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Abstract
In this paper, we generalise the first Klein-Maskit combioratitheorem to
discrete groups of Mdbius transformations in higher dimemsi The application of
the main theorem is discussed in the last section.

1. Introduction

In the theory of classical Kleinian groups, there are thewrealled the combi-
nation theorems which give methods to generate new Kleigraaps as amalgamated
free products or HNN extensions of Kleinian groups. The qiygie of such theorems
is Klein’s combination theorem which can be rephrased devisl in the modern terms:

Theorem 1.1 (Klein [16]). Let G; and G, C PSLC be two finitely generated
Kleinian groups with non-empty regions of discontinuiyd let D and D, be funda-
mental domains for Gand G, of their regions of discontinuity respectivelguppose
that the interior of B contains the frontier and the exterior of;(and that the interior
of D; contains the frontier and the exterior of,DThen the groupG;, G,) generated
by G; and G, in PSLC is a Kleinian group isomorphic to Gx G, with non-empty
region of discontinuity and 3= D; N D, is a fundamental domain for the region of
discontinuity of(G1, G,).

Fenchel-Nielsen, in [12], gave a generalisation of Kleih'sorem to amalgamated
free products and HNN extensions for Fuchsian groups. Inriessef papers, Maskit
considered to generalise Klein’s theorem to amalgamatssl groducts and HNN exten-
sions for Kleinian groups ([18]—[23]). Thurston gave aremptretation of the combina-
tion theorem using three-dimensional hyperbolic geomatrg harmonic maps, cf. [27].
For applications of the combination theorems, we refer teder to [1, 4, 7, 12, 17,
24, 34].

Among these, the first Maskit combination theorem says thdeusome condi-
tions two Kleinian group<s;, G, whose intersectiond is geometrically finite generate
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a Kleinian group isomorphic to the free product @f and G, amalgamated oved
and also under the same conditions the resulting group ismgeizally finite if and
only if both G; and G, are geometrically finite.

The purpose of the present paper is to generalise this firskiMa@mbination the-
orem to discrete groups of Mobius transformations of dimmmgjreater than 2. A first
pioneering attempt to generalise Maskit's combination tees to higher dimensions
was made by Apanasov [5, 6]. Ivascu [15] also consideredgéigeralisation. In par-
ticular, they showed that under the same assumptions as tMaskbined with some
extra conditions, one can get a discrete group which is arigamated free product
of two discrete groups ofi-dimensional Mobius transformations. In fact, they proved
the following.

Theorem 1.2. Let G;, G, be two discontinuous n-dimensional Mdbius subgroups
with a common subgroup Hand let the n-sphere"Ssplit along a hypersurface 8 §"
into two domains B and D, whose closure®; and D, are precisely invariant with
respect to H in G; and G, respectively Let also the following two conditions hold
(1) For fundamental domaingd, F; and F, of the groups H G; and G,, there exists
a neighbourhood V of the surface S such thabvV Cc F, i =1, 2.
(2) For each i=1, 2, the setAND; = D; NF is a proper subdomain in;E

Then the following hold
(1) The group G= (G4, Gy) is discontinuous and isomorphic to the amalgamated free
product G xy Go.
(2) F=F.NnF;is a fundamental domain for the group. G
(3) my(A(G)) =0 if and only if m(A(Gj))=0,i =1, 2.
(4) Each elliptic or parabolic element of G is conjugate in G to alement from
G, UG,.

In this paper, we shall show that a generalisation of the fitaskit's theorem
holds in higher dimensions without any such additional aggions, imposing only
natural ones. Our theorem also includes the equivalenceeamgtric finiteness of the
given two groups and that of the group obtained by the contibima It should be
noted that in this paper, we say that a Kleinian group is gedcadly finite when the
e-neighbourhood of its convex core has finite volume for same 0, and there is an
upper bound for the orders of torsions in the group. We do mssume that it has
a finite-sided fundamental polyhedron. For more detailsutittbese Kleinian groups
of higher dimensions, we refer the reader to [11, 26, 28, 29,a%d the references
therein.

Our main result (Theorem 4.2) and its proof will appearséh

This is the first of a series in which we shall discuss gersatiins and applica-
tions of Klein-Maskit combination theorem in higher dimems. A generalisation of
the second Klein-Maskit combination theorem, which coroesis to HNN extensions,
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to the case of discrete groups of Mébius transformations gidr dimensions and ap-
plications of these two combination theorems will be givarfarthcoming papers.

2. Preliminaries

2.1. Basics on Mobius transformations. For n > 2, we denote bﬁ_%“ the one-
point compactification oR" obtained by addingo. The group of orientation-preserving
Mobius transformations dR" is denoted byM(R"), with which we endow the compact-
open topology. We regarl" as the boundary at infinity of the hyperbolic € 1)-space
H"* which is identified with the open unit ball bounded BY. We denote the union of
H™! andR" endowed with the natural topology ™. Any Mébius transformation
of R" is extended to a Mdbius transformation Bf**, which induces an isometry of
H"™, When it is more convenient, we regdi*! as the upper half-space of the+1)-
dimensional Euclidean space aRfl as{(x, . .., X, 0)} in R"™. A non-trivial element
g € M(R") is called _

(1) loxodromicif it has two fixed points inR" and none inH"*;
(2) parabolic if it has only one fixed point ifR" and none inH"*;
(3) elliptic if it has a fixed point_inH”*l. _

For a discrete grous of M(R") and a pointz € H™! or x € R", the setsG(z) =
{9(2): g € G} ¢ H™! and G(x) = {g(x): g € G} c R" are calledG-orbits of z and x
respectively. IfZ' lies in the G-orbit of z, then we say that’ and z are G-equivalent.

2.2. Limit sets, regions of discontinuity and fundamental sts. The limit set
A(G) of a discrete grougs ¢ M(R") is defined as follows:

A(G)=G(@) NR"

for somez € H™!, where the overline denotes the closureBiff* = H™! U R" and
G(2) the G-orbit of z. We call points of A(G) limit points The complemenf2(G) =
R"\ A(G) is called theregion of discontinuityof G. The following is a well-known fact.

Lemma 2.1. Let G be a discrete subgroup of ("). If B ¢ R" is a closed and
G-invariant subset containing at least two pointeen A(G) is contained in B

A discrete groupG C M(I@”) is said to act discontinuously at a poirte R if
there is a neighbourhood of x such that{g € G: g(U)NU # @} is a finite set. The
group G acts discontinuously at every point 6f(G), and at no point ofA(G).

The complement of the fixed points of elliptic elementxi(G) is called thefree
regular set and is denoted byQ2(G). When°Q(G) # ¢, a fundamental sebf G is a
set which contains one representative of each ddfiy) of y € °Q(G). It is obvious
that °Q(G) # @ if and only if Q(G) # @.

We have the following lemmata for the limit points. These heata in the classical
case whem = 2 can be found in Theorems 11.D.2 and I1.D.5 in Maskit [22].thdugh
the argument is quite parallel, we give their proofs for ctetgness.
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Lemma 2.2. Let x be a limit point of a discrete subgroup G in(]ﬁf‘). Then
there are a limit point y of G and a sequenf,} of distinct elements of G such that
gm converges to the constant map x uniformly on any compactesufR™* \ {y}.

Proof. Sincex is a limit point, there are a poirt € H"! and a sequencegm}
of distinct elements ofc such thatgy(z) — x. RegardH™! as the upper half-space.
Let (zi, ..., Zn, Zn+1) be the coordinate of, with z,.; > 0. Consider the point’ =
(21, - - -, Zn, —2Zn+1) in the lower half-space. The actions of M&bius transfororati can
be extended to the lower half-space conformally. Then alshio we havegn(z') — x.

By conjugation, we can assume th@t acts onB™?! with IntB"™! = H"?!, that
z=0, and that Stap(0) = Staly (o) = {id}. ThenzZ = o0; hence we havegm(oco) — X.
By taking a subsequence we can make(oco) converge to some limit poiny. Since
gm Maps the outside of its isometric sphere onto the interiothaf of g, the radii
of the isometric spheres af, and g;;!, which are equal, converge to 0 as— oo,
and the centregm(co) of the isometric sphere of,,! converges tox. On the other
hand, the centre of the isometric sphereggf which is g,}(c0) converges toy. This
completes the proof. O

_Lemma 2.3. Let{gn} be a sequence of distinct elements of a discrete group G
M(R™). Then there are a subsequence{gf,} and limit points x y of G, which may
coincidg such that g, converges to the constant map x uniformly on any compact sub-
set of R™1\ {y}.

Proof. We may assume th& acts onB"*! with Int B"*! identified with H"*!,
and that Stap(co) = {id}. By taking a subsequence if necessary, we have two limit
points x and y such thatgm(co) — x and g,,}(c0) — y. The conclusion now follows
from the proof of Lemma 2.2. ]

We shall use the following term frequently.

DEFINITION 2.1. LetH be a subgroup of a discrete subgroGpof M(I@”). An
subsetV of R" is said to beprecisely invariantunder H in G if h(V) =V for all
heHandg(V)NnV =¢ for all ge G — H.

For Q(G), we have the following proposition: refer to PropositidrEl4 in Maskit
[22] or Theorem 5.3.12 in Beardon [7].

Proposition 2.4. Suppose thaf2(G) is not empty Then a point xe R" is con-
tained in Q(G) if and only if
(1) the stabiliserStals(x) = {g € G: g(x) = x} of x in G is finite and
(2) there is a neighbourhood U of x IR" which is precisely invariant undeBtahs; (x)
in G.
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DEFINITION 2.2. A fundamental domain for a discrete groGpof M(I@”) with
non-empty region of discontinuity is an open sub&etof Q(G) satisfying the fol-
lowing.

(1) D is precisely invariant under the trivial subgroup G

(2) For everyz e Q(G), there is an elemeny € G such thatg(z) is contained inD,
where D denotes the closure dd in R".

(3) FrD, the frontier ofD in R", consists of limit points ofG, and a finite or count-
able collection of codimension-1 compact smooth submédsfavith boundary, whose
boundary is contained if(G) except for a subset witm(— 1)-dimensional Lebesgue
measure 0. The intersection of each submanifold wWi{®) is called a side oD.

(4) For any sides of D, there are another side’ of D, which may coincide with
o, and a nontrivial elemeny € G such thatg(S) = S. Such an elemeng is called
the side-pairing transformation from to o’.

(5) If {om} is & sequence of distinct sides Bf, then the diameter of,, with respect
to the ordinary spherical metric dR" goes to 0.

(6) For any compact subsét of Q(G), there are only finitely many translates bf
that intersectK.

A fundamental sef for a discrete subgrou of M(Hi”) whose interior is a fun-
damental domain is called constrained fundamental set

2.3. Normal forms. Let G; and G, be two subgroups oM(@”), and J a sub-
group of Gy N Ga.

A normal formis a word consisting of alternate products of element&pf J and
those ofG, — J. Two normal formsgn - - - GkGk-1- - - 91 @ndgn - - - (Gkj)(j 'Gk-1)- - - %1
are said to beequivalentfor any j € J. The word length of the normal form is simply
called thelength The length is invariant under the equivalence relation.

A normal form is called a 1-form if the last letter is containmm G, — J, and a
2-form otherwise. More specifically a normal form is called (am k)-form if the last
letter is contained iG,, — J and the first letter is contained @y — J.

The multiplication of two normal forms is defined to be the catenation of two
words which is contracted to the minimum length by the edaivee defined above.
The product of two normal forms is equivalent to either a rairform or to an element
of J.

It is obvious that any element of the free product@®f and G, amalgamated over
J, which is denoted byG; x; G,, either is an element o or can be expressed in
a normal form, and that there is a one-to-one correspondbeteeenG; x; G, and
the union ofJ and the set of the equivalence classes of normal forms. Alsoaasy
to see that this correspondence is an isomorphism with cespethe multiplication
defined above. B

Let (G, G,) denote the subgroup d¥1(R") generated byG; and G,. There is a
natural homomorphisn®: G; x; G, — (Gi, G,) which is defined by®(g,---91) =
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Ono- - -o0; for a normal formg,- - -g; representing an element &;*;G,, and®(j) =
j for j € J. It is easy to see that this is well defined and independent aicice of
a representative of the equivalence class. The map is odlyi@n epimorphism.

If ® is an isomorphism, then we writés;, G,) = G1 x; G, identifying elements
of Gy x5 G, and their images byb.

Since J is embedded iNG4, G,), each nontrivial element in the kernel d&f can
be written in a normal form.

Lemma 2.5. (Gi, Gy) = Gy %3 G, if and only if ® maps no non-trivial normal
forms to the identity

2.4. |Interactive pairs. Following Maskit, we shall define interactive pairs as
follows. _

Let G; and G, be two discrete subgroups ™ (R") and J a subgroup olG; NG,
as in the previous subsection. L¥{, X, be disjoint non-empty subsets Bf'. The pair
(X1, X3) is said to be annteractive pair(for G, G,, J) when
(1) each ofXj, Xy is invariant underJ,

(2) every element of5; — J sendsX; into Xy,

(3) and every element a6, — J sendsX; into Xj.

An interactive pair is said to bproper if there is a point inX; which is not contained
in a G-orbit of any point of Xy, or there is a point inX, which is not contained in
a Gj-orbit of any point of X;.

Lemma 2.6 (Lemma VII.A.9 in [22]). Suppose tha(X;, X,) is an interactive
pair for Gy, G,, J. Let g=gn---g1 be an(m, k)-form. Then we haved(g)(Xy) C
X3_m. Furthermore if (X1, X2) is proper and g has length greater thah then the
inclusion is proper

The existence of a proper interactive pair forcésto be isomorphic. (Theo-
rem VILLA.10 in Maskit [22] in the case when =2.)

Theorem 2.7. Let G;,G,,J be as above and suppose that there is a proper inter-
active pair for G, Gy, J. Then (G, Gy) = Gy 3 G».

This easily follows from Lemmata 2.5 and 2.6.
The following is a straightforward generalisation of TheorVII.A.12 in Maskit [22].

Lemma 2.8. Suppose tha(Xi, X;) is an interactive pair for G, G, J. Suppose
moreover that there is a fundamental set, Bor G, for m= 1, 2 such that G,(Dm N
X3-m) C Xz_m. Then D= (D1 N X;) U (D, N X,) is precisely invariant undefid} in
G = (G, Gy). Furthermore if D is non-empty then @ is isomorphic
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Proof. What we shall show is that for any € D and any non-trivial element
g € G1 x3 Gy, we haved(g)(x) ¢ D. Since this holds trivially for the case wheb
is empty, we assume th& is non-empty. We assume thatis contained inD; N Xs.
The case wherx lies in D, N X; can be dealt with in the same way.

If g is a non-trivial element inJ, theng(x) lies in X, since X, is J-invariant. On
the other hand, sinc®; is a fundamental set, we haggx) ¢ D;. These imply that

g(x) ¢ D.
Now we shall consider the case whgnis represented in a normal form.

Claim 1. 1fg=0n0n_1---01is an m-form(m=1or 2), then®(g)(x) € X3_m\ Dm.

Proof. We shall prove this claim by induction.

We first consider the case wharr 1. Suppose first thaj is an element inG; —J.
Then ®&(g)(x) € X, by assumption, wherea®(g)(x) ¢ Dy since D; is a fundamental
set of G;. Therefored(g)(x) is not contained irD in this case. Suppose next thais
in G, —J. Then®(g)(x) lies in X; since the assumption thaX{, Xy) is an interactive
pair implies ®(g)(X2) € X;. We shall show thatb(g)(x) does not lie inD,. Suppose,
seeking a contradiction, thab(g)(x) lies in D,. Then since®(g™?) is contained in
G2 — J and ®(g)(x) € X1 N Dy, by assumption, we have = ®(g~1)®(g)(x) lies in
X1. This contradicts the assumption thaties in Xs.

Now, we assume that our claim holds in the case wgems lengthn — 1, and
suppose thay has lengthn. We consider the case whenis a (3— m)-form. The case
wheng is anm-form can also be dealt with in the same way. Sidagh_1---91)(X) €
X3-m \ Dm by the assumption of induction, we hadgg)(x) € gn(X3-m \ Dm) C Xn.

Suppose thatb(g)(x) lies in D3_,n. Then we haved(g)(x) € Xm N Ds—m. This
implies that®(gn_1 - - - 91)(X) € g, 1(Xm N D3-m) C Xm. This is a contradiction. Thus
we have shown tha®(g)(x) is contained inXy, \ D3 _p. ]

By what we have proved above, B # ¢, then for anyg € G; x; G, — {id}, we
have ®(g)(D)ND =@. This in particular shows thab(g) #id. Then Lemma 2.5 shows
thatG:Gl*J G,. O

REMARK 2.1. Maskit called a fundamental sBt, for G,, maximal with respec-
tive to Xy, (which is precisely invariant undei in Gy,) if Dy N Xy, is a fundamental
set for the action of] on X, and in Theorem VII.A.12 in [22], the fundamental sets
D;, D, were assumed to be maximal. The proof of the theorem abowssstiat the
assumption of maximality is in fact redundant.

In Maskit [22], the following sufficient condition for two opeballs to be an inter-
active pair is given.
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Proposition 2.9 (Proposition VIILA.6 in [22]). Let Gy C M(R") (m = 1, 2) be
two discrete groups with a common subgroup J and- ®" be an(n — 1)-sphere
bounding two open balls Xand X. If each X, is precisely invariant under J in
G, then (X3, X3) is an interactive pair

2.5. Convex cores and geometric finiteness.

DEFINITION 2.3. LetG be a discrete subgroup M(I@”) and A(G) its limit set.
We denote by Hulli(G)), the minimal convex set oH™! containing all geodesics
whose endpoints lie om(G). This set is evidentlyG-invariant, and its quotient
Hull(G)/G is called theconvex coreof G, and is denoted by Cor@&). The group
G is said to begeometrically finiteif the following two conditions are satisfied:
(1) there existg > 0 such that the-neighbourhood of Cor€) in H™/G has finite
volume, and
(2) there is an upper bound for the orders of torsion$sin

We do not assume thab is finitely generated above. The latter condition, the
existence of the bound on the orders is automatically sadisfiG is finitely generated.
For infinitely generated groups, Hamilton showed in [13]tttlee second condition is
not redundant.

As we shall see below, Bowditch proved in [9] that this coioditis equivalent
to other reasonable definitions of geometric finitenesse@ixtor the one thaH"!/G
has a finite-sided fundamental polyhedron, whose equigald¢a the above condition
has not been known until now.

2.6. Euclidean isometries. The classification of discrete groups of Euclidean iso-
metries is known as Bieberbach’s theorem (see [33] or [2%].ekample).

Theorem 2.10 (Bieberbach). Let G be a discrete group of Euclidean isometries
of R". Then the following hold
(1) If R"/G is compact then there is a normal subgroup*G G of finite index con-
sisting only of Euclidean translationsvhich is isomorphic to a free abelian group of
rank n.
(2) If R"/G is not compagtthen there exists a normal subgroup* @ G of finite
index in G which is a free abelian group of rank k with< k < n — 1.

By taking conjugates of G and*Gwith respect to an isometry &", the groups
can be made to have the following properties

DecomposeR” into R¥ x R"%, where R¥ is identified withR* x {0} ¢ R" and
Rk with {0} x R"k c R". Let g(x) =U(x)+a be an arbitrary element of Gwhere
U is a rotation and a is an element &". Then the rotation U leaveR¥ and R"X
invariant and the vector a lies in the subspaR€. Furthermore if g lies in G*, then
U acts onRK trivially.
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In the following we always identify the factors of the decamsjtion R" = R¥ x
R with RX x {0} and {0} x R"k,

DEFINITION 2.4. For a discrete subgroup of Euclidean isometries, we define
G* to be a free abelian normal subgroup &fwhich is maximal among those having
the property in Theorem 2.10.

2.7. Extended horoballs, peak domains and standard parabml regions. A
point x of A(G) of a discrete groupG of Mdébius transformations is called par-
abolic fixed pointif Stahs(x) contains parabolic elements. An easy argument shows
that Stalg(x) cannot contain a loxodromic element then. For a parabotiedfipoint
z, a horoball inB"™* touchingR" at z is invariant under Stai(z). In the case when
Stali(2) has rank less than, it is useful to consider a domain larger than a horoball
as follows.

_ DEFINITION 2.5. LetG be a discrete subgroup M(@“). Let z be a point of
R" which is not a loxodromic fixed point. Let Stg{z) be the maximal free abelian
subgroup as in Definition 2.4 of the stabiliser Si&) of z in G. Suppose that the
rank of Stay(z) is k with k < n—1. Then there is a closed subs®tc B"?! invariant
under StaB(z) which is in the form

n+1l
B,=h"1!x e B™!: Z x2>t!,
i=k+1

wheret (> 0) is a constant antl € M(I@“) is a Mébius transformation such thiafz) =
oo. We call B, an extended horobalbf G aroundz.

DEFINITION 2.6. LetTy,..., Ty be subsets oR" and J;, ..., In subgroups of
the groupG c M(R"). We say thatTy,..., Tm) is precisely invariant underJ(,..., Jn)
in G, if each Ty is precisely invariant undedy in G, and if fori # j and allg € G,
we haveg(Ti) N'T; = 9.

DEFINITION 2.7. A peak domainof a discrete groupG of M(@“) with non-
empty region of discontinuity at the parabolic fixed pomnt R" is an open subset
U, ¢ R" such that
(1) Uy is precisely invariant under Stgfy) in G,

(2) there exist & > 0, and a transformatioh € M(R") with h(z) = co such that

n
x e R": in2>t = h(U,),
i=k+1

wherek =rank Sta(z), 1<k<n-1.
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DEFINITION 2.8. If G has a precisely invariant extended horobBllaround z,
then the interior of its intersection witR" is a peak domain. Following Bowditch [9],
we use the ternstandard parabolic regiorat z to mean an extended horoball when
the rank of Stag(z) is less tham, and a horoball when the rank of Stgh) is n.

DEFINITION 2.9. A pointze R" fixed by a parabolic element of a discrete group
G c M(R"M) is said to be garabolic vertexof G if one of the following conditions is
satisfied.
(1) The subgroup Std{§z) has rankn.
(2) There exists a peak domal, at the pointz.

REMARK 2.2. Itis easy to see that the two conditions in Definition&® mutual-
ly exclusive: a peak domain exists only if rank i@ < n. Also we can easily see that,
in the case when = 2, the definition coincides with that of cusped paraboliediyoints
as in Beardon-Maskit [8].

DEFINITION 2.10. A parabolic fixed point for the groupG is called bounded
if (A(G)\ {z})/Staks(2) is compact (see Bowditch [9, 10]).

There is a relationship between a bounded parabolic fixedt @md a parabolic
vertex, which was proved by Bowditch [9].

Lemma 2.11. z is a bounded parabolic fixed point for a discrete group G ifl an
only if z is a parabolic vertex

DEFINITION 2.11. LetG be a discrete subgroup cM(I@“). A point X € R" is
said to be a conical limit point (or a point of approximationsome literature) if there
arez e H™! and a geodesic rayin H™?! tending tox in B"! whoser -neighbourhood
with somer € R contains infinitely many translates af

Conical limit points can be characterised as follows. Seeofém 12.2.5 in
Ratcliffe [25].

Proposition 2.12. Let G be a discrete group of (R") regarded as acting on
B! by hyperbolic isometriesThen a point ze 9B"*! is a conical limit point of G
if and only if there exis6 > 0, distinct elements g of G, and x e dB"*!\ {z} such
that ¢,1(0) converges to z whilégm(x) — gm(2)| > & for all m. Furthermore if this
condition holds then for every xe dB™?! \ {z}, there is§ > O such that|gm(x) —
Om(2)| > § for all m.

The following result due to Bowditch [9] or [10] will be esg&ily used in the
proof of our main theorem.
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Proposition 2.13. Let G C M(@“) (n > 2) be a discrete group Then G is
geometrically finite if and only if every point &f(G) is either a parabolic vertex or
a conical limit point

2.8. Dirichlet domains and standard parabolic regions. Dirichlet domains are
fundamental polyhedra of hyperbolic manifolds, which wilin out to be very useful
for us.

DEFINITION 2.12. LetG be a discrete subgroup d#(R"), and x a point in
H"™, which is not fixed by any nontrivial element &. The set{y € H"?: dy(y, X) <
dn(y, 9(x)), Vg € G} is called the Dirichlet domain foG centred atx, whered; de-
notes the hyperbolic distance.

It is easy to see that any Dirichlet domain is convex and therior of the inter-
section of the closure of a Dirichlet domain wilki" is a fundamental domain as de-
fined before.

The following follows immediately from the definition of cimal limit points.

_ Lemma 2.14. Let D be a Dirichlet domain of a discrete group@M(Hi”). Then
D NR" contains no conical limit pointswhere D denotes the closure of D iB"?! =
H™ U R

Now, we consider how a Dirichlet domain of a geometricallytéirgroup intersects
standard parabolic regions. We shall make use of the fatigwesult of Bowditch [9].
For a G-invariant setS on I@”, we say a collection of subse{#\s}scs is strongly in-
variant if gAs = Ags for anyse Sandge G, and AsN A, =@ for anys #t ¢ S. We
should note that eacls is in particular precisely invariant under S¢ggb) in G in the
sense as defined before.

Lemma 2.15. Let IT be the set of all bounded parabolic fixed points contained
in the limit setA(G) of a discrete group G- M(R"). Then we can choose a standard
parabolic region B at p for each pe IT in such a way tha{B,: p € T} is strongly
invariant

Using this lemma, we can show the following, which is essdigticontained in
the argument o4 in Bowditch [9].

Proposition 2.16. Let D be a Dirichlet domain of a geometrically finite group
G C M(R"). Let {By} be the collection of standard parabolic regions obtainediras
the preceding lemmarhen there is a finite number of points, p.., px € DNTI such
that D \ U, (Int B, U {pi}) is compact and contains no limit point of. G
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Proof. Choose a family of standard parabolic regi¢gBg} as in Lemma 2.15.
Since G is geometrically finite, every limit point o6s is either a conical limit point
or a parabolic vertex. By Lemma 2.14, no limit point @ is a conical limit point.
Therefore{B} covers all limit points contained iD.

Suppose that there are infinitely many distirgg, among{B,} with p; € D. By
taking a subsequence, we can assume {pgt converges to a poing € D, which is
also contained inA(G), hence inIl. By taking a subsequence again, we can further
assume that all thgy belong to either the same Stglg)-orbit or distinct Stab(q)-
orbits. We first consider the former case. lgtbe the geodesic line connecting
to g, which must be contained iD. Since all p; belong to the same orbit, there are
h; € Stalks(q) such thathi(p;) = p;. By taking a subsequence again, we can assume
that all h; are distinct. Then, the geodesig is shared by infinitely many translates of
hi D. This contradicts the local finiteness of the translateshef Dirichlet domainD.

Sinceq is a parabolic vertex, by Lemma 2.11, we see ths{Q) \ {q})/Staks(q)
is compact. Therefore, by taking a subsequence again, weagsume that there are
g € Stals(q) such that{gip;} converges to a point € R"\ {q}. We can assume that
all the g; are distinct by taking a subsequence. ketbe the geodesic line connecting
pi andq as before. Themj«; converges to the geodesic line connectintp g. Since
g« is contained ing; D, this again contradicts the local finiteness of the traaslat
of D. ]

Another easy consequence of Lemma 2.15 is the following.

Corollary 2.17. Let G be a discrete subgroup of (”). In the upper half-space
model of H"?!, suppose thato is a parabolic vertex of G Then the Euclidean radii
of the isometric spheres(d) of g € G — Stali(co0) are bounded from above

Proof. Consider the set of standard parabolic regids e obtained by Lem-
ma 2.15. Sincex is a bounded parabolic fixed point, a standard parabolioreBi,
and its translateg B,, by elementsg € G — Staly(c0) are among{B,}. Let B, be
the maximal horoball contained iB.,. Then there is a numben such thatB/ =
{(z1, ..., Zn+1): Znsa = D} U {00}, which is equal to the height of B.

Fix an elemeng € G — Staliz (c0). By enlargingB/,, we get a horobalB” which
touchesg~'B” at one point. Let’ < h be the height of FB”. Then the pointB” N
g~1B” has height'. The isometric spheré(g) of g must contain the poinB”Ng~1B”
since the reflection irl (g) sendsg~'B” to B”. Therefore the Euclidean radius bfg)
is equal toh’, which is bounded above by the consténindependent ofy. ]

This implies the following fact in the conformal ball mod&hich is CorollaryG.8
in Maskit [18].
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Corollary 2.18. We regard G as above as acting on the &l or L = R™!\
B, and let pe aB"! = dL be a parabolic vertex of G Suppose that,ge G are
distinct elements Then the radius with respect to the ordinary Euclidean ngetm
B"! or L of the isometric sphere(g)) goes to0 as k— oo.

3. Blocks

Throughout this section, we assume ti@atis a discrete subgroup d\‘/l(@”) and
J is a subgroup ofG.

DEerFINITION 3.1. A closedJ-invariant setB, containing at lease two points, is
called a block, or more specificallyd (G)-block if it satisfies the following conditions.
(1) BNQ((G)=BnNKJ), and BN Q(G) is precisely invariant unded in G.

(2) If U is a peak domain for a parabolic fixed poinbf J with the rank of Stap(z)
beingk < n, then there is a smaller peak domaii c U such thatU’ nFrB = .

_ Let She a @, G)-block, and letS be a topological rf — 1)-dimensional sphere in
R". Then S separateR" into two open sets. We say th&is precisely embeddenh
G if g(9) is disjoint from one of the two open sets for agye G.

A (J, G)-block is said to bestrongif every parabolic fixed point of] is a para-
bolic vertex of G.

Then we have the following.

Theorem 3.1. Suppose that G is a discrete subgroup o([@?l). Let J be a
geometrically finite subgroup of G and BR" a (J, G)-block such that for every par-
abolic fixed point z of J with the rank @&taly(z) being less than nthere is a peak
domain U, for J with U,N B =@. Let G=|J gkJ be a coset decompositiothen we
havediam(@(B)) — 0, wherediam(M) denotes the diameter of the set M with respect
to the ordinary spherical metric oiR".

Proof. By conjugatings by an element oM_(I@“), we can assume that Sta(0) =
Staly (c0) = {id} when we regards as acting orR™?! by considering the Poincaré ex-
tension. LetL denote the exterior oB™?! with the pointoo, which we regard also as
a model of hyperbolicr(+ 1)-space. Then] is also geometrically finite as a discrete
group acting onL. Let P be a Dirichlet domain forJ in L.

Let g be some element o — J. For a fixedg, the set{(go j)t(c0) =j Lo
g Y(00): j € J} is J-invariant. Then for each cosekJ, we can choose a representa-
tive gk in such a way thaty = g,;l(oo), which is the centre of the isometric sphere of
Ok, lies in P.

Now, by Proposition 2.16, there are finitely many standaraipalic regionsB,...,

By, in L around parabolic verticesy, ..., ps on P such thatP \ |, (IntB,, U{pi}) is com-
pact and contains no limit point af. We number them in such a way that Siéfn), ...,
Staly;(p;) have rankn whereas Staf{p;+1), ..., Staly(ps) have rank less than. We can
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assume that foj >r + 1, we haveBp, N R"NB = {p;} because of the following: By
our assumption in the theorem, we can makg smaller so that it satisfies this condi-
tion. Also it is clear that for the ol , there is no limit point ofJ in R"N Bp, other
than p;, which is also contained in the nel,. On the other hand no point iR can
converge top; from outside this smalleBy, since p; is not a conical limit point, which
implies that the compactness is preserved.

For horoballsBy,, . .., By, we have the following.

Claim 2. We can choose the horoballs,B..., B, sufficiently small so that BN
G(oo) =@ for each i (1 <i <r).

Proof. We identify L with the standard upper half-space model of hyperbolic
(n + 1)-space, which we denote B§"™!. By conjugation, we can assume that
(0,...,0, 1) corresponds too € L under the identification oH"* with L. Regarding
G as acting on thi§l™* and By, ..., By, lying in B™!, what we have to show is that
By N G(e) =0 for eachi.

We shall show that how we can malg, satisfy this condition. Conjugating
by an isometry ofH"™!, we may assume thagp; = co. Then Corollary 2.17 implies
that the radii of the isometric spherég¢g) of g € G — Stalks(oco) are bounded from
above by some constang. We setBp, = {x € H"™: X541 > 2 max1, rg}} U {00].

Any h € Stali(00) can be represented as a transformatio®dfin the formh(x) =
Ax+b for Ae O(n) andb € R". Let h denoteh regarded as an isometry &f"2.
Then we haveh(e) = (b, 1), henceh(e) ¢ By,.

For anyg € G — Stali(00), let ry denote the radius of the isometric sphe(g).
Theng(x) is represented as a transformation®¥ in the form a+rng(x —b)/|x —Db|?
for some A € O(n) and a, b € R" (see [2] or [7]). As before we denote by the
transformationg regarded as an isometry &f"*'. Then we have

L rgAb rs
9&=\2~ pp+1 el

and

r2

g9 (2

b|z+1 =%

which implies thatd(e) ¢ Bp,. We make eactB, smaller in the same way. It is clear
that even after changing the horobalB,\ Ui(Int By, U {pi}) is compact and contains
no limit point of J since By, intersectsP NIR" only at p; (1< j <r) and p; is not
a conical limit point. ]

Recall thata, = gk‘l(oo) is in P. By taking a subsequence, we have only to con-
sider the cases when evesy lies outside all the standard parabolic regidgs and
when all thea lie in someBy, .
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First consider the case when evesy lies outside theBp. Sincea € P and
F7\ U(nt(By,) U {p;}) is compact, the sequendex} converges to a poink |5\
U(nt(Bp,) U {p;}). Suppose thak is contained inB. Thenx must lie in B N A(G) =
BN A(J), which contradicts the fact th:§\ U(nt(Bp,) U {p;}) contains no limit point
of J. Therefore, it follows that they are uniformly bounded away frorB. Since the
gk are distinct elements, the radius with respect to the Eeahdmetric of the confor-
mal ball model of the isometric sphetdgy) converges to 0 by Corollary 2.18. There-
fore, we see thaB lies outside the isometric sphetégy) for sufficiently largek. This
meansgk(B) lies inside the isometric sphetégk‘l). This implies that diamgk(B)) — O.

Next we consider the case when taglie in some standard parabolic regidy, .
By Claim 2, we see thaBy, is not a horoball; henc@p, is an extended horoball, i.e.,
j =r+1. Furthermore, iffac} does not converge t@;, then we can také, smaller.
Therefore, we can assume thai} converges top;.

By composing a rotation of the sphdf@, we may assume thgt; is at the north
pole (0,...,0, 1). LetS be then-sphere of radius 1 centred @, and lety be the
reflection inS. Let B’ C By, be the largest horoball contained By, touching R"
at p;.

We denote points ifR"? as g,t) with ze R" andt € R. Then we havep; = (0, 1).
Take By, to be small enough so th&' = {(z,t): [z +(t — s’ — 1)? < s} for somes'
satisfying O< s’ < 1/2, and

|z|2+t2—t)

#z.9= (IZI2 (- 172" |z + (-1

We deduce that
n+ly — . 1
d(B") = (Z,t)-tfi U {oo}
and

¢(B) = {(z, t):t> 1+2is’} U {oo}.

For any j € Staly(p;), we haveg j¢(oc) = co since¢(oco) = pj. Consider the de-
compositionR™! = R™ x R™~M x R, wherem (< n) is the rank of Stal(p;). Let
¢jp(2) = U(2) + a be an arbitrary element ap Staly(p;)¢, whereU denotes a ro-
tation. By Theorem 2.10, we may assume that the rotatioteavesR™ and R"~™
invariant and the vectoa lies in the subspac®™. Also, if ¢j¢ € ¢ Stalj(p;)¢, then
its restriction to the subspad®™ is a translation. Hence, we have

n 2
0Bo)= @0 Y Frx (e ) i %} o)

i=m+1
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where z; denotes the-th component ofz.
Since By, N B = {p;}, we have

(3.1) $(B) C 1 (2 1): iz?+1<<1+i)2 t= 2000
' I~ A 28) "2 '

We should recall tha® Stalf(pj)¢ acts onR™ cocompactly. Therefore, we can take
representativegy so that the projections ap(ax) = ¢(g, Y(o0)) to R™ stay within a
compact subset oR™ by multiplying elements of Stdlfp;) to the originalgy. Note
that by changing representatives, we do not have the conditiatay € P any more,
but still the a; are contained inB,,. This means that there is a constdntsuch that

@) € {(zt): X022 < Lt >1/2} Nn¢(By).

Claim 3. There is a constant K- 0 such that for every ac By, and every ye
B, we havelax — y| > K|ax — pjl.

Proof. Suppose, seeking a contradiction, that suéh @does not exist. Then there
exist a sequencéys} C B and a subsequendey } of {ac} such that

|3k, — Vsl

3.2
(.2 |k, — Pjl

—- 0 as s— oo.

We shall denotey, by as for simplicity.
We can assume that 7 p; for all s. Then, since

B _ las — Vsl
|p(as) — p(Ys)] Vo= pilTo—pil
and
lp(Ys) — Pjllys — pj| =1,
we have
l3s — YsI* _ I¢(as) — o(¥s)I?
las — pjl2  |p(ys) — pjl?
(3.3)

_ L@ — ()7 + Y (d(as) — 609
SO} + im0 = P)}

We shall show that there existd > 0 such that
(1) Yli(e(as))2 < M for all s;
(2) Yimea(@(¥s) — p)f < M for all s; and
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(3) Yim(#(8s) — p(¥s)? > 00 ass — oo.
The inequality (1) follows from the fact that we chooag so that the projections of
¢(ax) to R™ stay in a compact subset. The second one is a consequencel of (&
now turn to the third inequality. Sincis} was assumed to converge pp, we see that
¢(as) tends tooco, which means thzaEi”jll(¢(as))i2 — 00. On the other hand, we know
that Y0, (4(as))? < M by (1), and thad "% (4(ys))? is bounded above independently
of s by (2). These imply (3).

Then (3.2), (3.3), (2) and (3) imply that

D () > o0 as s> 0.

i=1

It follows from (1) that for all sufficiently larges,

las — Ys| - }
las — pj| ~ 2
This is a contradiction and we have completed the proof ofnCIa ]

Let px be the Euclidean radius of the isometric spheregoin L. Then we have
the following.

Claim 4. If all ak lie inside the extended horoball B then we haveo§/|ak -
pj| — 0.

Proof. Suppose that there &> 0 such thatp?/|ax — pj| > 8. Then|gk(p;) —
ok(00)| = pf/lax — pj| = 8.

We can apply Proposition 2.12 by identifyinlg with B"*! by the reflection in
8B™! and taking into account the fact that the Euclidean metriesdaot distort much
by the reflection neafB™* and see thap; is a conical limit point ofG. This con-
tradicts Lemma 2.14 sincg; lies in P. [

We shall conclude the proof of Theorem 3.1. lsgtbe the distance fromax to B.
Sinceéy is the infimum of|a —y| for y € B, by Claim 3, we haves > Klax — pj|.
Since Proposition 1.C.7 in [22] holds fay € M(R"), we have

. 202 2K1p2
diam(@(B)) < 2 < == P
3k lax — pjl

This implies that diandx(B)) — 0 by Claim 4. O



1114 L. b, K. OHSHIKA AND X. WANG

4. The combination theorem

In this section, we shall state and prove our main theorenighwis a combination
theorem for discrete groups M (R"). Before that we shall prove the following lemma
which constitutes the key step for the proof of our main thear

Lemma 4.1. Let G; and G, be discrete subgroups of qﬁ"). Suppose that J is
a subgroup of @GN G,, which coincides with neither Gnor G,. Suppose that there is
a topological (n — 1)-sphere S dividingli” into two closed balls Band B, such that
each B, is a (J,Gnp)-block Suppose that there are fundamental seisM for G, G>
respectively such that (D N By) = BhN°Q(J) form=1,2,and DbNS=D,N S
Set D= (D1 N By) U (D, N By) and G= (Gy, Gy). Then the following hold
(1) S is also a(J, Gp)-block for m=1, 2.
(2) SNA(G1) =SNA(G2) =SSN A(J) = AJ).
(3) Both G, and G, have non-empty regions of discontinuignd B;, is contained in
Q(Gp) for m=1, 2, where B, is the interior of B, in R".
(4) By, is precisely invariant under J in
(5) Forany ge G —J (m=1, 2), g(Bn) N Bn=9(S NSc A(Gp).
(6) For any ge Gy, we have gD, N Bz_m) C Ba_y and DN B3_)) C B5_,.
(7) Let Gy =JgkmJ be a coset decomposition for m1, 2. If J is geometrically
finite, then diam@m(Bm)) — 0 as k— oo where diam denotes the diameter with re-
spect to the ordinary spherical metric aR".
(8) (B;, B3) is an interactive pair
(9) If A(J) Z A(G1) or A(J) Z A(G2), then (B3, B3) is a proper interactive pair
(10) If D #0 and J is geometrically finitethen (B, B) is a proper interactive pair

Proof. (1). This is obvious sinc8 is contained inBy,.

(2). By Lemma 2.1, we see that(J) is contained inS;, henceSN A(J) = A(J).
SinceSis a (J, Gy)-block form=1, 2 by (1), we havessN A(Gn) = SN A(J). This
implies (2).

(3). SinceA(J) is contained inS, we see thatB; N (J) = B;. On the other
hand, sinceBy, is a (J, Gm)-block, we haveB;, N Q(Gn) = By, N Q2(J) = By, Z9. Thus
both G; and G, have non-empty regions of discontinuity af{G,) containsB,.

(4). Since By, € ©2(Gn), by the definition of blocks,By N Q(Gn) is precisely
invariant underJ in Gp, and J(S) = S, we see tha;, is precisely invariant unded
in Gp,.

(5). SinceBnNQ(Gy) is precisely invariant unded in Gy, for everyg € G, — J,
9(Bm N Q2(Gm)) N (Bm N 2(Gp)) = @. It follows (9(Bm) N Bm) N Q2(G) = @. Then we
see that (4) implies (5).

(6). For anyj € J C Gm, j(DmNBs-m) C j(Bs-m) =Bs_m and j(Dm N B;_,) C
j(Bs_) = B5_,,. Hence we have only to consider the case wheles in Gy, — J.
Suppose that there exists an elemgnt G, — J such thatg(Dy N Bz-m) N By # @.
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Take pointsx € g(Dm N B3_;m) N By andy € Dy, N Bz, such thatx = g(y). Since
x lies in By N g(Dm N B3_m) C By N°Q(GH) C By N°Q(J) = I(Dm N Byy), there
are an elemenf € J and a pointz € D, N By, such thatj(z) = x. Then j(2) = g(y).
Sincez and y are Gp-equivalent points oD,,, we havez=y and j =g, which is a
contradiction. Therefore, for ang € G, — J, we haveg(Dm N Bz_m) N By, =@ and
9(Dm N Bs_m) C B;_,,,. Thus we have proved (6).

(7). By (1), we know thatS is a (J, Gp)-block. Also we should note that since
FrS=S, by the definition of blocks, for any parabolic vertexof J on S with the
rank of Stalj(z) being less tham, there is a peak domain centredzatvhich is disjoint
from S, and that every parabolic fixed point is a parabolic verted i geometrically
finite. Therefore by Theorem 3.1, diagpf(S)) — 0 ask — oco. On the other hand
since By, is a (J, Gp)-block, diam@km(S)) — 0 implies diam@xm(Bm)) — 0, and we
have completed the proof of (7).

(8). This follows from (4) and Proposition 2.9.

(9). If (Bg, B3) is not proper, therB; U B; = G1(B;7) C ©(G;) and B] U B; =
G2(B3) C Q(Gy). It follows that for eachm, we have A(Gn) C S. On the other
hand, by (2), we haveA(Gn) = SN A(Gp) = SN A(J) = A(J). Therefore if one
of A(G1), A(G2) is not equal toA(J), then B5, B3) is a proper interactive pair.

(10). Suppose thaD is non-empty and] is geometrically finite. Then we can
assume thaD; N B, # @, for the caseD, N B; can be proved just by interchanging
the indices. We divide the argument into two cases: the cdsmn\®; NS # ¥ and the
one whenD; N B3 # @.

Suppose first that there is a poixte D; N S= D,NS. Recall thatD; is contained
in (G,), and that forg € G; — J, we haveg(B;) N B; ¢ A(G;) by (5). These imply
that no G; — J)-translates ofB; pass throughx € D; NS c D; N B;. By the same
argument, we see that n&4 — J)-translates ofB, pass throughx.

Next we shall show thatG,, — J)(Bn) cannot accumulate at. First we should
note that the translate @, by an element ofG,, depends only on the cosets Gf,
over J since J stabilisesBy,. Suppose thatG, — J)(By,) accumulates ak. Then
there are elementgx in Gy, — J, which we can assume to belong to distinct cosets,
and pointsy, € By such that{gx(yk)} converges tox. Since we assumed thak is
geometrically finite, by (7) we see that diagp(Bn)) — 0. Therefore if we choose
one pointy in By, then {gk(y)} also converges tx. This means thak is a limit
point of G,,, which contradicts the assumption thaties in Dy,.

By these two facts which we have just proved, we see that tkemeneighborhood
of x which is disjoint from G, — J)(Bmn) for eachm. This implies in particular that
there is a point inB;_, which is not contained in th&p-translates ofBy,. Hence, in
this case, B], BJ) is proper.

Now we assume that there is a pointe D1 N B;. If x € (Gy — J)(B]), then
there are an elemerg € G1 — J and a pointy € B; with x = g(y). Sincey lies in
B N °Q(Gy) C By N°Q(J) = J(D1 N B}), there are an elemerjte J and a point
z € D1 N BS with y = j(2), which impliesx = gj(z). Since D; is a fundamental set
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of Gy, it follows thatx = z and g = j %, which is a contradiction. Therefone is not
contained in G, — J)(B;) and 7, B5) is proper. Thus we have proved (10). [

DEFINITION 4.1. Let{S;} be a collection of topologicaln(— 1)-spheres. We say
that the sequencgS;} nests abouthe pointx if the following are satisfied.
(1) The spheres5; are pairwise disjoint.
(2) For eachj, the sphereS; separatex from the preceden§;_;
(3) For any pointz; € Sj, the sequencéz;} converges to.

Now we can state and prove our main theorem.

Theorem 4.2. Let J be a geometrically finite proper subgroup of two diseret
groups G and G, in M(I@”). Assume that there is a topologicél — 1)-sphere S di-
viding R" into two closed topological balls Band B such that each Bis a (J, Gy)-
block and(B;3, B3) is a proper interactive pair Assume that for s 1, 2, there is a
fundamental set R for G, such that {Dm N By) = B N°R2(J), Dm N Bs_ny, is either
empty or has nonempty interjoand D, N S= D, N S. Set D= (Dy N By) U (D2 N By)
and G= (G;, Gy). Then the following hold
(1) G= G]_*J Gz.

(2) G is discrete
(3) If an element g of G is not loxodromithen one of the following must hold

(&) g is conjugate to an element of either, ®r G,.

(b) g is parabolic and is conjugate to an element fixing a parabdiked point

of J.

(4) S is a precisely embedddd, G)-block

(5) It {S} is a sequence of distinct G-translates gftBendiam(S) — 0, wherediam
denotes the diameter with respect to the ordinary sphenicatric onR".

(6) There is a sequence of distinct G-translates of S nestingtat@ point x if and
only if x is a limit point of G which is not G-equivalent to a linpoint of either G
or G,.

(7) D is a fundamental set for GIf both D; and D, are constrained and Sn Fr D
consists of finitely many connected components the sum cfewhe- 1)-dimensional
measures on S vanishethen D is also constrained

(8) Let Qn be the union of the @-translates of B, and let R, be the complement of
Qm in R". Then Q(G)/G = (RiNQ(G1))/G1U(RNQ(G,))/G,, where the latter two
possibly disconnected orbifolds are identified along tleeimmon possibly disconnected
or empty boundarySn ©(J))/J.

Furthermore under the assumption that S is a strofd, G)-block if and only if
for m=1, 2, each B, is a strong(J, Gn)-block two more statements hold
(9) If both B, and B are strong then except for G-translates of limit points of,G
or Gy, every limit point of G is a conical limit point
(10) G is geometrically finite if and only if both Gand G, are geometrically finite
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Proof of (1). Since B, By) is proper, (1) follows from Theorem 2.7. ]

Proof of (2). Suppose thaB is not discrete. Then there is a sequeriggl of
distinct elements ofc which converges to the identity uniformly on compact subset
Expressgk in a normal formgx = yn, © yn,, ©- -0 ¥n,- We may assume that each
has even length, for ik has odd length, then by Lemma 2.6, eittsr(B;) C B3,
or g«(B3) C B;, and such elements cannot converge to the identity. Bydhgemwing
B: and B if necessary, we may assume th&t;(— J)(B;) is a proper subset oBj
since @7, B3) is proper. By choosing a subsequence, we may assume thiteaik
are (1, 2)-forms or all of them are (2, 1)-forms. It sufficesptove the case that every
ok is a (1, 2)-form since ifgk is a (2, 1)-form, thergk‘l is a (1, 2)-form.

Since we assumed that eaghis a (1, 2)-form, we havey(B3) C yn, © ¥n,,(B5).

If ¥n.(B35) = B, theng«(B3) C v (B37) C B3, with the last inclusion being proper,
and if yn,_,(B3) is a proper subset d8;, theng«(B3) C yn, o¥n,(B3) C yn (B7) C B3,
with the last two inclusions being proper. Therefore, irheitcase, we havgg(B3) C
¥n(B7) C B3, with the last inclusion being proper. Thi&& — gk(B5) D BS — v (B]) D
B5 — (G1— J)(By). Sincegy — id on B, and BS \ (G1 — J)(B;) # @, this is a contra-
diction. 0

Now for a normal formg=g,---g; € G, we call g positiveif g; € G; — J and
we express it ag > 0; we callg negativeif g; € G, — J and we express it ag < 0.
Using this distinction, we consider a coset decompositibiéso

G=Ju <U ankJ> u (EJK bnkJ>,

n,k

where |ank| = [bpk| =N, an > 0, andbyk < 0. Following Apanasov [6], we s€l, =

(U @k(B1)) U (Uk brk(B2)), Ca =R"\ Ty, C=JCp, andT =R"\ C = Ty
Then we have the following.

Lemma 4.3. {T,} is a decreasing sequence with respect to the inclysibat is
T.DOTD---.

Proof. Take a poinx € T, (n > 1). Then either there are an elemenf > 0
with lengthn and a pointy € B; satisfying thatx = a,(y), or there are an element
bk < 0 with lengthn and a pointy € B, satisfying thatx = bnk(y). In the former case,
if we expressa,k in a normal form asg, o --- o 01, theng; € Gy — J. Since gi(y)
lies in g1(B1) C By, there is a pointz € B, with gi(y) = z. Therefore,x = an(y) =
Ono---00(2) € bn_1ys(B2) C Tn_1. In the latter case, by the same argument we have
X € Th1. ]



1118 L. b, K. OHSHIKA AND X. WANG

Lemma 4.4. The sphere S is precisely embedded inliGS is precisely invariant
under J in G and G,, respectivelythen S is precisely invariant under J in.G

Proof. We shall first show tha$ is precisely embedded. For amye G with
lgl = 0, we haveg(S) = S and is disjoint from bothB; and B;. If |g| = 1, theng ¢
Gn—J (m=1,2), andg(S) = g(Fr Bm) € g(Bm) C Bs_m. This means thag(S) is
disjoint from By,.

Now letg=gnho---00; be an M, k)-form with |g| > 1. Theng(S) = g(Fr By) C
0(Bx) C Bs_m sinceg(By) C B; ,, by Lemma 2.6. This means tha(S) is disjoint
from By, again, and we have thus shown tt&is precisely embedded .

Now suppose thas is precisely invariant unded both in G; and G,. Since, as
was shown above, fag € J, we haveg(S) =S, we have only to show tha(S)NS=¢
for g € G — J. Note thatg(S) = g(FrBn) C g(Bm) C B5_, for any g € G, — J.
Therefore, it remains to consider the case whgn> 1. If g=gno---00; is an M, k)-
form with |g| > 1, thenh =g 10 g is a (3— m, k)-form. It follows from Lemma 2.6
that g(S) = gn o h(S) = gn o h(Fr By) C gn o h(Bx) C gn(Bm) C B ,,. Thus, we have
shown that for anyge G — J, g(§ N S=4. O

Lemma 4.5. D c C;.

Proof. We assume thdd # @. By interchangingB; and B, if necessary, we can
assume thaD; N B, # @. If there is a pointx e D;NS=D,N S, then no Gy, — J)-
translates ofB,, pass throughx as was shown in the proof of Lemma 4.1-(10). This
implies thatx € C;.

It remains to consider the case where D1 N B;5. If x € (G1— J)(By), then there
are an elemeng € G; — J and a pointy € B; with x = g(y). Sincey € °Q(G1)NB; C
°Q(J) N By, there are an elemetjte J and a pointz € D; N By with y = j(2) by the
assumption tha(D;NB;) =°Q(J)N By in Theorem 4.2. Therefore we hawe= gj(2),
which implies thatx = z and gj = id. This contradicts the assumption thatlies in
G1 — J. Thus we have shown thate C;. O

Lemma 4.6. D is contained in°Q(G), and precisely invariant undefid} in G.

Proof. We shall first prove thab is contained in2(G). Suppose, on the con-
trary, that there is a poirz in D N A(G). SinceD = (D; N By) U (D, N By), we can
assume thar € D; N B, by interchanging the indices if necessary.

Claim 5. In this situation we have z D; N S.

Proof of Claim 5. Suppose not. Thenmust be contained ifD; N BS. Sincez e

A(G), it follows from Lemma 2.2 that there is a sequerigg} of distinct elements in
G such thatgk(y) — z for all y with at most one exception. Sinaes B; C Q(G>) (by
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Lemma 4.1-(3)) and € D; C ©(G3), we have|gk| > 1, and we can assume that each
ok is a 1-form. Sinceg(B) c T, for B which is equal toB; or B, Lemma 4.5 implies
thatz € FrTy. Sincez € D; C ©(G1) and every point ofB5 NFrT; is either a Gy — J)-
translate of a point of or a limit point of G;, we deduce that is a (G;— J)-translate

of a point of S. On the other hand, sinceis contained inC; = R"\ T;, we see that

z is not a G; — J)-translate of a point ofS. This is a contradiction. ]

Sinceze DN S=D,NS, as was shown in the proof of Lemma 4.1-(10), no
(G — J)-translates ofB,, pass throughez nor accumulate az. Therefore, we have
z e C]. Since{T,} is decreasing, the — J)-translates ofS do not accumulate a,
for (G — J)-translates ofS accumulate at points i1, Which is disjoint fromCJ. This
means that cannot be a limit point of; hencez € Q(G). Thus we have shown that
D is contained inQ(G).

By Lemma 4.1-(6) and Lemma 2.8, we see thag (0 B5) U(D>N By) is precisely
invariant under{id} in G. SettingA = (D1NB3)U(D>N B7), we haveD = AU(D1NYS)
and A c C]. Then for anyg € G — {id}, we haveg(D)N D = (g(A) N (D1 N ) U
(@(D1N 9N A U(QDLNYN(D1NS)).

If ge J—{id}, theng(D:NS) C S\ Dy andg(A) U A C B] U Bj. Therefore,
g(D1N9YN(D1NY =0, g(D1NSNA=¢@ andg(A) N (DN S) =¢. It follows that
g(D) N D =9 in this case.

If g€ Gn—J, theng(D1 NS =g(DnN S c T, and Lemma 4.1-(4) and (6)
imply that g(A) C B ,. Since AU (DN S) =D is contained inC; by Lemma 4.5,
and g(D1 N S) is contained inT;, we haveg(D; N S N A=@. We also haveg(D1 N
SN(D1NS =¥ sinceD;NS=D,N S and D,, D, are fundamental sets @,, G,
respectively, andy(A) N (D1 N S) = @ since g(A) is contained inB; ,, as was seen
above. Therefore also in this case, we hay®) N D =¢.

Now, we considerg=gpo---00; € G — (G1 U Gy), whereg; € G, — J. Then
9(D1N9 =9g(DmN'S) € g(Bm) C Th € T1 and g(A) = g(Dm N B3_,) U(D3-m N By)) C
Ono---002(B3 ) Ug(By) (Lemma 4.1-(6))C Ty, UTy C T € Bf U B;. These
facts imply thatg(D1 N S N (D1 NS =0 by Lemma 4.5,g(D1 NS N A=0 by the
fact that A c C7, andg(A) N (D N'S) =@. Thus we have shown thdd is precisely
invariant under{id} in G. Since we have already shown thtc @(G), this means
that D C °Q(G). 0

Lemma 4.7. SNQ(J)=SnNQ(G), and SN Q(J) is precisely invariant under J
in G.

Proof. Letz be a point inSN Q(J). Since SN Q(Gn) = SNQ(J) for eachm by
Lemma 4.1-(2), we have € Q(G). As was shown in the proof of Lemma 4.1-(10),
no (G — J)-translates ofB,, pass througte nor accumulate at. Thereforez is con-
tained inCjJ.
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Suppose, seeking a contradiction, thalies in A(G). Then there is a sequence
{gk} of distinct elements o6 such thatgy(y) — z for all y with at most one exception.
Sincez is contained inQ2(G1) N 2(G,), we can assumg| > 1 for all k by taking a
subsequence. We deduce from the fact @dB) c T, for B = B; or B, that z must
be contained inT1, which is a contradiction. Thus we have shown tiSan Q@) is
contained inSN ©(G). The opposite inclusion is trivial.

Now we turn to prove the latter half of our lemma. It is cleaattld keepsSn
Q(J) invariant. Suppose that there are poigtsand z in SN Q(G) = SN ©(J) and
that there is an elemem € G — J such thatg(y) = z. Expressg in a normal form
g=Qgnho---00;. Thenn > 1 sinceSis a (J, Gy)-block (m=1, 2). Clearlyz lies on
g(8) N'S. Moreover sincey(S) = gn(gn-10---001(S) and S is contained in bothB,
and B, by Lemma 2.6,g(S) is contained in eitheg,(Bn), whereg, is assumed to lie
in Gn,. If ze g(S) is contained ingn(By,), then it must lie inB3_,, which contradicts
our assumption. Therefore must lie in g,(S). We may assume thag, € Gy — J
by interchanging the indices if necessary. Simgeis a (J, G1)-block, B; N Q(G,) is
precisely invariant unded in G;, which means thag,(€2(G1)NB;) is contained inB;.
Because we have shown thaties in SN gy(S), this implies thatz € A(G;) C A(G).
Sincez = g(y) € 2(G), this is a contradiction. Thus we have shown thesN Q(G))N
(SN Q(G)) =9 for anyg e G — J. ]

Proof of (3). Letg be an element ofs which is not conjugate to any element
of either G; or G,, such that|/g| is minimal among all conjugates af in G. Clearly,
we have|g| > 1. Expressg in a normal formg =g, o--- o0 g;. If the length ofg is
odd, say,gn, 91 € Gm—J, theng-togogn =gn_10---0(g100n). The corresponding
normal form ofg,! o go g, has length less than, which contradicts the minimality
of |g|. Therefore the length of must be even and must be a (3- m, m)-form. This
implies thatg(Bm) C gno0n—1(Bm) C Bm. Since B7, BS) is a proper interactive pair by
assumption, the last inclusion is proper by Lemma 2.6. Hapbas the infinite order
and has a fixed point ig(Bm) C By. Similarly, g™*(Bs m) C 9; 00, *(Bs_m) C Bs_m,
where the last inclusion is proper. Therefarealso has a fixed point ig=%(Bs_m) C
Bs_m, which may coincide with the above-mentioned fixed point.

SinceG is discrete andy has infinite orderg is not elliptic. If g is parabolic, then
its fixed point is unique, which we denote By Hence the two fixed points mentioned
above are equal and lies on SNg(S). By Lemma 4.7,x is a limit point of J. Since
J is geometrically finite,x is either a parabolic fixed point o or a conical limit
point for J by Proposition 2.13. Since a conical limit point fdris also that forG
and a conical limit point cannot be a parabolic fixed point, see thatx is a parabolic
fixed point of J. O

Proof of (4). SinceB; and B, are both blocks, for every parabolic fixed point
of J with the rank of Stap(z) being less tham, the peak domain centered atfor
J has trivial intersection withS = Fr B; = Fr B,. This shows the second condition in
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the definition of blocks holds foS. Lemma 4.7 implies that the first condition in the
definition holds forS, hence thatSis a (J, G)-block. By Lemma 4.4,S is precisely
embedded inG. O

Proof of (5). By (4) shown above, we know th&tis a (J, G)-block. Then (5)
follows from Theorem 3.1. O

Lemma 4.8. CyN By, is precisely invariant under &, in G.

Proof. It is obvious thatC; N B, = R" — Gs-m(Bs—m). Since G3_n(Bs_m) is in-
variant underGs_p, its complementC; N B, is also invariant undeG;_n,.

If g e Gn—J, theng(C. N By) C 9(By) C B;_,, and we are done. Now we
consider a genera which is expressed in a normal forgn=gpo- - -00; with |g| > 1.
If g is an (n, m)-form, theng(C, N By) C g(By) C B, by Lemma 2.6. Ifg is an
(m, 3—m)-form, theng(C1NBS) =gno---001(C1NBZ) =gno---00(C1NBy,) as was
shown in the last paragraph, and this last term is containeBgi  sincegno---o0
is an fn, m)-form. If g=gyo---00g; is a (3— m, k)-form, where eithetk = 1 or
k =2, then, by the discussion above, we gge; o --- o0 0:1(C1 N By) C B;_,,; hence
9(C1 N By) C gn(Bs_,,) C T7. Thus in every case, i) ¢ Gs_m, theng(C. N B;) N
(CinBy)=0. O

Lemma 4.9. The set C is contained in the union €fG) \ °Q(G) and the G-
translates of DU A(G1) U A(Gy).

Proof. Every pointx € C is contained either it€; or in C,\ C,,_; for some index
n (n > 1) since{C,} is increasing. Ifx € C,\Cy_1, thenx € T,_1\ T,. Hence there are
a pointy € B¢ and an element expressed in an, k)-form g =gn_10---0g; € G such
thatx = g(y). If y lies in T, then eithery € (Gx— J)(Bx)N Bk or y € (Gz_x— J)(Bz_k).

In the former casey is contained inA(Gx) N S= A(J)N S by Lemma 4.1-(5). In the
latter case, we have € T,, which is a contradiction. Therefore, every poite C

is either contained irG(A(J)) or G(Cy). In the former case, we are done. Therefore,
we have only to consider the latter case. Moreover, sinceétgis our statement are
G-invariant, we can assume thatlies in C;.

It suffices to prove our lemma under the assumption thatC; N By; the proof
for the casex € C; N B, is the same. Ifx lies in C; N By, then eitherx € A(G;) or
X € °Q(Gy) or x € 2(G1) \ °Q(G1). We only need to discuss the latter two cases.

CASE 1: x € °Q(Gy).

In this case, there are an element G; and a pointz € D; with g(z) = x. We
claim thatz ¢ B;. Suppose, on the contrary, thatis contained inBj. If g lies in
Gy — J, theng(2) is contained inT; by the definition ofT;. Since we assumed that
lies in Cy, this is not possible. Therefore, we hages J. On the other handJ(B;) =
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B;, which contradicts the assumption thaties in B,. This shows thaz € D1N B, C
D, and we are done in this case.

CASE 2: x € Q(Gy) \ °Q2(Gy).

Since SN Q(J) = SN Q(G1) = SN Q(G) = SN Q(G) by Lemma 4.7, ifx € S,
then x lies in Q(G). Furthermore, sincé€(G) is contained in°Q(G;), this implies
that x € (G) \ °Q(G), and we are done in this case. Af¢ S, thenx € C; N B3.
Since x € Q(G;), no (G; — J)-translates ofB; accumulate ak as was shown in the
proof of Lemma 4.1-(10). Therefore, we haxe= C;. Then, by Proposition 2.4, there
is a neighbourhoodJ of x contained inC; N B such thatU is precisely invariant
under Stab,(x) in G; and Stab,(x) is a non-trivial finite subgroup. Now Lemma 4.8
implies that Stap, (x) = Stalks(x). HenceU is precisely invariant under Stafx) in G.
This shows thak is contained in2(G)\ °2(G), and we have completed the proof.]

Lemma 4.10. T C A(G). Furthermore every point of T is either a G-translate
of a point in A(J) or the limit of nested translates of. S

Proof. Consider a point € T. We assume that € (G; — J)(B,), for the case
when z € (G, — J)(B) can be dealt with in the same way. Then there is an element
h; =g € G1 — J such thatz € g;(B1). SinceT; D T,, we havez € T,, and there is an
elementg, € G,—J such thatz € g;09,(B;) = h(By) C hy(Bs1). Similarly, sincez € T,
there is an elemeng; € G; — J such thatz € g; o g2 o 93(B1) = h3(B1) C ha(By) C
h1(By); etc. Since the elemerti, has length increasing ds — oo and (B;, B5) is
a proper interactive pair, the setg(S) can be assumed to be all distinct by taking a
subsequence if necessary. Thus we have shown ttmat i, then there is a sequence
{h} of elements ofG, with |hy| — oo, andz e - -- C h(By) C - - - C ho(By) C ha(By),
where éi is either B; or B,. Passing to a subsequence if necessary, we may assume
that Bj = B;.

There are two possibilities for this sequence: eithies in the interiors of infinitely
manyhy(B,), or from somek on, z lies on the boundary of evety(B;). In either case,
since thehy(S) are distinct, we have diai{(S)) — 0. Since the balhy(B;) bounded
by hy(S) decreases ds— oo, this is possible only when diam{(B;)) — 0. Sincez is
a limit of {hx(xx)} with xx € B; in either case above, it follows that for evexye B,
we havehy(x) — z. This means that lies in A(G). Moreover, in the former case, we
have shown thathy(S)} nests around. In the latter case, sincee hy,(S) N h,+1(S) N
-++, we havew = h'(2) € SN hithi:(S)N - - - Since suchw is contained inA(G),
by Lemma 4.7, it also lies im\(J). This means thar is contained in theG-translate
of A(J). O

Lemma 4.11. If ze CNA(G), then there is no sequence of distinct translates of
S nesting about.z
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Proof. Lemma 4.9 implies thatis a G-translate of a point in eithed or A(G1)U
A(Gy). Since D is contained inQ2(G) by Lemma 4.6, the only possibility ig e
G(A(G1) U A(G2)).

We first consider the special case whelies in G(A(J)). Under this assumption,
suppose, seeking a contradiction, that there is a seqybp(®} of distinct G-translates
of S nesting aboutz = g(y) for an elementg € G and a pointy € A(J) € S. Then
we havez € hy(B°) by taking a subsequence f@ which is eitherB; or B,. We can
assume thaB is B; after taking a subsequence, for we can deal with the othex cas
in the same way. It follows thay € g~ o hi(B;). Now since{hx(S)} nests around
z, we have diant{(B;1)) — 0. This is possible only when after taking a subsequence
all hy are fny, 1)-forms withmy = 1, 2. (If hy were g, 2)-form, thenhy(B;) would
contain S; hence its diameter would not go to 0.) Therefge'hy is also expressed
as an (v, 1)-form for largek and g-*hy(B;) is contained inB; .. In particular, we
havey ¢ S. This contradiction shows that f € G(A(J)), then there is no sequence of
distinct translates of nesting about.

Now we turn to the general case where G(A(G1) U A(Gy)). It suffices to con-
sider the case € G(A(Gy)) since the proof for the case € G(A(Gyp)) is entirely
the same. Then there are an elemgnt G and a pointy € A(G1) with g(y) = z.
Since B] C Q(G1), we haveA(G;) C R"\ G1(By). Therefore,y is not contained in
G1(By7); hence unlesy lies in Gy(S), it must lie in Cy N B;. If y € Gy(S), then
y € G1(SN A(Gy)) = G1(SN A(J)). The discussion in the previous paragraph implies
that this case cannot occur.

Now we assume thay € C, N Bj. If there is a sequencgh(S)} of distinct G-
translates ofS nesting about = g(y), thenz € hy(B*) for everyk where B is B; or
B,, and hencey € g~! o h(B°). We may assume tha® = B, by changing the index
and taking a subsequence angdis an (n, 1)-form. Theng' o hy is also an i, 1)-
form for sufficiently largek. Since{T,} is a decreasing sequencg,e T,°, which is a
contradiction. Thus we have completed the proof. O

Proof of (6). If x lies in A(G) \ G(A(G1) U A(Gy)), thenx € T by Lemma 4.9.
Since every point ofT is either a translate of a point ak(J) or is the limit of a
nested sequence of translates®by Lemma 4.10, we have proved the “if” part.

Now we turn to the “only if” part. Suppose that lies in A(Gy,) for m=1 or
2. SinceBy;, C Q(Gn) by Lemma 4.1-(3), we have € R"\ G(Bg). If x € Gm(S),
then as was shown in the proof of Lemma 4.11, there is no dis@atranslates ofS
nesting about. Thereforex is contained in@“\Gm(Bm) =Cy1N Bg_,, which implies
thatx e CNA(G). By Lemma 4.11, there is no distinct translatesSofiesting abouk.

O

Proof of (7). By Lemma 4.9, every point & N °Q(G) is a translate of a point
of D. Also by Lemma 4.10,T is contained inA(G). This shows that every point
of °Q(G) is contained in aG-translate ofD. Furthermore, sincd C °Q(G) and D
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is precisely invariant under the identity i by Lemma 4.6, it follows thatD is a
fundamental set fots.
Now assume that botlb; and D, are constrained.

Claim 6. (G) c G(D).

Proof. Since we have already shown tliatis a fundamental set foG, we have
only to prove that ifx € Q(G)\ °Q(G), then there is an elemegte G with g(x) D.
Now let x be a point inQ2(G) \ °Q(G). By Lemma 4.10,x is not contained inl. As
was shown in the proof of Lemma 4.9, we haxes G(C;) N (2(G) \ °2(G)). This
means that there are an elemgnt G and a pointy € C; N (22(G) \ °2(G)) such that
X = g(y). We may assume that € B, for the proof in the casg € B; is entirely
the same.

Suppose first thay € SNC;N(2(G)\ °2(G)). Then sinceSNQ(J) = SNQ(G,) =
SN Q(G) by Lemma 4.7 andD; is a constrained fundamental set 8¢, there are an
elementh € G; and a pointz € D, such thaty = h(z). SinceG4(By) C B UT;, we
see thatz must be contained iB,, hencez e 51ﬂ B, C D. Thus we have completed
the proof in this case.

Next we assume that ¢ S, which means thay € C;N B35 N(2(G)\ °2(G)). Since
y € Q(G) c 2(Gy) and D; is a fundamental set faB;, we see thay is G;-equivalent
to a pointw € D;. By Lemma 4.8, we haver € D; N C; N B;. Since Dy N By C D,
this impliesw € D, and our claim has been proved. O

We now return to the proof of (7). We have

(4.1) Gm(Dm) = Gm((Dm N BS) U (Dm N Bz_m)),
(4.2) Gm(Dm N BS) C B U (T N B )

by the definition ofT;, and
(4.3) DmN By, C DN Bs_m € C1 N Ba_py

by Lemma 4.5. _ _
SinceC1N Bz_m =R"\ Gm(Bg,), we see thaC; N Bs_m is Gp-invariant. Therefore
from (4.3), we obtain

(4.4) Gm(DmN B3 ) CC1NBsm.

Since FD N S consists of only finitely many connected components the stimhose
(n—1)-dimensional measures @vanishes by assumption, it follows from (4.1), (4.2),
and (4.4) that the sides dd, in Bz_, are paired with those iB3_, by elements of

G, for eachm. Since the sides oD in B; are equal to those oD, in B; and the
sides of D in B, those ofD; in B, we see the sides are paired to each other. These
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sides can accumulate only at limit points because of the saoerty for D; and D..
The only thing left to show is that the tessellation<®fG) by translates oD is locally
finite.

Take anyz e DN Q(G). We see from Lemma 4.5 that eithee C; or ze FrCy, =
FrT.. We may assume thate Dy N B, C D1N By, for the proof in the case € D,N B,
is entirely the same.

Case 1: ze Cj.

Since z is contained inQ(Gp,) for eachm and Dy, is a constrained fundamental
set for Gy, there is a neighborhood of z with U C C7 such that for eactn there
is a finite set{gmi(Dm), - - ., Omk,(Dm)} with U c | gmi(ISm) for gmi € Gnn. We con-
siderU N Bs_py. Since Gp(Dy N BS) € B UTY andU C Cy, we haveU N Bs_py C
Ui Gmi(Dm N Ba-m). ThereforeU ¢ gy (U mi(Dm N Ba-m)) € Un=a (Ui mi(D)),
and we have obtained the local finitenesspfat such a point.

CASE 2: ze FrCy = FrT,.

We claim thatz ¢ S in this case. Suppose, on the contrary, thds contained
in S. Sincez € Q(G) C 2(Gy), as was shown in the proof of Lemma 4.1-(10), no
(Gm — J)-translates ofB,, pass througlz and no Gy -translates ofB,, accumulate at
z. Therefore, we have € C3, which contradicts our assumption for Case 2.

Hence, we can assume thaties in B;. Since a point of Fil; in Bj is either a
point of (G1 — J)(S), or a point of A(G;) andz € Q(G) c 2(G;), we see thaz must
lie in B; N (G1— J)(S). Then there are a poirte S and an elemeny € G, — J with
g(s) = z. By Lemma 4.7,s lies in SN Q(G) = SN Q(J) = SN Q(G1) = SN Q(Gy).
Therefore no G, — J)-translates ofB,, pass throughs and no Gp-translates ofB,
accumulate as as was shown in the proof of Lemma 4.1-(10). This implies that
is contained inC; N'S. By applying the proof of Case 1 ts, we see that there is
a neighbourhoodJ of s covered by finitely manyG-translates ofD. It follows that
g(U) is a neighbourhood of covered by finitely manyG-translates oD. This shows
that D is locally finite at a point as in Case 2.

Thus we have shown the proof of the local finitenessDnf hence completed
the proof. O

Proof of (8). We shall prove this by showing the following ehbrclaims.
Claim 7. For each m we have R N Q(Gn) C (G).

Proof. Take a poinkz € Ry, N Q2(Gy,). Since Ry = R" \ Gm(By,), we have either
z2e Gn(S) orze CiNB; . If ze Gy(S), thenz e Q(G) since SNQ(G) = SNQ(J) =
SN Q(Gn) by Lemma 4.7. Ifze C; N By |, sincez € 2(Gy), no Gp-translates of
B passe through or accumulate aas was shown in the proof of Lemma 4.1-(10).
It follows that z € C;. By Proposition 2.4, there is a neighbourhobd of z lying
in C; N Bg_,,, which is precisely invariant under Stgf{(z) in Gy, such that Stad),(2)
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is finite. By Lemma 4.8, we see that Sgalfz) = Staly(z) and thatU is precisely
invariant under Stak(z) in G. By Proposition 2.4, this implies thate Q(G). O

Claim 8. Every point of Q(G) is G-equivalent to a point of either ;R Q(G1)
or R, N Q(Gy).

Proof. Letz be a point inQ(G). By Lemma 4.10, we see that¢ T. As was
shown in the first half of the proof of Lemma 4.9, we have G(C,). We have only
to consider the case whene C; by translatingz by elements ofG. SinceC; N By, C
Rs_m by the definitions ofR;_,, and C; and Q(G) c Q(G;) N 2(Gy), we see that
ze (RiNQ(GY)) U (RN Q(GY)). ]

Claim 9. For each m=1, 2, the set R N Q(Gy,) is precisely invariant under
G in G.

Proof. It is obvious thatR, is Gny-invariant, hence so iRy, N Q2(Gmn). We shall
show thatR, N Q(Gn,) is moved to a set disjoint from it by other elements@f

For anyg € Gz_m — J, we haveg(Rn N Q(Gm)) C 9(Bs—m N 2(Gm)) C Bm.
By Lemma 4.1-(5),9(Bs—m) N S C A(Gs_m) N' S, which is equal toSN A(Gn) by
Lemma 4.1-(2). This implies that no point &t(Gn) N Bs_, is mapped intoS by
g, henceg(Bs-m N Q(Gm)) C By;,. Since Ry, is contained inBz_p, it follows that
9(Rm N 2(Gm)) N R N Q(Gm) = 0.

Now letg=gno---00; be a normal form withg| > 1. If g is a (3—m, 3— m)-
form, then sinceg;(RnN2(Gm)) C By, we haveg(RnNQ(Gm)) C gnho---0g2(By,) C
By, If g is a (3—m, m)-form, then sinceg; preservesRy N Q(Gn), we haveg(Ry N
Q(Gm)) =0no- -0 0(RnNQ(Gn)), which is contained irBy, by the argument above
for (3 — m, 3 — m)-forms. Finally if g is an n, k)-form, theng, 10---00; is a
(3 —m, k)-form with k =3 — m or k = m. Then, as was discussed above, we have
On-10- -0 01(RnN Q(Gm)) C By, andg(Rn N Q2(Gm)) C 9n(By,), which is contained
in the complement oR,, by definition. Thus we have shown thg{R, N 2(Gn)) N
RnNQ(Gn) =0 for anyg € G — G, O

By these three claims, we have shown tbHG)/G = (R; N 2(G1))/G1 U (R N
Q(G,))/G2. Now we consider the intersection of the two terms in thetrigdind side.
We should first note thatR; N 2(Gy)) N (R N (Gy)) is contained inB, N B; = S
since Ry is contained inB,, and R, is in B;. SinceQ(Gn)NS=QJ)NSC RyN
Q(Gn), the intersection is equal 1 (J)N S. Furthermore sinc& is a (J, Gm)-block,
Q(J) N S projects to 2(J) N S)/J in (Rn N R2(Gm))/Gm. Therefore Ry N Q(G1))/G:
and (R; N 2(G,))/G, are pasted alongS(N 2(J))/J. ]

In the following, we assume further th&is a strong §, G)-block if and only if
eachB, is a strong {, Gn)-block.
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Proof of (9). Since we are assuming boih and B, are strong blocks, by as-
sumption, S is a strong {, G)-block. Letx be a limit point of G which is not a trans-
late of a limit point of eitherG; or G,. By Lemma 4.9, we see that is contained
in T. Furthermore, by Lemma 4.10, there is a sequefigé of distinct elements of
G such thatx € - -- C hg(B) C - -- € hy(B) for B which is eitherB; or B,. We can
assume thaB = B; and h; =id by interchanging the indices and replacigB;) with
B; for g € G, if necessary. Thers separate$1;1(8) from h;l(x).

Since J is geometrically finite, by Proposition 2.16, there are aidbiet domain
P and standard parabolic regioBg,,... By, such thatFT\Uj(Inthj U{p;j}) is compact.
Since P is a Dirichlet domain, the interior o = PNR" is a fundamental domain for
J. Sinceh;l(x) € Q(J) for eachk, there is an elemenji € J such thatjy o h;l(x) €
Q. We denotejy o het by ly.

We claim that{lx(x)} stays away fromS. Suppose, on the contrary, thafx) —
w € S. Then, by Lemma 4.7w € A(J). It follows thatw € PN A(J). Sow is a
parabolic fixed point of], where the rank of Stalfw) is less tham since Q intersects
A(J) only at the p;.

This means that all thé(x) lie in some By, if we take a subsequence, where
p; = w. Let the rank of Staj(w) be s and the rank of Stal{w) be m.

If s=m, then we can assume that the interior Bf N R", which is denoted by
U,, is also a peak domain foB. Hence we may assume thidt, \ {w} is contained
in 2(G). On the other hand, since lies in A(G), we havel(x) € A(G), which is a
contradiction.

Therefore, there i$ > 0 such thatd(l(x), ) > 6 for all ze S, whered denotes
the ordinary spherical metric oR". Since S separatesh, *(x) from h }(S), we see
that for all z on S we haves < d(Ik(x), 2) < d(Ik(x), Ik(2)). On the other hand, since
hk(S) nest aroundx, we see that for any poing on S, the pointslk‘l(y) converge to
X. We can now apply Proposition 2.12 to conclude tkat a conical limit point.

If s <m, by conjugation and Theorem 2.10, we may assume ithatoo,

Stak&(w) =1y Jm)
and
Stalj;(w) = (hy, ..., hs),

where ji(y) = Ai(y)+e-1 (i =1,...,m), hj(y)=Uj(y)+ej-1 (j =1,...,9), yeR", A
andU; are rotations, andy andU; act onR™ trivially. It follows from {l(x)} C Q
that Y ">, |Ik(x)i|? are bounded away from for all k. SinceS is strong, there i$ > 0
such that

n
U={zeR" > |z]°>t

i=m+1
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is a peak domain foG and J\ {oo} C Q(G). We know that{lc(x)} ¢ A(G). Hence
S allk(X)i 12 < t. 1t follows from Ix(x) — oo ask — oo that

D k()i I = oo

i=s+1

For eachi =s+1,..., m, if |I,(X)i|? = oo (k — o0), then we choose a sequence
{ix} of integers such that for ak, |jiiklk(x)i [2 < M1, where My > 0; if [1(X)i]? < M2
for someM, > 0, we letix = 0. Let fi = jMm. . -jéf*ll)k. It follows that | fi(Ik(X))|? < M3
(M3 > 0), and for anyy € S

)2 = [IEM 0 (W)sra]” + - -+ [P (Y)ml? — o0

Therefore, there i$ > 0 such thatd( fl«(x), f(2)) > § for all ze S, whered
denotes the ordinary spherical metric BA. SinceS separatesh[l(x) from h;l(S) and
henceS separatei{l(x) from Ik‘l(S), we see that for alk on Swe haves < d( filk(x),
fk(2)) < d(filk(x), fklk(2)). By Lemma 2.3 and choosing a subsequence, we know that
fulk(z2) > Z for all z e RM™1 \ {x} and flx(x) = x’, wherez # x’. We now conclude
that x is a conical limit point. O

Proof of (10). We first assume th&; and G, are geometrically finite. Then
every parabolic fixed point o5, is a parabolic vertex by Proposition 2.13. There-
fore B, and B, are both strong blocks. By assumption, this implies tas a strong
(J, G)-block.

Let x be a point onA(G). What we have to show is that is either a para-
bolic vertex or a conical limit point, for this proves th& is geometrically finite by
Proposition 2.13. Suppose first thatis a parabolic fixed point, where the rakkof
H = Stalyx(x) is less thann. We shall show thak is a parabolic vertex then. Since
X is a parabolic fixed point, it cannot be a conical limit poiktence by (9),x is a
translate of a limit point of eithet; or G.

By interchanging the indices and translatirdoy elements ofG, we may assume
that x lies in A(G;). SinceG; is assumed to be geometrically finite,is a parabolic
vertex or a conical limit point foiG; by Proposition 2.13. I is a conical limit point
for Gy, then so is it forG, which contradicts the assumption thats a parabolic fixed
point. Therefore,x is a parabolic vertex foG;. Suppose first thak lies on G1(9).
Then there is an element € G; such thaty~1(x) lies on S. Sincex is not a conical
limit point for Gy, neither isy~%(x). This also implies thaty—'(x) is not a conical
limit point for J either. SinceJ is geometrically finite, again by Proposition 2.13,
we see thaty~1(x) is a parabolic vertex ford. SinceS is a strong {, G)-block, it
follows that y —1(x) is a parabolic vertex also fdB, hence so i. Thus we are done
for this case.
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Suppose next that does not lie on anys;-translate ofS. We shall show thak is
a parabolic vertex foilG even in this case. Sinc&1(B]) C Q(G1) by Lemma 4.1-(3)
and x is a parabolic vertex ofz;, we havex € B; N C;. Since B; N C; is precisely
invariant underG; in G by Lemma 4.8,H = Stahk;(x) must be contained i6;. This
implies thatH = Stalg, (). Sincex is a parabolic vertex foGy, there is a peak do-
main U at x for G;. SinceU N A(Gy) =0 and x € B N Cy, by choosingU to
be sufficiently small, we can assume tat\ {x} C Q(G;y) and Uc B;. By con-
jugating G by an element oﬂ\/l(]ﬁ”), we may assume that = co and U is in the
form U = {x € R": Y} ,,,x? > t}, for somet > 0. By Theorem 2.10, for any
g € Stalx(co), we have an expressiog(x) = Ax + a, for a € Rk and an orthogonal
matrix A preserving the subspac& and R"¥. Now we shall show the following.

Claim 10. The projections of @translates of B to the last n— k coordinates
R" K are bounded away fromo.

Proof. SinceU is contained inB3, the lastn — k coordinates of its complement
B; are bounded away fromo. Moreover since) ., ,;[9(X)il? = Y.iL.,4Ix|? for any
g € H, by takingt sufficiently large, we know thag(B;) " U = @. This means that
the projections ofH-translates ofB; to the lastn —k coordinates ofR"¥ are bounded
away fromoco.

Now we consider general translates by element&eof Suppose, seeking a con-
tradiction, that there is a sequenfig(B,)} of distinct G;-translates ofB; whose pro-
jections toR" go to co. Since J stabilisesB;, we see thagy € Gy — (H U J).

On the other hand, sindg is a peak domain fo6G;, it is precisely invariant un-
der H in G;. Take a pointyp in U. Since gk(Yo) is disjoint fromU, the lastn — k
coordinates ofgk(Yo) are bounded ak — oco. SinceH acts on the firsk-coordinates
cocompactly, we can choogg € H such thatjcgk(yo) stays in a bounded set.

Since ji lies in H, we have) ., (jk(X))? = >_iL..1(X)?. Therefore the projections
of jkgk(B1) to R"¥ also go tooco. Now Lemma 4.1-(7) implies thajxgk(y) — oo
for all y € B;. By Lemma 2.3, we see that, by choosing a subsequence if sages
we may assume thajiok(y) — oo for all y except for at most one point which is
contained in the limit set of5;. Sinceyp is contained inU C Q(G;), we have in
particular thatjxgk(yo) — oo. This is a contradiction. 0

Our claim shows thatl can be taken to be disjoint froffy. Therefore, we have
U c CiNB;. SinceC1N B3 is precisely invariant unde®; in G, for anyg e G — Gy,
g(U)NU =@. Therefore,U is a peak domain ax of G, which means thak is a
parabolic vertex forG. Thus we have proved that all parabolic fixed pointsGfare
parabolic vertices.

Next assume thak is a limit point of G which is not a parabolic fixed point.
Suppose thak is a translate of a limit poiny of G,,. Sincey is not a parabolic fixed
point andG,, is geometrically finite, by Proposition 2.1¥, is a conical limit point of



1130 L. b, K. OHSHIKA AND X. WANG

Gm, hence also folG. If x is not a translate of a limit point of eith€s; or G,, then
by (9), it is a conical limit point forG. Thus we have shown that any non-parabolic
limit point of G is a conical limit point, and completed the proof of the “ifan.

We shall now turn to show the “only if” part. Assume th@t is geometrically
finite. ThenSis a strong §, G)-block. This implies thatB,, is a strong §, Gn)-block
for m=1, 2 by assumption.

Let x be a parabolic fixed point 0o6;. We assume that the rank of Sgalx) is
k < n, and shall prove that there is a peak domainxafor G;. Since B; is con-
tained in 2(G1) by Lemma 4.1-(3),x cannot lie inG1(B;]). Therefore,x lies in ei-
ther G1(S) or B; N Cy. If x € G4(S), then, sinceB, is a strong {, G1)-block and
J is geometrically finite, there is a peak domainxafor G;, and we are done. If
x € B3 N Cy, then Stab(x) = Staly,(x) since B; N C, is precisely invariant unde,
in G by Lemma 4.8. Therefore Stafx) has rankk < n in particular. SinceG is
geometrically finite, there is a peak domdih at x for G, which is also a peak do-
main for Gj.

Now let x be a limit point of G; which is not a parabolic fixed point d&;. We
shall show thatx is a conical limit point ofG;. Again we have only to consider the
cases wherx € G1(S) and whenx € B; N Cy. If x € G1(S), then there are a point
lying on S andg € G; such thatx = g;(y). Sincey lies on A(J) by Lemma 4.1-(2),
and J is geometrically finite, it is a conical limit point fod by Proposition 2.13. This
implies thatx is a conical limit point forG;, and we are done in this case.

Suppose now thak € B5 N Cy. Since B; N Cy is precisely invariant undeG;,
we have Stap(x) = Staly,(x). Thereforex is not a parabolic fixed point o6 ei-
ther. SinceG was assumed to be geometrically finite,is a conical limit point for
G by Proposition 2.13. It follows from Proposition 2.12 thaete is a sequenciy}
of distinct elements oz such thatd(hk(2), h(x)) is bounded away from zero for all
z e R"\{x} and h;l(zo) — x for somezy € H™. We may assume that, belong to
distinct cosets of] in G. By Theorem 3.1, we have that didm(S)) — 0. So all the
hk(S) must be distinct.

Claim 11. By taking a subsequence we can assume- 0 for all k.

Proof. Suppose, on the contrary, tHat < O for all k after passing to a sub-
sequence. We recall that diam(S)) — 0. It follows that the sety(B,) cannot con-
tain S inside. Therefore, we have diam(B;)) — 0. Recall that we are considering
the case whex € B; N C;. This shows that(hk(2), hk(x)) — 0 for all z € B,. This
contradicts the fact thal(hk(z), hk(x)) is bounded away from 0 for € R"\ {x}. Thus
we have completed the proof of Claim 11. ]

Now we return to the proof of (10). Note that we have only to sider the case
when hy is not contained inG;, for otherwisex is a conical limit point of G; by
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Proposition 2.12. Therefore, we can assume that > 1. Expresshyg in a normal
form h =y o+ 0 ng. Setge = hgoy,*. Theng, is negative.

First consider the case whap = g o jx for someg € G with somejx € J. Then
d(hk(2), hk(x)) =d(g o jk © ¥, (2), 9o jk 0 W, (X)). By Lemma 2.3, we may assume that
there are two distinct pointg’, Z such thatg o jx o y,(2) — Z for all ze R"\ {x}
and g o jk o %, (X) — X. It follows that jx o y,(2) — g~1(2) for all z e R"\ {x},
jk 0 Y (X) = g (X)) and (jk o ») (g X(20)) — X, whereg 1(zp) € H™L. It follows
from Proposition 2.12 thax is a conical limit point ofG;.

Suppose next thaty is not expressed ag o jk, that is, gk belong to distinct
cosets ofJ in G. Then by Theorem 3.1g«(S) are all distinct. Applying the proof
of Claim 11 to gk, we see that diang((B;)) — 0. For anyz € B;, we have that
Y (2) € ¥, (B1) C Bo. On the other handy,(x) € B> for y,(C1 N B3) = C1 N B3.
These imply thatd(hk(2), hk(X)) = d(Gk ¥k, (2), Gk, (X)) — O for all z € B;. This con-
tradicts the fact thatl(hk(z), hk(x)) is bounded away from O for € R"\ {x}. Thus we
have completed the proof of (10). ]

Corollary 4.12. Under the hypotheses dfheorem 4.2,if each B, is precisely
invariant under J in G,, especially J is the trivial subgroup # {id}, and if we set
D =(D1NBy)U (DN By) and G= (Gy, Gy), then the following hold
(1) G= Gl *J Gz.

(2) G is discrete

(3) Except perhaps for conjugates of elements gfdBd G, every element of G is
loxodromic

(4) S is a(J, G)-block and S is precisely invariant under J in. G

(5) If {&} is a sequence of distinct G-translates gftBendiam(S;) — 0, wherediam
denotes the diameter with respect to the ordinary sphenmcatric on R".

(6) There is a sequence of distinct G-translates of S nestingitathe point x if and
only if x is a limit point of G which is not G-equivalent to a linpoint of either G
or G,.

(7) D is a fundamental set for GIf both D, and D, are constrainedand SN Fr D
consists of finitely many connected components the sum afevghe- 1)-dimensional
measures on S vanishethen D is also constrained

(8) Let Qn be the union of the gtranslates of B, and let R, be the complement of
Qm in R". ThenQ(G)/G = (RN R2(G1))/G1U (RN R2(G3))/G,, where the latter two
possibly disconnected orbifolds are identified along tlbeimmon possibly disconnected
or empty boundarySn ©(J))/J.

(9) S is a strong(J, G)-block if and only if each B is a strong(J, Gm)-block

(20) If both B, and B, are strong then except for G-translates of limit points of1G
or G,, every limit point of G is a conical limit point

(11) G is geometrically finite if and only if both Gand G, are geometrically finite
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Proof. By Theorem 4.2, we only need to prove (9).

Let x be a parabolic fixed point 0. Such a pointx is contained inS by Lem-
ma 4.1-(2). Since eacBy, is precisely invariant unded in G, by our assumption,
we have Staj(x) = Stalg_(x), which is also equal to Stalfx) by Lemma 4.4. LetH
denote Staf(x).

The proof of the"if ” part. Suppose thaB, is a strong {, Gn)-block for each
m =1, 2. There is nothing to prove if the rank of is n since the rank of Staj{x) is
alson. Now assume that the rank &f is k < n. By conjugation, we may assume that
X =o0. By Theorem 2.10, we can assume that egehH is expressed ag(y) = Ay+a
for a € R¢ and an orthogonal matrifA preserving the subspac® and R"K,

Since bothB; and B, are assumed to be strong and Sidbo) = Staks,(co), there
is a common peak domaid at co for G; and G,. SinceU N (A(G1) U A(Gy)) = 9,
by choosingu small enough, we may assume tltﬁat\ {oo} C Q(G1) NQ(Gy), where™
means the closure dR". We can assume that has a formu = {y e R": Y., y? >
t2}, wheret is a sufficiently large positive number.

Claim 12. We can choose U small enough to satisfyclC,.

Proof of Claim. We divide our discussions into two cases.

CAsE 1: The case whek =n — 1.

In this case,U is the union of two componentd; and U,, and we may assume
that Uy, C By, by our assumption thaBy, is a strong block. We have only to prove
that we can choos&); small enough in such a way that eve@p-translate ofB; is
disjoint from U;. We may assume that; = {y € R": y, > t}. Suppose, seeking a con-
tradiction, that such &, does not exist. Then, there is a sequefm&B,)} of distinct
G,-translates ofB; intersecting{y € R": y, > s} for any larges. This means that the
projections ofgx(B;) to the n-th coordinateR accumulate ato. We may assume that
ok € G, — J since J fixes B,.

Now Lemma 4.1-(7) implies that diamgy(B;)) — 0 with respect to the ordinary
spherical metric. It follows thagk(y) — oo for all y € B, since {gk(B)} accumulates
at co. By Lemma 2.3, by taking a subsequence{gf}, we may assume thaj(y) —
oo for all y with at most one exception, which must be a limit point.

SinceU, \ {oo} is contained inQ2(G,), for all y € U, \ {oo}, we havegy(y) — oo.
Since gk(U2) NU =@, it follows that the projections ogk(Jz) to the n-th coordinate
are bounded. Hence the projectionsgn(Uz\oo) to the firstn — 1 coordinatesR"~*
accumulate ato. By Theorem 2.10, for eachk, we can choose an elemejte H
such that{ jkgk(Yo)} lies in a bounded set for a fixeg) € U,. For eachk, we haveco ¢
ok(B2) since B, was assumed to be precisely invariant undeén G, andoo lies on S.
Therefore, we haveo ¢ jkk(B2). Since |(jkok(Y))nl = [(ak(Y))n| and the projections
of the gk(B;) to the n-th coordinateR accumulate abo, we see thaf jxgk(B>)} also
accumulates ato. By Lemma 4.1-(7), this implies thajgk(y) — oo for all y € Bo.
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This is a contradiction sincéjkgk(Yo)} stays in a compact set. This proves our claim
for the case whelk =n — 1.

CASE 2: The case whek < n — 1.

Since U is connected and is disjoint fror8, we see thatJ lies in either B] or
B;. We may assume thal c B;. Then, by the same argument as in the proof of
Case 1, we see that the projections@f-translates ofB, in the lastn — k coordinates
cannot accumulate ato. Therefore, we havé) C C; N Bj.

The claim has thus been proved. O

Now we return to the proof of the “if” part. Take a small commpeak domain
U for both G; and G, as in Claim 12. By assumption) is precisely invariant under
H in both G; and G,. We need to show it is precisely invariant under $fad) in G.

For anyg € G—(G1UG), we haveg(U) = g(U1)ug(Uz) C g(C1NB;7)ug(C1NB3),
whereUs, U, are the components & if k=n—1, and we regard one of them as the
emptyset wherk < n — 1. Suppose that) is expressed as a (1, 1)-forgy o - - - o 0.
As was shown in Lemma 2.69, o - -- o g1(C; N By) C B;. Furthermore, we have
gno--oh(CiNB])Cgnho---001(B7) C Ty C TP On the other handgy o --- o
01(C1NBS) Cgno---002(C1NB3) by Lemma 4.8. Then applying the same argument
for C1 N B, we see thag,o---0gx(C1NB3) C TP. Thus we have shown tha(C, N
B7)ug(CinB3) € B;N Ty for g expressed as a (1, 1)-form. A similar argument works
also for (1, 2)-form. Also, we can see by the same argumentifthg is expressed as
a 2-form, theng(U) = g(U;) Ug(Uz) Cc g(C: N B)ug(CiNBS) C BYNT,.

Since U, which is disjoint fromS from the beginning, is taken to be lie inside
C,, it follows thatU is precisely invariant undeH in G in the case whek <n—1.

This completes the proof of the “if” part.

The proof of the'only if” part. Let x be a parabolic fixed point of such that
Staly(x) has rank less than. This point x must lie on S since A(J) C S. Since
we are assuming thab is a strong {, G)-block, there is a peak domaid for G,
which is also a peak domain for botB; and G,. Since we already know tha,, is
a (J, Gy)-block, this shows thaB, is a strong §, Gn)-block.

By Theorem 4.2, we know that the conclusions hold. ]

REMARK 4.1. The condition thatg;, B3) is a proper interactive pair in Theo-
rem 4.2 is necessary, as the following example shows.

(D5 ) e ) a0 )

G1=(J,01), G2={(J, g2).

and
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We use the following symbols:
S={xeR%: x, =0}, Bi={x e R%: x, <0} and B ={x € R?: x, > O}.

Then the following hold.
(1) J is geometrically finite.
(2) S=AQ)=A(Ga) = A(G2).
(3) Gi1=JuUgJd andG, =J UQ,J.
(4) EachBy is a (J, Gp)-block form=1, 2.
(5) (By, B3) is an interactive pair, butB, B3) is not proper.
(6) G ?Gl *J G2.

The assertion (1) is obvious sindeis a finitely generated Fuchsian group. To prove

2
(2), setw = p/r, wherep andr are integers and # 0, andj = (1__r§r 1fpr).

Thenj € J is a parabolic element having as its fixed point. Therefore, every rational
number is a parabolic fixed point @f. Now (2) follows from Lemma 5.3.3 in [7]. The
proofs of (3), (4) and (5) are trivial. We can verify (6) by ckiang that for a (1, 2)-form

01020102, we haved(g10,0:0,) = id.
5. An application

5.1. The statement of Theorem 5.1. Following [31] or [32], we denote by
PSL(2, I';) the n-dimensional Clifford matrix group. TheRPSL2,T',) is isomorphic
to M(R™) (cf. [3)]).

Let

. (e O o (1 1\ . _ (0 1\ . (& 1
]1_ O _e]_ ’ ]2_ 0 l ’ ]3_ —l O ’ J4_ 0 —ej_ ’

(& O _ [ 1—8e — 6de, ~130
970 —g) %~ 32 1+ +6de; )’
_ [ —7—64dee, —126¢ + 32, _(65—8ee, —32e — 1265,
9= 320, 9—6dee, )0 BT\ 326, —63-8ee, )

J={(j1, jor j3s Ja)y G1={(J, G1), G2 =(J, O, U3, 04) and G = (G, G).
Then

Theorem 5.1. G is geometrically finite



KLEIN-MASKIT COMBINATION IN SPACE 1135
5.2. Several propositions.
Proposition 5.2. As aZ2-dimensional Mébius subgroup
A(J) = J(c0) U {the approximation points of }J
Moreover every parabolic fixed point of J is J-equivalent ¢o.

Proof. In the proof of this proposition, we regaddas a 2-dimensional Md&bius
subgroup.J has a fundamental polyhedron

1 1 1
P:{er3:—§<xl<§,0<x2<§, |x|>1},

which has finitely many sides. This yields thhts geometrically finite as a 2-dimensional
Mobius group. Hence every limit point of is either an approximation point or a par-
abolic fixed point ofJ, cf. [8]. We see thaP N A(J) = {co}. It follows from Propo-
sition VI.C.2 in [22] that every limit point of] which is not J-equivalent tooco is an
approximation point ofJ. On the other hand, parabolic fixed points &fcannot be
approximation points ofl. These facts imply that every parabolic fixed point bfis
J-equivalent tooo. The proof is completed. ]

Proposition 5.3. As a3-dimensional Moébius subgroupl is geometrically finite

Proof. We see that every approximation pointbt PSL(2, C) is a conical limit
point of J ¢ PSL(2,I'3). By Proposition 5.2, it suffices to prove that is a parabolic
vertex of J C PSL(2, I'3).

We see that),, = [(é i‘) (%1 _be1>: a, b are Gaussian intege}s and for any

g= ()O/[ g) € J\ I, |yl = 1. It follows that the rank obo is 2 and

U={xeR3 x5 > 16}
is a peak domain ofl at co. Henceoo is a parabolic vertex ofl C PSL(2,T3). [J

In the following, all subgroups involved are regarded asirBeshsional Moébius
subgroups.

Proposition 5.4. G; is geometrically finite
Proof. By computation, we know that

Otj1 = j101, O1i2=J;'01, O1ja=—j301, Oija=—]ja0r.
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It follows that G; = JU g;J. We choose a poiny € H*. Then
A(G1) = I(Y) Ugrd(y) NR® = A(J).

For any conical limit point ofJ, it is also a conical limit point ofG;. It suffices

to show thatoo is a parabolic vertex oG;. We see thaiG;,, = J,, U g1J and for
anyg= (;‘j g) € G1 \ Giy, Hersonsky [14] implies thafy| > 1. It follows that the
rank of oo is 2 andU is also a peak domain d&; at co. The proof is completed.[]

Proposition 5.5. Let | = {id}, H = (g», g3, 04) and R = {x € R3: |x — (ey/4 +
2e,)| = 1/8} which dividesR? into two closed balls

Rlz{xeR3: ‘x—<%+2e2)‘§é}

and
R, = xeR3:‘x—(ﬂ+2e2>‘>} U {o0).
4 =8
Further, let
7 1 9
R= R3: [x — —e; — 2 = —e — 2
{XE X— 3% ez‘>32’ X~ ™ ez‘—sz’
1 1 1 1
x———E—Zez > —, |X - _&_ > —,
32 4 32 32 4 32
e 65 1 e 63 1
_4_32e2‘ 32"_4_326‘2‘—32}
and
s 1 1 1
A= xeR:—§<X1§§,0§Xz§§, IXI > 18\ (AcU Az U Ag),

where A={XxeR% x=0, —1/2<x; <0}, Ao={xeR% x,=1/2, —1/2 < x; < 0},
and A ={xeR3: |x|=1, —1/2 < x; < 0}. Then the following hold

(1) G,=(J, H) = J % H.

(2) G, is discrete

(3) D,=RnN A is a fundamental set of £

(4) Every point of A(G2) \ G2(A(J) U A(H)) is a conical limit point of G.

(5) G: is geometrically finite

(6) A(G2) = Gy(o0) U Gy(e1/4 + 28) U {conical limit points of G}.

(7) U is also a peak domain for &at oo (recall that U is defined in the proof of
Proposition 5.3).
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Proof. It is obvious thatA is a fundamental set o§. By G.3 in [22], we see
that R is a fundamental set off.

We see thatr; € ©2(J) and R, € 2(H). SinceR; is outside the isometric spheres
of ge H\ I, Ry is precisely invariant under in H. It follows that R; is an (, H)-

block. Let f = <4i1 1—_§Ze2)' By a simple computation, we have that

1_(1 =2 1_(1 2e a1 (1 28
foo f _<O 1), fosf —(0 1) and fg,f —(0 1).

This yields thatA(H) = {e;/4+2e;} ande;/4+2e, is a parabolic fixed point of rank 3.
So H is geometrically finite andR; is strong.
SinceRy C A, foranyj e J\ I, j(R) N Ry =4. It follows that R; is a strong
(I, J)-block.
We can see that and R satisfy thatANR; = R;, RNR; = R, and ANR; = RNRy.
Since A(H) 7@, we know that R;, R5) is a proper interactive pair by Lemma 4.1-(9).
Therefore, groupsl), H, I, setsR;, R, and R;, and fundamental setd and R
satisfy the conditions in Corollary 4.12, we have that
(1) G2=(J, H)=J % H,
(2) G is discrete,
(8) D, =RN A is a fundamental set dB,,
(4) every point of A(G2) \ G2(A(J) U A(H)) is a conical limit point ofG,,
(5) G, is geometrically finite.
Since A(H) = {e1/4 + 28}, A(J) = J(00) U {the conical limit points ofJ} and the
conical limit points ofJ are also conical limit points 065, by the discussions above,
we have that

A(G3) = Ga(o0) U Gz(% + 2e2) U {conical limit points of G,}.

Let Uy = {x € R%: X3 > 4} and U, = {x € R%: x3 < —4}. ThenU = U; U U,.
Let Ty = (J\ 1)(R) U (H \ 1)(Ry) and C; = R3\ T;. We can see thal c R; and
U NJRy =9, that is, U c RS N Cy. Since R; N C; is precisely invariant unded
in G, by the proof of Lemma 4.8, we hav@,,, = J, and G2 \ J)(U)NU = 4.
Therefore,U is also a peak domain fdB, at cc. O

Now we are ready to prove Theorem 5.1.
5.3. The proof of Theorem 5.1. Let
Bi={xeR3 x3>0}U{oo}, B,={xeR3 x5 <0}U{oo}
and

S={x € R%: x3 = 0} U {o0}.
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It follows from B; = B; N Q(J) = By N (G1) and g1 J(B]) = B; that B, is a
(J, Gy)-block. SinceG; is geometrically finite,B; is strong.
Let

D; = AN{x € R%: x3 > 0}.

Then D; is a fundamental set d6; which satisfies thaD;NB;=ANB; andD;NS=
D,NS=0.
It is obvious thatA N B, = D, N B,. This yields that

B,NQ°(J)=J(ANBy)=J(D2N By) C B,NQ(Gy)
and henceB, N Q°(J) = BN 2°(Gy) C B;. For anyg € G\ J, we have that
9(B2N Q2°(G2)) N (B2 N 2°(G2)) =gI(D2n Bz) N I(D2N By) = 0.

Claim 13. B;NQ(G2) =B,NQ(J) and B N Q(G,) is precisely invariant under
J in Go.

Proof. For anyx € B, N (2(J)\ 2°(J)), there exists a neighborhoddl, which is
covered by finitely many images afn B,, see [22]. It follows froma N B, = 52ﬂ B,
thatx € B, N Q(Gz) Thus, B, N Q(Gz) =B,N Q(J)

We now come to prove thaB, N Q(Gy) is precisely invariant unded in Go.
Suppose, on the contrary, that there exist poty € B, N (22(Gy) \ ©2°(Gy)) and
an elementg € G, \ J with g(x) = y. We choose a neighborhoddy of x. Then
g(Ux) is a neighborhood ofy. In Uy, we can choose a pointy € 2°(G;). Then
9g(Xo) = Yo € 2°(G,), which contradicts the fact thdd, N Q°(G,) is precisely invariant
under J in G,. O

We have shown thaB, is a (J, G,)-block. SinceG, is geometrically finite,B; is
strong.

Since A(G) # A(J), by Lemma 4.1-(9), B;, B3) is a proper interactive pair. By
Theorem 4.2, we know thdb = G1x;G,, G is discrete and = (D;NBy)U(D2NB,) =
D>, N B; is a fundamental set dob.

Claim 14. S is a strong(J, G)-block

Proof. By Theorem 4.2-(4), we know th&is a (J, G)-block. It suffices to prove
that co is a parabolic vertex o65. We consideU again. It follows from

u;n QO(J) = JOO(U]_ n A) = JOQ(U]_ N D) cuUin QO(G)
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that U; N 2°(J) = U; N Q°(G) and thatg(Ui N 2°(G)) N (U N Q°(G)) = @ for any

g € G\ J». By the similar reasoning as that in the proof of Claim 13, wew that

Ui NQJ)=U;NQ(G) andU; N Q(J) is precisely invariant unded,, in G.
Sinceg;(U;) = Uy, for anyg € G\ Gi, we have that

g(U1) NU2=g(U1) Ngui(U1) =0, g(Uz) NU1=gau(U1) NUs =9
and
g(U2) NUz = gau(U1) N ga(U1) = 4.
This implies thatU is a peak domain foG at co. O

By Theorem 4.2, we know tha® is geometrically finite. The proof is completed.
From the proof of Theorem 5.1, we can easily get the followdogollaries.

Corollary 5.6. B; is not precisely invariant under J in G
Corollary 5.7. D1 N By =D;s.

REMARK 5.1. In Theorem 5.1 the following conditions are not satikfie
(1) By (m=1, 2) is precisely invariant undel in Gpy,;
(2) DmN By # D,

But these conditions are required in Theorem 1.2.
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