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Abstract
In this paper, we generalise the first Klein-Maskit combination theorem to

discrete groups of Möbius transformations in higher dimensions. The application of
the main theorem is discussed in the last section.

1. Introduction

In the theory of classical Kleinian groups, there are theorems called the combi-
nation theorems which give methods to generate new Kleiniangroups as amalgamated
free products or HNN extensions of Kleinian groups. The prototype of such theorems
is Klein’s combination theorem which can be rephrased as follows in the modern terms:

Theorem 1.1 (Klein [16]). Let G1 and G2 � PSL2C be two finitely generated
Kleinian groups with non-empty regions of discontinuity, and let D1 and D2 be funda-
mental domains for G1 and G2 of their regions of discontinuity respectively. Suppose
that the interior of D2 contains the frontier and the exterior of D1 and that the interior
of D1 contains the frontier and the exterior of D2. Then the grouphG1, G2i generated
by G1 and G2 in PSL2C is a Kleinian group isomorphic to G1 � G2 with non-empty
region of discontinuity and D= D1 \ D2 is a fundamental domain for the region of
discontinuity ofhG1, G2i.

Fenchel-Nielsen, in [12], gave a generalisation of Klein’stheorem to amalgamated
free products and HNN extensions for Fuchsian groups. In a series of papers, Maskit
considered to generalise Klein’s theorem to amalgamated free products and HNN exten-
sions for Kleinian groups ([18]–[23]). Thurston gave an interpretation of the combina-
tion theorem using three-dimensional hyperbolic geometryand harmonic maps, cf. [27].
For applications of the combination theorems, we refer the reader to [1, 4, 7, 12, 17,
24, 34].

Among these, the first Maskit combination theorem says that under some condi-
tions two Kleinian groupsG1, G2 whose intersectionJ is geometrically finite generate
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a Kleinian group isomorphic to the free product ofG1 and G2 amalgamated overJ
and also under the same conditions the resulting group is geometrically finite if and
only if both G1 and G2 are geometrically finite.

The purpose of the present paper is to generalise this first Maskit combination the-
orem to discrete groups of Möbius transformations of dimension greater than 2. A first
pioneering attempt to generalise Maskit’s combination theorems to higher dimensions
was made by Apanasov [5, 6]. Ivascu [15] also considered thisgeneralisation. In par-
ticular, they showed that under the same assumptions as Maskit combined with some
extra conditions, one can get a discrete group which is an amalgamated free product
of two discrete groups ofn-dimensional Möbius transformations. In fact, they proved
the following.

Theorem 1.2. Let G1, G2 be two discontinuous n-dimensional Möbius subgroups
with a common subgroup H, and let the n-sphere Sn split along a hypersurface S� Sn

into two domains D1 and D2 whose closuresD1 and D2 are precisely invariant with
respect to H, in G1 and G2, respectively. Let also the following two conditions hold:
(1) For fundamental domains1, F1 and F2 of the groups H, G1 and G2, there exists
a neighbourhood V of the surface S such that1 \ V � Fi , i = 1, 2.
(2) For each i = 1, 2, the set1 \ Di = Di \ Fi is a proper subdomain in Fi .

Then the following hold.
(1) The group G= hG1, G2i is discontinuous and isomorphic to the amalgamated free
product G1 �H G2.
(2) F = F1 \ F2 is a fundamental domain for the group G.
(3) mn(3(G)) = 0 if and only if mn(3(Gi )) = 0, i = 1, 2.
(4) Each elliptic or parabolic element of G is conjugate in G to anelement from
G1 [ G2.

In this paper, we shall show that a generalisation of the firstMaskit’s theorem
holds in higher dimensions without any such additional assumptions, imposing only
natural ones. Our theorem also includes the equivalence of geometric finiteness of the
given two groups and that of the group obtained by the combination. It should be
noted that in this paper, we say that a Kleinian group is geometrically finite when the"-neighbourhood of its convex core has finite volume for some" > 0, and there is an
upper bound for the orders of torsions in the group. We do not assume that it has
a finite-sided fundamental polyhedron. For more details about these Kleinian groups
of higher dimensions, we refer the reader to [11, 26, 28, 29, 30] and the references
therein.

Our main result (Theorem 4.2) and its proof will appear in§4.
This is the first of a series in which we shall discuss generalisations and applica-

tions of Klein-Maskit combination theorem in higher dimensions. A generalisation of
the second Klein-Maskit combination theorem, which corresponds to HNN extensions,
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to the case of discrete groups of Möbius transformations in higher dimensions and ap-
plications of these two combination theorems will be given in forthcoming papers.

2. Preliminaries

2.1. Basics on Möbius transformations. For n � 2, we denote bȳRn the one-
point compactification ofRn obtained by adding1. The group of orientation-preserving
Möbius transformations of̄Rn is denoted byM(R̄n), with which we endow the compact-
open topology. We regard̄Rn as the boundary at infinity of the hyperbolic (n + 1)-space
Hn+1 which is identified with the open unit ball bounded byR̄n. We denote the union of
Hn+1 and R̄n endowed with the natural topology byBn+1. Any Möbius transformation
of R̄n is extended to a Möbius transformation ofBn+1, which induces an isometry of
Hn+1. When it is more convenient, we regardHn+1 as the upper half-space of the (n+1)-
dimensional Euclidean space andRn as f(x1, : : : , xn, 0)g in Rn+1. A non-trivial element
g 2 M(R̄n) is called
(1) loxodromic if it has two fixed points inR̄n and none inHn+1;
(2) parabolic if it has only one fixed point inR̄n and none inHn+1;
(3) elliptic if it has a fixed point inHn+1.

For a discrete groupG of M(R̄n) and a pointz 2 Hn+1 or x 2 R̄n, the setsG(z) =fg(z) : g 2 Gg � Hn+1 and G(x) = fg(x) : g 2 Gg � R̄n are calledG-orbits of z and x
respectively. Ifz0 lies in theG-orbit of z, then we say thatz0 and z are G-equivalent.

2.2. Limit sets, regions of discontinuity and fundamental sets. The limit set3(G) of a discrete groupG � M(R̄n) is defined as follows:

3(G) = G(z) \ R̄n

for somez 2 Hn+1, where the overline denotes the closure inBn+1 = Hn+1 [ R̄n and
G(z) the G-orbit of z. We call points of3(G) limit points. The complement�(G) =
R̄n n3(G) is called theregion of discontinuityof G. The following is a well-known fact.

Lemma 2.1. Let G be a discrete subgroup of M(R̄n). If B � R̄n is a closed and
G-invariant subset containing at least two points, then3(G) is contained in B.

A discrete groupG � M(R̄n) is said to act discontinuously at a pointx 2 R̄n if
there is a neighbourhoodU of x such thatfg 2 G : g(U ) \U 6= ;g is a finite set. The
group G acts discontinuously at every point of�(G), and at no point of3(G).

The complement of the fixed points of elliptic elements in�(G) is called thefree
regular set, and is denoted byÆ�(G). When Æ�(G) 6= ;, a fundamental setof G is a
set which contains one representative of each orbitG(y) of y 2 Æ�(G). It is obvious
that Æ�(G) 6= ; if and only if �(G) 6= ;.

We have the following lemmata for the limit points. These lemmata in the classical
case whenn = 2 can be found in Theorems II.D.2 and II.D.5 in Maskit [22]. Although
the argument is quite parallel, we give their proofs for completeness.
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Lemma 2.2. Let x be a limit point of a discrete subgroup G in M(R̄n). Then
there are a limit point y of G and a sequencefgmg of distinct elements of G such that
gm converges to the constant map x uniformly on any compact subset of R̄n+1 n fyg.

Proof. Sincex is a limit point, there are a pointz 2 Hn+1 and a sequencefgmg
of distinct elements ofG such thatgm(z)! x. RegardHn+1 as the upper half-space.
Let (z1, : : : , zn, zn+1) be the coordinate ofz, with zn+1 > 0. Consider the pointz0 =
(z1, : : : , zn, �zn+1) in the lower half-space. The actions of Möbius transformations can
be extended to the lower half-space conformally. Then obviously, we havegm(z0)! x.

By conjugation, we can assume thatG acts onBn+1 with Int Bn+1 = Hn+1, that
z = 0, and that StabG(0) = StabG(1) = fidg. Then z0 =1; hence we havegm(1)! x.
By taking a subsequence we can makeg�1

m (1) converge to some limit pointy. Since
gm maps the outside of its isometric sphere onto the interior ofthat of g�1

m , the radii
of the isometric spheres ofgm and g�1

m , which are equal, converge to 0 asm!1,
and the centregm(1) of the isometric sphere ofg�1

m converges tox. On the other
hand, the centre of the isometric sphere ofgm, which is g�1

m (1) converges toy. This
completes the proof.

Lemma 2.3. Let fgmg be a sequence of distinct elements of a discrete group G�
M(R̄n). Then there are a subsequence offgmg and limit points x, y of G, which may
coincide, such that gm converges to the constant map x uniformly on any compact sub-
set of R̄n+1 n fyg.

Proof. We may assume thatG acts onBn+1 with Int Bn+1 identified with Hn+1,
and that StabG(1) = fidg. By taking a subsequence if necessary, we have two limit
points x and y such thatgm(1)! x and g�1

m (1)! y. The conclusion now follows
from the proof of Lemma 2.2.

We shall use the following term frequently.

DEFINITION 2.1. Let H be a subgroup of a discrete subgroupG of M(R̄n). An
subsetV of R̄n is said to beprecisely invariantunder H in G if h(V) = V for all
h 2 H and g(V) \ V = ; for all g 2 G� H .

For �(G), we have the following proposition: refer to Proposition II.E.4 in Maskit
[22] or Theorem 5.3.12 in Beardon [7].

Proposition 2.4. Suppose that�(G) is not empty. Then a point x2 R̄n is con-
tained in�(G) if and only if
(1) the stabiliserStabG(x) = fg 2 G : g(x) = xg of x in G is finite, and
(2) there is a neighbourhood U of x in̄Rn which is precisely invariant underStabG(x)
in G.
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DEFINITION 2.2. A fundamental domain for a discrete groupG of M(R̄n) with
non-empty region of discontinuity is an open subsetD of �(G) satisfying the fol-
lowing.
(1) D is precisely invariant under the trivial subgroup inG.
(2) For everyz 2 �(G), there is an elementg 2 G such thatg(z) is contained inD̄,
where D̄ denotes the closure ofD in R̄n.
(3) FrD, the frontier ofD in R̄n, consists of limit points ofG, and a finite or count-
able collection of codimension-1 compact smooth submanifolds with boundary, whose
boundary is contained in�(G) except for a subset with (n� 1)-dimensional Lebesgue
measure 0. The intersection of each submanifold with�(G) is called a side ofD.
(4) For any side� of D, there are another side� 0 of D, which may coincide with� , and a nontrivial elementg 2 G such thatg(S) = S0. Such an elementg is called
the side-pairing transformation from� to � 0.
(5) If f�mg is a sequence of distinct sides ofD, then the diameter of�m with respect
to the ordinary spherical metric on̄Rn goes to 0.
(6) For any compact subsetK of �(G), there are only finitely many translates ofD
that intersectK .

A fundamental setF for a discrete subgroupG of M(R̄n) whose interior is a fun-
damental domain is calleda constrained fundamental set.

2.3. Normal forms. Let G1 and G2 be two subgroups ofM(R̄n), and J a sub-
group of G1 \ G2.

A normal formis a word consisting of alternate products of elements ofG1� J and
those ofG2� J. Two normal formsgn � � � gkgk�1 � � � g1 andgn � � � (gk j )( j�1gk�1) � � � g1

are said to beequivalentfor any j 2 J. The word length of the normal form is simply
called thelength. The length is invariant under the equivalence relation.

A normal form is called a 1-form if the last letter is contained in G1 � J, and a
2-form otherwise. More specifically a normal form is called an(m, k)-form if the last
letter is contained inGm � J and the first letter is contained inGk � J.

The multiplication of two normal forms is defined to be the concatenation of two
words which is contracted to the minimum length by the equivalence defined above.
The product of two normal forms is equivalent to either a normal form or to an element
of J.

It is obvious that any element of the free product ofG1 and G2 amalgamated over
J, which is denoted byG1 �J G2, either is an element ofJ or can be expressed in
a normal form, and that there is a one-to-one correspondencebetweenG1 �J G2 and
the union of J and the set of the equivalence classes of normal forms. Also it is easy
to see that this correspondence is an isomorphism with respect to the multiplication
defined above.

Let hG1, G2i denote the subgroup ofM(R̄n) generated byG1 and G2. There is a
natural homomorphism8 : G1 �J G2 ! hG1, G2i which is defined by8(gn � � � g1) =
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gnÆ� � �Æg1 for a normal formgn � � �g1 representing an element ofG1�J G2, and8( j ) =
j for j 2 J. It is easy to see that this is well defined and independent of achoice of
a representative of the equivalence class. The map is obviously an epimorphism.

If 8 is an isomorphism, then we writehG1, G2i = G1 �J G2 identifying elements
of G1 �J G2 and their images by8.

Since J is embedded inhG1, G2i, each nontrivial element in the kernel of8 can
be written in a normal form.

Lemma 2.5. hG1, G2i = G1 �J G2 if and only if 8 maps no non-trivial normal
forms to the identity.

2.4. Interactive pairs. Following Maskit, we shall define interactive pairs as
follows.

Let G1 and G2 be two discrete subgroups ofM(R̄n) and J a subgroup ofG1\G2

as in the previous subsection. LetX1, X2 be disjoint non-empty subsets of̄Rn. The pair
(X1, X2) is said to be aninteractive pair (for G1, G2, J) when
(1) each ofX1, X2 is invariant underJ,
(2) every element ofG1� J sendsX1 into X2,
(3) and every element ofG2� J sendsX2 into X1.
An interactive pair is said to beproper if there is a point inX1 which is not contained
in a G2-orbit of any point of X2, or there is a point inX2 which is not contained in
a G1-orbit of any point ofX1.

Lemma 2.6 (Lemma VII.A.9 in [22]). Suppose that(X1, X2) is an interactive
pair for G1, G2, J. Let g = gn � � � g1 be an (m, k)-form. Then we have8(g)(Xk) �
X3�m. Furthermore if (X1, X2) is proper and g has length greater than1, then the
inclusion is proper.

The existence of a proper interactive pair forces8 to be isomorphic. (Theo-
rem VII.A.10 in Maskit [22] in the case whenn = 2.)

Theorem 2.7. Let G1,G2, J be as above and suppose that there is a proper inter-
active pair for G1, G2, J. Then hG1, G2i = G1 �J G2.

This easily follows from Lemmata 2.5 and 2.6.
The following is a straightforward generalisation of Theorem VII.A.12 in Maskit [22].

Lemma 2.8. Suppose that(X1, X2) is an interactive pair for G1, G2, J. Suppose
moreover that there is a fundamental set Dm for Gm for m = 1, 2 such that Gm(Dm \
X3�m) � X3�m. Then D= (D1 \ X2) [ (D2 \ X1) is precisely invariant underfidg in
G = hG1, G2i. Furthermore, if D is non-empty, then8 is isomorphic.
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Proof. What we shall show is that for anyx 2 D and any non-trivial element
g 2 G1 �J G2, we have8(g)(x) =2 D. Since this holds trivially for the case whenD
is empty, we assume thatD is non-empty. We assume thatx is contained inD1\ X2.
The case whenx lies in D2 \ X1 can be dealt with in the same way.

If g is a non-trivial element inJ, theng(x) lies in X2 since X2 is J-invariant. On
the other hand, sinceD1 is a fundamental set, we haveg(x) =2 D1. These imply that
g(x) =2 D.

Now we shall consider the case wheng is represented in a normal form.

Claim 1. If g = gngn�1� � �g1 is an m-form(m = 1 or 2), then8(g)(x) 2 X3�mnDm.

Proof. We shall prove this claim by induction.
We first consider the case whenn = 1. Suppose first thatg is an element inG1� J.

Then8(g)(x) 2 X2 by assumption, whereas8(g)(x) =2 D1 since D1 is a fundamental
set of G1. Therefore8(g)(x) is not contained inD in this case. Suppose next thatg is
in G2� J. Then8(g)(x) lies in X1 since the assumption that (X1, X2) is an interactive
pair implies8(g)(X2) � X1. We shall show that8(g)(x) does not lie inD2. Suppose,
seeking a contradiction, that8(g)(x) lies in D2. Then since8(g�1) is contained in
G2 � J and8(g)(x) 2 X1 \ D2, by assumption, we havex = 8(g�1)8(g)(x) lies in
X1. This contradicts the assumption thatx lies in X2.

Now, we assume that our claim holds in the case wheng has lengthn � 1, and
suppose thatg has lengthn. We consider the case wheng is a (3�m)-form. The case
wheng is anm-form can also be dealt with in the same way. Since8(gn�1 � � �g1)(x) 2
X3�m n Dm by the assumption of induction, we have8(g)(x) 2 gn(X3�m n Dm) � Xm.

Suppose that8(g)(x) lies in D3�m. Then we have8(g)(x) 2 Xm \ D3�m. This
implies that8(gn�1 � � � g1)(x) 2 g�1

n (Xm \ D3�m) � Xm. This is a contradiction. Thus
we have shown that8(g)(x) is contained inXm n D3�m.

By what we have proved above, ifD 6= ;, then for anyg 2 G1 �J G2 � fidg, we
have8(g)(D)\D = ;. This in particular shows that8(g) 6= id. Then Lemma 2.5 shows
that G = G1 �J G2.

REMARK 2.1. Maskit called a fundamental setDm for Gm maximal with respec-
tive to Xm (which is precisely invariant underJ in Gm) if Dm \ Xm is a fundamental
set for the action ofJ on Xm, and in Theorem VII.A.12 in [22], the fundamental sets
D1, D2 were assumed to be maximal. The proof of the theorem above shows that the
assumption of maximality is in fact redundant.

In Maskit [22], the following sufficient condition for two open balls to be an inter-
active pair is given.
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Proposition 2.9 (Proposition VII.A.6 in [22]). Let Gm � M(R̄n) (m = 1, 2) be
two discrete groups with a common subgroup J and S� R̄n be an (n � 1)-sphere
bounding two open balls X1 and X2. If each Xm is precisely invariant under J in
Gm, then (X1, X2) is an interactive pair.

2.5. Convex cores and geometric finiteness.

DEFINITION 2.3. Let G be a discrete subgroup ofM(R̄n) and3(G) its limit set.
We denote by Hull(3(G)), the minimal convex set ofHn+1 containing all geodesics
whose endpoints lie on3(G). This set is evidentlyG-invariant, and its quotient
Hull(G)=G is called theconvex coreof G, and is denoted by Core(G). The group
G is said to begeometrically finiteif the following two conditions are satisfied:
(1) there exists" > 0 such that the"-neighbourhood of Core(G) in Hn+1=G has finite
volume, and
(2) there is an upper bound for the orders of torsions inG.

We do not assume thatG is finitely generated above. The latter condition, the
existence of the bound on the orders is automatically satisfied if G is finitely generated.
For infinitely generated groups, Hamilton showed in [13] that the second condition is
not redundant.

As we shall see below, Bowditch proved in [9] that this condition is equivalent
to other reasonable definitions of geometric finiteness, except for the one thatHn+1=G
has a finite-sided fundamental polyhedron, whose equivalence to the above condition
has not been known until now.

2.6. Euclidean isometries. The classification of discrete groups of Euclidean iso-
metries is known as Bieberbach’s theorem (see [33] or [25], for example).

Theorem 2.10 (Bieberbach). Let G be a discrete group of Euclidean isometries
of Rn. Then the following hold.
(1) If Rn=G is compact, then there is a normal subgroup G� � G of finite index con-
sisting only of Euclidean translations, which is isomorphic to a free abelian group of
rank n.
(2) If Rn=G is not compact, then there exists a normal subgroup G� � G of finite
index in G which is a free abelian group of rank k with0� k � n� 1.

By taking conjugates of G and G� with respect to an isometry ofRn, the groups
can be made to have the following properties.

DecomposeRn into Rk � Rn�k, where Rk is identified withRk � f0g � Rn and
Rn�k with f0g �Rn�k � Rn. Let g(x) = U (x) + a be an arbitrary element of G, where
U is a rotation and a is an element ofRn. Then the rotation U leavesRk and Rn�k

invariant and the vector a lies in the subspaceRk. Furthermore, if g lies in G�, then
U acts onRk trivially.
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In the following we always identify the factors of the decomposition Rn = Rk �
Rn�k with Rk � f0g and f0g � Rn�k.

DEFINITION 2.4. For a discrete subgroupG of Euclidean isometries, we define
G� to be a free abelian normal subgroup ofG which is maximal among those having
the property in Theorem 2.10.

2.7. Extended horoballs, peak domains and standard parabolic regions. A
point x of 3(G) of a discrete groupG of Möbius transformations is calleda par-
abolic fixed pointif StabG(x) contains parabolic elements. An easy argument shows
that StabG(x) cannot contain a loxodromic element then. For a parabolic fixed point
z, a horoball inBn+1 touching R̄n at z is invariant under StabG(z). In the case when
StabG(z) has rank less thann, it is useful to consider a domain larger than a horoball
as follows.

DEFINITION 2.5. Let G be a discrete subgroup ofM(R̄n). Let z be a point of
R̄n which is not a loxodromic fixed point. Let Stab�

G(z) be the maximal free abelian
subgroup as in Definition 2.4 of the stabiliser StabG(z) of z in G. Suppose that the
rank of Stab�G(z) is k with k � n�1. Then there is a closed subsetBz � Bn+1 invariant
under StabG(z) which is in the form

Bz = h�1

(
x 2 Bn+1 :

n+1X
i =k+1

xi
2 � t

)
,

wheret (> 0) is a constant andh 2 M(R̄n) is a Möbius transformation such thath(z) =1. We call Bz an extended horoballof G aroundz.

DEFINITION 2.6. Let T1, : : : , Tm be subsets of̄Rn and J1, : : : , Jm subgroups of
the groupG � M(R̄n). We say that (T1, : : : , Tm) is precisely invariant under (J1, : : : , Jm)
in G, if each Tk is precisely invariant underJk in G, and if for i 6= j and all g 2 G,
we haveg(Ti ) \ Tj = ;.

DEFINITION 2.7. A peak domainof a discrete groupG of M(R̄n) with non-
empty region of discontinuity at the parabolic fixed pointz 2 R̄n is an open subset
Uz � R̄n such that
(1) Uz is precisely invariant under StabG(z) in G,
(2) there exist at > 0, and a transformationh 2 M(R̄n) with h(z) =1 such that

(
x 2 Rn :

nX
i =k+1

xi
2 > t

)
= h(Uz),

wherek = rank Stab�G(z), 1� k � n� 1.
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DEFINITION 2.8. If G has a precisely invariant extended horoballB around z,
then the interior of its intersection with̄Rn is a peak domain. Following Bowditch [9],
we use the termstandard parabolic regionat z to mean an extended horoball when
the rank of StabG(z) is less thann, and a horoball when the rank of StabG(z) is n.

DEFINITION 2.9. A pointz2 R̄n fixed by a parabolic element of a discrete group
G � M(R̄n) is said to be aparabolic vertexof G if one of the following conditions is
satisfied.
(1) The subgroup Stab�G(z) has rankn.
(2) There exists a peak domainUz at the pointz.

REMARK 2.2. It is easy to see that the two conditions in Definition 2.9are mutual-
ly exclusive: a peak domain exists only if rankStab�

G(z)< n. Also we can easily see that,
in the case whenn = 2, the definition coincides with that of cusped parabolic fixed points
as in Beardon-Maskit [8].

DEFINITION 2.10. A parabolic fixed pointz for the groupG is called bounded
if (3(G) n fzg)=StabG(z) is compact (see Bowditch [9, 10]).

There is a relationship between a bounded parabolic fixed point and a parabolic
vertex, which was proved by Bowditch [9].

Lemma 2.11. z is a bounded parabolic fixed point for a discrete group G if and
only if z is a parabolic vertex.

DEFINITION 2.11. Let G be a discrete subgroup ofM(R̄n). A point x 2 R̄n is
said to be a conical limit point (or a point of approximation in some literature) if there
are z2 Hn+1 and a geodesic rayl in Hn+1 tending tox in Bn+1 whoser -neighbourhood
with somer 2 R contains infinitely many translates ofz.

Conical limit points can be characterised as follows. See Theorem 12.2.5 in
Ratcliffe [25].

Proposition 2.12. Let G be a discrete group of M(R̄n) regarded as acting on
Bn+1 by hyperbolic isometries. Then a point z2 �Bn+1 is a conical limit point of G
if and only if there existÆ > 0, distinct elements gm of G, and x2 �Bn+1 n fzg such
that g�1

m (0) converges to z whilejgm(x) � gm(z)j > Æ for all m. Furthermore, if this
condition holds, then for every x2 �Bn+1 n fzg, there is Æ > 0 such that jgm(x) �
gm(z)j > Æ for all m.

The following result due to Bowditch [9] or [10] will be essentially used in the
proof of our main theorem.
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Proposition 2.13. Let G � M(R̄n) (n � 2) be a discrete group. Then G is
geometrically finite if and only if every point of3(G) is either a parabolic vertex or
a conical limit point.

2.8. Dirichlet domains and standard parabolic regions. Dirichlet domains are
fundamental polyhedra of hyperbolic manifolds, which willturn out to be very useful
for us.

DEFINITION 2.12. Let G be a discrete subgroup ofM(R̄n), and x a point in
Hn+1, which is not fixed by any nontrivial element ofG. The setfy 2 Hn+1: dh(y, x) �
dh(y, g(x)), 8g 2 Gg is called the Dirichlet domain forG centred atx, wheredh de-
notes the hyperbolic distance.

It is easy to see that any Dirichlet domain is convex and the interior of the inter-
section of the closure of a Dirichlet domain with̄Rn is a fundamental domain as de-
fined before.

The following follows immediately from the definition of conical limit points.

Lemma 2.14. Let D be a Dirichlet domain of a discrete group G� M(R̄n). Then
D̄ \ R̄n contains no conical limit points, where D̄ denotes the closure of D inBn+1 =
Hn+1 [ R̄n.

Now, we consider how a Dirichlet domain of a geometrically finite group intersects
standard parabolic regions. We shall make use of the following result of Bowditch [9].
For a G-invariant setS on R̄n, we say a collection of subsetsfAsgs2S is strongly in-
variant if gAs = Ags for any s 2 S and g 2 G, and As \ At = ; for any s 6= t 2 S. We
should note that eachAs is in particular precisely invariant under StabG(s) in G in the
sense as defined before.

Lemma 2.15. Let 5 be the set of all bounded parabolic fixed points contained
in the limit set3(G) of a discrete group G� M(R̄n). Then we can choose a standard
parabolic region Bp at p for each p2 5 in such a way thatfBp : p 2 5g is strongly
invariant.

Using this lemma, we can show the following, which is essentially contained in
the argument of§4 in Bowditch [9].

Proposition 2.16. Let D be a Dirichlet domain of a geometrically finite group
G � M(R̄n). Let fBpg be the collection of standard parabolic regions obtained asin
the preceding lemma. Then there is a finite number of points p1, : : : , pk 2 D̄ \5 such
that D̄ nSk

i =1(Int Bpi [ fpi g) is compact and contains no limit point of G.
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Proof. Choose a family of standard parabolic regionsfBpg as in Lemma 2.15.
Since G is geometrically finite, every limit point ofG is either a conical limit point
or a parabolic vertex. By Lemma 2.14, no limit point on̄D is a conical limit point.
ThereforefBpg covers all limit points contained in̄D.

Suppose that there are infinitely many distinctBpi amongfBpg with pi 2 D̄. By
taking a subsequence, we can assume thatfpi g converges to a pointq 2 D̄, which is
also contained in3(G), hence in5. By taking a subsequence again, we can further
assume that all thepi belong to either the same StabG(q)-orbit or distinct StabG(q)-
orbits. We first consider the former case. Let�i be the geodesic line connectingpi

to q, which must be contained inD. Since all pi belong to the same orbit, there are
hi 2 StabG(q) such thathi (pi ) = p1. By taking a subsequence again, we can assume
that all hi are distinct. Then, the geodesic�1 is shared by infinitely many translates of
hi D. This contradicts the local finiteness of the translates of the Dirichlet domainD.

Sinceq is a parabolic vertex, by Lemma 2.11, we see that (3(G) n fqg)=StabG(q)
is compact. Therefore, by taking a subsequence again, we canassume that there are
gi 2 StabG(q) such thatfgi pi g converges to a pointr 2 R̄n n fqg. We can assume that
all the gi are distinct by taking a subsequence. Let�i be the geodesic line connecting
pi and q as before. Thengi�i converges to the geodesic line connectingr to q. Since
gi�i is contained ingi D, this again contradicts the local finiteness of the translates
of D.

Another easy consequence of Lemma 2.15 is the following.

Corollary 2.17. Let G be a discrete subgroup of M(R̄n). In the upper half-space
model ofHn+1, suppose that1 is a parabolic vertex of G. Then the Euclidean radii
of the isometric spheres I(g) of g 2 G� StabG(1) are bounded from above.

Proof. Consider the set of standard parabolic regionsfBpgp25 obtained by Lem-
ma 2.15. Since1 is a bounded parabolic fixed point, a standard parabolic region B1
and its translatesgB1 by elementsg 2 G � StabG(1) are amongfBpg. Let B01 be
the maximal horoball contained inB1. Then there is a numberh such thatB01 =f(z1, : : : , zn+1) : zn+1 � hg [ f1g, which is equal to the height of FrB01.

Fix an elementg 2 G�StabG(1). By enlargingB01, we get a horoballB00 which
touchesg�1B00 at one point. Leth0 < h be the height of FrB00. Then the pointB00 \
g�1B00 has heighth0. The isometric sphereI (g) of g must contain the pointB00\g�1B00
since the reflection inI (g) sendsg�1B00 to B00. Therefore the Euclidean radius ofI (g)
is equal toh0, which is bounded above by the constanth independent ofg.

This implies the following fact in the conformal ball model,which is CorollaryG.8
in Maskit [18].
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Corollary 2.18. We regard G as above as acting on the ballBn+1 or L = R̄n+1 n
Bn+1, and let p2 �Bn+1 = �L be a parabolic vertex of G. Suppose that gn 2 G are
distinct elements. Then the radius with respect to the ordinary Euclidean metric on
Bn+1 or L of the isometric sphere I(gk) goes to0 as k!1.

3. Blocks

Throughout this section, we assume thatG is a discrete subgroup ofM(R̄n) and
J is a subgroup ofG.

DEFINITION 3.1. A closedJ-invariant setB, containing at lease two points, is
called a block, or more specifically (J, G)-block if it satisfies the following conditions.
(1) B \�(G) = B \�(J), and B \�(G) is precisely invariant underJ in G.
(2) If U is a peak domain for a parabolic fixed pointz of J with the rank of StabJ(z)
being k < n, then there is a smaller peak domainU 0 � U such thatU 0 \ Fr B = ;.

Let S be a (J, G)-block, and letS be a topological (n� 1)-dimensional sphere in
R̄n. Then S separates̄Rn into two open sets. We say thatS is precisely embeddedin
G if g(S) is disjoint from one of the two open sets for anyg 2 G.

A ( J, G)-block is said to bestrong if every parabolic fixed point ofJ is a para-
bolic vertex of G.

Then we have the following.

Theorem 3.1. Suppose that G is a discrete subgroup of M(R̄n). Let J be a
geometrically finite subgroup of G and B� R̄n a (J, G)-block such that for every par-
abolic fixed point z of J with the rank ofStabJ(z) being less than n, there is a peak
domain Uz for J with Uz\ B = ;. Let G =

S
gk J be a coset decomposition. Then we

havediam(gk(B))! 0, wherediam(M) denotes the diameter of the set M with respect
to the ordinary spherical metric on̄Rn.

Proof. By conjugatingG by an element ofM(R̄n), we can assume that StabG(0) =
StabG(1) = fidg when we regardG as acting onR̄n+1 by considering the Poincaré ex-
tension. LetL denote the exterior ofBn+1 with the point1, which we regard also as
a model of hyperbolic (n + 1)-space. ThenJ is also geometrically finite as a discrete
group acting onL. Let P be a Dirichlet domain forJ in L.

Let g be some element ofG � J. For a fixedg, the setf(g Æ j )�1(1) = j�1 Æ
g�1(1) : j 2 Jg is J-invariant. Then for each cosetgk J, we can choose a representa-
tive gk in such a way thatak = g�1

k (1), which is the centre of the isometric sphere of
gk, lies in P.

Now, by Proposition 2.16, there are finitely many standard parabolic regionsBp1,:::,
Bps in L around parabolic verticesp1,:::, ps on P̄ such thatP̄nSi (Int Bpi [fpi g) is com-
pact and contains no limit point ofJ. We number them in such a way that Stab�

J(p1), : : : ,
Stab�J(pr ) have rankn whereas Stab�J(pr +1), : : : , Stab�J(ps) have rank less thann. We can
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assume that forj � r + 1, we haveBp j \ R̄n \ B = fp j g because of the following: By
our assumption in the theorem, we can makeBp j smaller so that it satisfies this condi-

tion. Also it is clear that for the oldBp j , there is no limit point ofJ in R̄n \ Bp j other
than p j , which is also contained in the newBp j . On the other hand no point in̄P can
converge top j from outside this smallerBp j since p j is not a conical limit point, which
implies that the compactness is preserved.

For horoballsBp1, : : : , Bpr , we have the following.

Claim 2. We can choose the horoballs Bp1,:::, Bpr sufficiently small so that Bpi \
G(1) = ; for each i (1� i � r ).

Proof. We identify L with the standard upper half-space model of hyperbolic
(n + 1)-space, which we denote byHn+1. By conjugation, we can assume thate =
(0, : : : , 0, 1) corresponds to1 2 L under the identification ofHn+1 with L. Regarding
G as acting on thisHn+1 and Bp1, : : : , Bpr lying in Bn+1, what we have to show is that
Bpi \ G(e) = ; for eachi .

We shall show that how we can makeBp1 satisfy this condition. ConjugatingG
by an isometry ofHn+1, we may assume thatp1 = 1. Then Corollary 2.17 implies
that the radii of the isometric spheresI (g) of g 2 G � StabG(1) are bounded from
above by some constantr0. We setBp1 = fx 2 Hn+1 : xn+1 � 2 maxf1, r 2

0gg [ f1g.
Any h 2 StabG(1) can be represented as a transformation ofRn in the formh(x) =

Ax + b for A 2 O(n) and b 2 Rn. Let h̃ denoteh regarded as an isometry ofHn+1.
Then we havẽh(e) = (b, 1), henceh̃(e) =2 Bp1.

For any g 2 G� StabG(1), let rg denote the radius of the isometric sphereI (g).
Then g(x) is represented as a transformation ofR̄n in the form a + r 2

g A(x�b)=jx�bj2
for some A 2 O(n) and a, b 2 Rn (see [2] or [7]). As before we denote bỹg the
transformationg regarded as an isometry ofHn+1. Then we have

g̃(e) =

 
a� r 2

g Ab

jbj2 + 1
,

r 2
gjbj2 + 1

!

and

r 2
gjbj2 + 1
� r 2

0 ,

which implies thatg̃(e) =2 Bp1. We make eachBpi smaller in the same way. It is clear
that even after changing the horoballs,̄P nSi (Int Bpi [ fpi g) is compact and contains
no limit point of J since Bp j intersectsP̄ \ R̄n only at p j (1 � j � r ) and pi is not
a conical limit point.

Recall thatak = g�1
k (1) is in P. By taking a subsequence, we have only to con-

sider the cases when everyak lies outside all the standard parabolic regionsBp j and
when all theak lie in some Bp j .
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First consider the case when everyak lies outside theBp j . Since ak 2 P̄ and
P̄ n S(Int(Bp j ) [ fp j g) is compact, the sequencefakg converges to a pointx 2 P̄ nS

(Int(Bp j ) [ fp j g). Suppose thatx is contained inB. Then x must lie in B \3(G) =
B\3(J), which contradicts the fact that̄P nS(Int(Bp j )[fp j g) contains no limit point
of J. Therefore, it follows that theak are uniformly bounded away fromB. Since the
gk are distinct elements, the radius with respect to the Euclidean metric of the confor-
mal ball model of the isometric sphereI (gk) converges to 0 by Corollary 2.18. There-
fore, we see thatB lies outside the isometric sphereI (gk) for sufficiently largek. This
meansgk(B) lies inside the isometric sphereI (g�1

k ). This implies that diam(gk(B))! 0.
Next we consider the case when theak lie in some standard parabolic regionBp j .

By Claim 2, we see thatBp j is not a horoball; henceBp j is an extended horoball, i.e.,
j � r + 1. Furthermore, iffakg does not converge top j , then we can takeBp j smaller.
Therefore, we can assume thatfakg converges top j .

By composing a rotation of the spherēRn, we may assume thatp j is at the north
pole (0,: : : , 0, 1). Let S be then-sphere of radius 1 centred atp j , and let� be the
reflection in S. Let B0 � Bp j be the largest horoball contained inBp j touching R̄n

at p j .
We denote points inRn+1 as (z, t) with z2 Rn and t 2 R. Then we havep j = (0, 1).

Take Bp j to be small enough so thatB0 = f(z, t): jzj2 + (t � s0 � 1)2 � s02g for somes0
satisfying 0< s0 < 1=2, and

�(z, t) =

�
zjzj2 + (t � 1)2

,
jzj2 + t2� tjzj2 + (t � 1)2

�
.

We deduce that

�(Bn+1) =

�
(z, t) : t � 1

2

� [ f1g
and

�(B0) =

�
(z, t) : t � 1 +

1

2s0
� [ f1g.

For any j 2 StabJ(p j ), we have� j�(1) =1 since�(1) = p j . Consider the de-
compositionRn+1 = Rm � Rn�m � R, where m (< n) is the rank of StabJ(p j ). Let� j�(z) = U (z) + a be an arbitrary element of� StabJ(p j )�, where U denotes a ro-
tation. By Theorem 2.10, we may assume that the rotationU leavesRm and Rn�m

invariant and the vectora lies in the subspaceRm. Also, if � j� 2 � Stab�J(p j )�, then
its restriction to the subspaceRm is a translation. Hence, we have

�(Bp j ) =

(
(z, t) :

nX
i =m+1

z2
i + t2 � �1 +

1

2s0
�2

, t � 1

2

)
[ f1g,
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wherezi denotes thei -th component ofz.
Since Bp j \ B = fp j g, we have

(3.1) �(B) �
(

(z, t) :
nX

i =m+1

z2
i +

1

4
< �

1 +
1

2s0
�2

, t =
1

2

)
[ f1g.

We should recall that� Stab�J(p j )� acts onRm cocompactly. Therefore, we can take

representativesgk so that the projections of�(ak) = �(g�1
k (1)) to Rm stay within a

compact subset ofRm by multiplying elements of Stab�J(p j ) to the originalgk. Note
that by changing representatives, we do not have the condition thatak 2 P any more,
but still the ak are contained inBp j . This means that there is a constantL such that�(ak) 2 �(z, t) :

Pm
i =1 z2

i < L,t > 1=2	 \ �(Bp j ).

Claim 3. There is a constant K> 0 such that for every ak 2 Bp j and every y2
B, we havejak � yj � K jak � p j j.

Proof. Suppose, seeking a contradiction, that such aK does not exist. Then there
exist a sequencefysg � B and a subsequencefaksg of fakg such that

(3.2)
jaks � ysjjaks � p j j ! 0 as s!1.

We shall denoteaks by as for simplicity.
We can assume thatys 6= p j for all s. Then, since

j�(as)� �(ys)j = jas � ysjjys � p j j jas � p j j
and

j�(ys)� p j j jys � p j j = 1,

we have

(3.3)

jas � ysj2jas � p j j2 =
j�(as)� �(ys)j2j�(ys)� p j j2

=

Pm
i =1(�(as)� �(ys))2

i +
Pn+1

i =m+1(�(as)� �(ys))2
iPm

i =1(�(ys))2
i +

Pn+1
i =m+1(�(ys)� p j )2

i

.

We shall show that there existsM > 0 such that
(1)

Pm
i =1(�(as))2

i � M for all s;

(2)
Pn+1

i =m+1(�(ys)� p j )2
i � M for all s; and
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(3)
Pn+1

i =m+1(�(as)� �(ys))2
i !1 as s!1.

The inequality (1) follows from the fact that we chooseak so that the projections of�(ak) to Rm stay in a compact subset. The second one is a consequence of (3.1). We
now turn to the third inequality. Sincefasg was assumed to converge top j , we see that�(as) tends to1, which means that

Pn+1
i =1 (�(as))2

i !1. On the other hand, we know

that
Pm

i =1(�(as))2
i � M by (1), and that

Pn+1
i =m+1(�(ys))2

i is bounded above independently
of s by (2). These imply (3).

Then (3.2), (3.3), (2) and (3) imply that

mX
i =1

(�(ys))
2
i !1 as s!1.

It follows from (1) that for all sufficiently larges,

jas � ysjjas � p j j �
1

2
.

This is a contradiction and we have completed the proof of Claim 3.

Let �k be the Euclidean radius of the isometric sphere ofgk in L. Then we have
the following.

Claim 4. If all ak lie inside the extended horoball Bp j , then we have�2
k=jak �

p j j ! 0.

Proof. Suppose that there isÆ > 0 such that�2
k=jak � p j j � Æ. Then jgk(p j ) �

gk(1)j = �2
k=jak � p j j � Æ.

We can apply Proposition 2.12 by identifyingL with Bn+1 by the reflection in�Bn+1 and taking into account the fact that the Euclidean metric does not distort much
by the reflection near�Bn+1 and see thatp j is a conical limit point ofG. This con-
tradicts Lemma 2.14 sincep j lies in P̄.

We shall conclude the proof of Theorem 3.1. LetÆk be the distance fromak to B.
SinceÆk is the infimum ofjak � yj for y 2 B, by Claim 3, we haveÆk � K jak � p j j.
Since Proposition I.C.7 in [22] holds forg 2 M(R̄n), we have

diam(gk(B)) � 2�2
kÆk
� 2K�1�2

kjak � p j j .
This implies that diam(gk(B))! 0 by Claim 4.
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4. The combination theorem

In this section, we shall state and prove our main theorem, which is a combination
theorem for discrete groups inM(R̄n). Before that we shall prove the following lemma
which constitutes the key step for the proof of our main theorem.

Lemma 4.1. Let G1 and G2 be discrete subgroups of M(R̄n). Suppose that J is
a subgroup of G1\G2, which coincides with neither G1 nor G2. Suppose that there is
a topological (n� 1)-sphere S dividinḡRn into two closed balls B1 and B2 such that
each Bm is a (J, Gm)-block. Suppose that there are fundamental sets D1, D2 for G1, G2

respectively such that J(Dm \ Bm) = Bm \ Æ�(J) for m = 1, 2, and D1 \ S = D2 \ S.
Set D= (D1 \ B2) [ (D2 \ B1) and G= hG1, G2i. Then the following hold.
(1) S is also a(J, Gm)-block for m= 1, 2.
(2) S\3(G1) = S\3(G2) = S\3(J) = 3(J).
(3) Both G1 and G2 have non-empty regions of discontinuity, and BÆm is contained in�(Gm) for m = 1, 2, where BÆm is the interior of Bm in R̄n.
(4) BÆ

m is precisely invariant under J in Gm.
(5) For any g2 Gm� J (m = 1, 2), g(Bm) \ Bm = g(S) \ S� 3(Gm).
(6) For any g2 Gm, we have g(Dm \ B3�m) � B3�m and g(Dm \ BÆ

3�m) � BÆ
3�m.

(7) Let Gm =
S

gkmJ be a coset decomposition for m= 1, 2. If J is geometrically
finite, then diam(gkm(Bm))! 0 as k!1 wherediam denotes the diameter with re-
spect to the ordinary spherical metric on̄Rn.
(8) (BÆ

1, BÆ
2) is an interactive pair.

(9) If 3(J) 6= 3(G1) or 3(J) 6= 3(G2), then (BÆ
1, BÆ

2) is a proper interactive pair.
(10) If D 6= ; and J is geometrically finite, then (BÆ

1, BÆ
2) is a proper interactive pair.

Proof. (1). This is obvious sinceS is contained inBm.
(2). By Lemma 2.1, we see that3(J) is contained inS; henceS\3(J) = 3(J).

Since S is a (J, Gm)-block for m = 1, 2 by (1), we haveS\3(Gm) = S\3(J). This
implies (2).

(3). Since3(J) is contained inS, we see thatBÆ
m \ �(J) = BÆ

m. On the other
hand, sinceBm is a (J, Gm)-block, we haveBÆ

m\�(Gm) = BÆ
m\�(J) = BÆ

m 6= ;. Thus
both G1 and G2 have non-empty regions of discontinuity and�(Gm) containsBÆ

m.
(4). Since BÆ

m � �(Gm), by the definition of blocks,Bm \ �(Gm) is precisely
invariant underJ in Gm, and J(S) = S, we see thatBÆ

m is precisely invariant underJ
in Gm.

(5). SinceBm\�(Gm) is precisely invariant underJ in Gm, for everyg 2 Gm� J,
g(Bm \ �(Gm)) \ (Bm \ �(Gm)) = ;. It follows (g(Bm) \ Bm) \ �(Gm) = ;. Then we
see that (4) implies (5).

(6). For any j 2 J � Gm, j (Dm \ B3�m) � j (B3�m) = B3�m and j (Dm \ BÆ
3�m) �

j (BÆ
3�m) = BÆ

3�m. Hence we have only to consider the case wheng lies in Gm � J.
Suppose that there exists an elementg 2 Gm � J such thatg(Dm \ B3�m) \ Bm 6= ;.
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Take pointsx 2 g(Dm \ B3�m) \ Bm and y 2 Dm \ B3�m such thatx = g(y). Since
x lies in Bm \ g(Dm \ B3�m) � Bm \ Æ�(Gm) � Bm \ Æ�(J) = J(Dm \ Bm), there
are an elementj 2 J and a pointz 2 Dm \ Bm such that j (z) = x. Then j (z) = g(y).
Since z and y are Gm-equivalent points ofDm, we havez = y and j = g, which is a
contradiction. Therefore, for anyg 2 Gm � J, we haveg(Dm \ B3�m) \ Bm = ; and
g(Dm \ B3�m) � BÆ

3�m. Thus we have proved (6).
(7). By (1), we know thatS is a (J, Gm)-block. Also we should note that since

Fr S = S, by the definition of blocks, for any parabolic vertexz of J on S with the
rank of StabJ(z) being less thann, there is a peak domain centred atz which is disjoint
from S, and that every parabolic fixed point is a parabolic vertex ifJ is geometrically
finite. Therefore by Theorem 3.1, diam(gkm(S))! 0 as k ! 1. On the other hand
since Bm is a (J, Gm)-block, diam(gkm(S))! 0 implies diam(gkm(Bm))! 0, and we
have completed the proof of (7).

(8). This follows from (4) and Proposition 2.9.
(9). If (BÆ

1, BÆ
2) is not proper, thenBÆ

1 [ BÆ
2 = G1(BÆ

1) � �(G1) and BÆ
1 [ BÆ

2 =
G2(BÆ

2) � �(G2). It follows that for eachm, we have3(Gm) � S. On the other
hand, by (2), we have3(Gm) = S \ 3(Gm) = S \ 3(J) = 3(J). Therefore if one
of 3(G1), 3(G2) is not equal to3(J), then (BÆ

1, BÆ
2) is a proper interactive pair.

(10). Suppose thatD is non-empty andJ is geometrically finite. Then we can
assume thatD1 \ B2 6= ;, for the caseD2 \ B1 can be proved just by interchanging
the indices. We divide the argument into two cases: the case when D1\ S 6= ; and the
one whenD1 \ BÆ

2 6= ;.
Suppose first that there is a pointx 2 D1\S= D2\S. Recall thatD1 is contained

in �(G1), and that forg 2 G1� J, we haveg(B1)\ B1 � 3(G1) by (5). These imply
that no (G1 � J)-translates ofB1 pass throughx 2 D1 \ S� D1 \ B1. By the same
argument, we see that no (G2� J)-translates ofB2 pass throughx.

Next we shall show that (Gm � J)(Bm) cannot accumulate atx. First we should
note that the translate ofBm by an element ofGm depends only on the cosets ofGm

over J since J stabilisesBm. Suppose that (Gm � J)(Bm) accumulates atx. Then
there are elementsgk in Gm � J, which we can assume to belong to distinct cosets,
and pointsyk 2 Bm such thatfgk(yk)g converges tox. Since we assumed thatJ is
geometrically finite, by (7) we see that diam(gk(Bm)) ! 0. Therefore if we choose
one point y in Bm, then fgk(y)g also converges tox. This means thatx is a limit
point of Gm, which contradicts the assumption thatx lies in Dm.

By these two facts which we have just proved, we see that thereis a neighborhood
of x which is disjoint from (Gm � J)(Bm) for eachm. This implies in particular that
there is a point inBÆ

3�m which is not contained in theGm-translates ofBm. Hence, in
this case, (BÆ

1, BÆ
2) is proper.

Now we assume that there is a pointx 2 D1 \ BÆ
2. If x 2 (G1 � J)(BÆ

1), then
there are an elementg 2 G1 � J and a pointy 2 BÆ

1 with x = g(y). Since y lies in
BÆ

1 \ Æ�(G1) � BÆ
1 \ Æ�(J) = J(D1 \ BÆ

1), there are an elementj 2 J and a point
z 2 D1 \ BÆ

1 with y = j (z), which implies x = g j(z). Since D1 is a fundamental set
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of G1, it follows that x = z and g = j�1, which is a contradiction. Thereforex is not
contained in (G1� J)(BÆ

1) and (BÆ
1, BÆ

2) is proper. Thus we have proved (10).

DEFINITION 4.1. Let fSj g be a collection of topological (n�1)-spheres. We say
that the sequencefSj g nests aboutthe point x if the following are satisfied.
(1) The spheresSj are pairwise disjoint.
(2) For eachj , the sphereSj separatesx from the precedentSj�1;
(3) For any pointzj 2 Sj , the sequencefzj g converges tox.

Now we can state and prove our main theorem.

Theorem 4.2. Let J be a geometrically finite proper subgroup of two discrete
groups G1 and G2 in M(R̄n). Assume that there is a topological(n� 1)-sphere S di-
viding R̄n into two closed topological balls B1 and B2 such that each Bm is a (J, Gm)-
block and (BÆ

1, BÆ
2) is a proper interactive pair. Assume that for m= 1, 2, there is a

fundamental set Dm for Gm such that J(Dm\ Bm) = Bm\ Æ�(J), Dm\ B3�m is either
empty or has nonempty interior, and D1 \ S = D2 \ S. Set D= (D1 \ B2) [ (D2 \ B1)
and G= hG1, G2i. Then the following hold.
(1) G = G1 �J G2.
(2) G is discrete.
(3) If an element g of G is not loxodromic, then one of the following must hold.

(a) g is conjugate to an element of either G1 or G2.
(b) g is parabolic and is conjugate to an element fixing a parabolic fixed point
of J.

(4) S is a precisely embedded(J, G)-block.
(5) If fSkg is a sequence of distinct G-translates of S, thendiam(Sk)! 0, wherediam
denotes the diameter with respect to the ordinary sphericalmetric on R̄n.
(6) There is a sequence of distinct G-translates of S nesting about the point x if and
only if x is a limit point of G which is not G-equivalent to a limit point of either G1

or G2.
(7) D is a fundamental set for G. If both D1 and D2 are constrained, and S\ Fr D
consists of finitely many connected components the sum of whose (n� 1)-dimensional
measures on S vanishes, then D is also constrained.
(8) Let Qm be the union of the Gm-translates of BÆm, and let Rm be the complement of
Qm in R̄n. Then�(G)=G = (R1\�(G1))=G1[ (R2\�(G2))=G2, where the latter two
possibly disconnected orbifolds are identified along theircommon possibly disconnected
or empty boundary(S\�(J))=J.

Furthermore, under the assumption that S is a strong(J, G)-block if and only if
for m = 1, 2, each Bm is a strong(J, Gm)-block, two more statements hold.
(9) If both B1 and B2 are strong, then, except for G-translates of limit points of G1

or G2, every limit point of G is a conical limit point.
(10) G is geometrically finite if and only if both G1 and G2 are geometrically finite.
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Proof of (1). Since (BÆ
1, BÆ

2) is proper, (1) follows from Theorem 2.7.

Proof of (2). Suppose thatG is not discrete. Then there is a sequencefgkg of
distinct elements ofG which converges to the identity uniformly on compact subsets.
Expressgk in a normal formgk = 
nk Æ 
nk�1 Æ � � � Æ 
n1. We may assume that eachgk

has even length, for ifgk has odd length, then by Lemma 2.6, eithergk(BÆ
1) � BÆ

2,
or gk(BÆ

2) � BÆ
1, and such elements cannot converge to the identity. By interchanging

B1 and B2 if necessary, we may assume that (G1 � J)(BÆ
1) is a proper subset ofBÆ

2

since (BÆ
1, BÆ

2) is proper. By choosing a subsequence, we may assume that allthe gk

are (1, 2)-forms or all of them are (2, 1)-forms. It suffices toprove the case that every
gk is a (1, 2)-form since ifgk is a (2, 1)-form, theng�1

k is a (1, 2)-form.
Since we assumed that eachgk is a (1, 2)-form, we havegk(BÆ

2) � 
nk Æ 
nk�1(B
Æ
2).

If 
nk�1(B
Æ
2) = BÆ

1, then gk(BÆ
2) � 
nk (B

Æ
1) � BÆ

2, with the last inclusion being proper,
and if 
nk�1(B

Æ
2) is a proper subset ofBÆ

1, thengk(BÆ
2) � 
nk Æ
nk�1(B

Æ
2) � 
nk (B

Æ
1) � BÆ

2,
with the last two inclusions being proper. Therefore, in either case, we havegk(BÆ

2) �
nk (B
Æ
1) � BÆ

2, with the last inclusion being proper. ThusBÆ
2�gk(BÆ

2) � BÆ
2�
nk (B

Æ
1) �

BÆ
2 � (G1� J)(BÆ

1). Sincegk! id on B2 and BÆ
2 n (G1� J)(BÆ

1) 6= ;, this is a contra-
diction.

Now for a normal formg = gn � � � g1 2 G, we call g positive if g1 2 G1 � J and
we express it asg > 0; we call g negativeif g1 2 G2� J and we express it asg < 0.

Using this distinction, we consider a coset decomposition of G:

G = J [
 [

n,k

ankJ

!
[
 [

n,k

bnkJ

!
,

where jankj = jbnkj = n, ank > 0, andbnk < 0. Following Apanasov [6], we setTn =�S
k ank(B1)

� [ �Sk bnk(B2)
�
, Cn = R̄n n Tn, C =

S
Cn, and T = R̄n n C =

T
Tn.

Then we have the following.

Lemma 4.3. fTng is a decreasing sequence with respect to the inclusion, that is,
T1 � T2 � � � � .

Proof. Take a pointx 2 Tn (n > 1). Then either there are an elementank > 0
with length n and a pointy 2 B1 satisfying thatx = ank(y), or there are an element
bnk < 0 with lengthn and a pointy 2 B2 satisfying thatx = bnk(y). In the former case,
if we expressank in a normal form asgn Æ � � � Æ g1, then g1 2 G1 � J. Since g1(y)
lies in g1(B1) � B2, there is a pointz 2 B2 with g1(y) = z. Therefore,x = ank(y) =
gn Æ � � � Æ g2(z) 2 b(n�1)s(B2) � Tn�1. In the latter case, by the same argument we have
x 2 Tn�1.
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Lemma 4.4. The sphere S is precisely embedded in G. If S is precisely invariant
under J in G1 and G2, respectively, then S is precisely invariant under J in G.

Proof. We shall first show thatS is precisely embedded. For anyg 2 G withjgj = 0, we haveg(S) = S and is disjoint from bothBÆ
1 and BÆ

2. If jgj = 1, theng 2
Gm � J (m = 1, 2), andg(S) = g(Fr Bm) � g(Bm) � B3�m. This means thatg(S) is
disjoint from BÆ

m.
Now let g = gn Æ � � � Æ g1 be an (m, k)-form with jgj > 1. Theng(S) = g(Fr Bk) �

g(Bk) � B3�m since g(BÆ
k ) � BÆ

3�m by Lemma 2.6. This means thatg(S) is disjoint
from BÆ

m again, and we have thus shown thatS is precisely embedded inG.
Now suppose thatS is precisely invariant underJ both in G1 and G2. Since, as

was shown above, forg 2 J, we haveg(S) = S, we have only to show thatg(S)\S= ;
for g 2 G � J. Note that g(S) = g(Fr Bm) � g(Bm) � BÆ

3�m for any g 2 Gm � J.
Therefore, it remains to consider the case whenjgj> 1. If g = gnÆ� � �Æg1 is an (m, k)-
form with jgj > 1, thenh = g�1

n Æ g is a (3�m, k)-form. It follows from Lemma 2.6
that g(S) = gn Æ h(S) = gn Æ h(Fr Bk) � gn Æ h(Bk) � gn(Bm) � BÆ

3�m. Thus, we have
shown that for anyg 2 G� J, g(S) \ S = ;.

Lemma 4.5. D � C1.

Proof. We assume thatD 6= ;. By interchangingB1 and B2 if necessary, we can
assume thatD1 \ B2 6= ;. If there is a pointx 2 D1 \ S = D2 \ S, then no (Gm� J)-
translates ofBm pass throughx as was shown in the proof of Lemma 4.1-(10). This
implies thatx 2 C1.

It remains to consider the case whenx 2 D1\ BÆ
2. If x 2 (G1� J)(B1), then there

are an elementg 2 G1� J and a pointy 2 B1 with x = g(y). Sincey 2 Æ�(G1)\ B1 �Æ�(J) \ B1, there are an elementj 2 J and a pointz 2 D1 \ B1 with y = j (z) by the
assumption thatJ(D1\B1) = Æ�(J)\B1 in Theorem 4.2. Therefore we havex = g j(z),
which implies thatx = z and g j = id. This contradicts the assumption thatg lies in
G1� J. Thus we have shown thatx 2 C1.

Lemma 4.6. D is contained inÆ�(G), and precisely invariant underfidg in G.

Proof. We shall first prove thatD is contained in�(G). Suppose, on the con-
trary, that there is a pointz in D \ 3(G). Since D = (D1 \ B2) [ (D2 \ B1), we can
assume thatz 2 D1 \ B2 by interchanging the indices if necessary.

Claim 5. In this situation, we have z2 D1 \ S.

Proof of Claim 5. Suppose not. Thenz must be contained inD1\ BÆ
2. Sincez 23(G), it follows from Lemma 2.2 that there is a sequencefgkg of distinct elements in

G such thatgk(y)! z for all y with at most one exception. Sincez2 BÆ
2 � �(G2) (by
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Lemma 4.1-(3)) andz 2 D1 � �(G1), we havejgkj > 1, and we can assume that each
gk is a 1-form. Sincegk(B)� T1 for B which is equal toB1 or B2, Lemma 4.5 implies
that z2 FrT1. Sincez2 D1 � �(G1) and every point ofBÆ

2\FrT1 is either a (G1� J)-
translate of a point ofS or a limit point of G1, we deduce thatz is a (G1� J)-translate
of a point of S. On the other hand, sincez is contained inC1 = R̄n n T1, we see that
z is not a (G1� J)-translate of a point ofS. This is a contradiction.

Since z 2 D1 \ S = D2 \ S, as was shown in the proof of Lemma 4.1-(10), no
(Gm � J)-translates ofBm pass throughz nor accumulate atz. Therefore, we have
z 2 CÆ

1. SincefTng is decreasing, the (G � J)-translates ofS do not accumulate atz,
for (G� J)-translates ofS accumulate at points in̄T1, which is disjoint fromCÆ

1. This
means thatz cannot be a limit point ofG; hencez 2 �(G). Thus we have shown that
D is contained in�(G).

By Lemma 4.1-(6) and Lemma 2.8, we see that (D1\ BÆ
2)[ (D2\ BÆ

1) is precisely
invariant underfidg in G. Setting A = (D1\ BÆ

2)[ (D2\ BÆ
1), we haveD = A[ (D1\S)

and A � CÆ
1. Then for anyg 2 G � fidg, we haveg(D) \ D = (g(A) \ (D1 \ S)) [

(g(D1 \ S) \ A) [ (g(D1 \ S) \ (D1 \ S)).
If g 2 J � fidg, then g(D1 \ S) � S n D1 and g(A) [ A � BÆ

1 [ BÆ
2. Therefore,

g(D1 \ S) \ (D1 \ S) = ;, g(D1 \ S) \ A = ; and g(A) \ (D1 \ S) = ;. It follows that
g(D) \ D = ; in this case.

If g 2 Gm � J, then g(D1 \ S) = g(Dm \ S) � T1 and Lemma 4.1-(4) and (6)
imply that g(A) � BÆ

3�m. Since A [ (D1 \ S) = D is contained inC1 by Lemma 4.5,
and g(D1 \ S) is contained inT1, we haveg(D1 \ S) \ A = ;. We also haveg(D1 \
S) \ (D1 \ S) = ; since D1 \ S = D2 \ S and D1, D2 are fundamental sets ofG1, G2

respectively, andg(A) \ (D1 \ S) = ; since g(A) is contained inBÆ
3�m as was seen

above. Therefore also in this case, we haveg(D) \ D = ;.
Now, we considerg = gn Æ � � � Æ g1 2 G � (G1 [ G2), whereg1 2 Gm � J. Then

g(D1\S) = g(Dm\S) � g(Bm) � Tn � T1 and g(A) = g(Dm\ BÆ
3�m)[g(D3�m\ BÆ

m) �
gn Æ � � � Æ g2(BÆ

3�m) [ g(BÆ
m) (Lemma 4.1-(6))� TÆ

n�1 [ TÆ
n � TÆ

1 � BÆ
1 [ BÆ

2. These
facts imply thatg(D1 \ S) \ (D1 \ S) = ; by Lemma 4.5,g(D1 \ S) \ A = ; by the
fact that A � CÆ

1, and g(A) \ (D1 \ S) = ;. Thus we have shown thatD is precisely
invariant underfidg in G. Since we have already shown thatD � �(G), this means
that D � Æ�(G).

Lemma 4.7. S\�(J) = S\�(G), and S\�(J) is precisely invariant under J
in G.

Proof. Let z be a point inS\�(J). SinceS\�(Gm) = S\�(J) for eachm by
Lemma 4.1-(2), we havez 2 �(Gm). As was shown in the proof of Lemma 4.1-(10),
no (Gm� J)-translates ofBm pass throughz nor accumulate atz. Thereforez is con-
tained inCÆ

1.
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Suppose, seeking a contradiction, thatz lies in 3(G). Then there is a sequencefgkg of distinct elements ofG such thatgk(y)! z for all y with at most one exception.
Sincez is contained in�(G1) \�(G2), we can assumejgkj > 1 for all k by taking a
subsequence. We deduce from the fact thatgk(B) � T1 for B = B1 or B2 that z must
be contained inT̄1, which is a contradiction. Thus we have shown thatS\ �(J) is
contained inS\�(G). The opposite inclusion is trivial.

Now we turn to prove the latter half of our lemma. It is clear that J keepsS\�(J) invariant. Suppose that there are pointsy and z in S\ �(G) = S\ �(J) and
that there is an elementg 2 G � J such thatg(y) = z. Expressg in a normal form
g = gn Æ � � � Æ g1. Then n > 1 sinceS is a (J, Gm)-block (m = 1, 2). Clearlyz lies on
g(S) \ S. Moreover sinceg(S) = gn(gn�1 Æ � � � Æ g1(S)) and S is contained in bothB1

and B2, by Lemma 2.6,g(S) is contained in eithergn(Bm), wheregn is assumed to lie
in Gm. If z 2 g(S) is contained ingn(BÆ

m), then it must lie inBÆ
3�m, which contradicts

our assumption. Thereforez must lie in gn(S). We may assume thatgn 2 G1 � J
by interchanging the indices if necessary. SinceB1 is a (J, G1)-block, B1 \�(G1) is
precisely invariant underJ in G1, which means thatgn(�(G1)\B1) is contained inBÆ

2.
Because we have shown thatz lies in S\ gn(S), this implies thatz 2 3(G1) � 3(G).
Sincez = g(y) 2 �(G), this is a contradiction. Thus we have shown thatg(S\�(G))\
(S\�(G)) = ; for any g 2 G� J.

Proof of (3). Let g be an element ofG which is not conjugate to any element
of either G1 or G2, such thatjgj is minimal among all conjugates ofg in G. Clearly,
we havejgj > 1. Expressg in a normal formg = gn Æ � � � Æ g1. If the length ofg is
odd, say,gn, g1 2 Gm� J, then g�1

n Æ g Æ gn = gn�1 Æ � � � Æ (g1 Æ gn). The corresponding
normal form of g�1

n Æ g Æ gn has length less thann, which contradicts the minimality
of jgj. Therefore the length ofg must be even andg must be a (3�m, m)-form. This
implies thatg(Bm) � gn Ægn�1(Bm) � Bm. Since (BÆ

1, BÆ
2) is a proper interactive pair by

assumption, the last inclusion is proper by Lemma 2.6. Henceg has the infinite order
and has a fixed point ing(Bm) � Bm. Similarly, g�1(B3�m) � g�1

1 Æg�1
2 (B3�m) � B3�m,

where the last inclusion is proper. Thereforeg also has a fixed point ing�1(B3�m) �
B3�m, which may coincide with the above-mentioned fixed point.

SinceG is discrete andg has infinite order,g is not elliptic. If g is parabolic, then
its fixed point is unique, which we denote byx. Hence the two fixed points mentioned
above are equal andx lies on S\ g(S). By Lemma 4.7,x is a limit point of J. Since
J is geometrically finite,x is either a parabolic fixed point ofJ or a conical limit
point for J by Proposition 2.13. Since a conical limit point forJ is also that forG
and a conical limit point cannot be a parabolic fixed point, wesee thatx is a parabolic
fixed point of J.

Proof of (4). SinceB1 and B2 are both blocks, for every parabolic fixed pointz
of J with the rank of StabJ(z) being less thann, the peak domain centered atz for
J has trivial intersection withS = Fr B1 = Fr B2. This shows the second condition in
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the definition of blocks holds forS. Lemma 4.7 implies that the first condition in the
definition holds forS, hence thatS is a (J, G)-block. By Lemma 4.4,S is precisely
embedded inG.

Proof of (5). By (4) shown above, we know thatS is a (J, G)-block. Then (5)
follows from Theorem 3.1.

Lemma 4.8. C1 \ BÆ
m is precisely invariant under G3�m in G.

Proof. It is obvious thatC1 \ BÆ
m = R̄n � G3�m(B3�m). SinceG3�m(B3�m) is in-

variant underG3�m, its complementC1 \ BÆ
m is also invariant underG3�m.

If g 2 Gm � J, then g(C1 \ BÆ
m) � g(BÆ

m) � BÆ
3�m, and we are done. Now we

consider a generalg which is expressed in a normal formg = gn Æ � � �Æg1 with jgj > 1.
If g is an (m, m)-form, theng(C1 \ BÆ

m) � g(BÆ
m) � BÆ

3�m by Lemma 2.6. Ifg is an
(m, 3�m)-form, theng(C1\BÆ

m) = gn Æ � � � Æg1(C1\BÆ
m) = gn Æ � � � Æg2(C1\BÆ

m) as was
shown in the last paragraph, and this last term is contained in BÆ

3�m sincegn Æ � � � Æ g2

is an (m, m)-form. If g = gn Æ � � � Æ g1 is a (3� m, k)-form, where eitherk = 1 or
k = 2, then, by the discussion above, we seegn�1 Æ � � � Æ g1(C1 \ BÆ

m) � BÆ
3�m; hence

g(C1 \ BÆ
m) � gn(BÆ

3�m) � TÆ
1 . Thus in every case, ifg =2 G3�m, then g(C1 \ BÆ

m) \
(C1 \ BÆ

m) = ;.
Lemma 4.9. The set C is contained in the union of�(G) n Æ�(G) and the G-

translates of D[3(G1) [3(G2).

Proof. Every pointx 2 C is contained either inC1 or in CnnCn�1 for some index
n (n> 1) sincefCng is increasing. Ifx 2 CnnCn�1, thenx 2 Tn�1nTn. Hence there are
a point y 2 Bk and an element expressed in an (m, k)-form g = gn�1Æ � � � Æg1 2 G such
that x = g(y). If y lies in T1, then eithery 2 (Gk� J)(Bk)\Bk or y 2 (G3�k� J)(B3�k).
In the former case,y is contained in3(Gk)\ S = 3(J)\ S by Lemma 4.1-(5). In the
latter case, we havex 2 Tn, which is a contradiction. Therefore, every pointx 2 C
is either contained inG(3(J)) or G(C1). In the former case, we are done. Therefore,
we have only to consider the latter case. Moreover, since the sets in our statement are
G-invariant, we can assume thatx lies in C1.

It suffices to prove our lemma under the assumption thatx 2 C1 \ B2; the proof
for the casex 2 C1 \ B1 is the same. Ifx lies in C1 \ B2, then eitherx 2 3(G1) or
x 2 Æ�(G1) or x 2 �(G1) n Æ�(G1). We only need to discuss the latter two cases.

CASE 1: x 2 Æ�(G1).
In this case, there are an elementg 2 G1 and a pointz 2 D1 with g(z) = x. We

claim that z =2 BÆ
1. Suppose, on the contrary, thatz is contained inBÆ

1. If g lies in
G1� J, then g(z) is contained inT1 by the definition ofT1. Since we assumed thatx
lies in C1, this is not possible. Therefore, we haveg 2 J. On the other hand,J(BÆ

1) =
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BÆ
1, which contradicts the assumption thatx lies in B2. This shows thatz 2 D1\ B2 �

D, and we are done in this case.
CASE 2: x 2 �(G1) n Æ�(G1).
Since S\ �(J) = S\ �(G1) = S\ �(G2) = S\ �(G) by Lemma 4.7, ifx 2 S,

then x lies in �(G). Furthermore, sinceÆ�(G) is contained inÆ�(G1), this implies
that x 2 �(G) n Æ�(G), and we are done in this case. Ifx =2 S, then x 2 C1 \ BÆ

2.
Since x 2 �(G1), no (G1 � J)-translates ofB1 accumulate atx as was shown in the
proof of Lemma 4.1-(10). Therefore, we havex 2 CÆ

1. Then, by Proposition 2.4, there
is a neighbourhoodU of x contained inC1 \ BÆ

2 such thatU is precisely invariant
under StabG1(x) in G1 and StabG1(x) is a non-trivial finite subgroup. Now Lemma 4.8
implies that StabG1(x) = StabG(x). HenceU is precisely invariant under StabG(x) in G.
This shows thatx is contained in�(G)n Æ�(G), and we have completed the proof.

Lemma 4.10. T � 3(G). Furthermore, every point of T is either a G-translate
of a point in3(J) or the limit of nested translates of S.

Proof. Consider a pointz 2 T . We assume thatz 2 (G1 � J)(B1), for the case
when z 2 (G2 � J)(B2) can be dealt with in the same way. Then there is an element
h1 = g1 2 G1� J such thatz 2 g1(B1). SinceT1 � T2, we havez 2 T2, and there is an
elementg2 2 G2� J such thatz2 g1Æg2(B2) = h2(B2)� h1(B1). Similarly, sincez2 T3,
there is an elementg3 2 G1 � J such thatz 2 g1 Æ g2 Æ g3(B1) = h3(B1) � h2(B2) �
h1(B1); etc. Since the elementhk has length increasing ask ! 1 and (BÆ

1, BÆ
2) is

a proper interactive pair, the setshk(S) can be assumed to be all distinct by taking a
subsequence if necessary. Thus we have shown that ifz 2 T , then there is a sequencefhkg of elements ofG, with jhkj !1, andz2 � � � � hk(B̌k)� � � � � h2(B̌2) � h1(B̌1),
where B̌ j is either B1 or B2. Passing to a subsequence if necessary, we may assume
that B̌ j = B1.

There are two possibilities for this sequence: eitherz lies in the interiors of infinitely
manyhk(B1), or from somek on, z lies on the boundary of everyhk(B1). In either case,
since thehk(S) are distinct, we have diam(hk(S))! 0. Since the ballhk(B1) bounded
by hk(S) decreases ask!1, this is possible only when diam(hk(B1))! 0. Sincez is
a limit of fhk(xk)g with xk 2 B1 in either case above, it follows that for everyx 2 B1,
we havehk(x)! z. This means thatz lies in 3(G). Moreover, in the former case, we
have shown thatfhk(S)g nests aroundz. In the latter case, sincez 2 hk0(S) \ hk0+1(S) \� � � , we havew = h�1

k0
(z) 2 S\ h�1

k0
hk0+1(S) \ � � � . Since suchw is contained in3(G),

by Lemma 4.7, it also lies in3(J). This means thatz is contained in theG-translate
of 3(J).

Lemma 4.11. If z 2 C\3(G), then there is no sequence of distinct translates of
S nesting about z.
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Proof. Lemma 4.9 implies thatz is a G-translate of a point in eitherD or 3(G1)[3(G2). Since D is contained in�(G) by Lemma 4.6, the only possibility isz 2
G(3(G1) [3(G2)).

We first consider the special case whenz lies in G(3(J)). Under this assumption,
suppose, seeking a contradiction, that there is a sequencefhk(S)g of distinct G-translates
of S nesting aboutz = g(y) for an elementg 2 G and a pointy 2 3(J) � S. Then
we havez 2 hk(BÆ) by taking a subsequence forB which is eitherB1 or B2. We can
assume thatB is B1 after taking a subsequence, for we can deal with the other case
in the same way. It follows thaty 2 g�1 Æ hk(BÆ

1). Now sincefhk(S)g nests around
z, we have diam(hk(B1))! 0. This is possible only when after taking a subsequence
all hk are (mk, 1)-forms with mk = 1, 2. (If hk were (mk, 2)-form, thenhk(B1) would
contain S; hence its diameter would not go to 0.) Thereforeg�1hk is also expressed
as an (m0, 1)-form for largek and g�1hk(BÆ

1) is contained inBÆ
3�m0 . In particular, we

have y =2 S. This contradiction shows that ifz 2 G(3(J)), then there is no sequence of
distinct translates ofS nesting aboutz.

Now we turn to the general case whenz 2 G(3(G1) [3(G2)). It suffices to con-
sider the casez 2 G(3(G1)) since the proof for the casez 2 G(3(G2)) is entirely
the same. Then there are an elementg 2 G and a pointy 2 3(G1) with g(y) = z.
Since BÆ

1 � �(G1), we have3(G1) � R̄n n G1(BÆ
1). Therefore,y is not contained in

G1(BÆ
1); hence unlessy lies in G1(S), it must lie in C1 \ BÆ

2. If y 2 G1(S), then
y 2 G1(S\3(G1)) = G1(S\3(J)). The discussion in the previous paragraph implies
that this case cannot occur.

Now we assume thaty 2 C1 \ BÆ
2. If there is a sequencefhk(S)g of distinct G-

translates ofS nesting aboutz = g(y), then z 2 hk(BÆ) for every k where B is B1 or
B2, and hencey 2 g�1 Æ hk(BÆ). We may assume thatB = B1 by changing the index
and taking a subsequence andhk is an (m, 1)-form. Theng�1 Æ hk is also an (m0, 1)-
form for sufficiently largek. SincefTng is a decreasing sequence,y 2 TÆ

1 , which is a
contradiction. Thus we have completed the proof.

Proof of (6). If x lies in 3(G) n G(3(G1) [3(G2)), then x 2 T by Lemma 4.9.
Since every point ofT is either a translate of a point of3(J) or is the limit of a
nested sequence of translates ofS by Lemma 4.10, we have proved the “if” part.

Now we turn to the “only if” part. Suppose thatx lies in 3(Gm) for m = 1 or
2. Since BÆ

m � �(Gm) by Lemma 4.1-(3), we havex 2 R̄n n Gm(BÆ
m). If x 2 Gm(S),

then as was shown in the proof of Lemma 4.11, there is no distinct G-translates ofS
nesting aboutx. Thereforex is contained inR̄n nGm(Bm) = C1\ BÆ

3�m, which implies
that x 2 C\3(G). By Lemma 4.11, there is no distinct translates ofS nesting aboutx.

Proof of (7). By Lemma 4.9, every point ofC \ Æ�(G) is a translate of a point
of D. Also by Lemma 4.10,T is contained in3(G). This shows that every point
of Æ�(G) is contained in aG-translate ofD. Furthermore, sinceD � Æ�(G) and D
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is precisely invariant under the identity inG by Lemma 4.6, it follows thatD is a
fundamental set forG.

Now assume that bothD1 and D2 are constrained.

Claim 6. �(G) � G(D̄).

Proof. Since we have already shown thatD is a fundamental set forG, we have
only to prove that ifx 2 �(G)n Æ�(G), then there is an elementg 2 G with g(x) 2 D̄.
Now let x be a point in�(G) n Æ�(G). By Lemma 4.10,x is not contained inT . As
was shown in the proof of Lemma 4.9, we havex 2 G(C1) \ (�(G) n Æ�(G)). This
means that there are an elementg 2 G and a pointy 2 C1 \ (�(G) n Æ�(G)) such that
x = g(y). We may assume thaty 2 B2, for the proof in the casey 2 B1 is entirely
the same.

Suppose first thaty 2 S\C1\ (�(G)n Æ�(G)). Then sinceS\�(J) = S\�(G1) =
S\�(G) by Lemma 4.7 andD1 is a constrained fundamental set forG1, there are an
elementh 2 G1 and a pointz 2 D̄1 such thaty = h(z). SinceG1(BÆ

1) � BÆ
1 [ TÆ

1 , we
see thatz must be contained inB2, hencez 2 D̄1\ B2 � D̄. Thus we have completed
the proof in this case.

Next we assume thaty =2 S, which means thaty 2 C1\BÆ
2\ (�(G)n Æ�(G)). Since

y 2 �(G) � �(G1) and D1 is a fundamental set forG1, we see thaty is G1-equivalent
to a pointw 2 D̄1. By Lemma 4.8, we havew 2 D̄1 \ C1 \ BÆ

2. Since D̄1 \ BÆ
2 � D̄,

this impliesw 2 D̄, and our claim has been proved.

We now return to the proof of (7). We have

Gm(D̄m) = Gm((D̄m \ BÆ
m) [ (D̄m \ B3�m)),(4.1)

Gm(D̄m \ BÆ
m) � BÆ

m [ (TÆ
1 \ BÆ

3�m)(4.2)

by the definition ofT1, and

(4.3) D̄m \ BÆ
3�m � Dm \ B3�m � C̄1 \ B3�m

by Lemma 4.5.
SinceC̄1\ B3�m = R̄n nGm(BÆ

m), we see thatC̄1\ B3�m is Gm-invariant. Therefore
from (4.3), we obtain

(4.4) Gm(D̄m \ BÆ
3�m) � C̄1 \ B3�m.

Since FrD\ S consists of only finitely many connected components the sum of whose
(n�1)-dimensional measures onS vanishes by assumption, it follows from (4.1), (4.2),
and (4.4) that the sides ofDm in B3�m are paired with those inB3�m by elements of
Gm for eachm. Since the sides ofD in B1 are equal to those ofD2 in B1 and the
sides of D in B2 those ofD1 in B2, we see the sides are paired to each other. These
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sides can accumulate only at limit points because of the sameproperty for D1 and D2.
The only thing left to show is that the tessellation of�(G) by translates ofD̄ is locally
finite.

Take anyz2 D̄\�(G). We see from Lemma 4.5 that eitherz2 CÆ
1 or z2 FrC1 =

FrT1. We may assume thatz2 D1 \ B2 � D̄1\B2, for the proof in the casez2 D̄2\B1

is entirely the same.
CASE 1: z 2 CÆ

1.
Since z is contained in�(Gm) for eachm and Dm is a constrained fundamental

set for Gm, there is a neighborhoodU of z with U � CÆ
1 such that for eachm there

is a finite setfgm1(Dm), : : : , gmkm(Dm)g with U �Si gmi(D̄m) for gmi 2 Gm. We con-
sider U \ B3�m. SinceGm(D̄m \ BÆ

m) � BÆ
m [ TÆ

1 and U � C1, we haveU \ B3�m �S
i gmi(D̄m \ B3�m). ThereforeU � S2

m=1

�S
gmi(D̄m \ B3�m)

� � S2
m=1

�S
i gmi(D̄)

�
,

and we have obtained the local finiteness ofD at such a point.
CASE 2: z 2 Fr C1 = Fr T1.
We claim thatz =2 S in this case. Suppose, on the contrary, thatz is contained

in S. Since z 2 �(G) � �(Gm), as was shown in the proof of Lemma 4.1-(10), no
(Gm � J)-translates ofBm pass throughz and noGm-translates ofBm accumulate at
z. Therefore, we havez 2 CÆ

1, which contradicts our assumption for Case 2.
Hence, we can assume thatz lies in BÆ

2. Since a point of FrT1 in BÆ
2 is either a

point of (G1� J)(S), or a point of3(G1) and z 2 �(G) � �(G1), we see thatz must
lie in BÆ

2 \ (G1� J)(S). Then there are a points 2 S and an elementg 2 G1� J with
g(s) = z. By Lemma 4.7,s lies in S\ �(G) = S\ �(J) = S\ �(G1) = S\ �(G2).
Therefore no (Gm � J)-translates ofBm pass throughs and no Gm-translates ofBm

accumulate ats as was shown in the proof of Lemma 4.1-(10). This implies thats
is contained inCÆ

1 \ S. By applying the proof of Case 1 tos, we see that there is
a neighbourhoodU of s covered by finitely manyG-translates ofD̄. It follows that
g(U ) is a neighbourhood ofz covered by finitely manyG-translates ofD̄. This shows
that D is locally finite at a point as in Case 2.

Thus we have shown the proof of the local finiteness ofD, hence completed
the proof.

Proof of (8). We shall prove this by showing the following three claims.

Claim 7. For each m, we have Rm \�(Gm) � �(G).

Proof. Take a pointz 2 Rm \ �(Gm). Since Rm = R̄n n Gm(BÆ
m), we have either

z2 Gm(S) or z2 C1\ BÆ
3�m. If z2 Gm(S), thenz2 �(G) sinceS\�(G) = S\�(J) =

S\ �(Gm) by Lemma 4.7. Ifz 2 C1 \ BÆ
3�m, since z 2 �(Gm), no Gm-translates of

Bm passe through or accumulate atz as was shown in the proof of Lemma 4.1-(10).
It follows that z 2 CÆ

1. By Proposition 2.4, there is a neighbourhoodU of z lying
in CÆ

1 \ BÆ
3�m which is precisely invariant under StabGm(z) in Gm such that StabGm(z)
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is finite. By Lemma 4.8, we see that StabGm(z) = StabG(z) and thatU is precisely
invariant under StabG(z) in G. By Proposition 2.4, this implies thatz 2 �(G).

Claim 8. Every point of�(G) is G-equivalent to a point of either R1 \ �(G1)
or R2 \�(G2).

Proof. Let z be a point in�(G). By Lemma 4.10, we see thatz =2 T . As was
shown in the first half of the proof of Lemma 4.9, we havez 2 G(C1). We have only
to consider the case whenz 2 C1 by translatingz by elements ofG. SinceC1\ Bm �
R3�m by the definitions ofR3�m and C1 and �(G) � �(G1) \ �(G2), we see that
z 2 (R1 \�(G1)) [ (R2 \�(G2)).

Claim 9. For each m= 1, 2, the set Rm \ �(Gm) is precisely invariant under
Gm in G.

Proof. It is obvious thatRm is Gm-invariant, hence so isRm \�(Gm). We shall
show thatRm \�(Gm) is moved to a set disjoint from it by other elements ofG.

For any g 2 G3�m � J, we haveg(Rm \ �(Gm)) � g(B3�m \ �(Gm)) � Bm.
By Lemma 4.1-(5),g(B3�m) \ S � 3(G3�m) \ S, which is equal toS\ 3(Gm) by
Lemma 4.1-(2). This implies that no point of�(Gm) \ B3�m is mapped intoS by
g, henceg(B3�m \ �(Gm)) � BÆ

m. Since Rm is contained inB3�m, it follows that
g(Rm \�(Gm)) \ Rm \�(Gm) = ;.

Now let g = gn Æ � � � Æ g1 be a normal form withjgj > 1. If g is a (3�m, 3�m)-
form, then sinceg1(Rm\�(Gm)) � BÆ

m, we haveg(Rm\�(Gm)) � gn Æ � � � Æg2(BÆ
m) �

BÆ
m. If g is a (3�m, m)-form, then sinceg1 preservesRm \�(Gm), we haveg(Rm \�(Gm)) = gn Æ � � � Æ g2(Rm\�(Gm)), which is contained inBÆ

m by the argument above
for (3 � m, 3� m)-forms. Finally if g is an (m, k)-form, then gn�1 Æ � � � Æ g1 is a
(3 � m, k)-form with k = 3� m or k = m. Then, as was discussed above, we have
gn�1 Æ � � � Æ g1(Rm \�(Gm)) � BÆ

m, and g(Rm \�(Gm)) � gn(BÆ
m), which is contained

in the complement ofRm by definition. Thus we have shown thatg(Rm \ �(Gm)) \
Rm \�(Gm) = ; for any g 2 G� Gm.

By these three claims, we have shown that�(G)=G = (R1 \ �(G1))=G1 [ (R2 \�(G2))=G2. Now we consider the intersection of the two terms in the right hand side.
We should first note that (R1 \ �(G1)) \ (R2 \ �(G2)) is contained inB2 \ B1 = S
since R1 is contained inB2, and R2 is in B1. Since�(Gm) \ S = �(J) \ S� Rm \�(Gm), the intersection is equal to�(J)\ S. Furthermore sinceS is a (J, Gm)-block,�(J) \ S projects to (�(J) \ S)=J in (Rm \�(Gm))=Gm. Therefore (R1 \�(G1))=G1

and (R2 \�(G2))=G2 are pasted along (S\�(J))=J.

In the following, we assume further thatS is a strong (J, G)-block if and only if
eachBm is a strong (J, Gm)-block.
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Proof of (9). Since we are assuming bothB1 and B2 are strong blocks, by as-
sumption, S is a strong (J, G)-block. Let x be a limit point ofG which is not a trans-
late of a limit point of eitherG1 or G2. By Lemma 4.9, we see thatx is contained
in T . Furthermore, by Lemma 4.10, there is a sequencefhkg of distinct elements of
G such thatx 2 � � � � hk(B) � � � � � h1(B) for B which is eitherB1 or B2. We can
assume thatB = B1 and h1 = id by interchanging the indices and replacingg(B2) with
B1 for g 2 G2 if necessary. ThenS separatesh�1

k (S) from h�1
k (x).

Since J is geometrically finite, by Proposition 2.16, there are a Dirichlet domain
P and standard parabolic regionsBp1,:::Bpk such thatP̄nS j (Int Bp j [fp j g) is compact.

Since P is a Dirichlet domain, the interior ofQ = P̄\ R̄n is a fundamental domain for
J. Sinceh�1

k (x) 2 �(J) for eachk, there is an elementjk 2 J such that jk Æ h�1
k (x) 2

Q. We denotejk Æ h�1
k by lk.

We claim thatflk(x)g stays away fromS. Suppose, on the contrary, thatlk(x)!w 2 S. Then, by Lemma 4.7,w 2 3(J). It follows that w 2 P \ 3(J). So w is a
parabolic fixed point ofJ, where the rank of StabJ(w) is less thann sinceQ intersects3(J) only at the p j .

This means that all thelk(x) lie in some Bp j if we take a subsequence, where
p j = w. Let the rank of StabJ(w) be s and the rank of StabG(w) be m.

If s = m, then we can assume that the interior ofBw \ R̄n, which is denoted by
Uw, is also a peak domain forG. Hence we may assume that̄Uw n fwg is contained
in �(G). On the other hand, sincex lies in 3(G), we havelk(x) 2 3(G), which is a
contradiction.

Therefore, there isÆ > 0 such thatd(lk(x), z) > Æ for all z 2 S, whered denotes
the ordinary spherical metric on̄Rn. Since S separatesh�1

k (x) from h�1
k (S), we see

that for all z on S we haveÆ < d(lk(x), z) � d(lk(x), lk(z)). On the other hand, since
hk(S) nest aroundx, we see that for any pointy on S, the pointsl�1

k (y) converge to
x. We can now apply Proposition 2.12 to conclude thatx is a conical limit point.

If s< m, by conjugation and Theorem 2.10, we may assume thatw =1,

Stab�G(w) = h j1, : : : , jmi
and

Stab�J(w) = hh1, : : : , hsi,
where ji (y) = Ai (y)+ei�1 (i = 1,: : : , m), h j (y) = U j (y)+ej�1 ( j = 1,: : : , s), y 2 Rn, Ai

and U j are rotations, andAi and U j act onRm trivially. It follows from flk(x)g � Q
that

Ps
i =1jlk(x)i j2 are bounded away from1 for all k. SinceS is strong, there ist > 0

such that

U =

(
z 2 Rn :

nX
i =m+1

jzi j2 > t

)
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is a peak domain forG and Ū n f1g � �(G). We know thatflk(x)g � 3(G). HencePn
i =m+1jlk(x)i j2 < t . It follows from lk(x)!1 as k!1 that

mX
i =s+1

jlk(x)i j2!1.

For eachi = s+ 1, : : : , m, if jlk(x)i j2!1 (k!1), then we choose a sequencefikg of integers such that for allk, j j ik
i lk(x)i j2 < M1, where M1 > 0; if jlk(x)i j2 < M2

for someM2 > 0, we let ik = 0. Let fk = j mk
m � � � j (s+1)k

s+1 . It follows that j fk(lk(x))j2 < M3

(M3 > 0), and for anyy 2 S

j fk(y)j2 =
�� j (s+1)k

s+1 lk(y)s+1

��2 + � � � + j j mk
m lk(y)mj2!1.

Therefore, there isÆ > 0 such thatd( fklk(x), fk(z)) > Æ for all z 2 S, where d
denotes the ordinary spherical metric onR̄n. SinceS separatesh�1

k (x) from h�1
k (S) and

henceS separatesl�1
k (x) from l�1

k (S), we see that for allz on S we haveÆ < d( fklk(x),
fk(z)) � d( fklk(x), fklk(z)). By Lemma 2.3 and choosing a subsequence, we know that
fklk(z)! z0 for all z 2 R̄n+1 n fxg and fklk(x)! x0, wherez0 6= x0. We now conclude
that x is a conical limit point.

Proof of (10). We first assume thatG1 and G2 are geometrically finite. Then
every parabolic fixed point ofGm is a parabolic vertex by Proposition 2.13. There-
fore B1 and B2 are both strong blocks. By assumption, this implies thatS is a strong
(J, G)-block.

Let x be a point on3(G). What we have to show is thatx is either a para-
bolic vertex or a conical limit point, for this proves thatG is geometrically finite by
Proposition 2.13. Suppose first thatx is a parabolic fixed point, where the rankk of
H = StabG(x) is less thann. We shall show thatx is a parabolic vertex then. Since
x is a parabolic fixed point, it cannot be a conical limit point.Hence by (9),x is a
translate of a limit point of eitherG1 or G2.

By interchanging the indices and translatingx by elements ofG, we may assume
that x lies in 3(G1). SinceG1 is assumed to be geometrically finite,x is a parabolic
vertex or a conical limit point forG1 by Proposition 2.13. Ifx is a conical limit point
for G1, then so is it forG, which contradicts the assumption thatx is a parabolic fixed
point. Therefore,x is a parabolic vertex forG1. Suppose first thatx lies on G1(S).
Then there is an element
 2 G1 such that
�1(x) lies on S. Sincex is not a conical
limit point for G1, neither is
�1(x). This also implies that
�1(x) is not a conical
limit point for J either. SinceJ is geometrically finite, again by Proposition 2.13,
we see that
�1(x) is a parabolic vertex forJ. Since S is a strong (J, G)-block, it
follows that 
�1(x) is a parabolic vertex also forG, hence so isx. Thus we are done
for this case.
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Suppose next thatx does not lie on anyG1-translate ofS. We shall show thatx is
a parabolic vertex forG even in this case. SinceG1(BÆ

1) � �(G1) by Lemma 4.1-(3)
and x is a parabolic vertex ofG1, we havex 2 BÆ

2 \ C1. Since BÆ
2 \ C1 is precisely

invariant underG1 in G by Lemma 4.8,H = StabG(x) must be contained inG1. This
implies that H = StabG1(x). Sincex is a parabolic vertex forG1, there is a peak do-
main U at x for G1. Since U \ 3(G1) = ; and x 2 BÆ

2 \ C1, by choosingU to
be sufficiently small, we can assume thatŪ n fxg � �(G1) and Ū � BÆ

2. By con-
jugating G by an element ofM(R̄n), we may assume thatx = 1 and U is in the
form U =

�
x 2 Rn :

Pn
i =k+1 x2

i > t
	
, for some t > 0. By Theorem 2.10, for any

g 2 StabG(1), we have an expressiong(x) = Ax + a, for a 2 Rk and an orthogonal
matrix A preserving the subspacesRk and Rn�k. Now we shall show the following.

Claim 10. The projections of G1-translates of B1 to the last n� k coordinates
Rn�k are bounded away from1.

Proof. SinceU is contained inBÆ
2, the lastn� k coordinates of its complement

B1 are bounded away from1. Moreover since
Pn

i =k+1jg(x)i j2 =
Pn

i =k+1jxj2i for any
g 2 H , by taking t sufficiently large, we know thatg(B1) \ U = ;. This means that
the projections ofH -translates ofB1 to the lastn�k coordinates ofRn�k are bounded
away from1.

Now we consider general translates by elements ofG1. Suppose, seeking a con-
tradiction, that there is a sequencefgk(B1)g of distinct G1-translates ofB1 whose pro-
jections toRn�k go to1. Since J stabilisesB1, we see thatgk 2 G1� (H [ J).

On the other hand, sinceU is a peak domain forG1, it is precisely invariant un-
der H in G1. Take a pointy0 in U . Since gk(y0) is disjoint from U , the lastn � k
coordinates ofgk(y0) are bounded ask!1. Since H acts on the firstk-coordinates
cocompactly, we can choosejk 2 H such that jkgk(y0) stays in a bounded set.

Since jk lies in H , we have
Pn

i =k+1( jk(x))2
i =

Pn
i =k+1(x)2

i . Therefore the projections
of jkgk(B1) to Rn�k also go to1. Now Lemma 4.1-(7) implies thatjkgk(y) ! 1
for all y 2 B1. By Lemma 2.3, we see that, by choosing a subsequence if necessary,
we may assume thatjkgk(y) ! 1 for all y except for at most one point which is
contained in the limit set ofG1. Since y0 is contained inU � �(G1), we have in
particular that jkgk(y0)!1. This is a contradiction.

Our claim shows thatU can be taken to be disjoint fromT1. Therefore, we have
U � C1\ BÆ

2. SinceC1\ BÆ
2 is precisely invariant underG1 in G, for any g 2 G�G1,

g(U ) \ U = ;. Therefore,U is a peak domain atx of G, which means thatx is a
parabolic vertex forG. Thus we have proved that all parabolic fixed points ofG are
parabolic vertices.

Next assume thatx is a limit point of G which is not a parabolic fixed point.
Suppose thatx is a translate of a limit pointy of Gm. Sincey is not a parabolic fixed
point andGm is geometrically finite, by Proposition 2.13,y is a conical limit point of
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Gm, hence also forG. If x is not a translate of a limit point of eitherG1 or G2, then
by (9), it is a conical limit point forG. Thus we have shown that any non-parabolic
limit point of G is a conical limit point, and completed the proof of the “if” part.

We shall now turn to show the “only if” part. Assume thatG is geometrically
finite. ThenS is a strong (J, G)-block. This implies thatBm is a strong (J, Gm)-block
for m = 1, 2 by assumption.

Let x be a parabolic fixed point ofG1. We assume that the rank of StabG1(x) is
k < n, and shall prove that there is a peak domain atx for G1. Since BÆ

1 is con-
tained in�(G1) by Lemma 4.1-(3),x cannot lie inG1(BÆ

1). Therefore,x lies in ei-
ther G1(S) or BÆ

2 \ C1. If x 2 G1(S), then, sinceB1 is a strong (J, G1)-block and
J is geometrically finite, there is a peak domain atx for G1, and we are done. If
x 2 BÆ

2 \ C1, then StabG(x) = StabG1(x) since BÆ
2 \ C1 is precisely invariant underG1

in G by Lemma 4.8. Therefore StabG(x) has rankk < n in particular. SinceG is
geometrically finite, there is a peak domainU at x for G, which is also a peak do-
main for G1.

Now let x be a limit point ofG1 which is not a parabolic fixed point ofG1. We
shall show thatx is a conical limit point ofG1. Again we have only to consider the
cases whenx 2 G1(S) and whenx 2 BÆ

2 \ C1. If x 2 G1(S), then there are a pointy
lying on S and g 2 G1 such thatx = g1(y). Since y lies on3(J) by Lemma 4.1-(2),
and J is geometrically finite, it is a conical limit point forJ by Proposition 2.13. This
implies thatx is a conical limit point forG1, and we are done in this case.

Suppose now thatx 2 BÆ
2 \ C1. Since BÆ

2 \ C1 is precisely invariant underG1,
we have StabG(x) = StabG1(x). Thereforex is not a parabolic fixed point ofG ei-
ther. SinceG was assumed to be geometrically finite,x is a conical limit point for
G by Proposition 2.13. It follows from Proposition 2.12 that there is a sequencefhkg
of distinct elements ofG such thatd(hk(z), hk(x)) is bounded away from zero for all
z 2 R̄nnfxg and h�1

k (z0)! x for somez0 2 Hn+1. We may assume thathk belong to
distinct cosets ofJ in G. By Theorem 3.1, we have that diam(hk(S))! 0. So all the
hk(S) must be distinct.

Claim 11. By taking a subsequence we can assume hk > 0 for all k.

Proof. Suppose, on the contrary, thathk < 0 for all k after passing to a sub-
sequence. We recall that diam(hk(S))! 0. It follows that the sethk(B2) cannot con-
tain S inside. Therefore, we have diam(hk(B2))! 0. Recall that we are considering
the case whenx 2 BÆ

2 \ C1. This shows thatd(hk(z), hk(x))! 0 for all z 2 B2. This
contradicts the fact thatd(hk(z), hk(x)) is bounded away from 0 forz 2 R̄n n fxg. Thus
we have completed the proof of Claim 11.

Now we return to the proof of (10). Note that we have only to consider the case
when hk is not contained inG1, for otherwisex is a conical limit point ofG1 by
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Proposition 2.12. Therefore, we can assume thatjhkj > 1. Expresshk in a normal
form hk = 
kl Æ � � � Æ 
k1. Set gk = hk Æ 
�1

k1
. Then gk is negative.

First consider the case whengk = g Æ jk for someg 2 G with some jk 2 J. Then
d(hk(z), hk(x)) = d(g Æ jk Æ 
k1(z), g Æ jk Æ 
k1(x)). By Lemma 2.3, we may assume that
there are two distinct pointsx0, z0 such thatg Æ jk Æ 
k1(z) ! z0 for all z 2 R̄n n fxg
and g Æ jk Æ 
k1(x) ! x0. It follows that jk Æ 
k1(z) ! g�1(z0) for all z 2 R̄n n fxg,
jk Æ 
k1(x)! g�1(x0) and (jk Æ 
k)�1(g�1(z0))! x, where g�1(z0) 2 Hn+1. It follows
from Proposition 2.12 thatx is a conical limit point ofG1.

Suppose next thatgk is not expressed asg Æ jk, that is, gk belong to distinct
cosets ofJ in G. Then by Theorem 3.1,gk(S) are all distinct. Applying the proof
of Claim 11 to gk, we see that diam(gk(B2)) ! 0. For any z 2 B1, we have that
k1(z) 2 
k1(B1) � B2. On the other hand,
k1(x) 2 B2 for 
k1(C1 \ BÆ

2) = C1 \ BÆ
2.

These imply thatd(hk(z), hk(x)) = d(gk
k1(z), gk
k1(x))! 0 for all z 2 B1. This con-
tradicts the fact thatd(hk(z), hk(x)) is bounded away from 0 forz 2 R̄n n fxg. Thus we
have completed the proof of (10).

Corollary 4.12. Under the hypotheses ofTheorem 4.2,if each Bm is precisely
invariant under J in Gm, especially J is the trivial subgroup I= fidg, and if we set
D = (D1 \ B2) [ (D2 \ B1) and G= hG1, G2i, then the following hold.
(1) G = G1 �J G2.
(2) G is discrete.
(3) Except perhaps for conjugates of elements of G1 and G2, every element of G is
loxodromic.
(4) S is a (J, G)-block and S is precisely invariant under J in G.
(5) If fSkg is a sequence of distinct G-translates of S, thendiam(Sk)! 0, wherediam
denotes the diameter with respect to the ordinary sphericalmetric on R̄n.
(6) There is a sequence of distinct G-translates of S nesting about the point x if and
only if x is a limit point of G which is not G-equivalent to a limit point of either G1

or G2.
(7) D is a fundamental set for G. If both D1 and D2 are constrained, and S\ Fr D
consists of finitely many connected components the sum of whose (n� 1)-dimensional
measures on S vanishes, then D is also constrained.
(8) Let Qm be the union of the Gm-translates of BÆm, and let Rm be the complement of
Qm in R̄n. Then�(G)=G = (R1\�(G1))=G1[ (R2\�(G2))=G2, where the latter two
possibly disconnected orbifolds are identified along theircommon possibly disconnected
or empty boundary(S\�(J))=J.
(9) S is a strong(J, G)-block if and only if each Bm is a strong(J, Gm)-block.
(10) If both B1 and B2 are strong, then, except for G-translates of limit points of G1

or G2, every limit point of G is a conical limit point.
(11) G is geometrically finite if and only if both G1 and G2 are geometrically finite.
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Proof. By Theorem 4.2, we only need to prove (9).
Let x be a parabolic fixed point ofJ. Such a pointx is contained inS by Lem-

ma 4.1-(2). Since eachBm is precisely invariant underJ in Gm by our assumption,
we have StabJ(x) = StabGm(x), which is also equal to StabG(x) by Lemma 4.4. LetH
denote StabJ(x).

The proof of the“ if ” part. Suppose thatBm is a strong (J, Gm)-block for each
m = 1, 2. There is nothing to prove if the rank ofH is n since the rank of StabG(x) is
alson. Now assume that the rank ofH is k < n. By conjugation, we may assume that
x =1. By Theorem 2.10, we can assume that eachg 2 H is expressed asg(y) = Ay+a
for a 2 Rk and an orthogonal matrixA preserving the subspacesRk and Rn�k.

Since bothB1 and B2 are assumed to be strong and StabG1(1) = StabG2(1), there
is a common peak domainU at1 for G1 and G2. SinceU \ (3(G1) [ 3(G2)) = ;,
by choosingU small enough, we may assume thatŪ n f1g � �(G1)\�(G2), where¯
means the closure on̄Rn. We can assume thatU has a formU =

�
y 2 Rn :

Pn
i =k+1 y2

i >
t2
	
, wheret is a sufficiently large positive number.

Claim 12. We can choose U small enough to satisfy U� C1.

Proof of Claim. We divide our discussions into two cases.
CASE 1: The case whenk = n� 1.
In this case,U is the union of two componentsU1 and U2, and we may assume

that Um � BÆ
m by our assumption thatBm is a strong block. We have only to prove

that we can chooseU1 small enough in such a way that everyG2-translate ofB2 is
disjoint from U1. We may assume thatU1 = fy 2 Rn: yn > tg. Suppose, seeking a con-
tradiction, that such aU1 does not exist. Then, there is a sequencefgk(B2)g of distinct
G2-translates ofB2 intersectingfy 2 Rn : yn > sg for any larges. This means that the
projections ofgk(B2) to the n-th coordinateR accumulate at1. We may assume that
gk 2 G2� J since J fixes B2.

Now Lemma 4.1-(7) implies that diam(gk(B2)) ! 0 with respect to the ordinary
spherical metric. It follows thatgk(y)!1 for all y 2 B2 since fgk(B2)g accumulates
at1. By Lemma 2.3, by taking a subsequence offgkg, we may assume thatgk(y)!1 for all y with at most one exception, which must be a limit point.

SinceŪ2 n f1g is contained in�(G2), for all y 2 Ū2 n f1g, we havegk(y)!1.
Since gk(U2) \ U = ;, it follows that the projections ofgk(Ū2) to the n-th coordinate
are bounded. Hence the projections ofgk(Ū2n1) to the first n � 1 coordinatesRn�1

accumulate at1. By Theorem 2.10, for eachgk, we can choose an elementjk 2 H
such thatf jkgk(y0)g lies in a bounded set for a fixedy0 2U2. For eachk, we have1 =2
gk(B2) since B2 was assumed to be precisely invariant underJ in G2 and1 lies on S.
Therefore, we have1 =2 jkgk(B2). Since j( jkgk(y))nj = j(gk(y))nj and the projections
of the gk(B2) to the n-th coordinateR accumulate at1, we see thatf jkgk(B2)g also
accumulates at1. By Lemma 4.1-(7), this implies thatjkgk(y)!1 for all y 2 B2.
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This is a contradiction sincef jkgk(y0)g stays in a compact set. This proves our claim
for the case whenk = n� 1.

CASE 2: The case whenk < n� 1.
Since U is connected and is disjoint fromS, we see thatU lies in either BÆ

1 or
BÆ

2. We may assume thatU � BÆ
1. Then, by the same argument as in the proof of

Case 1, we see that the projections ofG2-translates ofB2 in the lastn� k coordinates
cannot accumulate at1. Therefore, we haveU � C1 \ BÆ

1.
The claim has thus been proved.

Now we return to the proof of the “if” part. Take a small commonpeak domain
U for both G1 and G2 as in Claim 12. By assumption,U is precisely invariant under
H in both G1 and G2. We need to show it is precisely invariant under StabG(x) in G.

For anyg 2 G�(G1[G2), we haveg(U ) = g(U1)[g(U2)� g(C1\BÆ
1)[g(C1\BÆ

2),
whereU1, U2 are the components ofU if k = n�1, and we regard one of them as the
emptyset whenk < n� 1. Suppose thatg is expressed as a (1, 1)-formgn Æ � � � Æ g1.
As was shown in Lemma 2.6,gn Æ � � � Æ g1(C1 \ BÆ

1) � BÆ
2. Furthermore, we have

gn Æ � � � Æ g1(C1 \ BÆ
1) � gn Æ � � � Æ g1(BÆ

1) � TÆ
n � TÆ

1 . On the other hand,gn Æ � � � Æ
g1(C1\ BÆ

2) � gn Æ � � � Æ g2(C1\ BÆ
2) by Lemma 4.8. Then applying the same argument

for C1\ BÆ
1, we see thatgn Æ � � � Æ g2(C1\ BÆ

2) � TÆ
1 . Thus we have shown thatg(C1\

BÆ
1)[g(C1\BÆ

2) � BÆ
2 \TÆ

1 for g expressed as a (1, 1)-form. A similar argument works
also for (1, 2)-form. Also, we can see by the same argument that if g is expressed as
a 2-form, theng(U ) = g(U1) [ g(U2) � g(C1 \ BÆ

1) [ g(C1 \ BÆ
2) � BÆ

1 \ TÆ
1 .

Since U , which is disjoint from S from the beginning, is taken to be lie inside
C1, it follows that U is precisely invariant underH in G in the case whenk � n� 1.

This completes the proof of the “if” part.
The proof of the“ only if ” part. Let x be a parabolic fixed point ofJ such that

StabJ(x) has rank less thann. This point x must lie on S since3(J) � S. Since
we are assuming thatS is a strong (J, G)-block, there is a peak domainU for G,
which is also a peak domain for bothG1 and G2. Since we already know thatBm is
a (J, Gm)-block, this shows thatBm is a strong (J, Gm)-block.

By Theorem 4.2, we know that the conclusions hold.

REMARK 4.1. The condition that (BÆ
1, BÆ

2) is a proper interactive pair in Theo-
rem 4.2 is necessary, as the following example shows.

EXAMPLE 4.1. Set

J =

��
1 1
0 1

�
,

�
0 1�1 0

��
, g1 =

�
i 0
0 �i

�
, g2 =

�
0 i
i 0

�

and

G1 = hJ, g1i, G2 = hJ, g2i.
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We use the following symbols:

S = fx 2 R̄2 : x2 = 0g, B1 = fx 2 R̄2 : x2 � 0g and B2 = fx 2 R̄2 : x2 � 0g.
Then the following hold.

(1) J is geometrically finite.
(2) S = 3(J) = 3(G1) = 3(G2).
(3) G1 = J [ g1J and G2 = J [ g2J.
(4) Each Bm is a (J, Gm)-block for m = 1, 2.
(5) (BÆ

1, BÆ
2) is an interactive pair, but (BÆ

1, BÆ
2) is not proper.

(6) G 6= G1 �J G2.

The assertion (1) is obvious sinceJ is a finitely generated Fuchsian group. To prove

(2), setw = p=r , where p and r are integers andr 6= 0, and j =

�
1� pr p2�r 2 1 + pr

�
.

Then j 2 J is a parabolic element havingw as its fixed point. Therefore, every rational
number is a parabolic fixed point ofJ. Now (2) follows from Lemma 5.3.3 in [7]. The
proofs of (3), (4) and (5) are trivial. We can verify (6) by checking that for a (1, 2)-form
g1g2g1g2, we have8(g1g2g1g2) = id.

5. An application

5.1. The statement of Theorem 5.1. Following [31] or [32], we denote by
PSL(2, 0n) the n-dimensional Clifford matrix group. ThenPSL(2, 0n) is isomorphic
to M(R̄n) (cf. [3]).

Let

j1 =

�
e1 0
0 �e1

�
, j2 =

�
1 1
0 1

�
, j3 =

�
0 1�1 0

�
, j4 =

�
e1 1
0 �e1

�
,

g1 =

�
e2 0
0 �e2

�
, g2 =

�
1� 8e1� 64e2 �130�32 1 + 8e1 + 64e2

�
,

g3 =

� �7� 64e1e2 �126e1 + 32e2

32e1 9� 64e1e2

�
, g4 =

�
65� 8e1e2 �32e1� 126e2�32e2 �63� 8e1e2

�
,

J = h j1, j2, j3, j4i, G1 = hJ, g1i, G2 = hJ, g2, g3, g4i and G = hG1, G2i.
Then

Theorem 5.1. G is geometrically finite.



KLEIN-MASKIT COMBINATION IN SPACE 1135

5.2. Several propositions.

Proposition 5.2. As a 2-dimensional Möbius subgroup,

3(J) = J(1) [ fthe approximation points of Jg.
Moreover, every parabolic fixed point of J is J-equivalent to1.

Proof. In the proof of this proposition, we regardJ as a 2-dimensional Möbius
subgroup.J has a fundamental polyhedron

P =

�
x 2 H3 : �1

2
< x1 < 1

2
, 0< x2 < 1

2
, jxj > 1

�
,

which has finitely many sides. This yields thatJ is geometrically finite as a 2-dimensional
Möbius group. Hence every limit point ofJ is either an approximation point or a par-
abolic fixed point ofJ, cf. [8]. We see thatP̄ \ 3(J) = f1g. It follows from Propo-
sition VI.C.2 in [22] that every limit point ofJ which is not J-equivalent to1 is an
approximation point ofJ. On the other hand, parabolic fixed points ofJ cannot be
approximation points ofJ. These facts imply that every parabolic fixed point ofJ is
J-equivalent to1. The proof is completed.

Proposition 5.3. As a 3-dimensional Möbius subgroup, J is geometrically finite.

Proof. We see that every approximation point ofJ � PSL(2, C) is a conical limit
point of J � PSL(2,03). By Proposition 5.2, it suffices to prove that1 is a parabolic
vertex of J � PSL(2, 03).

We see thatJ1 =
n�

1 a
0 1

�
,
�

e1 b
0 �e1

�
: a, b are Gaussian integers

o
, and for any

g =
� � �
 Æ

� 2 J n J1, j
 j � 1. It follows that the rank of1 is 2 and

U = fx 2 R3 : x2
3 > 16g

is a peak domain ofJ at1. Hence1 is a parabolic vertex ofJ � PSL(2, 03).

In the following, all subgroups involved are regarded as 3-dimensional Möbius
subgroups.

Proposition 5.4. G1 is geometrically finite.

Proof. By computation, we know that

g1 j1 = j1g1, g1 j2 = j�1
2 g1, g1 j3 = � j3g1, g1 j4 = � j4g1.



1136 L. LI , K. OHSHIKA AND X. WANG

It follows that G1 = J [ g1J. We choose a pointy 2 H4. Then

3(G1) = J(y) [ g1J(y) \ R̄3 = 3(J).

For any conical limit point ofJ, it is also a conical limit point ofG1. It suffices
to show that1 is a parabolic vertex ofG1. We see thatG11 = J1 [ g1J1 and for

any g =
� � �
 Æ

� 2 G1 n G11, Hersonsky [14] implies thatj
 j � 1. It follows that the

rank of1 is 2 andU is also a peak domain ofG1 at1. The proof is completed.

Proposition 5.5. Let I = fidg, H = hg2, g3, g4i and R3 = fx 2 R3 : jx � (e1=4 +
2e2)j = 1=8g which dividesR̄3 into two closed balls

R1 =

�
x 2 R3 :

���x � �e1

4
+ 2e2

���� � 1

8

�

and

R2 =

�
x 2 R3 :

���x � �e1

4
+ 2e2

���� � 1

8

� [ f1g.
Further, let

R =

�
x 2 R3 :

����x � 7

32
e1� 2e2

���� > 1

32
,

����x � 9

32
e1� 2e2

���� � 1

32
,����x � 1

32
� e1

4
� 2e2

���� > 1

32
,

����x +
1

32
� e1

4
� 2e2

���� � 1

32
,����x � e1

4
� 65

32
e2

���� > 1

32
,

����x � e1

4
� 63

32
e2

���� � 1

32

�

and

4 =

�
x 2 R3 : �1

2
< x1 � 1

2
, 0� x2 � 1

2
, jxj � 1

� n (A1 [ A2 [ A3),

where A1 = fx 2 R3: x2 = 0, �1=2� x1 � 0g, A2 = fx 2 R3: x2 = 1=2, �1=2� x1 � 0g,
and A3 = fx 2 R3 : jxj = 1, �1=2� x1 � 0g. Then the following hold.
(1) G2 = hJ, Hi = J �I H .
(2) G2 is discrete.
(3) D2 = R\ 4 is a fundamental set of G2.
(4) Every point of3(G2) n G2(3(J) [3(H )) is a conical limit point of G2.
(5) G2 is geometrically finite.
(6) 3(G2) = G2(1) [ G2(e1=4 + 2e2) [ fconical limit points of G2g.
(7) U is also a peak domain for G2 at 1 (recall that U is defined in the proof of
Proposition 5.3).
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Proof. It is obvious that4 is a fundamental set ofJ. By G.3 in [22], we see
that R is a fundamental set ofH .

We see thatR1 � �(J) and R2 � �(H ). Since R2 is outside the isometric spheres
of g 2 H n I , R2 is precisely invariant underI in H . It follows that R2 is an (I , H )-

block. Let f =
�

1 �2e2
4e1 1� 8e1e2

�
. By a simple computation, we have that

f g2 f �1 =

�
1 �2
0 1

�
, f g3 f �1 =

�
1 2e1

0 1

�
and f g4 f �1 =

�
1 2e2

0 1

�
.

This yields that3(H ) = fe1=4+2e2g ande1=4+2e2 is a parabolic fixed point of rank 3.
So H is geometrically finite andR2 is strong.

Since R1 � 4, for any j 2 J n I , j (R1) \ R1 = ;. It follows that R1 is a strong
(I , J)-block.

We can see that4 and R satisfy that4\R1 = R1, R\R2 = R2 and4\R3 = R\R3.
Since3(H ) 6= ;, we know that (RÆ

1, RÆ
2) is a proper interactive pair by Lemma 4.1-(9).

Therefore, groupsJ, H , I , sets R1, R2 and R3, and fundamental sets4 and R
satisfy the conditions in Corollary 4.12, we have that
(1) G2 = hJ, Hi = J �I H ,
(2) G2 is discrete,
(3) D2 = R\ 4 is a fundamental set ofG2,
(4) every point of3(G2) n G2(3(J) [3(H )) is a conical limit point ofG2,
(5) G2 is geometrically finite.

Since3(H ) = fe1=4 + 2e2g, 3(J) = J(1)[ fthe conical limit points ofJg and the
conical limit points ofJ are also conical limit points ofG2, by the discussions above,
we have that

3(G2) = G2(1) [ G2

�e1

4
+ 2e2

� [ fconical limit points ofG2g.
Let U1 = fx 2 R3 : x3 > 4g and U2 = fx 2 R3 : x3 < �4g. Then U = U1 [ U2.

Let T1 = (J n I )(R1) [ (H n I )(R2) and C1 = R̄3 n T1. We can see thatU � RÆ
2 and

U \ J(R1) = ;, that is, U � RÆ
2 \ C1. Since RÆ

2 \ C1 is precisely invariant underJ
in G2 by the proof of Lemma 4.8, we haveG21 = J1 and (G2 n J)(U ) \ U = ;.
Therefore,U is also a peak domain forG2 at1.

Now we are ready to prove Theorem 5.1.

5.3. The proof of Theorem 5.1. Let

B1 = fx 2 R3 : x3 � 0g [ f1g, B2 = fx 2 R3 : x3 � 0g [ f1g
and

S = fx 2 R3 : x3 = 0g [ f1g.
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It follows from BÆ
1 = B1 \ �(J) = B1 \ �(G1) and g1J(BÆ

1) = BÆ
2 that B1 is a

(J, G1)-block. SinceG1 is geometrically finite,B1 is strong.
Let

D1 = 4 \ fx 2 R3 : x3 > 0g.
Then D1 is a fundamental set ofG1 which satisfies thatD1\B1 =4\B1 and D1\S=
D2 \ S = ;.

It is obvious that4 \ B2 = D2 \ B2. This yields that

B2 \�Æ(J) = J(4 \ B2) = J(D2 \ B2) � B2 \�Æ(G2)

and henceB2 \�Æ(J) = B2 \�Æ(G2) � BÆ
2. For anyg 2 G2 n J, we have that

g(B2 \�Æ(G2)) \ (B2 \�Æ(G2)) = gJ(D2 \ B2) \ J(D2 \ B2) = ;.
Claim 13. B2 \�(G2) = B2 \�(J) and B2 \�(G2) is precisely invariant under

J in G2.

Proof. For anyx 2 B2\ (�(J) n�Æ(J)), there exists a neighborhoodUx which is
covered by finitely many images of̄4\ B2, see [22]. It follows from4̄\ B2 = D̄2\ B2

that x 2 B2 \�(G2). Thus, B2 \�(G2) = B2 \�(J).
We now come to prove thatB2 \ �(G2) is precisely invariant underJ in G2.

Suppose, on the contrary, that there exist pointsx, y 2 B2 \ (�(G2) n �Æ(G2)) and
an elementg 2 G2 n J with g(x) = y. We choose a neighborhoodUx of x. Then
g(Ux) is a neighborhood ofy. In Ux, we can choose a pointx0 2 �Æ(G2). Then
g(x0) = y0 2 �Æ(G2), which contradicts the fact thatB2\�Æ(G2) is precisely invariant
under J in G2.

We have shown thatB2 is a (J, G2)-block. SinceG2 is geometrically finite,B2 is
strong.

Since3(G2) 6= 3(J), by Lemma 4.1-(9), (BÆ
1, BÆ

2) is a proper interactive pair. By
Theorem 4.2, we know thatG = G1�J G2, G is discrete andD = (D1\B2)[(D2\B1) =
D2 \ B1 is a fundamental set ofG.

Claim 14. S is a strong(J, G)-block.

Proof. By Theorem 4.2-(4), we know thatS is a (J, G)-block. It suffices to prove
that1 is a parabolic vertex ofG. We considerU again. It follows from

U1 \�Æ(J) = J1(U1 \ 4) = J1(U1 \ D) � U1 \�Æ(G)
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that U1 \ �Æ(J) = U1 \ �Æ(G) and thatg(U1 \ �Æ(G)) \ (U1 \ �Æ(G)) = ; for any
g 2 G n J1. By the similar reasoning as that in the proof of Claim 13, we know that
U1 \�(J) = U1 \�(G) and U1 \�(J) is precisely invariant underJ1 in G.

Since g1(U1) = U2, for any g 2 G n G1, we have that

g(U1) \U2 = g(U1) \ g1(U1) = ;, g(U2) \U1 = gg1(U1) \U1 = ;
and

g(U2) \U2 = gg1(U1) \ g1(U1) = ;.
This implies thatU is a peak domain forG at1.

By Theorem 4.2, we know thatG is geometrically finite. The proof is completed.
From the proof of Theorem 5.1, we can easily get the followingcorollaries.

Corollary 5.6. B1 is not precisely invariant under J in G1.

Corollary 5.7. D1 \ B1 = D1.

REMARK 5.1. In Theorem 5.1 the following conditions are not satisfied:
(1) Bm (m = 1, 2) is precisely invariant underJ in Gm;
(2) Dm \ Bm 6= Dm.

But these conditions are required in Theorem 1.2.
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