf., e.g. Furuta [3]), there
exists a cyclic extensionk1=Q of degree p and an unramified extensionK1=k1 such
that Gal(K1=k1) is isomorphic toG=G1. In case whenpD 2, we can takek1 to be an
imaginary quadratic field. We remark that there exist infinitely many such fieldsk1.

Let ki =Q be an elementary abelianp-extension andK i =ki an unramified exten-
sion such that Gal(K i =ki ) is isomorphic toG=Gi . We consider the central extension
(") W 1! Z=pZ ! G=GiC1! G=Gi ! 1. By Lemma 6, there exists a finite setS of
primes ofki satisfying the conditions:
(1) S\ Ramki (ki =Q) D ;,
(2) Bki (S) D ki

� p,
(3) N(q) � 1 mod p for any q 2 S.

Let q be the characteristic of the residue field ofq in S. Since ki =Q is a
p-extension,N(q) D qpt

for some non-negative integert . Then q � 1 mod p because
N(q) � 1 mod p.

Therefore there exists a cyclic extensionF=Q of degree p such that any prime
q 2 SjQ is ramified. By Lemma 7, there exists a number fieldkiC1 and an unramified
extensionK iC1=kiC1 such that Gal(K iC1=kiC1) � G=GiC1. We have thus proved.

REMARK . Let jGp[G, G]j D pm. It follows from the proof of Theorem 5 that the
base fieldk can be chosen such that Gal(k=Q) � (Z=pZ)mC1. If the setsSi such that
Bki (Si ) D ki

� p (i D 1, 2,: : : , m� 1) can be find, the base fieldk can be constructed
explicitly.

Corollary 8. For any positive integer n, there exist infinitely many number fields
k such thatGal(k=Q) � (Z=pZ)n and that the ideal class group Clk contains an elem-
ent of order pn.

Proof. Let G D Z=pnZ. By virtue of Theorem 5 combined with Remark above,
the corollary follows.

Corollary 9. Let k=Q and F=Q be cyclic extensions of degree p, and S be a
finite set of primes of k. We assume the conditions:
(1) at least three finite primes are ramified in k=Q,
(2) S\ Ramk(k=Q) D ;,
(3) Bk(S) D k� p,
(4) N(q) � 1 mod p for any q 2 S,
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(5) any prime in SjQ is ramified in F=Q,
(6) k is imaginary quadratic field when pD 2.

Let E be any p-group such thatjEj D p3 and that the rank is equal to2. Then there
exists an unramified Galois extension of kF with the Galois group isomorphic to E.

Proof. By the condition (1) and the genus theory, there exists an unramified ex-
tension K=k such that Gal(K=k) � Z=pZ � Z=pZ. Since the rank ofE is 2, there
exists a non-split central extension (") W 1! Z=pZ ! E ! Gal(K=k)! 1. By apply-
ing Lemma 7, the corollary follows.
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