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Abstract
We shall prove that for any finit@-group G, there exists an elementary abelian
p-extensionk/Q and an unramified extensioK /k such that the Galois group
Gal(K /Kk) is isomorphic toG.

1. Introduction

Let p be a prime number. For an odd prime numiperScholz [9] and Reichardt
[8] proved that every finitep-group G can be realized as the Galois group of some
extensionM of the rational number fiel@. Frohlich [2] proved that for any positive
integern, there exists a number field of finite degree and an unramified extension
K /F such that the Galois group GHI(F) is isomorphic to the symmetric group, of
degreen. Uchida [11] and Yamamoto [13] studied the existence of aramified ex-
tension over a quadratic field whose Galois group is isomonghthe alternating group
An. By using their results, we see that the base fieldf an unramifiedS,-extension
can be chosen as a quadratic field. These results imply thaffi@ite p-group can
be realized as the Galois group of some unramified extensighh Uchida [12] stud-
ied the Galois groups of maximal unramified solvable extamsiof certain algebraic
number fields of infinite degree ov€). His result implies that for any finitgp group
G, there exists a cyclotomic field of finite degree oveQ having a finite unramified
Galois extension with the Galois grodp. Recently, Ozaki [7] proved that for any fi-
nite p-group G, there exists a number field of finite degree such that theiS&gloup
of its maximal unramifiedp-extension is isomorphic t&. In [7], he also proved that
for any prop-group G, there exists a number field (not necessarily finite degraeh s
that the Galois group of its maximal unramified ppeextension is isomorphic té.

In Frohlich [2], Uchida [11], Yamamoto [13] and Ozaki [7], eéhdegree of the
base fieldk is high in general. In Uchida [12], the degree lofover Q does not be
explicit. We want to reduce the degree of the base flelds much as possible. In
this article, we shall prove that for any finite-group G, there exists an elementary
abelian p-extensionk/Q and an unramified extensidd /k such that the Galois group
Gal(K /k) is isomorphic toG. More precisely, it follows from the proof that the base
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field k can be chosen such that {Q] = p™*?!, where|GP[G, G]| = p™.

2. Preliminary from embedding problems

In this section, we quote some results about embedding grabl General studies
on embedding problems can be found in Hoechsmann [4] and iféaulb].

Let k be a number field of finite degree amsl the absolute Galois group df.
Let K/k be a finite Galois extension with the Galois groGp For a central extension

(e):1—->A—E L G = 1 of finite groups, the embedding problemd (K, ¢) is defined
by the diagram

(G

|

G

where ¢ is the canonical surjection. A continuous homomorphigmof & to E is
called a solution of K/k, ¢) if it satisfies the conditionj o ¢ = ¢. When K /K, ¢)
has a solution, we callK/k, ¢) is solvable. A solutiony is called a proper solution
if it is surjective. A field M is called a solution field (resp. a proper solution field) of
(K/k, &) if M is corresponding to the kernel of a solution (resp. a propéirtien).

Let p be a prime number. In case whgn= 2, we assume that is totally im-
aginary. LetK /k be a p-extension, and lete}: 1 - Z/pZ - E — Gal(K/k) — 1 be
a central extension. We remark that all infinite primes are namified in K/k. We
assume thate) and k satisfy these conditions from Lemma 1 to Lemma 4.

(): 1 A E_ 1,

Lemma 1 (Neukirch [5, Satz 2.2, Satz 4.7, Satz 5.1])f K /k is an unramified
extensionthen (K /k, ¢) is solvable.

Lemma 2 (Hoechsmann [4, Satz 2.3])If (¢) is a non-split extensigrthen every
solution of (K /k, €) is a proper solution.

For each primey of k, we denote byk, (resp.K,) the completion ok (resp.K)
by q (resp. an extension af to K). Then the local problemK,/k,, &q) of (K /K, €)
is defined by the diagram

qu
¢log

ileq

(eq): 1 A E, Gq 1,

where G, is the Galois group ofK,/k,, which is isomorphic to the decomposition
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group of q in K/k, &, is the absolute Galois group &f, and E, is the inverse of
Gq by j.

In the same manner as the case Kf/K, ¢), solutions, solution fields etc. are de-
fined for (Kq/Kq, &q)-

For a finite setS of primes ofk, we define

Bk(S) = {o € k* | (@) = aP for some idealn of k, anda € kP for g € S}.

For a Galois extensiork /k, we denote byRanm(K /k) (resp.Rank (K /k)) the set of
primes ofk (resp.K) which are ramified inK /k.

Lemma 3 (Neukirch [5, Beispiel 1, Korollar 6.4]). Assume thafK /k, ¢) is solv-
able. Let T be a finite set of primes of &nd M(q) be a solution field ofK,/ky, &)
for g of T. Then there exists a solution field M @€ /k, €) such that the completion
of M by q is equal to Mq) for eachq of T.

The following lemma is a special case of the main theorem imdla [6]. For
the convenience of the reader, we give a sketch of the proof.

Lemma 4. Let S be a finite set of primes of k satisfying the conditions
(1) B«(S) =k*P,
(2) any prime of k lying above p is not contained in S.
Assume that Kk is an unramified p-extension arfe) is a non-split central extension.
Then (K /k, €) has a proper solution field M such that M is unramified outside S.

Proof. By Lemmas 1 and 2K(/k, €) has a proper solution. Let be a prime of
k lying above p. Since K /k is unramified,K,/k, is an unramified cyclic extension.
Then local extensionef) is split or E, is cyclic. Hence K,/k,, €,) has a solution
field M(p) such thatM(p)/k, is unramified. By Lemmas 2 and 3, there exists a proper
solution field M, of (K /k, &) such that any prime ok lying above p is unramified in
Mi/k. If M1/k is unramified outsideS, then M, is a required solution. Assume that
q ¢ S is ramified in M;/k. By Shafarevich’'s formula [10, Theorem 1], there exists a
cyclic extensionF /k of degreep such thatF /k is unramified outsideSU {q} and that
q is ramified in F/k. Let Q be an extension off to MyF, and letM, be the inertia
field of Q in M1F/k. Then M, is also a proper solution field arfdanm(M;/k) U S2
Ran{M,/k) U S. By repeating this process, we obtain a required propertisalu []

3. Main theorem and some applications

In this section, we shall prove the main theorem and its agfin to the structure
of ideal class groups.
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Theorem 5. For any finite p-group G there exist infinitely many number fields
k and unramified Galois extensions/K satisfying the conditions
(1) k/Q is an elementary abelian p-extensjon
(2) Gal(K/k) is isomorphic to G.

Lemma 6. Let T be any finite set of primes of k. Then there exists a fieite s
S of primes of k satisfying the conditions
(1) SNT =9,
(2) Bu(S) =k*P,
(3) N(q) =1modp for q € S, where Ngq) is the absolute norm of.

Proof. LetM = k(¥a;a € B(?)). Then M D k(¢p) and GalM/k(zp)) is an
elementary abelianp-group. By Chevotarev’'s density theorem, there exist psime
01, Qo, ..., of M such that the Frobenius N{/k)/Qi] (i = 1, 2,...,r) gener-
ate GalM/k(¢p)) and that the restriction t& are not contained ifm. Let q; be the
restriction ofQ; to k. ThenS= {q4, g5, ..., q,} iS a required set. O

For a finite setS of primes ofk, we denote byS|gp the set of primes which are
the restriction toQ of g in S.

Lemma 7. Let k/Q be a p-extension and K an unramified p-extension. In
case when p= 2 we assume that k is totally imaginary. Lé): 1 - Z/pZ - E —
Gal(K /k) — 1 be a non-split central extension. Assume that the finite set |[gimes
of k satisfies the conditions
(1) SnRam(k/Q) =9,

(2) Bu(S) =k*P,
(3) N(g9) =1modp forqe S.

Let F/Q be a cyclic extension of degree p such that any prireS}q is ramified
in F/Q.

Then there exists an unramified Galois extensiofkM such that the Galois group
Gal(M /kF) is isomorphic to E.

Proof. By the condition (3), any prime lying aboyeis not contained inS. By
Lemmas 1 and 4, the embedding probleki/K, ¢) has a proper solution field which
is unramified outsideS. Namely, there exists a Galois extensitfK /k satisfying
the conditions:

(a) Gall/k) = E,
(b) L/k is unramified outsides.

By the assumption of and the condition (1), we see th& Nk = Q. Hence
Gal(LF/kF) ~ Gal(L/k) ~ E. Let M = LF. SinceK/k is unramified, the ramifica-
tion index ofq in L/k is at mostp. By virtue of Abhyankar's lemma (cf., e.g. Cornell
[1, Theorem 1]),M/kF is unramified. ]
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Proof of Theorem 5. LeG; = ®(G) be the Frattini subgroup d&, which is de-
fined by GP[G, G]. Let GD G; D G, D G3 D --- D G, = {1} be a series of normal
subgroups ofG such thatG;/Gij;1 = Z/pZ (i =1, 2,...,m—1). ThenG/G; is an
elementary abeliamp-group and the canonical sequence>1G;/Gjy1 — G/Gji1 —
G/G; — 1 is a non-split central extension.

We prove the existence of an unramified extension with Gajo@ip isomorphic
to G/G;j. We use induction on. First, by genus theory (cf., e.g. Furuta [3]), there
exists a cyclic extensiok;/Q of degreep and an unramified extensioid;/k; such
that GalK/k;) is isomorphic toG/G;. In case whernp = 2, we can takek; to be an
imaginary quadratic field. We remark that there exist indilyitmany such fieldk;.

Let ki/Q be an elementary abeliap-extension andK;/ki an unramified exten-
sion such that Gak;/kj) is isomorphic toG/G;. We consider the central extension
(6):1—>2Z/pZ - G/Gj 1 — G/G;j — 1. By Lemma 6, there exists a finite s8tof
primes ofk; satisfying the conditions:

(1) snRan (ki/Q) =9,
(2) B(9 =k"P,
(3) N(g) =1modp for anyq € S.

Let g be the characteristic of the residue field @fin S. Since ki/Q is a
p-extension,N(q) = qP for some non-negative integér Theng = 1 mod p because
N(g) = 1 modp.

Therefore there exists a cyclic extensiéyQ of degreep such that any prime
g € S|p is ramified. By Lemma 7, there exists a number fiklg; and an unramified
extensionK;1/ki ;1 such that GaK;,1/ki+1) = G/Gj 1. We have thus proved. []

REMARK. Let|GP[G, G]| = p™. It follows from the proof of Theorem 5 that the
base fieldk can be chosen such that GalQ) = (Z/pzZ)™!. If the setsS such that
B«(S)=k*P (i =1,2,...,m—1) can be find, the base fieki can be constructed
explicitly.

Corollary 8. For any positive integer nthere exist infinitely many number fields
k such thatGalk/Q) = (Z/pZ)" and that the ideal class group tontains an elem-
ent of order p.

Proof. LetG = Z/p"Z. By virtue of Theorem 5 combined with Remark above,
the corollary follows. L]

Corollary 9. Let k/Q and F/Q be cyclic extensions of degree and S be a
finite set of primes of k. We assume the conditions
(1) at least three finite primes are ramified in@,
(2) sSnRam(k/Q) =,
() Bk(S) =k*P,
(4) N(g9) =1 modp for anyq € S,



1164 A. NOMURA

(5) any prime in & is ramified in F/Q,
(6) k is imaginary quadratic field when £ 2.

Let E be any p-group such thHE| = p® and that the rank is equal t8. Then there
exists an unramified Galois extension of kF with the Galomugrisomorphic to E.

Proof. By the condition (1) and the genus theory, there gxast unramified ex-
tension K /k such that GaK /k) =~ Z/pZ x Z/pZ. Since the rank ofE is 2, there
exists a non-split central extension)(1— Z/pZ - E — Gal(K/k) — 1. By apply-
ing Lemma 7, the corollary follows. O
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