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Abstract
We prove that the fundamental quandle of the trefoil knotsimmorphic to the
projective primitive subquandle of transvections of thenplectic spaceZ @ Z. The
last quandle can be identified with the Dehn quandle of thestand the cord
quandle on a 2-sphere with four punctures. We also show tiatfundamental
quandle of the long trefoil knot is isomorphic to the cord i@ on a 2-sphere
with a hole and three punctures.

1. Definitions and preliminary facts

DerINITION 1.1. A quandle X, is a set with a binary operatiom,(b) — axb
such that
(1) For anyae X, axa=a.
(2) For anya, b € X, there is a unique € X such thata = c x b.
(3) For anya, b,ce X, (axb)*xc=(ax*c)x*(bx*c) (right distributivity).

Note that the second condition can be replaced with theviatig requirement: the
operationxb: Q — Q, defined byxb(x) = xxb, is a bijection. The inverse map tb
will be denoted byxb.

DEerFINITION 1.2. Arackis a set with a binary operation that satisfies (2) and (3).

According to [4], the earliest discussion on racks is due ©ahway and G. Wraith,
who studied racks in the context of the conjugacy operatica group. They regarded a
rack as the wreckage of a group left behind after the groupatipe is discarded and only
the notion of conjugacy remains. The notion of quandle wasduced independently by
D. Joyce [6] and S. Matveev [9].

The fundamental quandle of the oriented knot is a clasgifyiwariant of classical
unoriented knots (see [6] for details). Its generatorsesgond to the arcs of the knot
diagram, and relations correspond to crossings. They atbeoform: x; = xx = X; or
X * Xc = Xj, depending on the type of the crossing, whereand x; are generators
assigned to the under-arcs, andis assigned to the over-arc of the crossing. Just like
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in the case of the fundamental groups, it is not easy to degluether two given knot
quandles are isomorphic.

The following are some of the most common examples of quandle
— Any group G with conjugation as the quandle operation:

axb=Db lab. The quandle G, %) is denoted byConj(G).

— Letn be a positive integer. For elementg € {0,1,...,n—1}, defineixj =2j —i
(modn). Thenx defines a quandle structure called tfiedral quandle R,. It can be
identified with the set of reflections of a regulagon with conjugation as the quandle
operation.

— Any Z[t,t~1]-module M is a quandle withaxb =ta+(1—t)b, for a,b e M, called
an Alexander quandleMoreover, ifn is a positive integer, the,[t, t=1]/(h(t)) is a
quandle for a Laurent polynomidu(t).

The last example can be vastly generalized [6]; for any gr@u@and its auto-
morphismz: G — G, G becomes a quandle when equipped with the operajieh =
r(gh™H)h. If we consider the anti-automorphism(g) = g~%, we obtain another well
known quandle,Core(G), with g *h =hg th.

2. Dehn guandles and symplectic quandles

In this section we recall (after J. Zablow [16, 17] and D. ¥et{l4, 15]; compare
also [7]) the concept of Dehn quandle of an orientable sarfand related definition
of a symplectic quandle.

Let F be an orientable surface and IB(F) denote the isotopy classes of simple
closed curves irf-. For any curvec € C(F), we consider the positive (right-handed) or
negative (left-handed) Dehn twist about this curve, dethatet; andt_ respectively.

The following facts are needed when defining the Dehn quaofiie surfaceF.

— t7 fixes the curvec up to isotopy;

— Positive and negative Dehn twists about the same curvenaesse to each other
up to isotopy;

— Positive Dehn twists along isotopic simple closed curves isotopic as diffeo-
morphisms;

— The images of simple closed curves under isotopic Dehntdveige isotopic.

Thus, it makes sense to consider the following definitionwhich the same sym-
bol denotes the isotopy class and a representative curve.

DerFINITION 2.1. TheDehn quandle Dehr(F), of an orientable surfac&, is
the set of isotopy classes of simple closed curve$ jnequipped with the operations

X * Yy =ty(x),
X* Yy =t (X).

For a detailed proof thabehrn(F) satisfies quandle axioms see [16].
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The Dehn twistt; acts onHy(F) in a natural way. The action depends only on
the homology class of, and preserves the intersection form HR(F). This motivates
the following definition.

DEFINITION 2.2. LetR be a commutative ringM be a module oveR, and let
(, ) M x M — R be a bilinear form. Consider the operatian: y = x — (X, y)V.
Then:
@i If (, ) is antisymmetric, i.e.{X, y) = —(y, X), then M, x) is a rack.
(iiy If (, ) satisfies(x, x) =0 for all x, then M, ) is a quandlé
We refer to above quandle aymplecticquandle if M is free and the forng , ) is
non-degenerate.

The structure of symplectic quandles was recently studiefl].

3. Proof of the main theorem

By definition, the fundamental quandle of the trefoil kn€}(3;), has presentation

{a,b,claxc=a, bxa=c, cxb=a}={a,bjlaxbxa=b, bxaxb=a};
compare Fig. 1. An important property Qf(3;) is that it satisfies the braid type relation:
Q) xxaxbxa=xxbxaxb,

for any x € Q(3;). In particular, it allows a homomorphism from the 3-braidbup,
Bs, to the group of inner automorphisms @f(3;), sendingo; to xa and oy to *b,
whereo,, o, are standard generators BE.

Let us first prove relation (1). The equatiarbsa =b is equivalent tca = bxaxb,
and it follows thatxxa = x*(bxaxb), for anyx € Q(3;). Thus, x*xa = xxbsaxbxaxb,
and after applying<bxa to both sides of the last equation, we get the required oglati
xxaxbxa=xxbxaxb. We remark that we used only relatiab+a =Db to get (1).
It follows that above is true also for the fundamental quanafl the long trefoil knot,
in which the relationb % a « b = a does not hold.

The following theorem suggests that there could be a strammection between
the fundamental knot quandles and Dehn quandles.

Theorem 3.1. The fundamental quandle of the trefoil kn@(3,), is isomorphic
to the Dehn quandle of the toru®ehr(T?).

L(x, x) implies (x, y) = —(y, x), and the inverse holds # is not a zero divisor irR.
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b*a=c
a l b
a~c=b cxb=a
C

Fig. 1. Generators and relations of the fundamental quaafile
the trefoil knot.

Proof. From the fact that
m(T?) =H(T?) =Z & Z,

follows that isotopy classes of unoriented curvesTon(and Dehn twists assigned to
them) can be identified with relatively prime pairs

+(a, b) € Z®7Z/+1,

in the space of orbits of the action of the multiplicative gpo{1, —1} on Z & Z by
scalar multiplication; in other words, with fractiomb € Q U 1/0. Furthermore, the
action x8 given by the Dehn twist corresponding to the curve with “stop = c/d is
a transvection, that is, fax = a/b, we haveua x g = (a — Dc)/(b — Dd), whereD is
the determinantD = ad — bc. Indeed, one can easily check th&t is an element of
PSL(2, Z) given by the matrix:

l1—-dc &
—d?2 1+dc|

1-dc @ al_[a—-cD
—d?> 1l+dc||b| [b—dD]

In particular, for €, d) = (1, 0), we have

Lot
F=lo 1|

and the matrix for ¢, d) = (0, 1) is

1 o0
N

and then
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that is, we get generators &SL(2, Z).
We remark that the determinaBt((a, b), (c, d)) =ad — bc is a symplectic form on
Z & 7, and the symplectic quandle operation is given by

(@, b)*x(c,d)=(a—cD, b—dD).

Since Dehr(T?) corresponds to relatively prime (primitive) pairs fraf@ Z/+1, we
can say that it can be identified with the projective pringitsubquandle of the sym-
plectic quandle orZ & Z.

The second part of the proof (the correspondence betweetiofta and elements
of Q(3,)) follows from Theorem 3.2. ]

Theorem 3.2. Q(3,) is a quandle isomorphic to the quandle of fractiof@ U
1/0, x), where(a/b)*(c/d) = (@a— Dc)/(b— Dd), where D=ad—bc is the determinant
The isomorphisny: Q(3;) — (QU 1/0, *) is given by¢(a) = 0/1, ¢(b) = 1/0.

Proof. The mapp is a quandle homomorphism because

=)
ol kP

0 1
* — = — %
1 1

=1 O
Ol

9(@) * ¢(b) * p(a) =

*

=¢(b) = ¢(axbxa),

and similarly,

1 0 1
o) xp@ o) =g 7*x5=—7*55777

In order to prove thaip is an epimorphism, we are going to represent rational

numbers as continued fractions. We writg; ko, ks, . . ., k;] to denote the continued
fraction
K 1
1t 1
k> + ) 1
3+ -+ k_n

Let us recall the algorithm for expanding any rational numbénto a continued frac-
tion. Letk; = [r] be the greatest integer not exceedinglt follows thats =r —k; < 1
and§ > 0. If § =0, the algorithm ends. Otherwise, let = 1/8, k, = [r2], and
8§ =ry — ks < 1. It is not difficult to show that after a finite humber of sudeps
we obtainé = 0 and the algorithm ends.

In the continued fraction representation @fthat we obtain from the above algo-
rithm, k; is an integerko, ..., k, are positive integers, ankl, > 1. In fact, we have
the following lemma [8].
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Lemma 3.3. The correspondence between
(1) finite continued fractiongky; ko, ks, . . ., ky] with an integer k, positive integers
ko,..., kqand k > 1
and
(2) rational numbers
iS one-to-one

We will use the convention thatxwk =uswswx- - -xw (k-timessw) for k > 0
anduxwX=uxwxw*---%xw (—k-times xw) for k < 0.

Lemma 3.4. Let[ks; ko, ks, ..., ky] be a continued fraction satisfying the condi-
tions of Lemma 3.3corresponding to a rational number/q. If n is odd then

plax b xafr . . xp) =

Qoo

If n is even then

poxa ™ bty .. xby=

oo

Proof. In the proof, the following formulas will be useful.

3 ()= i

wherek > 0 and D = pt — sq;

ap*<s>k_ p+kDs

t/ ~ q+kDt’

wherek < 0 and D is as above. Below we perform the inductive step in the prdof o
the first formula (the proof of the second formula is analajou

t

q

ap*<s>k_p (ts)k—l*t§:p—(k—l)DS t§ p—(k—-1)Ds— Ds

q—(Kk—1Dt 't q—(k—1)Dt—Dt’
because |f — (k — 1)Ds)t — s(q — (k — 1)Dt) = D.
It follows that for positivek:
(i) (p/a)=*(0/1) = p/(a —kp) = 1/((@ — kp)/p) = 1/(—k +q/p),
(i) p/qx/(0/1) = p/(q+kp) = 1/((q +kp)/p) = 1/(k +q/p),
(i) p/q*(1/0) = (p+ka)/q =k+ p/q,
(iv) p/g*(1/0) = (p —kq)/q = -k + p/q.
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We will use induction onn to prove formulas from Lemma 3.4. Assume that
p/q = [Ki; Ko, Ks, . .., Ka], wheren is odd. Then, by inductive assumption,

pl@ax b a1 s .. % b)) = [ka; ks, Ks, . .., kn] = T.

Thus,

_k2
p@axboxa™ 4. xblesxa)=rxgp@ e =rx <g> ) ﬁ

from (ii), and
pax b a1 bk xahe x bl

~ 1 o 1 1\
~(igezr) 0 = (ozr) * (o)

1 1
+k2+1/r +k2+1/(k3+...+1/kn)'

=k

=k,

In this case we use (iii) iky > 0 and (iv) if k; < 0. The proof of the second formula
is similar. It follows that¢ is an epimorphism. O

The fact thaty is a monomorphism follows from the following lemma.
Lemma 3.5. Each element of (3;) can be uniquely written in one of the fol-

lowing forms
(1) aorboraxborbxa;

(2) axb xa k1 x...%pbk where nis oddky, ..., k, are positive integers and
kn > 1;
(3) bxa™ x b1 x...%xb where n is evenks, ..., k, are positive integers and
kn > 1.

Proof. The following (operator level) relations are consapes of the relations
axbxa=bandbxaxb=a that are satisfied iQ(3;). To shorten the expressions
in this proof, we will denotexa asa, *a asa, *b ash, andxb asb.

(R]_)...bab...:...aba...'
(R2)---bab---=.--aba---,
(R3).--bab.--=.--aba---,
(R4)---bab.--=..-aba---,
(R5)---bab.--=...aba---,
(R6) ---bab---=.--aba-

If we assume that the word satisfies all conditions of Lemn&a 8xcept the condition
ke > 1 (i.e., we assumd, = 1), then we can fix this situation using the equalities
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below and, if necessary, the induction on the length of thedwie., the total number
of a’'s and b’s appearing in the word representing the given elemenQ(s,)).

(1) aba =baa,

(2) bab=abb,

(3) bab=abb=a.

Let us also note that our condition for the parityrofollows from the first quandle
axiom, xx = x (or xX = x), and the assumption that the words in the second and third
class end irbk.

Now we use induction on the length of the word to prove thatréreaining con-
ditions are also achievable. We assume that our claim holdarfy wordw of length
m. We can also assume that is in the second or third class (the first class is easy
to deal with). Let us extenady by a or a or b or b. Adding b or b at the end ofw
will not spoil our normal form. Also, addin@ if w ends inbS, wheres is positive,
is permittable, as we allow; to be 0. Let us consider the three remaining cases.

CASE 1. Assume thatw ends inbS, wheres is positive, and we consider the
word wa. We have the following (operator level) relation in which wse brackets [ ]
to indicate on which part of the word our relations are used.

..b*a=...b>'a[aba] = - - - b>abab = - - - b>2a[aba]bab
e b_s_zaba—t_)ba—.b_: . Bs_zabazg: .= Bs_iabai[;: e
=...baba®>'b=---afabalba®> b =---ababba® b= --aba’h.

The lasts + 2 letters ofwa are now in the normal form. Tha that precedes these
letters will cancel witha that appears beforb® (if there are no sucla it means that
w was of the forma®” and we can use the first axiom of quandle).

CASE 2. Assume thatw ends inb®, wheres is positive, and we consider the
word wa. We are going to use the following relation.

..ab°=...b[bablb*1=...babal® 1 =...babablb’2=-..badbab® 2= ..
=...pabap* " =...=...ba>[bab] = - - - ba® taba = - - ba*ha.
We have:
wa=...ab’a=...bahaa=---bah.

The length of the last expressionns+ 1. By inductive assumption, the firat letters
can be transformed into the word in the normal form, and stheem + 1-st letter is
b, we are done.

CASE 3. Assume thatw ends inbS, wheres is positive, and we consider the
word wa. We will need the following relation.

. ab_s =... b_[bat_)][;s_l =... Ea[bat_)]as_z =... b_aibat_)s_z =...= Eaibat_)s_i
:...:...Eés_l[bag]:...Bés_laba:...gasba_
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We will also use the relation
..bat =...abtab

that follows from the first relation and the fact that rela8o(R1)—(R6) are symmetric
with respect toa and b.

wa=---ba%b’a=-..batalab’la=- . ba**'babaa = - - - ba***bach.

The last expression is still too long to use induction (it has 3 letters). That is why
we use the second relation.

.- [bat* Y ba®h = - - - ab**labba®h = - - - abke*a> b

Now the last word hasn + 1 letters and the last letter I so we can use induction
to end the proof.

The uniqueness follows from the Lemma 3.3 and the fact thatntap¢ is well
defined. ]

The proof of Lemma 3.5 ends the proof of Theorem 3.2. O

REMARK 3.6. In the proof of Theorem 3.2, we could have used Rydegsrém
stating that for a prime knot, its fundamental quandle careimbedded into conjuga-
tion quandle of the fundamental group [13], together witk fact thatm1(3;) = B;
is a centralZ-extension ofPSL2, Z). Our goal, however, was to prove the theorem
using elementary steps, on the level of quandles, so thatdhespondence between
elements of the two quandles becomes explicit.

4. Structure of the fundamental quandle of the long trefoil knot

Our goal, in this section, is to prove that the quandle of thegltrefoil knot can
be viewed as a quandle of cords on the sphere with a hole aed ffunctures. In
order to prove our theorem, we use Eisermann’s descriptiaquandles of long knots
[3]. For the convenience of the reader, we recall the faamf{3] that we are going
to use.

4.1. Eisermann’s description of the fundamental quandles foong knots. Let
w1 be the fundamental group of a closed prime kikat m its meridian, 7 its com-
mutator subgroup, and l&) denote the conjugacy class of in 71 with conjugation
as a quandle operation. From the work of Ryder [13], it is kndWat in the case of
prime knots, such & is isomorphic to the fundamental quandle of the kikat In
[3], the author considers the set

QGrr, m) = {(x, g) € mu x 71 | x =md).
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Here, we use the exponential notation to denote the conjugat? = y~!xy; later such
notation will also be used for an action of the fundamentalugron a cord quandle.
Q(mr1, m) becomes a connected quandle when equipped with the apesati

(x, g)*(y, h) = (x¥, gxty) = (x¥, mg'(h) 'mh),
and
(x, @) *(y, )=, gxy ) = (x¥, mg (h)"'m~*h).

Such operations already appear in the work of Joyce [6]. Trandie Q(1, m) turns
out to be isomorphic to the fundamental quand@,, of the long knot obtained from
K by breaking it at some point and extending the endpoints fioity [3]. The map
p: Q(r1, m) - Q given by p(m?, g’) =m¢ is a covering in the following sense.

DEFINITION 4.1. A surjective quandle homomorphispt Q — Q is called a
coveringif p(X) = p(y) impliesédxX=&ax ¥y for all &, X, § € Q.

Using the terminology from [6], we can say th&tand § are behaviorally equivalent,
that is, they act in the same way as operators.

As stated in [3], covering transformations for Q(1, m) — Q are given by the
left action of A = C(m) Nw; = (A), whereC(m) denotes the centralizer o, and A
is the longitude ofK (see [2] for details on computing). The action is defined by
Ar-(m9, g)=(mY, Ag’), and () acts freely and transitively on each fibpel(m?).

DEFINITION 4.2. Arepresentatiorof a quandleQ on a groupG is a mapp: Q —
G such thatg(a x b) = ¢(b)~t¢p(a)p(b) for all a,b € Q. The mapp: Q — Inn(Q),
sending each quandle elemeanto the corresponding operateq, is called the natural
representation of). An augmentatiorconsists of a representatign Q — G together
with a group homomorphism: G — Inn(Q) such thatx¢ = p. If G is generated by the
image¢(Q) (as in the case of knot groups), then the actiorzobn Q given by« is
uniquely determined by the representatipnso we can say for simplicity that: Q —
G is an augmentation.

As proven in [3], p: Q(r1, m) - Q C m; gives an augmentation. Here, the fundamen-
tal group acts orQ(zy, M) by

(M9, g)" := (", m"g'h,

whereh € 7; ande: 71 — Z is a homomorphism sending each elemgr¢ Q to 1.
Furthermore, this action is by inner automorphisms.
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Ot :
5 6

3

5, 5,
° ° °

Fig. 2. Generators and b of the cord quandle).

O

Fig. 3. Curves of Dehn half-twistga = oy and xb = o».

4.2. Quandle of the long trefoil knot as a cord quandle. We will define a
guandle generated by the two comsndb on a 2-sphere with four hole$ 4, dFp 4 =
{80, 61, 82, 83}, See Flg 2.

Consider the mapping class group Bf 4 modulo the componeniy; other com-
ponents can be rotated and exchanged. With this assumptiermapping class group
is the three-braid groupBs = {01, 02 | 010201 = 010201}, wWhereo; is the Dehn half-
twist (in the counter-clockwise direction) exchangifigand §, and keepingsy fixed.
Similarly, o, is the Dehn half-twist (in the counter-clockwise direc)iaxchangings,
andé3 and keepingsg fixed; see Fig. 3 and [1].

Now, consider the quandlé generated by the two arcs, and b, with one end-
point at a fixed base point @p, as illustrated in the Fig. 2. That i€) consists of all
arcs from the base point t@;, 82, 83}, with the convention thata = o; and xb = o».
The reader may wish to compare our definition with the definitof cord quandles
given in [7]. The group of inner automorphisms &f is Bs. Since Bs = 71(31), the
fundamental group of the trefoil knot acts & by inner authomorphisms, and this
action will be denoted using exponential notation.
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Fig. 4. a* =axa* x bx* axax b—full twist along §y of the
cord a.

The most important identity ir@ is axbxa=Db. The elementixa*xbxasxaxb
is obtained froma by one clockwise twist alondy; see Fig. 4. Note that = a *baab
is a longitude for the trefoil knot.

We remark that given two elements 8 € Q the quandle operationr * 8 can
be realized asxt[B], where 7[B] is the Dehn half-twist along the boundary of the
regular neighborhood of, exchanging the holes that are outside this neighborhood in
the clockwise direction.

Our goal is the following theorem.

Theorem 4.3. The quandle described above is isomorphic to the fundarhenta
qguandle of the long trefoil knot

Proof. In our proof,7; denotes the fundamental group of the trefoil knot, afd
denotes its commutator subgroup. Recall that B; acts onQ(r, m) by

(x, 9)% = (x9, gx“@Wg) = (x9, mOgg),

wherex = m9, and it acts onQ as a group of inner automorphisms. Both quandles
OQ(r1, m) and Q are connected. Connectedness@®fcan be seen from the relation
axbxa=Db, and the fact thak and b are the only generators. Connectedness of
Q(rr1, m) follows from the transitivity of the action of; and the fact that such action
can be viewed as an action by inner automorphisms [3].

Define a map¥: Q(r1, m) - O by
w(md, g)=ad.

In particular, ¥(m, 1) =a, and (9, 1Xg’) is sent to a cord wrapped around the héje
k times (in the clockwise direction ik is positive, and counterclockwise otherwise),
followed by a piece corresponding &5 .
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We can also define a map in the opposite directi®n,Q — Q(1, m), as follows.
Every element] € Q can be written as”, wherew € 7. Becauser;/x; is generated
by the image of the meridiam, m; = (m)r;, and everyw € 71 can be uniquely written
in the formw =mlw’, wherej € Z andw’ € 7;. Now, assume tha": = a*2, where
wi = mwj, wy =mlw),, andw; # w,. The image of the elemerd": = a*2 in m;
equals () ~tmw} = (w})tmw}, so elementsnit, w}), (M*2, w,) € Q(rr1,m) are in the
same fiber of the covering: Q(rr1, m) = Q(31). As noted in [3], the grough) acts
transitively on each fiber (the action is given hym®’, w’) = (m*’, Aw’)). Therefore,
w) = Aw}, for some nonzero integée It follows thata* =a™*: cannot represent the
same cord ag*? =a™*: because they differ by exactly twists aroundSy. Therefore,
the map®: Q — OQ(z1, m) given by

o@@”) = (m*, w),

wherew’ € m; is as above, is well defined.
We check that it is a homomorphism:

q)(awl % awz) — q>(ami w’lmmj ”é) — cb(ami w'l(wé)’lmwé) - Q(am”lm’lwi(w’z)’lmuﬂz)
— (mwi(w/z)’lmw/z' m—lwll(wfz)flmw/z),
where wy = m'wj, wp = mlw), for somew), w, € ;, and m~w)(ws)"tmw), € n;
because the sum of exponents in this word is zero
d(@") x d(@*?) = (mw/l, wﬁ_) * (mw'z, w’z) = (mw/lsz, m‘lw/l(w’z)‘lmw/z),

as required.
We will show that both map® and ® are equivariant with respect to the action
of m. Let X € 1.

w((m?, g)¥) = w(md*, mMg'x) = a™ “9* = ad* = (y(m?, g)*.

For the equivariance of the map, it is enough to consider the case whens an
image of the quandle elemeqt=a® =a™ “f’ (it follows from the fact thatr; = (m™)),
and it acts on an arbitrary elemeat = a™" € Q, wherev’ ¢ ;.

o((a")) = ®@"") * ®(q) = (M, v') x (", w')
= (mvlmw/, m ' (w') tTmw’) = (m”’mw/, m~<y’ (w') tmuw’)
=, V)™ = (M, ) = (@@ )
We notice thatdW¥(m, 1) = (m, 1) and¥®(a) = a. From the equivariance of the maps

® and ¥, and the fact thatr; acts transitively on both quandles, follows thatr =
1d§(r,,m @and W® =1dg. Therefore,®: Q — Q(1, M) is an isomorphism. L]
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Fig. 5. Generators of “the fundamental quandle of the cldsed
foil knot.”

From the above analysis it is clear that if we alléyto be rotated, we obtain the
guandle of the closed trefoil knot.

Corollary 4.4. The fundamental quandle of the closed trefoil knot is isqior
to the cord quandle on &-sphere with four punctureggenerated by two ar¢sa and
b, as shown in theig. 5.
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