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Abstract
We study the subalgebra of fixed points of a root graded Lieekaly under
a certain class of finite order automorphisms. As the cesgsrcore of extended
affine Lie algebras or equivalently irreducible centerléss tori are examples of
root graded Lie algebras, our work is an extension of somenteesult about the
subalgebra of fixed points of a Lie torus under a certain fioider automorphism.

0. Introduction

In 1955, A. Borel and G.D. Mostow [7] proved that the fixed panbalgebra (or
f.p.s. for the sake of brevity) of a finite dimensional simplie algebra over a field
F of characteristic zero, under a finite order automorphisrma reductive Lie algebra.
As a finite dimensional simple Lie algebra is an extended affiie algebra of nullity
zero, a natural question which arises is that, what is the.fqf an extended affine Lie
algebra under a certain finite order automorphism? In 2005Az&m, S. Berman and
M. Yousofzadeh [5] considered and showed that such a subaldets a reductive-like
structure, namely it is decomposed into a sum of extendedeaffie algebras (up to
existence of some isolated root spaces), a subspace of tiver @d a subspace con-
tained in the centralizer of the core. Since the centerless of an extended affine Lie
algebra is a centerless irreducible Lie torus, a secondtiquearises: What we can say
about the fixed points of a Lie torus under automorphisms wilai nature. In 2006,
S. Azam and V. Khalili [4] studied the f.p.s. of a centerlessducible Lie torusC un-
der a certain class of finite order automorphisms. They stialat the centerless core
of the f.p.s. of£ under an automorphism in the stated class is a direct sumniérce
less irreducible Lie tori. In this article, we consider a g&nquestion for a much more
general class of Lie algebras, namely, the classRyfS A)-graded Lie algebras. An
(R, S, A)-graded Lie algebra, for a finite root systdrwith a subsystens and abelian
group A, is a Q(R)-graded Lie algebra whose support containdRimnd that is gener-
ated by the homogeneous spaces of degree not equal zero.utlyetsé subalgebra of
fixed points of an R, S, A)-graded Lie algebra, with respect to a certain automonphis
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We arrange the paper as follows: Section 1 is devoted tonpirediry definitions and
results we need throughout the work. In the first subsectioSeztion 2, we are ex-
clusively concerned with the f.p.s. of amlR,(A)-graded Lie algebral equipped with
a non-degenerate symmetric invariant graded bilinear fander a finite order auto-
morphism satisfying certain properties. In this situatiove get the same result as in
[4] for this much large class, more precisely, we prove that ¢enterless core of the
f.p.s. of an algebra in this class is a direct sum of irredeclbe tori. In the second
subsection of Section 2, we focuse on the general case whestudg the f.p.s. of
an (R, S, A)-graded Lie algebraC under a certain finite order automorphismfor a
finite root systemR, a subsysten8 of R and an abelian group.. We prove that the
core of the f.p.s. off undero is a sum of a root graded Lie algebfawith a grading
subalgebrag and a subspac& whose normalizer containg. We also prove that the
f.p.s. of £ is decomposed into its core, a subspace of the centralizéneotore and
a subspace of the centralizer @f We conclude our work with Section 3 allocated to
examples.

1. Root graded Lie algebras

Throughout this workA is an abelian additive group arid is a field of charac-
teristic zero. Unless otherwise mentioned, all vector spaare considered ovét. In
the present paper, we denote the dual space of a vector $pageV*. If x e V and
f € V*, we denote byx, f), the image ofx under f. If a finite dimensional vector
spaceV is equipped with a non-degenerate symmetric bilinear form {) and R is
a subset oV, we setR* :={a € R| (o, «) #0} and R° := R\ R*. Also for o € V*,
we taket, to be the unique element i representingy through the form. The form
(-, ) induces a form orv*, denoted again by «(, -), by letting ¢, 8) := (., tg)
for a, B € V*. For a setS, we take #§) to be the cardinal ofS and ids to be the
identity map onS. For a subsef of a vector space, we denote k), the Z-span of
S and by Q(S), the Q-span ofS. For a finite dimensional Lie algeb@, we usex for
Killing form of G. Also for an algebrad and a subseS of .4, we mean byZ(A),
the center of4 and byC,a(S), the centralizer ofS in A.

DEFINITION 1.1. LetV be a vector space/ is calledA-gradedif V =P, _, V*
where V*'s are subspaces of. The supportof V (with respect to theA-grading) is
by definition the set supp() := {, € A | V* #{0}}. Forx € A, V* is called thehomo-
geneous subspace of V of degreeand x € V* is called ahomogeneous element of
degreer. Let G be another abelian group, we say two gradings @gee Vy and
V =@, V* arecompatibleif for all g € G, Vg =, ., Vg whereVy :=VgnV* for
X € A. An algebra {4, -) is called aA-graded algebraf A =P, , A" is a A-graded
vector space satisfyingl* - A* € A** for A, u € A.
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DErFINITION 1.2. Let V be a finite dimensional nontrivial vector space over
the fieldF. A subsetR of V is called afinite root systenin V if the following con-
ditions hold:

(i) R is finite, Oe R and R spansV.
(i) For each 0% o € R, there existsue V* such that(«, &) = 2 and such that the
reflectionw, of V defined by

v v — (v, a)a; veV

stabilizesR.
(i) (B, a) e Z for all B, a € R\ {0}.

Each element oR is called aroot and the dimension o¥/ is called therank of
R. A root « is said to bedivisible or indivisible according to whethew&/2 is a root
or not. We setRjg :={0}U{x € R| a/2 ¢ R}. The root systenR is calledindivisible
(divisible) if R= Ring (R # Ring). For a subset of R, we setS* := S\ {0}. The root
systemR is calledirreducible if R* cannot be written as a disjoint union of honempty
subsetsA and B of R* such that(8, &) = (a, B) =0 for « € A and 8 € B. A subset
SC R is called asubsystemof R if 0 € S andw,(8) € S for all «, B € S*.

DerINITION 1.3 ([10, Section 2.9]). LetR be a finite root system and =
EBQEQ(R) L, be a 9(R)-graded Lie algebra with supff € R. In this situation, a
nonzero element € L,, « € R*, is calledinvertible (an invertible element of the
Q(R)-graded Lie algebra), if there exists e £_, such thath :=[f, €] € Lo operates
diagonally on. that means all;, = (8, a)id., for all p € Q(R). It is proved that
f with this property is unique and so we refer foas theinverseof e and denote it
by e L.

REMARK 1.4. LetR be a finite root system and = P, ok L« be a Q(R)-
graded Lie algebra. If for, 8 € R*, &, € L4, € € Lg are invertible elements and
h, :=[e;1, &], hs = [e;l, eg], then sincehg € £y, we have

[he, hs] = (0, d)hg = 0.

DEFINITION 1.5. LetH be an abelian Lie algebra. We say &hmodule M has
a weight space decomposition with respectHo if

M= M, where M,:={xeM|h x=a)x, VheH}; aecH"

acH*

DEFINITION 1.6. LetR be a finite root system and = ®aeQ(R) Ly, be aQ(R)-
graded Lie algebra such that sugp(C R. The core of £ is defined to be the sub-
algebra’l. of £ generated byZ,, o € R*. The core modulo its center is called the



614 M. YOUSOFZADEH

centerless coref £. Now let £ be a Lie algebra equipped with compatili¥R)- and
A-gradingsL = @, or) Lar £ =P,cn £+ such thatfe € Q(R) | £, # {0}} S R. We
call an element € A with £} # {0}, anisotropic rootof £. An isotropic rooti of £

is calledisolated if there are note € R* and§ € A such that£** # {0}, £3 # {0}.
An isotropic roota is callednon-isolatedif it is not isolated. We denote the set of all
isolated roots ofL by A(L)iso- We know thatL. inherits the compatibled(R)- and
A-gradings. TakeA. to be the support of. with respect to theA-grading. We call
the subspacé := 3, . (r)..a, £6 Of £, theisolated subspacef £ with respect to the
compatible gradings (we defirg:= {0} if A(L)iso \ Ac =9).

DEFINITION 1.7 ([10, Section 2.9]). LeR be a finite root system an& be a
subsystem ofR. An (R, S, A)-graded Lie algebra is a Lie algebra equipped with
compatible O(R)- and A-gradingsL = B, or) Lo+ £ = Dica £* such that the fol-
lowing conditions hold:

e {@eQR)IL7{OP SR

e For everya € S*, the homogeneous spa# contains an invertible element of
the Q(R)-graded Lie algebraC.

o Lo=) ,cr[Lar Lal

For an R, S, A)-graded Lie algebrd, a family {e, | « € S*} of invertible elements
of e, € £9, o € S¥, is called asplitting family An (R, S, A)-graded Lie algebra is
called R, A)-gradedif S= Rpg and is called anR, S)-gradedLie algebra if A = {0}.
An (R, S)-graded Lie algebra is called dr-gradedLie algebra ifS= Ry,g. An (R, A)-
graded Lie algebrd is called aLie torusof type (R, A) if for eacha € R* andx € A,
dim£} <1 and £} contains an invertible element of th@(R)-graded Lie algebraC if
£} #{0}. The Lie torus( is calledirreducibleif R is an irreducible finite root system.

Now let S be a subsystem of a finite root systefnand £ = @, .qry1ca L5 P
an (R, S, A)-graded Lie algebra. 16 e L%, « € R, A € A is an invertible element of

the Q(R)-graded Lie algebraC with the inversef, then the uniqueness of the inverse
implies thatf € £72.

Lemma 1.8. Let R be a finite root system anti= @, x,., £, be a Lie torus
of type (R, A), then
i) Z(L) < Loand L/Z(L) is a centerless Lie torus of tygdR, A).
i) L is a sum of irreducible Lie toriMoreovey if L is centerlessL is a direct sum
of centerless irreducible Lie tari

Proof. i) Leta € R*, A€ A and L. # {0}, then sincel’ is a one dimensional
subspace ofZ containing an invertible element, one finds th& N Z(£) = {0}. This
implies thatZ(£) € Lo. Next it is easy to see th& (L) = @QGR,MA(@ N Z(L)) and
then the second statement follows.
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i) Let R=42,R be the decomposition dR into irreducible finite root systems.
For 1<i < p, defineli := 3 ,.px La ® D gerr[Lar Lo]. Now let 1<i #j < p,
then since fore € R, B € R*, a +8 ¢ R, it follows that ; is a Lie subalgebra of
L and that

(1.9) [Ci, £;]1=1{0}; 1<i#]<np.

Now it is clear that the subalgebia, 1 <i < p, inherits the compatible gradings on
L and thatl;, 1 <i < p, is an irreducible Lie torus. This completes the proof of the
first statement a€ = >, £;. Next let the Lie algebra be centerless an /2, x =0
with x; € £; for 1 <i < p, then (1.9) implies that

P
D6, L)1 S[L, £i]=1{0} and i, Ll< | Y £, L |={0s 1<i<p,
i7j=1
which means that for ki < p, x € Z(£) = {0}. ThereforeL is direct sum of ir-
reducible Lie toriZi's (1 <i < p) which are centerless using (1.9). ]

To study a class of root graded Lie algebras containing aafieet grading sub-
algebra, from now on we assume thatis an R, S, A)-graded Lie algebra wher®
is a finite root system in a vector space afds a subsystem oR satisfying
9(9) = Q(R) and there exists a bage; | 1 <i <} of S such that
for1<iZj<l,{oi+naj|neZ}NS={a+na; IN€Z}NR.

*)

We fix a base{e; | 1 <i <I} of S, satisfying the condition stated in)(and for
each 1<i </, takeg to be a fixed invertible element of contained inﬁgi. One
can see that—e, fi =€, hj = [—e, fi] | 1 <i <} satisfies Serre’s relations, so
the subalgebr& of £ generated bye, fi, h;} is a finite dimensional split semisimple
Lie algebra with splitting Cartan subalgebta:= @!:1 Fh; and the root systengng.
We refer toG as agrading subalgebreof £. One knows from the finite dimensional
theory thatSpq can be identified as a finite root system7it and

(1.10) (B, a) = 2(tp, ta)/K(ta ta), @, B €S

For 1<i <I, seth; := 2t, /x(ty, t,) € H and let 1< j <I. Sinceg,, = {(x € G |
[h, x] = aj(h)x, Yh € H} =TFe; C L,;, (1.10) and the invertibility ofe imply that

[h, e1= aj(h)e) = 20kt t)/x(te, t))E) = (oj, i)y = [Ny, g]
:aj(hi)Ej.

Therefore we have

aj(hi) =aj(h); 1<i,j<I.
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It follows from this together with the facts that is finite dimensional and+* is

spanned by{ej | 1 < j <} that

(1.11) h =h =

2o /i (b tey);

1<i<l.

We recall that we identifie®§,q as a finite root system ift{*. ThereforeQ(R) =
Q(9) is identified as a subset 6f*. Now we have the following lemma:

Lemma 1.12. (i) LetB e R, ¢ € S*, then (B,

) = Z’C(Iﬁ' ta)/K(tar tot)-

(i) There is a splitting family{e, | « € S*} of £ such that

—1

ey, €7, [€)

Proof.

S, (1.10) implies that

(B, @) = <Zra., >:Z (i, &

Lellae Sy cé.

(i) Letg e R, e S*. SinceQ(R) = 9(9), there exist rational numbers
ri,...,r such thatg = Z:zlriai (identified as an element ¢{*). Now sinceqasy,...

O €

(Zrta.,t>/x(ta,ta)

:2/((tﬂ1 a)/K(tOt’ Ol)'

(i) Leta=Y_,Se € S andB € R. Then by (i), we have

© ZK(tﬂr a) (tﬂ7 Z!:lsit“i)
(B, a)= ot 1) (b 1)
ZSK(tﬂ,tm)
Z Kk(ty, 1)

(1.13)

Also using (1.11), we have

(1.14) h, := 2 :Z

2st,,

i=1

|
- ZS K (tai ) tai )K (t,B’ tai )
; K (tes ta)K(tai ) tai)

skt ty)
=y Sl lady ).

)

i=1 K(ta: tOt)

|
_no Sk te)
=2 (L, ) -

i=1
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Now let x € Lg, then (1.14) together with (1.13) implies that

| ' | '
(M )= [Z e X} =)

i=1 i=1

(1.15) P
ZS (ta.,ta.) (B, &)X

K (t, ty)
= (B, a)X.
We also know thatr € §jy, then G, G+,] = Ft, and so there exist,, € G, € Eoia

such that ¢ , €,,] = h, which together with (1.15) implies tha,, is an invertible
element of L. This completes the proof. ]

From now on we work with a splitting familyfe, | « € S*} of L satisfying the
condition that{e, | « € S5y} € G with h, = et e] =2t /k(ty, t,), @ € Sha- Since
we have identifiedR C Q(S) as a subset of{*, Lemma 1.12 (i) implies that

ﬂ(ha) = K(tﬂ1 hOt) = ZK(tﬂv ta)/K(taa ta) = <ﬂ1 &>1 a e Sﬁda IB € R

Using this and the same argument as in [10, Proposition 2fbt]3 € R, we have

Lp={xeL][hyg X]= (B, a)x, for all « € Snq}
={x e L] [h, x] = B(h)x, for all h € H}.

(1.16)

2. The subalgebra of fixed points

This section deals with the study of the f.p.s. of a root gdades algebra un-
der a certain finite order automorphism, a topic inspired ey work of S. Azam and
V. Khalili [4]. They study the f.p.s. of a centerless irrechle Lie torus, an element
of the class of root graded Lie algebras equipped with a synneon-degenerate in-
variant graded bilinear form, under an automorphism satigf some properties. In
the first subsection, we consider a triplé, (-, -), H), whereL is an R, A)-graded
Lie algebra equipped with a symmetric non-degenerate ismvagraded bilinear form
(-, ) and’H is a Cartan subalgebra of a grading subalgebra&.ofWe leto be an
automorphism ofZ and takeR(c) to be the root system of the f.p.s. 6f £(o), with
respect toH(o) := H N L(c). We set some conditions an, extending the conditions
in [4], among them invariancy of the form underand that the elements d®(o') are
non-isotropic. These two conditions guarantee the existef a subalgebra of(c)
we will call a o-splitting subalgebra. The existence of such a subalgebnaeeded
in the study of the general case as well, when we work with RnS A)-graded Lie
algebra, not necessarily equipped with a symmetric nomuegte invariant graded bi-
linear form. In this situation we replace the two conditictated above with two new
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appropriate conditions ((GC3) and (GC4) in Subsection.2I2jroughout this section
we suppose that is a positive integer and the fieldl contains a primitiven-th root ¢
of unity.

2.1. The subalgebra of fixed points of anK, A)-graded Lie algebra. Through-
out this subsectionR is a finite root system and = @, g, £s is an R, A)-graded
Lie algebra equipped with a non-degenerate symmetric iemaigraded bilinear form
(-, ), thatis, (-, -) is a non-degenerate symmetric invariant bilinear fornisgang

(C*, £*)=1{0} unless A+pu=0.

Fix a grading subalgebrg of £ with a splitting Cartan subalgebr®. Suppose
that the restriction of the form(-, -) to G is nonzero As in the previous section,
we may assume thaR € H* and thatl = @, g Lo With £, = {x € L | [h,x] =
a(h)x, Yh € H} for « € R. Now it follows from the invariancy and the non-degeneracy
of the form that

for o, B esuppl), (L4 Lg)={0} unless a+p=0.

We know thatG is a finite dimensional split semisimple Lie algebra. Supptsat
G=@) ., G is the decomposition of into simple ideals, then for i <1, G' is a
finite dimensional split simple Lie algebra with splittingu@an subalgebra' := HNG'
andH =@\, H. Let 1<i <| and takeR to be the root system of’. Now the
invariancy of the form implies that

(2.1) @, gh={0) 1<izj<l

Next for 1<i <I, put (-, - )i =(-, then (2.1) implies that

: )‘gl xgl !

| |
('v')\gxgzea("')i and (.’.)l’Hx’H:®(.’.)i|HiXHi'
i=1 i=1

Lemma 2.2. For 1 <i <, (-, -) is a scalar multiple of Killing form«; of
G'. Also if (-, -); is nonzerg (-, Vg and (-, -)., .. are non-degenerate and
(a, @) 20 for « € Q(R)\ {0}. In particular if G is simple (-, Vigxe and (-,
are non-degenerate anfd, «) #Z 0 for « € Q(R) \ {0}.

')\HxH

Proof. The first statement is immediate as foxl <1, G' is a centroid-simple
Lie algebra. Now let &xi <I| and (-, -); be nonzero, then-( -); is a nonzero scalar
multiple of Killing form «;. We know thatx; is non-degenerate ofi and?{' and that
it is positive definite onQ(R'), so we are done. ]
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From now on we assume that the restriction of the form#bris non-degenerate
Supposes : L — L is an automorphism of satisfying
(C1) ¢" =id; (o is of ordern),
(C2) o(H) C H,
(C3) LX), a(y) =(x,y) for X,y € £,
(C4) o (L) € L for A € A.
Sinceo is of finite ordern and o (H) € 'H, we have

n—-1 n—-1
L= L7 and H=EHH; where for 0<i=<n-1,
i=0 i=0

Li={xeLl|o(x)=¢'x} and Hi:=HNL.

Set
(2.3) L(o) =Ly, H(o):=Hs.

Now using (C3), one concludes that
(2.4) (€ £7) = (Hi, ) = {0} unless i+ =0.

Since the form or#H is non-degenerate, for eathe H, there is a unique element
of H*, sayh*, such thatty. = h. Now aso is an automorphism of{, it induces an
automorphism ofH*, denoted again by, as follows:

o H" - H" a—o(ty); aeH,
i.e., using (C3), we have (x)(h) = (o(ty), h) = (tu, o71(h)) = a(c~1(h)) for a € H*
and h € H. Thus we have
(2.5) o'@)(h)=a(h); a«eH, heH(), 0<i<n.
Next sinceo is an automorphism of{* of finite ordern, we have

n-1
H =@PH) where H)={aweH |o(@)=¢'a); 0<i=<n-1
i=0
Take H*(o) := (H*)g and H*(c) := Z[‘;ll(H*)i’, thenH* = H*(o)®H*(c). Let r: H* —
H*(o) be the natural projection map. Since foe H* = {‘:’()1(H*)r, a—o(x) € H*(c),
(@) =m(o' (a)) for all 0<i <n-1 and sonr(a) = Yy (o' (@) =7 (X o' (@) =
i o'(«). Therefore

n-1
(2.6) () = % > o'(a); aen
i=0
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Identifying H(o)* with H*(o) by letting any element of{(o)* acts as zero on
{';11 ‘H;i and using (2.6) together with (2.5), we may assume that

(2.7) 7. H = H(o) o aue), o€ H

Lemma 2.8. If R is an irreducible finite root systenfr («), 7(«)) #0 for « € R
with 7 (a) # 0.

Proof. One can see that fare R, o(£,) € L, Which implies that the support
of £ with respect to theQ(R)-grading on.L is preserved by the automorphist in
particular, o (Ring) € R. Thereforeo' () € Q(R) for 0<i <n—1 anda € R. Using
this together with (2.6), for € R, we haver(x) = (1/n) Yo o' (@) € Q(R). Now
we are done contemplating Lemma 2.2. 0

We know from (1.16) thatC has a weight space decompositibre P, g L, With
respect toH. Now sinceH(o) € ‘H, one gets thall is an H(o)-module having the
weight space decompositiof = )", g L) With respect toH(c) where

29) Liw=(xeLl|[hx]=ah)x, VheH(o)}= P Ls weR
BER,
7 (a)=m(B)

Now suppose thatr € R, x € L;) and h € H(o), then sinces is an auto-
morphism, we have

a(h)o(x) = o (a(h)x) = o([h, X]) = [a(h), o(X)] = [h, o(X)]
which implies thato (L)) € Lx@). Therefore we have
n-1
La@ = @ Lo, Where Lo =LryNL; 0<i<n-1
i=0

It then follows that

(2.10) LE)= P LO)r@ With L(O)r@ = Liwo «€R
w(a)en(R)

Set
(2.11) R(o) = {m(a) € 7(R) | L(0)z() 7 {O}}.

Since by (2.4), the form restricted t6(c) is non-degenerate, for(«), 7(8) € R(o)
we have

(2.12) C()r ), L(0)x(p)) = {0} unless m(x+p)=0.
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Next note that (C4) implies thaf(o) inherits the A-grading onz, i.e.,

(2.13) L(o)=EP Lc) where L(o)"=L(e)NL"; XeA.

AEA

Lemma 2.14. This grading is compatible with th@(R(c'))-grading onL (o) stated
in (2.10), i.€, L(0)r(@) = D sen L(a)g(a) =Y, ca(L(0) N L(0)r () for @ € R.

Proof. Leta € R and x € £(0)x(). Using (2.9), we havex =}, p Xg Where
for B € R, xg € Lg andxg =0 if 7(B) # w(a). Since forp e R, L =D, L} =
@Dica(LsN L), one gets thakg =3, , X; where ford € A, x5 € LsN LY C L) N
£ if m(B) =n(a) andx; = 0 otherwise. Next set

(2.15) X = Z xg €LrayNLY MeEA,
BeR

thenx =), _, x* and sinceo(x) = x, we have}",_, x* =3, _, o(x*). Contemplating
(C4), we haver(x*) =x*, A € A, which together with (2.15) implies that" e E(G)ﬁ(a)

for » € A. This completes the proof. O

The fifth condition ono is as follows:
(C5) Cey(H(0)) = H(o).
Leta € R, A€ A, X € L(0)s) Y€ L(0)5( o andh € H(o), then

([x. v, h) = (x, [y, h]) = a(h)(x, y) = 7 (@)(N)(X, ¥) = (tz@ (X, ¥), h).

But [x, Y] € £(a)g(o) = Cr)(H(o)) = H(o) and by (2.4), the form is non-degenerate
on H(o), so

(2.16) X, yl=(X, Yta; xe€ L), yeL(o) s @ecRo), »eA.
Proposition 2.17. If R(o)* #@, R(c)* U{0} is a finite root system in it§-span

Proof. Consider the tripled(o), (-, *)|zp)xce H(0)). We know that the form is
symmetric, non-degenerate and invariant &fw). Also using the fact thaR(c)* # @
together with (2.10), the non-degeneracy of the form7grand (2.4), one gets that
H(o) is a nontrivial finite dimensional abelian subalgebradgé) such that adi(h)
is diagonalizable for alh € H(o) and that (, -)|,,.+, IS Non-degenerate. Next, since
the form is graded and non-degenerate &), (2.12) implies that forx B € R(o),
AL E A,

(2.18)  (L(0)3, E(o)g) ={0} unless A+ =0,G+B=0 and L(o); # (O}
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So by (2.16) there existr; € L(0)+s Such that ;, e 3] = tz. Also since R(o) is
finite, ad:(+)(x) is locally nilpotent onL(c) for any & € R(o’)* andx € Lz. These all
together with [5, Proposition 1.4] imply th&(c)* U {0} is a finite root system. []

Lemma 2.19. i) For @ € R(o)* and A € A, [L(0)%, L(o)%] = {O}.
iy For&e R(o)* and A € A, dim(£(o)) < 1.

Proof. i) Letd € R(o)* andi € A. If L(o0)% ={0}, there is nothing to prove, so
let L(o); # {0} and 0% z € [L(0)}, L(0);] € L(0)3;. Then (2.16) together with (2.18)
implies that there is a subspa&=Fx @ Fh @ Fy of L£(o) isomorphic tosl, (F) with
x € L(o):, y € L(0)_% andh =[x, y] € H(o). Sincey € L(c)_% and [y, Z] € L(c)},
(2.16) implies that

by, Iy, 21 = (v, [y, 2Dtz = ([y, ¥, Dtz = 0.

This together with the fact thate3=3& ¢ R(c’) (Proposition 2.17), implies thad :=
Fz @ Fly, z] is a 2-dimensionalS-module which is a contradiction by the,-module
theory.

i) Let L(o)% # {0} and consider thel,-triple (x, h, y) introduced in the previous
part. Lete € L(o)% with [e, y] =0, then by part i), we have

a(he=[h, e =[[x, y], e =[x, €, yl +[[e y], x] =0,

therefore by (2.16), the map ad £(0); — Ft; is a nonzero injective map and so
dim(L(0)%) = dim(Ftz) = 1. O

Now we are ready to set our last assumptionoon
(C6) ((x), m(a)) # 0 for @ € R with () # 0.

Theorem 2.20. Let £ be an (R, A)-graded Lie algebra equipped with a non-
degenerate symmetric invariant graded bilinear fofm-). Fix a grading subalgebr&
of £ with a splitting Cartan subalgebré{ and suppose that the restriction of the form
(-, -) onH is non-degeneratel et ¢ be an automorphism of satisfying(C1)C6).
If R(o)* #0, R(o) is a finite root system and(c); is a Lie torus of typgR(o), A).
Moreover L(a)c/Z(L(c)c) is a direct sum of centerless irreducible Lie tori

Proof. Use Proposition 2.17 together with (C6) to concludat R(c) is a finite
root system. Next using Lemma 2.14, we get tiiét) is equipped with compatible
Q(R(0))- and A-gradings. Now note that for eaeh€ R(c’)* andi € A with L(0)} #
{0}, (2.16) and (2.18) imply that(c)s contains an invertible element. This together
with Lemma 2.19 and thaf(o)c = D _zcrp)<[£(0)a, £(0)-a] + Dierpy L£(0)a implies
that £(o). is a Lie torus of type R(c), A). Now using Lemma 1.8, we are doné.]
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Using Lemmas 2.2, 2.8, Theorem 2.20 and [11, Theorem 7.1]1hawe the fol-
lowing:

Corollary 2.21. Let R be an irreducible finite root system afdbe an (R, A)-
graded Lie algebra equipped with a non-degenerate symedtkiariant graded bi-
linear form (-, -) (e.g., £ is an irreducible Lie torus of typéR, A)). Fix a grading
subalgebraG of £ with a splitting Cartan subalgebra( such that(-, -), , is nonzero
Let o be an automorphism of satisfying(C1)}{C5). If R(c)* # ¥, R(os) is a finite
root system andC(c) is a Lie torus of typgR(o), A). Moreover L(o)c/Z(L(c)c) IS
a direct sum of centerless irreducible Lie tori

2.2. The general case. In this subsection, we are concerned with the study of
the subalgebra of fixed points of aR,(S, A)-graded Lie algebra under an automorphism
satisfying certain properties. We fix aR,(S, A)-graded Lie algebrd =P, or) sca ch
for a finite root systemR and a subsysten$ of R satisfying ). We also fix a base
{oy | 1 <i <1} of Ssatisfying the property stated ir)(and a set of invertible elements
g € £2, 1<i <I. Then the subalgeb@ of £° generated bye,h; :=[¢ ", 6], 1<
i <1} is a finite dimensional split semisimple Lie algebra withitsiplg Cartan sub-
algebraH = @::1 Fh; and the root systeng,q (see the previous section). Consider
an automorphisnr of £ satisfying the conditions (GC1)—(GC5) describing belonwe W
start with
(GCl) 0" =id. (o is of ordern).

Sinceo is of finite ordern, we have

n-1
L= i where Li={xeLl]o(Xx)=¢'x}); 0<i<n-—1
i=0

Set
(2.22) L(o) =Ly, G(o):=GNL(e), H(o):=HNL(o).

We know from (1.16) thall has a weight space decompositibre P, g Lo With
respect toH. Now sinceH(o) € H, one gets that has a weight space decomposition
L= ,cr Lr@ With respect toH(o) where

7 H = H(o); a— ane), oeH and
(2.23) Law ={XeL|[hxX]=ah)x, VheH(o)} = @ Lps ecR

BER,
7()=n(B)
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Also sinceL(o) and G(o) are twoH(o)-submodules ofL, we have

Lo)= P LO)xw and Go)= P G(0)rw where
(2.24) 7 (@)en(R) 7 (@)en(R)

ﬁ(O’)n(a) =L(o)N ,Cn(a) and g(O’)n(a) =Go)N ﬁn(a); ae R
Set

Re@) == {m(a) e m(R) | L(0)@) 7 {0}} and

(2.25)
Ro(o) = {m(a) € m(R) | G(0)r() # {0}}.

Now consider the following assumptions on
(GC2) H(o) is self-centralizing inG(o).
(GC3) Ré(g) # ¢ and the restriction of Killing formx(-, -) of G to G(o), denoted by
(-, -), is non-degenerate.

Since (-, -) is invariant and non-degenerate Gifo), for @, 8 € Rs), we have
(G(0)a, G(o)5) = {0} unlessa™+ B = 0. This implies that

(2.26) the restriction of the form {, -) to G(o)s + G(0)-a, & € Rg(s),
' is non-degenerate,

in particular (GC2) implies that the restriction of the fom, -) to H(o) = G(o)o is
non-degenerate. Transfer the form, (- )x)xH() t0 @ form onH(s)*, denoted again
by (-, -), by setting ¢, n) := (t,, t,) for y, n € H(c)*. The next assumptions om
are as follow:

(GCA4) There is a finite root systerR(c), containingR,(), in a subspace ot(o)*
such that

(¢,&) 20 and (B, &) =2(8, a)/(&, &) for @, B e R(o)* =R(0))\ {0}.

(GCB) o (L*) € L* for A € A.
We note that (GC5) implies thaf(o) inherits theA-grading onz, i.e.,

L(o)=EP L) where L(o)":=L(e)NLY; Xe A,

reA

also using (GC4) together with (2.24), one gets thét) is a Q(R(o))-graded Lie
algebra. Now using the same argument as in Lemma 2.14, we have

Lemma 2.27. These two gradings are compatible
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We know thatZ(L(o)) inherits these compatible gradings, in other words,

(2.28) 2= P z«eE)

reA aeQ(R(0))
where, fori € A anda € Q(R(0)), Z(L(0)): = Z(L(o)) N L(o)2.

DEFINITION 2.29. We call a finite dimensional split semisimple subatgeb of
L(c), ao-splitting subalgebraof L£(o) if £ satisfies the following conditions:
(1) There is a splitting Cartan subalgeliteof £ with C € H(o) + zw(o))g, called a
o-splitting Cartan subalgebra of.
(2) For each rootx of the root systemAg of £ with respect toC, there exists, €
R(o) and A, € A such that

@ L. S L),

(b) S¢:={By € R(0) | @ € Ag} is a subsystem oR(c),

(c) the mapa — B, defines an isomorphism between:. and Se¢.

REMARK 2.30. (i) We drew the attention of the reader to the point tfia
finite dimensional split semisimple Lie subalgebtaof L£(o) satisfies the conditions
(1)-(2) (a) of ac-splitting subalgebra, different weight spaces®biwith respect toC
are contained in different weight spaces4ifr) with respect toH(o). Indeed, ifa, 8
are two roots ofA ¢ such thatg,, £4 € L(0), for somey € R(o), then for 0 x € £,,

0 #y e £4, we have

ah+2)x=[h+z x]=y(h)x, Bh+2y=[h+z y]=y(h)y
where h e H(o), ze Z(L(0)), h+zeC,

which impliesa(h) = g(h) for h € C. Thereforea = B.

(i) For a o-splitting subalgebral of L(o), the conditions (2) (b) and (2) (c) of the
definition imply that if B is a base ofAg, then{f, | « € B} is a base ofSg.

(i) Let £ be ao-splitting subalgebra of2(c) anda € R(o)* with £N L(o), # {0},
then there isy € A such thatg N L(o), = £,. So from the finite dimensional theory
we have £ N L(0)e, £N L(0)g] = £N L(0)arp Wherea, B, a + B € R(o)* with £N
L(@)a 710} N L(E)s # (0} £0 L(O)arp 7 (O}.

Lemma 2.31. Let £4, £, be twoo-splitting subalgebras of (o) with o-splitting
Cartan subalgebragy, C, and the root systemae,, Ag,, respectively such thatg; <
£, thenSg, is a subsystem af¢,, moreover if Sg, = Sg,, then £4 = £,.

Proof. Letp € Sg, then there existe € AG such that £1), € £(0)s. Consider
a nonzerox € (£1)y C £, thenx = ZyeAEZ X, with x, € (£2),, ¥ € Ag,. But for
eachy € Ag,, there isg, € Sg, such that £5), € L(0)s,. Thereforex =}

yeAg, Xy
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with x, € L(0)p,, ¥ € Ag,. Now sincex € L(o)g, there isy € Ag, such thatx = x,
and g = B, € Sg,. This completes the proof of the first statement. For the rs&co
statement suppose thate Ag , then sinceSe, = Sg,, one findsp € Se, = Se, and
y € A%, such that £2). C L(0)s and €1), S L(0)s. Now as£; € Lo, we have
(£2)a +(£1), € £2NL(0)p. But by Remark 2.30 (iii), dim€>NL(o)p) =1, so £2)s =
(£1),. It means that for eackr € A7, there isy € A such that £5), = (£1),, SO
as £1 C £, we are done. O

Proposition 2.32. The derived algebr&’(o) of G(o) is a o-splitting subalgebra
of L(o).

Proof. Using (GC2), (GC3) and (2.24) together with the faet Rg(,) (see (2.25))
is a finite set, we conclude tha§(v), (-, -), H(o)) satisfies the following:
e (-, -)is a non-degenerate symmetric invariant bilinear formgge).
e H(o) is a nontrivial finite dimensional abelian subalgebradggé) which is self-
centralizing and ad-diagonalizable.
o |If m(e) € RS,y = Rge) \ {0} and x € G(0)x(), aths) X acts locally nilpotently
on G(o).

Now let 7(x) € Rgo), X € G(0)r(e) aNdy € G(0)_r), then by (GC2), %, y] €
G(0)o = H(o). Also for h € H(o), we have

(h1 [X! y]) = ([h1 X]’ y) = n(a)(h)(x, y) = (trr(ot)v h)(X, y) = (h! tn(a)(xv y))

Now since by (2.26), the form is non-degenerate7ofw), we have K, y] = t;)(X, ¥)
and so using (2.26) again, we have

(2.33) [grr(a)y g—n(a)] = Ftr (), m(a) € Ro()-

Now using [5, Propositions 1.4 and 1.5] together with (GO4d §2.33), one concludes
that Rg(,) is an indivisible subsystem d®(c) and that forr (o) € Rg(g), dim@Grw) = 1.
Now it follows from these and Serre’s theorem tlg#fo) is a finite dimensional split
semisimple subalgebra af(o) with splitting Cartan subalgebr& (o) N G'(o) and the
root systemRg). Now for eacha € Rg), definef, := a € R(o), thenG'(o)y S
G(o)s C E(")ga- All together imply thatG'(o) is a o-splitting subalgebra of (o). [

One knows that the dimension of @-splitting subalgebra of(c) is at most
#(R(0)*)+rankR(o)) andG’'(o) is ao-splitting subalgebra of (o). Let us fix a max-
imal o-splitting subalgebrg of L(o) with a o-splitting Cartan subalgebr@ and the
root systemA,. Let {ay,..., am} be a base oAy, then for eachr € A, there exist
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e € A and B, € R(o) such thatg, € L(o)}. Set

(2.34) ai =By and § =xy; 1<i<m,
and define
(2.35) R = R(o) Nspan{ei | 1 <i <m}=R(c)Nspan S,.

One can easily prove the following lemma:

Lemma 2.36. R is a subsystem of R).

Proposition 2.37. Recall thatg is a maximalo-splitting subalgebra ofZ(o’) with
a o-splitting Cartan subalgebr& and the root system, also S :=S; = {B, € R(0) |
a € Ay} (seeDefinition 2.29). Consider(2.35) and set

(2.38) L :=the subalgebra ofZ(c) generated byl(c),, « € R*.
ThenZ is an (R, S, A)-graded Lie algebra

Proof. We first consider (2.34) and note that by Remark 2.30{@ | 1 <i <m}
is a base ofS and soS is a subsystem oR. Now the proof is carried out in steps:

Stepl. L= > er:[L(0)y, L(0)-) ]+ > cr~ L(0),: It is enough to show that
[£(0)a, L(0)s] € 32, crx L(0), fOr o, p € R* with & + B # 0. Lete, B € R* be
such thate + 8 7 0. If [L(0)«, £(0)g] = {0}, then there is nothing to prove so let
[L(0)a, L(0)p] 7 {0}, then since{0} # [L(0)q, L(0)g] € L(o)o+p and « + B €
spafo, B} S spapfo; |1 <i<m}, a+pB € Re)Nspagfe |1 <i <m}=TR.
Therefore L(0)q, L£(0)p] € 3, crx L£(0)y-

Step2. Lis a Q(R)-graded Lie algebra with the support containingidn Define

‘C(J)OZ! VA S RX,
(2.39) Fo= | D I£0), L)) «=0,
eR*
6' ac QMR)\R.

With the same argument as in Step 1, one gets &at@aeR L, is a Q(R)-graded
Lie algebra with the desired property.

Step 3. Consider Lemma 2.27 and let= Zi”;lriai e€R (f1,...,rm€Z), L€ A.
For x € L(o)? define degx := A—Z{Ql ridi. This defines aA-grading onZ: We know
that fora € R(0)*, L£(0)e = Y,cx L(0):, S0 we havel =@, _, L' where forv € A,

L= > LOG+ > [LO)), LE)",]
a=Y"1 i eRX, AEA, yeR*,
VA=Y T 6 A HEN AHp=v
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Now it is easy to see thatlf, £] € £"* for v,V € A.

STEP 4. The gradings introduced in Steps 2 and 3 are compatilde, for o €
R, Ly =3 e £l =Y, A(LaNLY): Because of (2.39), it is enough to prove the state-
ment forae € R*. Leta =" ria; € R* andx € £, = L(0),, then by Lemma 2.27,
x =Y, x> with x} € £(o)}. This completes the proof as fare A, x* € £, and with
respect to theA-grading onZ, x* is homogeneous of degree deg =1 — >0, ri§i.
In other words,x = Y, _, x> with X} € £, N A=Xmn,

STEP 5. Foreachr € S, £0 contains an invertible element: Suppose #at;, h;,
1 <i <m, are Chevalley generators gfcorresponding to the badé&; | 1 <i < mj}.
We know that for 1<i <m, § € E(a)f;i (see (2.34)), so de¢d) = 0. Also since the
o-splitting Cartan subalgebra of is a subset ofH(o) + Z(L(0))], fi € ﬁ(a):ﬁi and
so deg(f;) = deg,(h)) = 0. Now since the generating sg, fi,h |1<i <m}of g
is a subset ofZ°, we have

(2.40) gc 70

Next note that fora'e Ay, there existsf, € R(o) such thatg, € L(o)s, and the
map o — f; defines an isomorphism betweexy and S = {8; € R(o) | @ € Ag}.
The inverse of this isomorphism defines an isomorphism & betweenS and Ag.
Therefore

(241) A ={@laeS), 0 SLO); S, (Ba)=(Bd)a peS”.

Now leta € S*, we want to find an invertible element if. We know from the finite
dimensional theory that there exidts € go with [gs5, g_s] = Fhs and B(hs) = (8, &)
for all B € §*. This together with (2.40), (2.41) and (2.39) implies that

there exist hy € g0 and &5 € geg C L(0)xa N L= L2, with

(2.42) - -
Bhz)=(B,a) forall BeS and B, &ys]=hs.

Now sinceh; € go € H(0)+Z(L(c)), there exish, € H(c) andz, € Z(L(c)) such
thathy = h, +2,. Also by (2.41),&; € ga; € L(0)s;, 1 < | <m, therefore by (2.24),
(2.23) and (2.42), we have

j(ha)g = [Ny + 2y, &1 =[Nz, §]=&;(h3)é) = (aj, )&,

This means that

(2.43) aj(he) =(aj,a); 1<j=m
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Now if ¥ =3 riaj € R* andx € EV = L(0), (see (2.39)), then (2.43) implies that

[ﬁﬁu X] = [ha +z,, X] = [hou X] = y(ha)x = lic; (ha)x = ri{o, d)X
(2.44) gl: ,zzl:

= (y, a)X
which in turn implies that fory e R* andx € Z,, y € £_,, we have

(245) [ﬁ&y [Xv y]] = [[ ﬁ&v X], y] - [[FI&, y]v X] = (V! &>[Xv y] - <_y! &>[y! X] =0.

Now (2.42) together with (2.44), (2.45) and (2.39) implidmtté,; e Eg is an
invertible element. This completes the proof. ]

Now we are ready to state our main theorem:

Theorem 2.46 (Main theorem). Let R be a finite root system with a subsystem
S satisfying(x) and £ be an(R, S, A)-graded Lie algebra with a fixed grading sub-
algebrag. Let o be an automorphism of satisfying(GC1)—(GC5).Then
(i) L(o) has compatibleQ(R(0))- and A-gradings
(i) there are subsysteniR, S of R(o) with S € R such that the subalgebr&f of
L(o) generated byL(o0),, @ € R, is an (R, S, A)-graded Lie algebra containing a
maximal split}ing subalgebra,
(if)y L(o)e=L+K where K =3 roy\r[L(0)y, L)1+ D croyr £0)y,
(iv) takeZ to be the isolated subspace 6{c) with respect to the compatible gradings
(Definition 1.6), then [Z, L(o)c] = {0} and L(c) is decomposed int€(c) = L(c)c D
IeD=(L+K)®Z®D where andD is a subspace of(c) satisfying[D, g] = {0}.

Proof. Use Lemma 2.27 to get compatilddéR(c))- and A-gradings onC(c). Next
we note thatT, £(o)c] = {0} as [Z, L(0)~] = {0} for all « € R(o)* andu € A. Now fix a
maximal o -splitting subalgebrg of £. Consider the root systef as defined in (2.35)
and its subsysten$ as defined in Proposition 2.37. Then by Proposition 287the
subalgebra ofZ(o) generated by (o)., @ € R*, is an (R, S, A)-graded Lie algebra
containing the maximal splitting subalgehyalt is trivial that £(o). = £ + K. Now one
can find a subspack of L(o) such thatL(o) = L(o). & Z & E. Let x € E. Since
L(o)c is an ideal ofL(o), the restriction of agy) x to L(o)c is a derivation ofL(o)c.
Using the complete reducibility of (o). as ag-module and the first Whitehead lemma
for g-modules, we can apply [6, Proposition 3.2] to each eleméathmsis ofE and in
this way construct a subspafeof £(o) such thatl(c) = L(0).®ZSD = (L+K)DIHD
and [D, g] = {0}. This completes the proof. O
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3. Examples

In this section, we present several examples elaboratinthemesult obtained in
Section 2. In each example, we start with @ 6, A)-graded Lie algebraC and an
automorphisms of £ satisfying (GC1)—(GC5). We illustrate how the terfisk (see
Theorem 2.46) appear as the core of the f.p.sLofinder the automorphism. In
Examples 3.4 and 3.23¢ = 0 and sol(c). = £ is an (R, S, A)-graded Lie algebra
for a finite root systeniR with a root systemS. In Examples 3.7 and 3.1 is a
nonzero subalgebra of(c) and in Example 3.22K is a nonzero subspace @f(o)c
that is not a subalgebra. Throughout this section for a $tgabea (4, _), we setAd, =
{ae A|a=+a}. Also for an algebrad and natural numbens, n, we mean byA™*",
the set of allmx n-matrices with entries imd. For A€ A™", we useA! to denote the
transposition ofA and for A e A"*", we mean by trd), the trace ofA. If, in addition,
A is unital, for 1<i, j <n, we takeg ; to be an element oA"*" with 1 in i, j)-
position and 0 elsewhere. We also keep the same notation # iprevious section.
Our first four examples have the same nature, so we start wating this common
nature. LetR be a finite root system in alrdimensional vector space ovérwith a
base{oj |1 <i <I} andp: (R) — F\ {0} be any group homomorphism. One knows
that p is uniquely determined by specifying(e;) for 1 <i <I. Next let£ =P, g Lo
be aQ(R)-graded Lie algebra. The homomorphigminduces an automorphism, of
L by letting

(3.2) wp, = pl)id,, for aeR.

We note thatw, is of finite order if and only ifp(x;) is a root of unity for 1<
i <I. We also note that the subalgebff{w,) of the fixed points of{ under w,
is @uer L,. Now as an especial case, consider the irreducible finit¢ sgstem
R:={%£si, x(si ;) | 1 <i < j <3} of type BC; with baseA := {e1 — &5, £2 — €3, €3}
in a 3-dimensional vector space ovEr Define the following group homomorphism:

(R F\ {0},
(3.2) p:(R) = F\ {0}

g1—e—> 1, ep—e3—> -1, e3> -1

and let £ be a Q(R)-graded Lie algebra. Next consider the automorphismof £
defined as in (3.1), then

(3.3) L(wp) = Z Ly where R(w,):={%2e3, L&, £(si £ej) |1<i <] <2}

aeR(w,)

ExaMPLE 3.4. L be the derived algebra of the twisted affine Lie algebra oétyp
AP Then £ has a realization as

L= (G ®c C[t™]) & (M ®¢ tC[t™]) & Cz
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where G and M are subspaces of a finite dimensional complex simple Liebadge
(G.[-, -]) of type Ag such thatg is a subalgebra of which is simple of typeBs; with

a Cartan subalgebr& and the root systen®= {0, £¢;, +(gi ¢j) | 1 <i < j <3} and
under the adjoint representatiof/ is an irreducibleG-module whose set of weights
is R={%£sj, &(s &) |11 <i < j < 3}. The Lie bracket orC is defined by

X", y &= (X, Y] © ™) + Mo _nic(X, V)2, [z, L] = (0}

(3.5)
for xt",yetTe L

wherex denotes Killing form ofG. Forn € Z, define

geth, n is nonzero and even
LN =Mt n is odd
Ge1eCz, n=0,

thenL =@, ., L" is aZ-graded Lie algebra. We also have= ), L, Where

(G ®c C[t*?]) + (M, ®¢ tC[t*2]), a e S,
Lo = { My ®c tC[t*7], ae R\'S,
(Go ®c C[t*?]) + (Mo ®c tC[t*?]) + Cz, « =0.

It is not difficult to see thatC is an R, S, Z)-graded Lie algebra with grading sub-
algebrag. Now consider the group homomorphism from (R) to C \ {0} defined
by (3.2) and the automorphism, of £ defined as in (3.1). Thew,: £L — L is an
automorphism satisfying (GC1)—(GC5). Contemplating };3v8e have

L(w,)= Y La where R(w,)={£2e3, &, £ £¢)), 1<i < j <2},

aeR(w,)

a weight space decomposition 6{w,) with respect toH = H(w,) with L(w,)s = Ly

for « € R(w,). As L is the core of an extended affine Lie algebra (see [1] and [2,
Theorem 2.32]), there aée My, ®t and f € M_,,,®t* such that  h:=[&, f], f)

is ansl,-triple and soG := Cé+Cf +Ch is a 3-dimensional simple Lie subalgebra of
L. ldentify G as a subset of(w,) with G = G ® 1, thenG(w,) = G N L(w,) has

a weight space decompositigiw,) = @, Adtoy) G(w,)e With respect toH = H(w,)
where Ag(wﬁ) = R(a)p) N S={0, £eq, L&y, :I:(S]_ + 82)}.

Lemma 3.6. Consider the derived algebrd'(w,) of G(w,) and setg := G'(w,) ®
G. Theng is a maximalw,-splitting subalgebra off(w,).

Proof. Since fora € (Agw,))*, £2e3+a ¢ R, [¢'(w,), 61" = {0}, and sog is
a finite dimensional semisimple Lie subalgebra ®fof type B, U A;. Now noting
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that é € L(w)},,. T € L(w,)73, and fora € Ag,), Go C L(w,)?, one can easily
see thatg is an w,-spitting subalgebra of(w,) with splitting Cartan subalgebré :=
(H N G'(w,)) ® Ch € H(w,) + Z(L(w,))S and Sy = {0, £e1, Leo, £2¢3, £(e1 £ &2))
that is a finite root system of typB, U A;. Now let & be anw,-splitting subalgebra
of £(w,) containingg with w,-splitting Cartan subalgebré@ and the root syster .
For each roote € Ag, there existf, € R(w,) andn, € Z such that®, < £(a);}z
and Sg = {Bs € R(w,) | @ € Ag} is a subsystem oR(w,) isomorphic toAg. Since
g C &, Lemma 2.31 implies thaf, = {0, &1, &2, £2e3, E(e1 £+ &2)} € Se, but Se
is a subsystem oR(w,) which is isomorphic to the root system of a semisimple Lie
algebra and so two times of a root 8§ cannot be a root. Therefoi8, = S which
implies thatg = &. This completes the proof. ]

Now takeS := Sy, thenR :=span, SNR(w,) = R(w,). So L, the Lie subalgebra of
L(w,) generated by (w,), With & € R*, coincides withL(w,).. ThereforeL(w,). = £
is an (R, S, Z)-graded Lie algebra using Proposition 2.37. Moreover, esitieere is
no isolated root forC(w,), Theorem 2.46 implies thaf(w,) = L(w,)c @ D, a decom-
position of L(w,) into an (R, S, Z)-graded Lie algebra and a subsp&aReof L(w,)

satisfying [D, g] = {0}.

EXAMPLE 3.7. Suppose thdt is a positive integer greater than 3. L¥tbe a
2l-dimensional vector space over the fididand | be the identity matrix of rank.
Take (-, -) to be the non-degenerate skew-symmetric bilinear formiomhose matrix

iss:= (_OI B) Then there exists a basfs;, vi | 1 <i <} for V such that
(Ui,vj)Z—(vj,Ui)=5i’j, (Ui,Uj)=(vi,vJ‘)=0; 1§i,j§|.

The algebrag, consisting of all endomorphisms of V which are skew relative to the
(-, +)ie., X@),w)=—(, X(w)) for v, w € V, is a finite dimensional split simple
Lie algebra of typeC; [9, Theorem IV.6.8]. Also by [95IV.6], we have that

I . .
(3.8) H=EPFh where h:=a;—@yum; 1<i=<l

i=1

is a splitting Cartan subalgebra 6f For 1<i <|, defines; € H* to be such that
gi(h;) =6, for L<j <I and set

(3.9) hizi :=%h, 1<i <| and higis) :==£(h £h), 1<i#j <L

One knows thal andG are H-modules having the following weight space decomposi-
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tions with respect tdH:

|
V=@ Vs, inwhich V, =Fu;, V_, =Fy, 1<i <I,

(3.10) i=1
G=EPG. where S={t(si+ej)|1<i<]j<I}

a€S

Now let z be a symbol and takel ;= V @ Fz to be the Heisenberg Lie algebra
with the multiplication [, -]* given by [, A]" ={0} and [u, v]* = (u, v)z for u, v € V.
We know that the set of derivations of, Der(A4), is a subalgebra of the Lie algebra
gl(A) whose Lie bracket will be denoted by [ -]~. Now define

VA=A U—O0, vy, z—2z for 1<i<lI.

It is easily checked thad belongs to Detd). Next we extend an element € G C
End(V) to an element of En{) by f(z) =0, thenD := G & Fo is a subalgebra of
Der(4). Set£ :=.4x D, then g is a Lie algebra with the bracket defined by

[a1 +d1, @ + o] == [ag, ap] — da(ag) + di(@z) +[d1, do] ™5 &, @2 € A, di, d2 € D.

Take £ to be the derived algebra a, then £ = A x G. Also H, the splitting
Cartan subalgebra @, is an abelian subalgebra @f with respect to whichZ has a
weight space decompositiod =@, g L, WhereR:=SU{%¢ |1<i <I} and

aeR
Gus ae S,
(3.11) Lo = { Vg, a==xg;1<i<lI,
FZ"'go, o =0.

Sinceg is a finite dimensional split simple Lie subalgebradffor eacha € S*, there
exist ey, € Gi, such that &, e_,] = h, (see (3.9)). Now it is easy to see thaf, €

Go € L, is an invertible element. This together with the fact that= )", g.[Lo, L]
implies that( is an (R, S)-graded Lie algebra with grading subalgelgtaNow letl =3
and p: (R) — F\ {0} be the group homomorphism defined by (3.2) and consider the
automorphismw, of £ defined as in (3.1). One can see thgtsatisfies (GC1)—(GC5).
Considering (3.3), we have

L@,)= Y La where R(w,)={+2e3, +e;, (e +ej) [1<i < j <2),

aeR(w))

a weight space decomposition 8{w,) with respect toH with L(w,)s = L, for a €
R(w,). Therefore we have

3

0:=0(@p) =GN L@)=HD Y Groey ® Geyme, ® Gerre, ® Gy, D Goeiey
i=1
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which is a perfect Lie subalgebra df(w,). Now using Proposition 2.32, one con-
cludes thafy is anw,-splitting subalgebra of(w,) with w,-splitting Cartan subalgebra
‘H. Now since

2 2 2 2 2 2
|:Z ‘C(wp)isi ’ Z E(wp)isi:| = |:Z E:I:si ’ Z Eisi:| = |:Z V:I:si ’ Z v:tsi:| = FZ
i=1 i=1 i=1 i=1 i=1 i=1

andz is central, we have thagj is a maximalw,-splitting subalgebra of’(w,). Now
§: =85 ={0,£2¢, £(e1 £ 5) | 1L <i < 3} is a finite root system of typ€, U A;. We
also have thaik = spar, S N R(w,) =S and so by (3.11) £, the subalgebra of (w))
generated by (w,)«, @ € R*, coincides withg. Therefore the subalgebrd = g of
L(w,) is anR-graded Lie algebra. AlséC = Zizzl Vi, ®Fz is a subalgebra of(w,)
and L(w,) = L(w,)c =L ® K.

EXAMPLE 3.12. LetA:=TF3<3 thenA is a unital associative algebra. Define an
involution on A as follows:

A=A (@) e (@asjasi)i

ol O
Next letl be a positive integer and sdt:=| I, 0 o> wherel; is the identity matrix

001
of rank|. Takeq := 2 + 1 and define the following involution
AT A0XG X s 37X,

Note that asA is unital, we can identifyF as a subset ofA. Now setf = {X ¢
AU | X* = —X} and G = {X € F9*9 | X* = —X]. It is easy to see thaK € £ if

A B M _ _
and only if X = < D -A N) where A, B, D € A" with B! = —B, D! = —D,
_Nt _Mt p

M, N e A1 andp e A with p=—p. Seth; ;=@ — @4+ andH := Y_, Fh;. We
know thatgG is a finite dimensional split simple Lie algebra of tyj@e with splitting
Cartan subalgebré/ [9, §IV.6]. For 1<i </, define

geH5 hjmdj, 1<j<lI.
It is easy to check thaf has a weight space decompositi@n= ), g £, with

respect toH, where R := {%s;, £(s £ ¢;) | 1 < i, j <}, an irreducible finite root
system of typeBC,. Take £ to be the core ofg, thengG is a subalgebra of.. One
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can see that has a weight space decompositi6rs ), s £, With respect tgH, with

Lo ={aga+—aeus+i |a€ Al Lo ={agqui|ac A},
L g ={a8+ 41— a6 lac A}, Lo ={a@silac Al

(3.13)  Liw, ={ag+j —ag 4 |lac A}, Lo, ={ag) —a@+j+ |a€ A},
Lo = (a8 — a8 lac A}, Lo= ) [Lo L],

acRx

for1<i #j <I. Now leta € R,y and seth, := 2t, /« (., t,), then there exise, € G,
and f, € G, such that f,, ] =h,. Now if 8 € R, then g(h,) = (8, @) and for
X € Lg, we have

[he, X] = B(he)x = (B, a)x

which means thag, is an invertible element of.. ThereforeL is an R-graded Lie
algebra andj is a grading subalgebra @. Now let| = 3. Consider the group homo-
morphismp from (R) to I\ {0} defined by (3.2) and the automorphissp of £ defined
as in (3.1). Therw, satisfies (GC1)—-(GC5). Contemplating (3.3), we have

L) = > L)y With R(w,)=(+2es, *ei, £(ei +¢j), 1<i < | <2

aeR(w))

and L(w,)y =Ly for o e R(wp).

Lemma 3.14. The derived algebr&’(w,) of G(w,) is a maximalky,-splitting sub-
algebra of L(w,).

Proof. We carry out the proof in two steps:
STEP 1) There are notA, B € A_ such thatABC+CBA=2C for all C € A_:
We first note that

A ={AcA|A=—A}

a b 0
:{AEFBXS A:(c 0 —b)forsomea,b,ceﬂ?}.

0 —c —-a

Now to the contrary, suppose that there eistB € A such thatABC+CBA=

a b O
2C forall C € A_. Leta,b,c,mn, peF such thatA:(c 0 —b> and B =
0 —c —-a

m n O x 'y O
p 0 -—n ). Sinceforx,y,zeF, Cyy,:= <z 0 —y) e A_, we haveABC, y .+
0 -p-m 0 -z —x
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Cy,y,zBA=2Cy y .. This implies that

(3.15) 2amx+ ypa+xnc+bpx+anz= 2x,
(3.16) amy+ 2bpy+bnz+xmb+nyc= 2y,
(3.17) mcx+ 2ncz+bpz+zma+ ycp= 2z

for all x,y,zeF. Now letx =a, y=b andz=c, then (3.15)—(3.17) imply
a(am+bp+nc)=a, b(am+bp+nc)=b, c(am+bp+nc)=c.

But A #0, so

(3.18) am+bp+nc=1.

Also if x=y=0,z2#0, orx=2z=0, y #0, then (3.15) implies

(3.19) an=0 and ap=0.

Similarly using (3.16) and (3.17), we get

(3.20) mb=0, nb=0, cp=0, mc=0.

Now note that sinceA # 0, one ofa, b, c is not zero, saya # 0. Then (3.19)
implies thatn = p =0 and so (3.18) implies thah # 0. Therefore by (3.20), we have
b=c=0. Using (3.18), we geam=1. Contemplating this together with the fact that
n=p=b=c=0, (3.16) implies thaty = 2y for eachy € F which is a contradic-
tion. The same contradictions arise if we consider the ctsstsb # 0 or ¢ # 0. This
completes the proof of this step.

STEP 2) ('(w,) is a maximal splitting subalgebra: By Proposition 2.82(w,) is
an w,-splitting subalgebra of(w,) with w,-splitting Cartan subalgebrih; + Fh, and
the root systerm{0, ¢1, ¢, £(e1£¢2)}. Let G'(w,) be not a maximal one, then there
is an w,-splitting subalgebra of L(w,) such thatG'(w,) & g. Using Remark 2.30 (i)
together with the fact that two times of a nonzero root of atdindimensional split
simple Lie algebra is not a root, one concludes that therstexi € £,5., N g such
that @, [e:, e_], e_) is ansl,-triple and h := [e;, e_] € H + Z(L(w,)). Sincee. €
L2, there exist nonzero elements b € A_ such thate, = ae; s and e_ = bes 3.
Sinceh € H + Z(L(w,)), there exist{s |1 <i <3} Cc F andz € Z(L(w,)) such that
h= Zleshi +2. Also sinceaesg =€, € g € L(w,) and fori =1, 2, |, ae;¢] =0,
we have

3
2ae36=2e: = [h, &] = [h, aey 6] = [Z shi +z, aes,s} = [sghs, aes,¢]
i=1
= sga[hs, e3¢]
= 233636,
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which impliessz = 1. Therefore we have

2
Y shi+z=h-shs=h—hz=[e,, e ] —h;
i=1
(3.21) = [aes 6, be&s 3] — h3
= abe 3 —baec—e33+656
= (ab—1)e3 3 — (ba— 1)eg 6.

Now letd € A_, thendes g € L(w,) and so

2
0= |:Z shi +z d%,6i| =[(ab— 1)es ;s — (ba— 1)es e des gl
i=1

= (abd - d)es3 ¢+ (dba—d)es s,
which means that
abd+dba=2d; de A_.

This makes a contradiction using Step 1). O

Put g := G'(w,). Then g is a maximalw,-splitting subalgebra and := S, =
{0,£e1,+er,£(e1£62)}, an irreducible finite root system of tyd®. We also haver =
R(w,)Nspan,S = {0, £e1, £ep, £2e1, 265, £(e1£€2)}, an irreducible finite root system
of type BC,. Now thanks to Proposition 2.3% =Y, .- [La) Lol ® Y yer~ Lo the
Lie subalgebra ofC(w,) generated byC,, « € R*, is anR-graded Lie algebra. Also
K = [Loess L 26,1 ® Loe; ® L., IS a subalgebra of(w,) and we havel(w,). = LB K.
Moreover Theorem 2.46 implies th&{(w,) = LOK®D in whichD is a subspace of
L(w,) satisfying g, D] = {0}.

The following example is adopted from [3]. We ask the readérp is not familiar
with the notation, to consult [3, Example 3.18].

EXAMPLE 3.22. Leta be a unital alternative algebra with involution whose
n-symmetric elements are in the nucle@,be an associative left-module andy(-, -)
be a nonzero skew-hermitian form @ Then2 := a®3 is an algebra with involution
* defined bym* := (m")!, m e a®<3. It is well-known thatJ := H(2, *), the set of
hermitian elements dll under*, is a unital Jordan algebra under the produgtm, :=
(1/2)(mymy + momy), my, my € J. The spaceX := C3 of (3 x 1)-column matrices over
C is an associative lefi(-module with action given by matrix multiplication. #: X x
X — 2 is defined by

¥((ew €2 @)’ (€, €5, €3)) = (—x(cis 6))ijs
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then ¢ is a skew-hermitian form orX. Now define

ae X = ax,
X, ¥} =9 (x, y) = ¥(y, X),
{X, ¥, 2} =Y (X, )2+ ¥ (z, y)x + ¥ (z, X)y

for x,y,ze X anda € J. Then X is a J-ternary algebra. SeN := X & J, the direct
sum of two vector spaceX and J. An element ofN is denoted by(x | a) where
xe Xandae J. If a=0 (resp.x =0), we simply denotgx | a) by x (resp.a).
Consider the Lie algebrgl(N) corresponding to the associative algebra BHd(For
aeJandx,ye X, definel,, Ly,y € gl(N) as follows:

La(z | @) =((1/2)aez | a-a),
Lyy(zlla)={x,y, z} | {x,a ey}),
aeld, zeX.

Put Jnste(J, X) := L + [L,, L] + Lx x. Then Jnste(J, X) is a Lie subalgebra of
gl(N). The Lie algebradnste(J, X) has an automorphism of period 2 defined by
T¢:=T — 2Ltq). Define

L£:=N & Jnste(J, X) ® N

where N := {fi | n € N} is a copy ofN. Extend the Lie bracket ofinstr(J, X) to an
anti-commutative product-[, -] on £ as follows:

[T, n]:=T(n), [T,A]:=(T(n)",
[(xlla), X' [1a)] =0l —{x,x}), [xla™ x[a)]:= O] {xx}H",
[(xlla), X' [ &)"]=(-a ex || 0)” +Lxx +2(Laa +[La, La]) + (20X || 0)

for T € Jnste(J, X), n€ N, x, X € X, a, & € J. Relative to this productf is a Lie
algebra. For I=i < 3, defineh; :=Lg, and X := Zi3:1 Fhi. Take G to be theTits-
Kantor-Koecher Lie algebraof {A € F3*3 | Al = A}. Theng is a finite dimensional
split simple Lie algebra of typ&s with splitting Cartan subalgebra and the root
systemS:={£(s £¢;) | 1 <i, j <3}. For 1<i <3, defineg by:

1 .
ei(hy) = Eai,j; 1<j=3



FIXED POINTS OF ROOT GRANDED ALGEBRAS 639
Then £ has a weight space decomposition with respectito

L= L. where R={ts, (s +&):1<i, j <3

aeR
and
Lo+ Z Lo —e, = Inste(J, X),
1<iz =<3
3 3
DL, =(CP0), D Lot D Lew, =(013),
i=1 i=1 1<i<j=<83

3

Zc,a, (2107, ZE 2t ) Loge =01 3)7.

1<i<j<3

One can see thaf is an R, S)-graded Lie algebra for whic is a grading subalgebra.
Now let p: (R) — F \ {0} be the group homomorphism defined by (3.2) and consider
the automorphismw, of £ defined as in (3.1). Considering (3.3) together with (3.11),
we have

L) = > L. where R(w,)={£2e3, 6, +(s £ &) | 1<i <] <2}

aeR(w))

It follows from Proposition 2.32 that the perfect Lie algali(w,) is anw,-splitting
subalgebra off(w,) with w,-splitting Cartan subalgebr&{ and the root system
{0, £2¢;, £(e1+&2) | 1 <i < 3} which is a finite root system of typ&; UC,. Now as
two times of a root of a finite dimensional split semisimples lélgebra is not a root,
one concludes thak(w,) is a maximal splitting subalgebra. Now we ha¥e= Sg(,,) =
{0, £2¢;, +(s1 £ &) | 1 <i <3} and R = span, S N R(w,) =S. Now L(w,). =L +K
where £ is the Lie subalgebra of(w,) generated by (w,)y = Ly, @ € R* and

2 2 2
K=Y Lo+> Log+) [Le, Log]
i=1 i=1 i=1

Moreover £ is anR-graded Lie algebra, also by Theorem 2.46, there is a subspac

of L(w,) satisfying D, G(w,)] = {0} and L(w,) = (£ +K) @ D. Now note that since

x is nonzero, there exist, d € a such thaty(c, d) # 0. Therefore forx := (c, 0, O},
=(d, 0, Of, {x, X’} is a 3x 3 matrix whose (1, 1)-entry is the nonzero element

—x(c, d). So we have

0 # (0]l —{x, x}) = [((c, 0, 0) || 0), (0, d, O) || O)] € [Le,, Le,] € Lo,

This implies thatXC is not a subalgebra.
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EXAMPLE 3.23. Let (4, _) be a unital associative star algebra arak a positive
integer. We know thatd(*1*(+1) is a unital associative algebra, so under the commu-
tator product, it is a Lie algebra denoted Bl,,(A). The subalgebra := ¢;.1(A) of
gl+1(A) generated byag,j lae A, 1<i Z]j <I|+1} is a perfect ideal ofli+, (A).

For 1<i <, seth; ;= — €.1,+1 and takeH := Y|_, Fh;. Define

gieH hirm8ij—8iwj; 1<j=<l+1 1<iz<l.

Now £ has a weight space decomposition with respecttoIn fact £L =", _ Ly
whereR = {£(s —¢j) |1 <i < j <Il+1} and
Lo—ey=Aej; 1<i#j<l+1 and Lo= ) [La, L)

aeR*

One can easily see thd is an R-graded Lie algebra with a grading subalgelgra=
£ NFD=0+)  Now define an involution on the associative algebtéD*(*D) as fol-
lows:

* A(I+1)x(l+1) — A(I+1)><(I+1); (ai j) — (§|+2_j I+2—i)
and then define
o1 gl (A) = gl (A); X > =X"

which is an automorphism afl.+, (A) of period 2. Since' maps the generating set of
L = ¢+1(A) to itself, the restriction ofr to £ is an automorphism of of period 2
which we denote it again by. So £ satisfies (GC1). One can easily check that

(1-1)/2

> F(hi +hi_isa) +Fhgsayz, if | is odd,
HEY= 1)

> F(hi +hi_is), if 1 is even.

i=1
Now for 1 <i < [(I +1)/2], pute] := (1/2)(&i — &1-i+2), then
/ ’ PR I+1 . .
{i(siis,-)lsl,JsT}, if | is odd,

R(o) := |
{igi,1 (e &) [1<i,j < E}’ if 1 is even

is an irreducible finite root system of typ@g+1)2 if | is odd and of typeBGC, if |
is even. Also it is easy to see thdf{c) has a weight space decompositidifc) =
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2 wer@) £(0)e With respect toH(o) in which for 1<i 7 j <[(I +1)/2],

L(0)e-» ={a@,j — a8+ jv2-i |a €A},
L(0)e/+e; = (@8 1+2-] — a€ 142 | @ € A},
L(0)-¢—¢; = {@8+2-i,j —a8+2-j,i | @ € Al
L(0)2 = (a8, 42— ae A_},

L(0)-2 ={a8+2-ii |ae A},

and if| is even,

L:(U)s{ = {ag,g+2)2 — 5QI+2)/2,I+2—i, ae A},
L(0)—e; = {a842-i (+2)/2 — G +2)2,i, @ € A}

Now set

| +1
{o,i(e;ie;)lgi %] 5%] if 1 is odd,
(3.24) S =

I
{O,is{,i(si’ieg) 1<i#j< E}' if | is even.

Then G(o) = L(o) N G has a weight space decompositigifo) = >, s G(0). with
respect toH (o) where for 1<i #j <[(l +1)/2],

G(0)g—e; =F(8,j — @sa—ji2-i)s  G(O)—g—e; = Fl@12-i,j — B42-i),
G(0)e+e; =F(&142-) — €j142-1),  G(0)o = H(0)

and ifl is even,

G(0)e = F(& (+2)2 — €+2y20+2-1)
G(0)—e = F(@42-i,0+2)/2 — €u+2)/2. )

in particular the centralizer oH(o) in G(o) coincides withH (o) which means that
(GC2) is satisfied. Next we note that asmapsg to G ando (H) C H, the restriction

of the Killing form of G to G(o) is non-degenerate. Therefore (GC3) is also satis-
fied. Also since the element Gf representing an element of H(o)* (identifying as

a subset ofH*) through the Killing form is the same as the elementt¢fo) repre-
sentinga through thex (-, - )lxe)xH©), (GC4) is also satisfied. Therefore satisfies
(GC1)—(GC5).

Proposition 3.25. The derived algebrag’(o) of G(o) is a maximalo-splitting
subalgebra ofZ(o).
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Proof. By Proposition 2.32G'(0) is a o-splitting subalgebra of(c). If it is not
a maximal one, then there existasplitting subalgebrg of L(o) with splitting Cartan
subalgebraC and the root system; such thatG'(o) C g. So by Lemma 2.31S =
Sgi0) & Sy, SO there exists ¥t < [(I+1)/2] such that 2 € S,. If | is even,g{ € S
Sg which makes a contradiction ag;Z S, and Sy is an indivisible finite root system.
Now let | be odd, since & ¢ S, for 1 <i < (I +1)/2, [G'(0) N L(0)s—, G'(0) N
L(0):;—e]1 = {0}. Also sinceG’(o) € g, Remark 2.30 (iii) implies that fow € S, {0} #
G'(0)NL(o)e =gNL(0)e. We recall that 2 € S; and use Remark 2.30 (iii), then we
conclude that for ki < (I +1)/2,

{O} = [g/(U) N ‘C(a)s{—sl’y g/(O') N ‘C(U)a{—s{]
= [9 N ['(U)a{fei’v g N E(U)a{fsi’]
=gn E(G)Zs{ ? {O}

which is a contradiction. This completes the proof. ]

Theorem 3.26. L(o). is an(R(c), S)-graded Lie algebra and’(¢) is decomposed
into L(o) = L(o): ® D, whereD is a subspace of (o) satisfying[D, G'(c)] = {0}.

Proof. We note that spar N R(c) = R(o’). Therefore we are done, using Propo-
sition 2.37 together with Theorem 2.46. ]
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