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Abstract
We study the subalgebra of fixed points of a root graded Lie algebra under

a certain class of finite order automorphisms. As the centerless core of extended
affine Lie algebras or equivalently irreducible centerlessLie tori are examples of
root graded Lie algebras, our work is an extension of some recent result about the
subalgebra of fixed points of a Lie torus under a certain finiteorder automorphism.

0. Introduction

In 1955, A. Borel and G.D. Mostow [7] proved that the fixed pointsubalgebra (or
f.p.s. for the sake of brevity) of a finite dimensional simpleLie algebra over a field
F of characteristic zero, under a finite order automorphism, is a reductive Lie algebra.
As a finite dimensional simple Lie algebra is an extended affine Lie algebra of nullity
zero, a natural question which arises is that, what is the f.p.s. of an extended affine Lie
algebra under a certain finite order automorphism? In 2005, S. Azam, S. Berman and
M. Yousofzadeh [5] considered and showed that such a subalgebra has a reductive-like
structure, namely it is decomposed into a sum of extended affine Lie algebras (up to
existence of some isolated root spaces), a subspace of the center and a subspace con-
tained in the centralizer of the core. Since the centerless core of an extended affine Lie
algebra is a centerless irreducible Lie torus, a second question arises: What we can say
about the fixed points of a Lie torus under automorphisms of similar nature. In 2006,
S. Azam and V. Khalili [4] studied the f.p.s. of a centerless irreducible Lie torusL un-
der a certain class of finite order automorphisms. They showed that the centerless core
of the f.p.s. ofL under an automorphism in the stated class is a direct sum of center-
less irreducible Lie tori. In this article, we consider a similar question for a much more
general class of Lie algebras, namely, the class of (R, S, 3)-graded Lie algebras. An
(R, S,3)-graded Lie algebra, for a finite root systemR with a subsystemS and abelian
group3, is aQ(R)-graded Lie algebra whose support contains inR and that is gener-
ated by the homogeneous spaces of degree not equal zero. We study the subalgebra of
fixed points of an (R, S,3)-graded Lie algebra, with respect to a certain automorphism.
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We arrange the paper as follows: Section 1 is devoted to preliminary definitions and
results we need throughout the work. In the first subsection of Section 2, we are ex-
clusively concerned with the f.p.s. of an (R, 3)-graded Lie algebraL equipped with
a non-degenerate symmetric invariant graded bilinear formunder a finite order auto-
morphism satisfying certain properties. In this situation, we get the same result as in
[4] for this much large class, more precisely, we prove that the centerless core of the
f.p.s. of an algebra in this class is a direct sum of irreducible Lie tori. In the second
subsection of Section 2, we focuse on the general case when westudy the f.p.s. of
an (R, S, 3)-graded Lie algebraL under a certain finite order automorphism� for a
finite root systemR, a subsystemS of R and an abelian group3. We prove that the
core of the f.p.s. ofL under� is a sum of a root graded Lie algebraL with a grading
subalgebrag and a subspaceK whose normalizer containsL. We also prove that the
f.p.s. of L is decomposed into its core, a subspace of the centralizer ofthe core and
a subspace of the centralizer ofg. We conclude our work with Section 3 allocated to
examples.

1. Root graded Lie algebras

Throughout this work3 is an abelian additive group andF is a field of charac-
teristic zero. Unless otherwise mentioned, all vector spaces are considered overF. In
the present paper, we denote the dual space of a vector spaceV by V?. If x 2 V and
f 2 V?, we denote byhx, f i, the image ofx under f . If a finite dimensional vector
spaceV is equipped with a non-degenerate symmetric bilinear form (� , � ) and R is
a subset ofV , we setR� := f� 2 R j (�, �) 6= 0g and R0 := R n R�. Also for � 2 V?,
we taket� to be the unique element inV representing� through the form. The form
( � , � ) induces a form onV?, denoted again by (� , � ), by letting (�, �) := (t�, t�)
for �, � 2 V?. For a setS, we take #(S) to be the cardinal ofS and idS to be the
identity map onS. For a subsetS of a vector space, we denote byhSi, the Z-span of
S and byQ(S), the Q-span ofS. For a finite dimensional Lie algebraG, we use� for
Killing form of G. Also for an algebraA and a subsetS of A, we mean byZ(A),
the center ofA and byC�a(S), the centralizer ofS in A.

DEFINITION 1.1. LetV be a vector space.V is called3-gradedif V =
L�23V�

where V�’s are subspaces ofV . The support of V (with respect to the3-grading) is
by definition the set supp(V) := f� 2 3 j V� 6= f0gg. For � 2 3, V� is called thehomo-
geneous subspace of V of degree� and x 2 V� is called ahomogeneous element of
degree�. Let G be another abelian group, we say two gradingsV =

L
g2G Vg and

V =
L�23 V� arecompatibleif for all g 2 G, Vg =

L�23 V�
g whereV�

g := Vg \V� for� 2 3. An algebra (A, � ) is called a3-graded algebraif A =
L�23A� is a3-graded

vector space satisfyingA� �A� � A�+� for �, � 2 3.
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DEFINITION 1.2. Let V be a finite dimensional nontrivial vector space over
the field F. A subsetR of V is called afinite root systemin V if the following con-
ditions hold:
(i) R is finite, 02 R and R spansV .
(ii) For each 06= � 2 R, there exists ˇ� 2 V? such thath�, �̌i = 2 and such that the
reflectionw� of V defined by

v 7! v � hv, �̌i�; v 2 V

stabilizesR.
(iii) h�, �̌i 2 Z for all �, � 2 R n f0g.

Each element ofR is called aroot and the dimension ofV is called therank of
R. A root � is said to bedivisible or indivisible according to whether�=2 is a root
or not. We setRind := f0g [ f� 2 R j �=2 =2 Rg. The root systemR is called indivisible
(divisible) if R = Rind (R 6= Rind). For a subsetS of R, we setS� := Sn f0g. The root
systemR is called irreducible if R� cannot be written as a disjoint union of nonempty
subsetsA and B of R� such thath�, �̌i = h�, �̌i = 0 for � 2 A and � 2 B. A subset
S� R is called asubsystemof R if 0 2 S andw�(�) 2 S for all �, � 2 S�.

DEFINITION 1.3 ([10, Section 2.9]). LetR be a finite root system andL =L�2Q(R) L� be a Q(R)-graded Lie algebra with supp(L) � R. In this situation, a
nonzero elemente 2 L�, � 2 R�, is called invertible (an invertible element of the
Q(R)-graded Lie algebra), if there existsf 2 L�� such thath := [ f , e] 2 L0 operates
diagonally onL that means adhjL� = h�, �̌i idL� for all � 2 Q(R). It is proved that
f with this property is unique and so we refer tof as theinverseof e and denote it
by e�1.

REMARK 1.4. Let R be a finite root system andL =
L�2Q(R) L� be aQ(R)-

graded Lie algebra. If for�, � 2 R�, e� 2 L�, e� 2 L� are invertible elements and

h� := [e�1� , e�], h� := [e�1� , e� ], then sinceh� 2 L0, we have

[h�, h� ] = h0, �̌ih� = 0.

DEFINITION 1.5. LetH be an abelian Lie algebra. We say anH-moduleM has
a weight space decomposition with respect toH, if

M =
M
�2H? M� where M� := fx 2M j h � x = �(h)x, 8h 2 Hg; � 2 H?.

DEFINITION 1.6. Let R be a finite root system andL =
L�2Q(R) L� be aQ(R)-

graded Lie algebra such that supp(L) � R. The core of L is defined to be the sub-
algebraLc of L generated byL�, � 2 R�. The core modulo its center is called the
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centerless coreof L. Now let L be a Lie algebra equipped with compatibleQ(R)- and3-gradingsL =
L�2Q(R) L�, L =

L�23 L� such thatf� 2 Q(R) j L� 6= f0gg � R. We

call an element� 2 3 with L�0 6= f0g, an isotropic root of L. An isotropic root� of L
is called isolated if there are not� 2 R� and Æ 2 3 such thatL�+Æ� 6= f0g, LÆ� 6= f0g.
An isotropic root� is callednon-isolatedif it is not isolated. We denote the set of all
isolated roots ofL by 3(L)iso. We know thatLc inherits the compatibleQ(R)- and3-gradings. Take3c to be the support ofLc with respect to the3-grading. We call
the subspaceI :=

P�23(L)ison3c
L�0 of L, the isolated subspaceof L with respect to the

compatible gradings (we defineI := f0g if 3(L)iso n3c = ;).
DEFINITION 1.7 ([10, Section 2.9]). LetR be a finite root system andS be a

subsystem ofR. An (R, S, 3)-graded Lie algebra is a Lie algebraL equipped with
compatibleQ(R)- and3-gradingsL =

L�2Q(R) L�, L =
L�23 L� such that the fol-

lowing conditions hold:
• f� 2 Q(R) j L� 6= f0gg � R.
• For every� 2 S�, the homogeneous spaceL0� contains an invertible element of
the Q(R)-graded Lie algebraL.
• L0 =

P�2R� [L�, L��].
For an (R, S,3)-graded Lie algebraL, a family fe� j � 2 S�g of invertible elements

of e� 2 L0�, � 2 S�, is called asplitting family. An (R, S, 3)-graded Lie algebra is
called (R,3)-graded if S = Rind and is called an (R, S)-gradedLie algebra if3 = f0g.
An (R, S)-graded Lie algebra is called anR-gradedLie algebra ifS= Rind. An (R,3)-
graded Lie algebraL is called aLie torusof type (R,3) if for each� 2 R� and� 23,
dimL�� � 1 andL�� contains an invertible element of theQ(R)-graded Lie algebraL if
L�� 6= f0g. The Lie torusL is called irreducible if R is an irreducible finite root system.

Now let S be a subsystem of a finite root systemR and L =
L�2Q(R),�23 L�� be

an (R, S, 3)-graded Lie algebra. Ife2 L��, � 2 R�, � 2 3 is an invertible element of
the Q(R)-graded Lie algebraL with the inverse f , then the uniqueness of the inverse
implies that f 2 L����.

Lemma 1.8. Let R be a finite root system andL =
L�2R,�23 L�� be a Lie torus

of type (R, 3), then
i) Z(L) � L0 and L=Z(L) is a centerless Lie torus of type(R, 3).
ii) L is a sum of irreducible Lie tori. Moreover, if L is centerless, L is a direct sum
of centerless irreducible Lie tori.

Proof. i) Let � 2 R�, � 2 3 andL�� 6= f0g, then sinceL�� is a one dimensional
subspace ofL containing an invertible element, one finds thatL�� \ Z(L) = f0g. This
implies that Z(L) � L0. Next it is easy to see thatZ(L) =

L�2R,�23(L�� \ Z(L)) and
then the second statement follows.
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ii) Let R =
Up

i =1 Ri be the decomposition ofR into irreducible finite root systems.
For 1� i � p, defineLi :=

P�2R�i L� �P�2R�i [L�, L��]. Now let 1� i 6= j � p,

then since for� 2 R�
i , � 2 R�

j , � + � =2 R, it follows that Li is a Lie subalgebra of
L and that

(1.9) [Li , L j ] = f0g; 1� i 6= j � p.

Now it is clear that the subalgebraLi , 1� i � p, inherits the compatible gradings on
L and thatLi , 1� i � p, is an irreducible Lie torus. This completes the proof of the
first statement asL =

Pp
i =1Li . Next let the Lie algebraL be centerless and

Pp
i =1 xi = 0

with xi 2 Li for 1� i � p, then (1.9) implies that

[xi , L j ] � [Li , L j ] = f0g and [xi , Li ] �
2
4 pX

i 6= j =1

L j , Li

3
5 = f0g; 1� i � p,

which means that for 1� i � p, xi 2 Z(L) = f0g. ThereforeL is direct sum of ir-
reducible Lie toriLi ’s (1� i � p) which are centerless using (1.9).

To study a class of root graded Lie algebras containing a so-called grading sub-
algebra, from now on we assume thatL is an (R, S, 3)-graded Lie algebra whereR
is a finite root system in a vector space andS is a subsystem ofR satisfying

Q(S) = Q(R) and there exists a basef�i j 1� i � l g of S such that

for 1� i 6= j � l , f�i + n� j j n 2 Zg \ S = f�i + n� j j n 2 Zg \ R.
(?)

We fix a basef�i j 1� i � l g of Sind satisfying the condition stated in (?) and for
each 1� i � l , take ei to be a fixed invertible element ofL contained inL0�i

. One

can see thatf�ei , fi := e�1
i , hi := [�ei , fi ] j 1 � i � l g satisfies Serre’s relations, so

the subalgebraG of L generated byfei , fi , hi g is a finite dimensional split semisimple
Lie algebra with splitting Cartan subalgebraH :=

Ll
i =1 Fhi and the root systemSind.

We refer toG as agrading subalgebraof L. One knows from the finite dimensional
theory thatSind can be identified as a finite root system inH? and

(1.10) h�, �̌i = 2�(t� , t�)=�(t�, t�), �, � 2 S�.

For 1� i � l , set ḣi := 2t�i =�(t�i , t�i ) 2 H and let 1� j � l . SinceG� j = fx 2 G j
[h, x] = � j (h)x, 8h 2 Hg = Fej � L� j , (1.10) and the invertibility ofei imply that

[ḣi , ej ] = � j (ḣi )ej = 2(�(t� j , t�i )=�(t�i , t�i ))ej = h� j , �̌i iej = [hi , ej ]

= � j (hi )ej .

Therefore we have

� j (ḣi ) = � j (hi ); 1� i , j � l .



616 M. YOUSOFZADEH

It follows from this together with the facts thatH is finite dimensional andH? is
spanned byf� j j 1� j � l g that

(1.11) hi = ḣi = 2t�i =�(t�i , t�i ); 1� i � l .

We recall that we identifiedSind as a finite root system inH?. ThereforeQ(R) =
Q(S) is identified as a subset ofH?. Now we have the following lemma:

Lemma 1.12. (i) Let � 2 R, � 2 S�, then h�, �̌i = 2�(t� , t�)=�(t�, t�).
(ii) There is a splitting familyfe� j � 2 S�g of L such that

fe�, e�1� , [e�1� , e�] j � 2 S�indg � G.

Proof. (i) Let � 2 R, � 2 S�. SinceQ(R) = Q(S), there exist rational numbers
r1,:::,r l such that� =

Pl
i =1r i�i (identified as an element ofH?). Now since�1,:::,�l 2

S, (1.10) implies that

h�, �̌i =

*
lX

i =1

r i�i , �̌
+

=
lX

i =1

r i h�i , �̌i = 2�
 

lX
i =1

r i t�i , t�
!,

�(t�, t�)

= 2�(t� , t�)=�(t�, t�).

(ii) Let � =
Pl

i =1si�i 2 S� and � 2 R. Then by (i), we have

(1.13)

h�, �̌i =
2�(t� , t�)�(t�, t�)

=
2��t� ,

Pl
i =1 si t�i

�
�(t�, t�)

=
lX

i =1

2si �(t� , t�i )�(t�, t�)

=
lX

i =1

2si �(t�i , t�i )�(t� , t�i )�(t�, t�)�(t�i , t�i )

=
lX

i =1

si �(t�i , t�i )�(t�, t�)
h�, �̌i i.

Also using (1.11), we have

(1.14) h0� :=
2t��(t�, t�)

=
lX

i =1

2si t�i�(t�, t�)
=

lX
i =1

si �(t�i , t�i )�(t�, t�)
hi .
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Now let x 2 L� , then (1.14) together with (1.13) implies that

(1.15)

[h0�, x] =

"
lX

i =1

si �(t�i , t�i )�(t�, t�)
hi , x

#
=

lX
i =1

si �(t�i , t�i )�(t�, t�)
[hi , x]

=
lX

i =1

si �(t�i , t�i )�(t�, t�)
h�, �̌i ix

= h�, �̌ix.

We also know that� 2 S�ind, then [G��, G+�] = Ft� and so there existe0�� 2 G�� � L0��
such that [e0��, e0+�] = h0� which together with (1.15) implies thate0+� is an invertible
element ofL. This completes the proof.

From now on we work with a splitting familyfe� j � 2 S�g of L satisfying the
condition thatfe� j � 2 S�indg � G with h� := [e�1� , e�] = 2t�=�(t�, t�), � 2 S�ind. Since
we have identifiedR� Q(S) as a subset ofH?, Lemma 1.12 (i) implies that

�(h�) = �(t� , h�) = 2�(t� , t�)=�(t�, t�) = h�, �̌i; � 2 S�ind, � 2 R.

Using this and the same argument as in [10, Proposition 2.11], for � 2 R, we have

(1.16)
L� = fx 2 L j [h�, x] = h�, �̌ix, for all � 2 Sindg

= fx 2 L j [h, x] = �(h)x, for all h 2 Hg.
2. The subalgebra of fixed points

This section deals with the study of the f.p.s. of a root graded Lie algebra un-
der a certain finite order automorphism, a topic inspired by the work of S. Azam and
V. Khalili [4]. They study the f.p.s. of a centerless irreducible Lie torus, an element
of the class of root graded Lie algebras equipped with a symmetric non-degenerate in-
variant graded bilinear form, under an automorphism satisfying some properties. In
the first subsection, we consider a triple (L, ( � , � ), H), whereL is an (R, 3)-graded
Lie algebra equipped with a symmetric non-degenerate invariant graded bilinear form
( � , � ) and H is a Cartan subalgebra of a grading subalgebra ofL. We let � be an
automorphism ofL and takeR(� ) to be the root system of the f.p.s. ofL, L(� ), with
respect toH(� ) := H \ L(� ). We set some conditions on� , extending the conditions
in [4], among them invariancy of the form under� and that the elements ofR(� ) are
non-isotropic. These two conditions guarantee the existence of a subalgebra ofL(� )
we will call a � -splitting subalgebra. The existence of such a subalgebra is needed
in the study of the general case as well, when we work with an (R, S, 3)-graded Lie
algebra, not necessarily equipped with a symmetric non-degenerate invariant graded bi-
linear form. In this situation we replace the two conditionsstated above with two new
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appropriate conditions ((GC3) and (GC4) in Subsection 2.2). Throughout this section
we suppose thatn is a positive integer and the fieldF contains a primitiven-th root �
of unity.

2.1. The subalgebra of fixed points of an (R, Λ)-graded Lie algebra. Through-
out this subsection,R is a finite root system andL =

L�2R,�23L�� is an (R,3)-graded
Lie algebra equipped with a non-degenerate symmetric invariant graded bilinear form
( � , � ), that is, (� , � ) is a non-degenerate symmetric invariant bilinear form satisfying

(L�, L�) = f0g unless � +� = 0.

Fix a grading subalgebraG of L with a splitting Cartan subalgebraH. Suppose
that the restriction of the form( � , � ) to G is nonzero. As in the previous section,
we may assume thatR � H? and thatL =

L�2R L� with L� = fx 2 L j [h, x] =�(h)x, 8h 2Hg for � 2 R. Now it follows from the invariancy and the non-degeneracy
of the form that

for �, � 2 supp(L), (L�, L�) = f0g unless � + � = 0.

We know thatG is a finite dimensional split semisimple Lie algebra. Suppose that
G =

Ll
i =1 G

i is the decomposition ofG into simple ideals, then for 1� i � l , G i is a
finite dimensional split simple Lie algebra with splitting Cartan subalgebraHi := H\G i

and H =
Ll

i =1 H
i . Let 1� i � l and takeRi to be the root system ofG i . Now the

invariancy of the form implies that

(2.1) (G i , G j ) = f0g; 1� i 6= j � l .

Next for 1� i � l , put (� , � )i := ( � , � )j
Gi �Gi , then (2.1) implies that

( � , � )jG�G =
lM

i =1

( � , � )i and (� , � )jH�H =
lM

i =1

( � , � )i j
Hi �Hi

.

Lemma 2.2. For 1 � i � l , ( � , � )i is a scalar multiple of Killing form�i of
G i . Also if ( � , � )i is nonzero, ( � , � )j

Gi �Gi and ( � , � )j
Hi �Hi are non-degenerate and

(�, �) 6= 0 for � 2 Q(Ri ) n f0g. In particular if G is simple, ( � , � )jG�G and ( � , � )jH�H
are non-degenerate and(�, �) 6= 0 for � 2 Q(R) n f0g.

Proof. The first statement is immediate as for 1� i � l , G i is a centroid-simple
Lie algebra. Now let 1� i � l and (� , � )i be nonzero, then (� , � )i is a nonzero scalar
multiple of Killing form �i . We know that�i is non-degenerate onG i andHi and that
it is positive definite onQ(Ri ), so we are done.
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From now on we assume that the restriction of the form onH is non-degenerate.
Suppose� : L! L is an automorphism ofL satisfying
(C1) � n = idL (� is of ordern),
(C2) � (H) � H,
(C3) (� (x), � (y)) = (x, y) for x, y 2 L,
(C4) � (L�) � L� for � 2 3.

Since� is of finite ordern and � (H) � H, we have

L =
n�1M
i =0

Lī and H =
n�1M
i =0

Hī where for 0� i � n� 1,

Lī := fx 2 L j � (x) = � i xg and Hī := H \ Lī .

Set

(2.3) L(� ) := L0̄, H(� ) := H0̄.

Now using (C3), one concludes that

(2.4) (Lī , L j̄ ) = (Hī , H j̄ ) = f0g unless i + j = 0̄.

Since the form onH is non-degenerate, for eachh 2H, there is a unique element
of H?, say h?, such thatth? = h. Now as� is an automorphism ofH, it induces an
automorphism ofH?, denoted again by� , as follows:

� : H? ! H?, � 7! � (t�)?; � 2 H?,
i.e., using (C3), we have� (�)(h) = (� (t�), h) = (t�, ��1(h)) = �(��1(h)) for � 2 H?
and h 2 H. Thus we have

(2.5) � i (�)(h) = �(h); � 2 H?, h 2 H(� ), 0� i � n.

Next since� is an automorphism ofH? of finite ordern, we have

H? =
n�1M
i =0

(H?)ī where (H?)ī := f� 2 H? j � (�) = � i�g; 0� i � n� 1.

TakeH?(� ) := (H?)0̄ andH?(c) :=
Pn�1

i =1 (H?)ī , thenH? = H?(� )�H?(c). Let � : H?!
H?(� ) be the natural projection map. Since for� 2H? =

Ln�1
i =0 (H?)ī , ��� (�) 2H?(c),�(�) = �(� i (�)) for all 0� i � n�1 and son�(�) =

Pn�1
i =0 �(� i (�)) = ��Pn�1

i =0 � i (�)
�

=Pn�1
i =0 � i (�). Therefore

(2.6) �(�) =
1

n

n�1X
i =0

� i (�); � 2 H?.
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Identifying H(� )? with H?(� ) by letting any element ofH(� )? acts as zero onPn�1
i =1 Hī and using (2.6) together with (2.5), we may assume that

(2.7) � : H? ! H(� )?; � 7! �jH(� ), � 2 H?.
Lemma 2.8. If R is an irreducible finite root system, (�(�), �(�)) 6= 0 for � 2 R

with �(�) 6= 0.

Proof. One can see that for� 2 R, � (L�) � L� (�) which implies that the support
of L with respect to theQ(R)-grading onL is preserved by the automorphism� , in
particular, � (Rind) � R. Therefore� i (�) � Q(R) for 0� i � n� 1 and� 2 R. Using
this together with (2.6), for� 2 R, we have�(�) = (1=n)

Pn�1
i =0 � i (�) 2 Q(R). Now

we are done contemplating Lemma 2.2.

We know from (1.16) thatL has a weight space decompositionL =
L�2RL� with

respect toH. Now sinceH(� ) � H, one gets thatL is an H(� )-module having the
weight space decompositionL =

P�2R L�(�) with respect toH(� ) where

(2.9) L�(�) = fx 2 L j [h, x] = �(h)x, 8h 2 H(� )g =
M
�2R,�(�)=�(�)

L� ; � 2 R.

Now suppose that� 2 R, x 2 L�(�) and h 2 H(� ), then since� is an auto-
morphism, we have

�(h)� (x) = � (�(h)x) = � ([h, x]) = [� (h), � (x)] = [h, � (x)]

which implies that� (L�(�)) � L�(�). Therefore we have

L�(�) =
n�1M
i =0

L�(�), ī where L�(�), ī := L�(�) \ Lī ; 0� i � n� 1.

It then follows that

(2.10) L(� ) =
M

�(�)2�(R)

L(� )�(�) with L(� )�(�) := L�(�),0̄; � 2 R.

Set

(2.11) R(� ) := f�(�) 2 �(R) j L(� )�(�) 6= f0gg.
Since by (2.4), the form restricted toL(� ) is non-degenerate, for�(�), �(�) 2 R(� )
we have

(2.12) (L(� )�(�), L(� )�(�)) = f0g unless �(� + �) = 0.
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Next note that (C4) implies thatL(� ) inherits the3-grading onL, i.e.,

(2.13) L(� ) =
M
�23 L(� )� where L(� )� := L(� ) \ L�; � 2 3.

Lemma 2.14. This grading is compatible with theQ(R(� ))-grading onL(� ) stated
in (2.10), i.e., L(� )�(�) =

P�23 L(� )��(�) =
P�23(L(� )� \ L(� )�(�)) for � 2 R.

Proof. Let � 2 R and x 2 L(� )�(�). Using (2.9), we havex =
P�2R x� where

for � 2 R, x� 2 L� and x� = 0 if �(�) 6= �(�). Since for� 2 R, L� =
L�23 L�� =L�23(L� \L�), one gets thatx� =

P�23 x�� where for� 2 3, x�� 2 L� \L� � L�(�) \
L� if �(�) = �(�) and x�� = 0 otherwise. Next set

(2.15) x� :=
X
�2R

x�� 2 L�(�) \ L�; � 2 3,

then x =
P�23 x� and since� (x) = x, we have

P�23 x� =
P�23 � (x�). Contemplating

(C4), we have� (x�) = x�, � 23, which together with (2.15) implies thatx� 2 L(� )��(�)

for � 2 3. This completes the proof.

The fifth condition on� is as follows:
(C5) CL(� )0(H(� )) = H(� ).

Let � 2 R, � 2 3, x 2 L(� )��(�), y 2 L(� )���(��) and h 2 H(� ), then

([x, y], h) = (x, [y, h]) = �(h)(x, y) = �(�)(h)(x, y) = (t�(�)(x, y), h).

But [x, y] 2 L(� )0�(0) = CL(� )0(H(� )) = H(� ) and by (2.4), the form is non-degenerate
on H(� ), so

(2.16) [x, y] = (x, y)t�̃; x 2 L(� )�̃�, y 2 L(� )����̃, �̃ 2 R(� ), � 2 3.

Proposition 2.17. If R(� )� 6= ;, R(� )�[f0g is a finite root system in itsF-span.

Proof. Consider the triple (L(� ), ( � , � )jL(� )�L(� ) , H(� )). We know that the form is
symmetric, non-degenerate and invariant onL(� ). Also using the fact thatR(� )� 6= ;
together with (2.10), the non-degeneracy of the form onH and (2.4), one gets that
H(� ) is a nontrivial finite dimensional abelian subalgebra ofL(� ) such that adL(� )(h)
is diagonalizable for allh 2H(� ) and that (� , � )jH(� )�H(� ) is non-degenerate. Next, since
the form is graded and non-degenerate onL(� ), (2.12) implies that for ˜�, �̃ 2 R(� ),�, � 2 3,

(2.18) (L(� )�̃�, L(� )�̃� ) = f0g unless � +� = 0, �̃ + �̃ = 0 and L(� )�̃� 6= f0g.



622 M. YOUSOFZADEH

So by (2.16) there existe��̃ 2 L(� )��̃ such that [e�̃, e��̃] = t�̃. Also since R(� ) is
finite, adL(� )(x) is locally nilpotent onL(� ) for any �̃ 2 R(� )� and x 2 L�̃. These all
together with [5, Proposition 1.4] imply thatR(� )� [ f0g is a finite root system.

Lemma 2.19. i) For �̃ 2 R(� )� and � 2 3, [L(� )�̃�, L(� )�̃�] = f0g.
ii) For �̃ 2 R(� )� and � 2 3, dim(L(� )�̃�) � 1.

Proof. i) Let �̃ 2 R(� )� and� 23. If L(� )�̃� = f0g, there is nothing to prove, so
let L(� )�̃� 6= f0g and 06= z 2 [L(� )�̃�, L(� )�̃�] � L(� )2�

2�̃. Then (2.16) together with (2.18)
implies that there is a subspaceS := Fx� Fh� Fy of L(� ) isomorphic tosl2(F) with
x 2 L(� )�̃�, y 2 L(� )����̃ and h = [x, y] 2 H(� ). Since y 2 L(� )����̃ and [y, z] 2 L(� )�̃�,
(2.16) implies that

[y, [y, z]] = ( y, [y, z])t�̃ = ([y, y], z)t�̃ = 0.

This together with the fact that 3 ˜�, �3�̃ =2 R(� ) (Proposition 2.17), implies thatM :=
Fz� F[y, z] is a 2-dimensionalS-module which is a contradiction by thesl2-module
theory.

ii) Let L(� )�̃� 6= f0g and consider thesl2-triple (x, h, y) introduced in the previous
part. Let e2 L(� )�̃� with [e, y] = 0, then by part i), we have

�̃(h)e = [h, e] = [[ x, y], e] = [[ x, e], y] + [[ e, y], x] = 0,

therefore by (2.16), the map ady : L(� )�̃� ! Ft�̃ is a nonzero injective map and so
dim(L(� )�̃�) = dim(Ft�̃) = 1.

Now we are ready to set our last assumption on� :
(C6) (�(�), �(�)) 6= 0 for � 2 R with �(�) 6= 0.

Theorem 2.20. Let L be an (R, 3)-graded Lie algebra equipped with a non-
degenerate symmetric invariant graded bilinear form( � , �). Fix a grading subalgebraG
of L with a splitting Cartan subalgebraH and suppose that the restriction of the form
( � , � ) on H is non-degenerate. Let � be an automorphism ofL satisfying(C1)–(C6).
If R(� )� 6= ;, R(� ) is a finite root system andL(� )c is a Lie torus of type(R(� ),3).
MoreoverL(� )c=Z(L(� )c) is a direct sum of centerless irreducible Lie tori.

Proof. Use Proposition 2.17 together with (C6) to conclude that R(� ) is a finite
root system. Next using Lemma 2.14, we get thatL(� ) is equipped with compatible
Q(R(� ))- and3-gradings. Now note that for each ˜� 2 R(� )� and� 2 3 with L(� )�̃� 6=f0g, (2.16) and (2.18) imply thatL(� )�̃� contains an invertible element. This together
with Lemma 2.19 and thatL(� )c =

P�̃2R(� )� [L(� )�̃, L(� )��̃] +
L�̃2R(� )� L(� )�̃ implies

that L(� )c is a Lie torus of type (R(� ), 3). Now using Lemma 1.8, we are done.
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Using Lemmas 2.2, 2.8, Theorem 2.20 and [11, Theorem 7.1], wehave the fol-
lowing:

Corollary 2.21. Let R be an irreducible finite root system andL be an (R, 3)-
graded Lie algebra equipped with a non-degenerate symmetric invariant graded bi-
linear form ( � , � ) (e.g., L is an irreducible Lie torus of type(R, 3)). Fix a grading
subalgebraG of L with a splitting Cartan subalgebraH such that( � , �)jG�G is nonzero.
Let � be an automorphism ofL satisfying(C1)–(C5). If R(� )� 6= ;, R(� ) is a finite
root system andL(� )c is a Lie torus of type(R(� ), 3). MoreoverL(� )c=Z(L(� )c) is
a direct sum of centerless irreducible Lie tori.

2.2. The general case. In this subsection, we are concerned with the study of
the subalgebra of fixed points of an (R, S,3)-graded Lie algebra under an automorphism
satisfying certain properties. We fix an (R, S,3)-graded Lie algebraL =

L�2Q(R),�23L��
for a finite root systemR and a subsystemS of R satisfying (?). We also fix a basef�i j 1� i � l g of S satisfying the property stated in (?) and a set of invertible elements
ei 2 L0�i

, 1� i � l . Then the subalgebraG of L0 generated byfei ,hi := [e�1
i ,ei ], e�1

i , 1�
i � l g is a finite dimensional split semisimple Lie algebra with splitting Cartan sub-
algebraH =

Ll
i =1 Fhi and the root systemSind (see the previous section). Consider

an automorphism� of L satisfying the conditions (GC1)–(GC5) describing below: We
start with
(GC1) � n = idL (� is of ordern).

Since� is of finite ordern, we have

L =
n�1M
i =0

Lī where Lī := fx 2 L j � (x) = � i xg; 0� i � n� 1.

Set

(2.22) L(� ) := L0̄, G(� ) := G \ L(� ), H(� ) := H \ L(� ).

We know from (1.16) thatL has a weight space decompositionL =
L�2RL� with

respect toH. Now sinceH(� ) �H, one gets thatL has a weight space decomposition
L =

P�2R L�(�) with respect toH(� ) where

(2.23)

� : H? ! H(� )?; � 7! �jH(� ), � 2 H? and

L�(�) := fx 2 L j [h, x] = �(h)x, 8h 2 H(� )g =
M
�2R,�(�)=�(�)

L� ; � 2 R.
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Also sinceL(� ) andG(� ) are twoH(� )-submodules ofL, we have

(2.24)
L(� ) =

M
�(�)2�(R)

L(� )�(�) and G(� ) =
M

�(�)2�(R)

G(� )�(�) where

L(� )�(�) := L(� ) \ L�(�) and G(� )�(�) := G(� ) \ L�(�); � 2 R.

Set

(2.25)
RL(� ) := f�(�) 2 �(R) j L(� )�(�) 6= f0gg and

RG(� ) := f�(�) 2 �(R) j G(� )�(�) 6= f0gg.
Now consider the following assumptions on� :

(GC2) H(� ) is self-centralizing inG(� ).
(GC3) R�

G(� ) 6= ; and the restriction of Killing form�( � , � ) of G to G(� ), denoted by
( � , � ), is non-degenerate.

Since (� , � ) is invariant and non-degenerate onG(� ), for �̃, �̃ 2 RG(� ), we have
(G(� )�̃, G(� )�̃) = f0g unless ˜� + �̃ = 0. This implies that

(2.26)
the restriction of the form (� , � ) to G(� )�̃ + G(� )��̃, �̃ 2 RG(� ),

is non-degenerate,

in particular (GC2) implies that the restriction of the form( � , � ) to H(� ) = G(� )0 is
non-degenerate. Transfer the form (� , � )jH(� )�H(� ) to a form onH(� )?, denoted again
by ( � , � ), by setting ( , �) := (t , t�) for  , � 2 H(� )?. The next assumptions on�
are as follow:
(GC4) There is a finite root systemR(� ), containing RL(� ), in a subspace ofH(� )?
such that

(�̇, �̇) 6= 0 and h�̇, ˇ̇�i = 2(�̇, �̇)=(�̇, �̇) for �̇, �̇ 2 R(� )� = R(� ) n f0g.
(GC5) � (L�) � L� for � 2 3.

We note that (GC5) implies thatL(� ) inherits the3-grading onL, i.e.,

L(� ) =
M
�23 L(� )� where L(� )� := L(� ) \ L�; � 2 3,

also using (GC4) together with (2.24), one gets thatL(� ) is a Q(R(� ))-graded Lie
algebra. Now using the same argument as in Lemma 2.14, we have

Lemma 2.27. These two gradings are compatible.
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We know thatZ(L(� )) inherits these compatible gradings, in other words,

(2.28) Z(L(� )) =
M
�23

M
�2Q(R(� ))

Z(L(� ))��
where, for� 2 3 and � 2 Q(R(� )), Z(L(� ))�� := Z(L(� )) \ L(� )��.

DEFINITION 2.29. We call a finite dimensional split semisimple subalgebra L of
L(� ), a � -splitting subalgebraof L(� ) if L satisfies the following conditions:
(1) There is a splitting Cartan subalgebraC of L with C � H(� ) + Z(L(� ))0

0, called a� -splitting Cartan subalgebra ofL.
(2) For each root� of the root system1L of L with respect toC, there exist�� 2
R(� ) and �� 2 3 such that

(a) L� � L(� )���� ,
(b) SL := f�� 2 R(� ) j � 2 1Lg is a subsystem ofR(� ),
(c) the map� 7! �� defines an isomorphism between1L andSL.

REMARK 2.30. (i) We drew the attention of the reader to the point thatif a
finite dimensional split semisimple Lie subalgebraL of L(� ) satisfies the conditions
(1)–(2) (a) of a� -splitting subalgebra, different weight spaces ofL with respect toC
are contained in different weight spaces ofL(� ) with respect toH(� ). Indeed, if�, �
are two roots of1L such thatL�,L� � L(� ) for some 2 R(� ), then for 06= x 2 L�,
0 6= y 2 L� , we have

�(h + z)x = [h + z, x] =  (h)x, �(h + z)y = [h + z, y] =  (h)y

where h 2 H(� ), z 2 Z(L(� )), h + z 2 C,

which implies�(ḣ) = �(ḣ) for ḣ 2 C. Therefore� = �.
(ii) For a � -splitting subalgebraL of L(� ), the conditions (2) (b) and (2) (c) of the
definition imply that if B is a base of1L, then f�� j � 2 Bg is a base ofSL.
(iii) Let L be a� -splitting subalgebra ofL(� ) and � 2 R(� )� with L \ L(� )� 6= f0g,
then there is 2 1�

L such thatL\L(� )� = L . So from the finite dimensional theory
we have [L \ L(� )�, L \ L(� )� ] = L \ L(� )�+� where�, �, � + � 2 R(� )� with L \
L(� )� 6= f0g, L \ L(� )� 6= f0g, L \ L(� )�+� 6= f0g.

Lemma 2.31. Let L1, L2 be two� -splitting subalgebras ofL(� ) with � -splitting
Cartan subalgebrasC1, C2 and the root systems1L1,1L2, respectively, such thatL1 �
L2, thenSL1 is a subsystem ofSL2, moreover, if SL1 = SL2, then L1 = L2.

Proof. Let� 2 S�
L1

, then there exists� 2 1�
L1

such that (L1)� � L(� )� . Consider
a nonzerox 2 (L1)� � L2, then x =

P21L2
x with x 2 (L2) ,  2 1L2. But for

each 2 1L2, there is� 2 SL2 such that (L2) � L(� )� . Thereforex =
P21L2

x
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with x 2 L(� )� ,  2 1L2. Now sincex 2 L(� )� , there is 2 1L2 such thatx = x
and � = � 2 SL2. This completes the proof of the first statement. For the second
statement suppose that� 2 1�

L2
, then sinceSL1 = SL2, one finds� 2 SL1 = SL2 and 2 1�

L1
such that (L2)� � L(� )� and (L1) � L(� )� . Now as L1 � L2, we have

(L2)� + (L1) � L2\L(� )� . But by Remark 2.30 (iii), dim(L2\L(� )�) = 1, so (L2)� =
(L1) . It means that for each� 2 1�

L2
, there is 2 1�

L1
such that (L2)� = (L1) , so

as L1 � L2, we are done.

Proposition 2.32. The derived algebraG 0(� ) of G(� ) is a � -splitting subalgebra
of L(� ).

Proof. Using (GC2), (GC3) and (2.24) together with the fact that RG(� ) (see (2.25))
is a finite set, we conclude that (G(� ), ( � , � ), H(� )) satisfies the following:
• ( � , � ) is a non-degenerate symmetric invariant bilinear form onG(� ).
• H(� ) is a nontrivial finite dimensional abelian subalgebra ofG(� ) which is self-
centralizing and ad-diagonalizable.
• If �(�) 2 R�

G(� ) = RG(� ) n f0g and x 2 G(� )�(�), adG(� ) x acts locally nilpotently
on G(� ).

Now let �(�) 2 RG(� ), x 2 G(� )�(�) and y 2 G(� )��(�), then by (GC2), [x, y] 2
G(� )0 = H(� ). Also for h 2 H(� ), we have

(h, [x, y]) = ([h, x], y) = �(�)(h)(x, y) = (t�(�), h)(x, y) = (h, t�(�)(x, y)).

Now since by (2.26), the form is non-degenerate onH(� ), we have [x, y] = t�(�)(x, y)
and so using (2.26) again, we have

(2.33) [G�(�), G��(�)] = Ft�(�), �(�) 2 RG(� ).

Now using [5, Propositions 1.4 and 1.5] together with (GC4) and (2.33), one concludes
that RG(� ) is an indivisible subsystem ofR(� ) and that for�(�) 2 R�

G(� ), dim(G�(�)) = 1.
Now it follows from these and Serre’s theorem thatG 0(� ) is a finite dimensional split
semisimple subalgebra ofL(� ) with splitting Cartan subalgebraH(� ) \ G 0(� ) and the
root systemRG(� ). Now for each ˙� 2 RG(� ), define��̇ := �̇ 2 R(� ), then G 0(� )�̇ �
G(� )�̇ � L(� )0��̇ . All together imply thatG 0(� ) is a � -splitting subalgebra ofL(� ).

One knows that the dimension of a� -splitting subalgebra ofL(� ) is at most
#(R(� )�)+ rank(R(� )) andG 0(� ) is a � -splitting subalgebra ofL(� ). Let us fix a max-
imal � -splitting subalgebrag of L(� ) with a � -splitting Cartan subalgebraC and the
root system1g. Let f�̇1, : : : , �̇mg be a base of1g, then for each� 2 1g, there exist
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�� 2 3 and �� 2 R(� ) such thatg� � L(� )���� . Set

(2.34) �i := ��̇i and Æi := ��̇i ; 1� i � m,

and define

(2.35) R := R(� ) \ spanZf�i j 1� i � mg = R(� ) \ spanZ Sg.

One can easily prove the following lemma:

Lemma 2.36. R is a subsystem of R(� ).

Proposition 2.37. Recall thatg is a maximal� -splitting subalgebra ofL(� ) with
a � -splitting Cartan subalgebraC and the root system1g, also S := Sg = f�� 2 R(� ) j� 2 1gg (seeDefinition 2.29).Consider(2.35) and set

(2.38) L̃ := the subalgebra ofL(� ) generated byL(� )�, � 2 R�.

Then L̃ is an (R, S, 3)-graded Lie algebra.

Proof. We first consider (2.34) and note that by Remark 2.30 (ii), f�i j 1� i �mg
is a base ofS and soS is a subsystem ofR. Now the proof is carried out in steps:

STEP 1. L̃ =
P2R� [L(� ) , L(� )� ] +

P2R� L(� ) : It is enough to show that

[L(� )�, L(� )� ] � P2R� L(� ) for �, � 2 R� with � + � 6= 0. Let �, � 2 R� be
such that� + � 6= 0. If [L(� )�, L(� )� ] = f0g, then there is nothing to prove so let
[L(� )�, L(� )� ] 6= f0g, then sincef0g 6= [L(� )�, L(� )� ] � L(� )�+� and � + � 2
spanZf�, �g � spanZf�i j 1 � i � mg, � + � 2 R(� ) \ spanZf�i j 1 � i � mg = R.
Therefore [L(� )�, L(� )� ] �P2R� L(� ) .

STEP 2. L̃ is aQ(R)-graded Lie algebra with the support containing inR: Define

(2.39) L̃� :=

8>><
>>:
L(� )�, � 2 R�,X
2R�[L(� ) , L(� )� ], � = 0,

0, � 2 Q(R) nR.

With the same argument as in Step 1, one gets thatL̃ =
L�2R L̃� is a Q(R)-graded

Lie algebra with the desired property.
STEP 3. Consider Lemma 2.27 and let� =

Pm
i =1r i�i 2R (r1, : : : , rm 2 Z), � 2 3.

For x 2 L(� )�� define degn x := ��Pm
i =1 r i Æi . This defines a3-grading onL̃: We know

that for � 2 R(� )�, L(� )� =
P�23 L(� )��, so we haveL̃ =

L�23 L̃� where for� 2 3,

L̃� :=
X

�=
Pm

i =1 r i �i2R�, �23,�=��Pm
i =1 r i Æi

L(� )�� +
X
2R�,�,�23,�+�=�

[L(� )� , L(� )�� ].
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Now it is easy to see that [L̃� , L̃� 0 ] � L̃�+� 0 for �, � 0 2 3.
STEP 4. The gradings introduced in Steps 2 and 3 are compatible, i.e., for � 2

R, L̃� =
P�23 L̃�� =

P�23(L̃�\ L̃�): Because of (2.39), it is enough to prove the state-
ment for� 2 R�. Let � =

Pm
i =1 r i�i 2 R� and x 2 L̃� = L(� )�, then by Lemma 2.27,

x =
P�23x�� with x�� 2 L(� )��. This completes the proof as for� 23, x�� 2 L̃� and with

respect to the3-grading onL̃, x�� is homogeneous of degree degn x�� = ��Pm
i =1 r i Æi .

In other words,x =
P�23 x�� with x�� 2 L̃� \ L̃��Pm

i =1 r i Æi .
STEP 5. For each� 2 S�, L̃0� contains an invertible element: Suppose thatėi , ḟ i , ḣi ,

1 � i � m, are Chevalley generators ofg corresponding to the basef�̇i j 1 � i � mg.
We know that for 1� i � m, ėi 2 L(� )Æi�i

(see (2.34)), so degn(ėi ) = 0. Also since the

� -splitting Cartan subalgebra ofg is a subset ofH(� ) + Z(L(� ))0
0, fi 2 L(� )�Æi��i

and
so degn( ḟ i ) = degn(ḣi ) = 0. Now since the generating setfėi , ḟ i , ḣi j 1 � i � mg of g

is a subset ofL̃0, we have

(2.40) g � L̃0.

Next note that for ˙� 2 1g, there exists��̇ 2 R(� ) such thatg�̇ � L(� )��̇ and the
map �̇ 7! ��̇ defines an isomorphism between1g and S = f��̇ 2 R(� ) j �̇ 2 1gg.
The inverse of this isomorphism defines an isomorphism� 7! �̃ betweenS and1g.
Therefore

(2.41) 1g = f�̃ j � 2 Sg, g�̃ � L(� )�; � 2 S, h�̃, ˇ̃�i = h�, �̌i; �, � 2 S�.

Now let � 2 S�, we want to find an invertible element iñL0�. We know from the finite
dimensional theory that there existsh̃�̃ 2 g0 with [g+�̃, g��̃] = Fh̃�̃ and �̃(h̃�̃) = h�̃, ˇ̃�i
for all � 2 S�. This together with (2.40), (2.41) and (2.39) implies that

(2.42)
there exist h̃�̃ 2 g0 and ẽ��̃ 2 g��̃ � L(� )�� \ L̃0 = L̃0�� with

�̃(h̃�̃) = h�, �̌i for all � 2 S and [̃e��̃, ẽ+�̃] = h̃�̃.

Now sinceh̃�̃ 2 g0�H(� )+Z(L(� )), there existh� 2H(� ) andz� 2 Z(L(� )) such
that h̃�̃ = h� + z�. Also by (2.41), ėj 2 g�̃ j � L(� )� j , 1� j � m, therefore by (2.24),
(2.23) and (2.42), we have

� j (h�)ėj = [h� + z�, ėj ] = [ h̃�̃, ėj ] = �̃ j (h̃�̃)ėj = h� j , �̌iėj .

This means that

(2.43) � j (h�) = h� j , �̌i; 1� j � m.
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Now if  =
Pm

i =1 r i�i 2 R� and x 2 L̃ = L(� ) (see (2.39)), then (2.43) implies that

(2.44)
[h̃�̃, x] = [h� + z�, x] = [h�, x] =  (h�)x =

mX
i =1

r i�i (h�)x =
mX

i =1

r i h�i , �̌ix
= h , �̌ix

which in turn implies that for 2 R� and x 2 L̃ , y 2 L̃� , we have

(2.45) [h̃�̃, [x, y]] = [[ h̃�̃, x], y] � [[ h̃�̃, y], x] = h , �̌i[x, y] � h� , �̌i[y, x] = 0.

Now (2.42) together with (2.44), (2.45) and (2.39) implies that ẽ+�̃ 2 L̃0� is an
invertible element. This completes the proof.

Now we are ready to state our main theorem:

Theorem 2.46 (Main theorem). Let R be a finite root system with a subsystem
S satisfying(?) and L be an (R, S, 3)-graded Lie algebra with a fixed grading sub-
algebra G. Let � be an automorphism ofL satisfying(GC1)–(GC5).Then
(i) L(� ) has compatibleQ(R(� ))- and3-gradings,
(ii) there are subsystemsR, S of R(� ) with S � R such that the subalgebrãL of
L(� ) generated byL(� )�, � 2 R�, is an (R, S, 3)-graded Lie algebra containing a
maximal splitting subalgebrag,
(iii) L(� )c = L̃ + K whereK :=

P�2R(� )�nR[L(� ) , L(� )� ] +
P2R(� )�nR L(� ) ,

(iv) takeI to be the isolated subspace ofL(� ) with respect to the compatible gradings
(Definition 1.6), then [I, L(� )c] = f0g and L(� ) is decomposed intoL(� ) = L(� )c �
I �D = (L̃ + K)� I �D where andD is a subspace ofL(� ) satisfying[D, g] = f0g.

Proof. Use Lemma 2.27 to get compatibleQ(R(� ))- and3-gradings onL(� ). Next
we note that [I,L(� )c] = f0g as [I,L(� )�� ] = f0g for all � 2 R(� )� and� 23. Now fix a
maximal� -splitting subalgebrag of L. Consider the root systemR as defined in (2.35)
and its subsystemS as defined in Proposition 2.37. Then by Proposition 2.37,L̃, the
subalgebra ofL(� ) generated byL(� )�, � 2 R�, is an (R, S, 3)-graded Lie algebra
containing the maximal splitting subalgebrag. It is trivial thatL(� )c = L̃ +K. Now one
can find a subspaceE of L(� ) such thatL(� ) = L(� )c � I � E. Let x 2 E. Since
L(� )c is an ideal ofL(� ), the restriction of adL(� ) x to L(� )c is a derivation ofL(� )c.
Using the complete reducibility ofL(� )c as ag-module and the first Whitehead lemma
for g-modules, we can apply [6, Proposition 3.2] to each element of a basis ofE and in
this way construct a subspaceD of L(� ) such thatL(� ) = L(� )c�I�D = (L̃+K)�I�D
and [D, g] = f0g. This completes the proof.
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3. Examples

In this section, we present several examples elaborating onthe result obtained in
Section 2. In each example, we start with an (R, S, 3)-graded Lie algebraL and an
automorphism� of L satisfying (GC1)–(GC5). We illustrate how the termsL̃, K (see
Theorem 2.46) appear as the core of the f.p.s. ofL under the automorphism� . In
Examples 3.4 and 3.23,K = 0 and soL(� )c = L̃ is an (R, S, 3)-graded Lie algebra
for a finite root systemR with a root systemS. In Examples 3.7 and 3.12,K is a
nonzero subalgebra ofL(� ) and in Example 3.22,K is a nonzero subspace ofL(� )c

that is not a subalgebra. Throughout this section for a star algebra (A, )̄, we setA� :=fa 2A j ā =�ag. Also for an algebraA and natural numbersm, n, we mean byAm�n,
the set of allm�n-matrices with entries inA. For A 2Am�n, we useAt to denote the
transposition ofA and for A 2An�n, we mean by tr(A), the trace ofA. If, in addition,
A is unital, for 1� i , j � n, we takeei , j to be an element ofAn�n with 1 in (i , j )-
position and 0 elsewhere. We also keep the same notation as inthe previous section.
Our first four examples have the same nature, so we start with stating this common
nature. LetR be a finite root system in anl -dimensional vector space overF with a
basef�i j 1 � i � l g and � : hRi ! F n f0g be any group homomorphism. One knows
that � is uniquely determined by specifying�(�i ) for 1� i � l . Next letL =

L�2RL�
be aQ(R)-graded Lie algebra. The homomorphism� induces an automorphism!� of
L by letting

(3.1) !� jL� = �(�) idL� for � 2 R.

We note that!� is of finite order if and only if�(�i ) is a root of unity for 1�
i � l . We also note that the subalgebraL(!�) of the fixed points ofL under !�
is
L �2R,�(�)=1

L�. Now as an especial case, consider the irreducible finite root system

R := f�"i ,�("i � " j ) j 1� i � j � 3g of type BC3 with base1 := f"1� "2, "2� "3, "3g
in a 3-dimensional vector space overF. Define the following group homomorphism:

(3.2)
� : hRi ! F n f0g,

"1 � "2 7! 1, "2 � "3 7! �1, "3 7! �1

and letL be a Q(R)-graded Lie algebra. Next consider the automorphism!� of L

defined as in (3.1), then

(3.3) L(!�) =
X

�2R(!� )

L� where R(!�) := f�2"3, �"i , �("i � " j ) j 1� i � j � 2g.
EXAMPLE 3.4. L be the derived algebra of the twisted affine Lie algebra of type

A(2)
6 . ThenL has a realization as

L = (G 
C C[t�2]) � (M
C tC[t�2]) � Cz
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where G and M are subspaces of a finite dimensional complex simple Lie algebra
(Ġ, [ � , � ]) of type A6 such thatG is a subalgebra oḟG which is simple of typeB3 with
a Cartan subalgebraH and the root systemS= f0,�"i ,�("i � " j ) j 1� i < j � 3g and
under the adjoint representation,M is an irreducibleG-module whose set of weights
is R = f�"i , �("i � " j ) j 1� i � j � 3g. The Lie bracket onL is defined by

(3.5)
[x 
 tm, y
 tn]ˆ := ([x, y] 
 tm+n) + mÆm,�n�(x, y)z, [z, L]ˆ := f0g
for x 
 tn, y
 tm 2 L

where� denotes Killing form ofĠ. For n 2 Z, define

Ln :=

8<
:
G 
 tn, n is nonzero and even
M
 tn, n is odd
(G 
 1)� Cz, n = 0,

thenL =
L

n2Z Ln is a Z-graded Lie algebra. We also haveL =
P�2R L� where

L� :=

8<
:

(G� 
C C[t�2]) + (M� 
C tC[t�2]), � 2 S�,
M� 
C tC[t�2], � 2 R� n S,
(G0
C C[t�2]) + (M0
C tC[t�2]) + Cz, � = 0.

It is not difficult to see thatL is an (R, S, Z)-graded Lie algebra with grading sub-
algebraG. Now consider the group homomorphism� from hRi to C n f0g defined
by (3.2) and the automorphism!� of L defined as in (3.1). Then!� : L! L is an
automorphism satisfying (GC1)–(GC5). Contemplating (3.3), we have

L(!�) =
X

�2R(!� )

L� where R(!�) = f�2"3, �"i , �("i � " j ), 1� i � j � 2g,
a weight space decomposition ofL(!�) with respect toH = H(!�) with L(!�)� = L�
for � 2 R(!�). As L is the core of an extended affine Lie algebra (see [1] and [2,
Theorem 2.32]), there arëe2M2"3
t and f̈ 2M�2"3
t�1 such that (̈e, ḧ := [ë, f̈ ], f̈ )
is an sl2-triple and soG̈ := Cë+ C f̈ + Cḧ is a 3-dimensional simple Lie subalgebra of
L. Identify G as a subset ofL(!�) with G = G 
 1, then G(!�) = G \ L(!�) has
a weight space decompositionG(!�) =

L�21G(!� )
G(!�)� with respect toH = H(!�)

where1G(!� ) = R(!�) \ S = f0,�"1, �"2, �("1� "2)g.
Lemma 3.6. Consider the derived algebraG 0(!�) of G(!�) and setg := G 0(!�)�

G̈. Theng is a maximal!�-splitting subalgebra ofL(!�).

Proof. Since for� 2 (1G(!� ))�, �2"3 + � =2 R, [G 0(!�), G̈]ˆ = f0g, and sog is
a finite dimensional semisimple Lie subalgebra ofL of type B2 [ A1. Now noting
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that ë 2 L(!�)1
2"3

, f̈ 2 L(!�)�1�2"3
and for � 2 1g(!� ), G� � L(!�)0�, one can easily

see thatg is an!�-spitting subalgebra ofL(!�) with splitting Cartan subalgebrah :=
(H \ G 0(!�)) � Cḧ � H(!�) + Z(L(!�))0

0 and Sg = f0,�"1, �"2, �2"3, �("1 � "2)g
that is a finite root system of typeB2 [ A1. Now let G be an!�-splitting subalgebra
of L(!�) containingg with !�-splitting Cartan subalgebraC and the root system1G.
For each root� 2 1G, there exist�� 2 R(!�) and n� 2 Z such thatG� � L(� )n���
and SG = f�� 2 R(!�) j � 2 1Gg is a subsystem ofR(!�) isomorphic to1G. Since
g � G, Lemma 2.31 implies thatSg = f0,�"1, �"2, �2"3, �("1 � "2)g � SG, but SG

is a subsystem ofR(!�) which is isomorphic to the root system of a semisimple Lie
algebra and so two times of a root ofSG cannot be a root. ThereforeSg = SG which
implies thatg = G. This completes the proof.

Now takeS := Sg, thenR := spanZS\R(!�) = R(!�). So L̃, the Lie subalgebra of
L(!�) generated byL(!�)� with � 2R�, coincides withL(!�)c. ThereforeL(!�)c = L̃

is an (R, S, Z)-graded Lie algebra using Proposition 2.37. Moreover, since there is
no isolated root forL(!�), Theorem 2.46 implies thatL(!�) = L(!�)c�D, a decom-
position of L(!�) into an (R, S, Z)-graded Lie algebra and a subspaceD of L(!�)
satisfying [D, g] = f0g.

EXAMPLE 3.7. Suppose thatl is a positive integer greater than 3. LetV be a
2l -dimensional vector space over the fieldF and I be the identity matrix of rankl .
Take (� , � ) to be the non-degenerate skew-symmetric bilinear form onV whose matrix

is s :=
�

0 I�I 0

�
. Then there exists a basisfui , vi j 1� i � l g for V such that

(ui , v j ) = �(v j , ui ) = Æi , j , (ui , u j ) = (vi , v j ) = 0; 1� i , j � l .

The algebraG, consisting of all endomorphismsX of V which are skew relative to the
( � , � ) i.e., (X(v), w) = �(v, X(w)) for v, w 2 V, is a finite dimensional split simple
Lie algebra of typeCl [9, Theorem IV.6.8]. Also by [9,§IV.6], we have that

(3.8) H :=
lM

i =1

Fḣi where ḣi := ei ,i � el+i ,l+i ; 1� i � l

is a splitting Cartan subalgebra ofG. For 1� i � l , define "i 2 H ? to be such that"i (ḣ j ) = Æi , j for 1� j � l and set

(3.9) h�2"i := �ḣi , 1� i � l and h�("i�" j ) := �(ḣi � ḣ j ), 1� i 6= j � l .

One knows thatV andG areH-modules having the following weight space decomposi-
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tions with respect toH:

(3.10)

V =
lM

i =1

V�"i in which V"i = Fui , V�"i = Fvi , 1� i � l ,

G =
M
�2S

G� where S = f�("i � " j ) j 1� i � j � l g.
Now let z be a symbol and takeA := V � Fz to be the Heisenberg Lie algebra

with the multiplication [� , � ]. given by [z, A]. = f0g and [u, v]. = (u, v)z for u, v 2 V.
We know that the set of derivations ofA, Der(A), is a subalgebra of the Lie algebra
gl(A) whose Lie bracket will be denoted by [� , � ]�. Now define

d : A! A; ui 7! 0, vi 7! vi , z 7! z for 1� i � l .

It is easily checked thatd belongs to Der(A). Next we extend an elementf 2 G �
End(V) to an element of End(A) by f (z) = 0, then D := G � Fd is a subalgebra of
Der(A). SetL := A Ì D, thenL is a Lie algebra with the bracket defined by

[a1 + d1, a2 + d2] := [a1, a2]. � d2(a1) + d1(a2) + [d1, d2]�; a1, a2 2 A, d1, d2 2 D.

Take L to be the derived algebra ofL, then L = A Ì G. Also H, the splitting
Cartan subalgebra ofG, is an abelian subalgebra ofL with respect to whichL has a
weight space decompositionL =

L�2R L� where R := S[ f�"i j 1� i � l g and

(3.11) L� =

8<
:
G�, � 2 S�,
V�"i , � = �"i ; 1� i � l ,
Fz + G0, � = 0.

SinceG is a finite dimensional split simple Lie subalgebra ofL, for each� 2 S�, there
exist e�� 2 G�� such that [e+�, e��] = h� (see (3.9)). Now it is easy to see thate+� 2
G� � L� is an invertible element. This together with the fact thatL0 =

P�2R� [L�,L��]
implies thatL is an (R, S)-graded Lie algebra with grading subalgebraG. Now let l = 3
and � : hRi ! F n f0g be the group homomorphism defined by (3.2) and consider the
automorphism!� of L defined as in (3.1). One can see that!� satisfies (GC1)–(GC5).
Considering (3.3), we have

L(!�) =
X

�2R(!� )

L�, where R(!�) = f�2"3, �"i , �("i � " j ) j 1� i � j � 2g,
a weight space decomposition ofL(!�) with respect toH with L(!�)� = L� for � 2
R(!�). Therefore we have

g := G(!�) = G \ L(!�) = H� 3X
i =1

G�2"3 � G"1�"2 � G"1+"2 � G�"1�"2 � G�"1+"2
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which is a perfect Lie subalgebra ofL(!�). Now using Proposition 2.32, one con-
cludes thatg is an!�-splitting subalgebra ofL(!�) with !�-splitting Cartan subalgebra
H. Now since

"
2X

i =1

L(!�)�"i ,
2X

i =1

L(!�)�"i

#
=

"
2X

i =1

L�"i ,
2X

i =1

L�"i

#
=

"
2X

i =1

V�"i ,
2X

i =1

V�"i

#
= Fz

and z is central, we have thatg is a maximal!�-splitting subalgebra ofL(!�). Now
S := Sg = f0,�2"i , �("1� "2) j 1� i � 3g is a finite root system of typeC2 [ A1. We
also have thatR = spanZ S \ R(!�) = S and so by (3.11),L̃, the subalgebra ofL(!�)
generated byL(!�)�, � 2 R�, coincides withg. Therefore the subalgebrãL = g of

L(!�) is anR-graded Lie algebra. AlsoK =
P2

i =1 V�"i � Fz is a subalgebra ofL(!�)
andL(!�) = L(!�)c = L̃�K.

EXAMPLE 3.12. LetA := F3�3, thenA is a unital associative algebra. Define an
involution onA as follows:

¯: A! A; (ai , j )i , j 7! (a4� j ,4�i )i , j .

Next let l be a positive integer and setJ :=

� 0 I l 0
I l 0 0
0 0 1

�
where I l is the identity matrix

of rank l . Take q := 2l + 1 and define the following involution

� : Aq�q ! Aq�q; X 7! J�1X̄t J.

Note that asA is unital, we can identifyF as a subset ofA. Now setL := fX 2
Aq�q j X� = �Xg and G := fX 2 Fq�q j X� = �Xg. It is easy to see thatX 2 L if

and only if X =

 
A B M
D � Āt N�N̄ t �M̄ t p

!
where A, B, D 2 Al�l with B̄t = �B, D̄t = �D,

M, N 2 Al�1 and p 2 A with p̄ = �p. Set hi := ei ,i � el+i ,l+i andH :=
Pl

i =1 Fhi . We
know thatG is a finite dimensional split simple Lie algebra of typeBl with splitting
Cartan subalgebraH [9, §IV.6]. For 1� i � l , define

"i 2 H?; h j 7! Æi , j , 1� j � l .

It is easy to check thatL has a weight space decompositionL =
P�2R L� with

respect toH, where R := f�"i , �("i � " j ) j 1 � i , j � l g, an irreducible finite root
system of typeBCl . TakeL to be the core ofL, then G is a subalgebra ofL. One
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can see thatL has a weight space decompositionL =
P�2R L� with respect toH, with

(3.13)

L�i = faei ,2l+1� āe2l+1,l+i j a 2 Ag, L2�i = faei ,l+i j a 2 A�g,
L��i = fael+i ,2l+1� āe2l+1,i j a 2 Ag, L�2�i = fael+i ,i j a 2 A�g,
L�i +� j = faei ,l+ j � āej ,l+i j a 2 Ag, L�i�� j = faei j � āel+ j ,l+i j a 2 Ag,
L��i�� j = fael+i , j � āel+ j ,i j a 2 Ag, L0 =

X
�2R�[L�, L��],

for 1� i 6= j � l . Now let � 2 R�
ind and seth� := 2t�=�(t�, t�), then there existe� 2 G�

and f� 2 G�� such that [f�, e�] = h�. Now if � 2 R, then �(h�) = h�, �̌i and for
x 2 L� , we have

[h�, x] = �(h�)x = h�, �̌ix
which means thate� is an invertible element ofL. ThereforeL is an R-graded Lie
algebra andG is a grading subalgebra ofL. Now let l = 3. Consider the group homo-
morphism� from hRi to Fnf0g defined by (3.2) and the automorphism!� of L defined
as in (3.1). Then!� satisfies (GC1)–(GC5). Contemplating (3.3), we have

L(!�) =
X

�2R(!� )

L(!�)� with R(!�) = f�2"3, �"i , �("i � " j ), 1� i � j � 2g
and L(!�)� := L� for � 2 R(!�).

Lemma 3.14. The derived algebraG 0(!�) of G(!�) is a maximal!�-splitting sub-
algebra ofL(!�).

Proof. We carry out the proof in two steps:
STEP 1) There are notA, B 2 A� such thatABC+ C B A= 2C for all C 2 A�:

We first note that

A� = fA 2 A j Ā = �Ag
=

8<
:A 2 F3�3 A =

0
� a b 0

c 0 �b
0 �c �a

1
A for somea, b, c 2 F

9=
;.

Now to the contrary, suppose that there existA, B 2 A� such thatABC + C B A=

2C for all C 2 A�. Let a, b, c, m, n, p 2 F such thatA =

� a b 0
c 0 �b
0 �c �a

�
and B = 

m n 0
p 0 �n
0 �p �m

!
. Since forx, y, z2 F, Cx,y,z :=

� x y 0
z 0 �y
0 �z �x

� 2A�, we haveABCx,y,z+
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Cx,y,zB A = 2Cx,y,z. This implies that

2amx+ ypa+ xnc+ bpx + anz= 2x,(3.15)

amy+ 2bpy+ bnz+ xmb+ nyc= 2y,(3.16)

mcx+ 2ncz+ bpz+ zma+ ycp = 2z(3.17)

for all x, y, z 2 F. Now let x = a, y = b and z = c, then (3.15)–(3.17) imply

a(am+ bp + nc) = a, b(am+ bp + nc) = b, c(am+ bp + nc) = c.

But A 6= 0, so

(3.18) am+ bp + nc = 1.

Also if x = y = 0, z 6= 0, or x = z = 0, y 6= 0, then (3.15) implies

(3.19) an = 0 and ap = 0.

Similarly using (3.16) and (3.17), we get

(3.20) mb= 0, nb = 0, cp = 0, mc= 0.

Now note that sinceA 6= 0, one of a, b, c is not zero, saya 6= 0. Then (3.19)
implies thatn = p = 0 and so (3.18) implies thatm 6= 0. Therefore by (3.20), we have
b = c = 0. Using (3.18), we getam = 1. Contemplating this together with the fact that
n = p = b = c = 0, (3.16) implies thaty = 2y for each y 2 F which is a contradic-
tion. The same contradictions arise if we consider the casesthat b 6= 0 or c 6= 0. This
completes the proof of this step.

STEP 2) G 0(!�) is a maximal splitting subalgebra: By Proposition 2.32,G 0(!�) is
an !�-splitting subalgebra ofL(!�) with !�-splitting Cartan subalgebraFh1 + Fh2 and
the root systemf0,�"1,�"2,�("1� "2)g. Let G 0(!�) be not a maximal one, then there
is an!�-splitting subalgebrag of L(!�) such thatG 0(!�) $ g. Using Remark 2.30 (i)
together with the fact that two times of a nonzero root of a finite dimensional split
simple Lie algebra is not a root, one concludes that there exist e� 2 L�2"3 \ g such
that (e+, [e+, e�], e�) is an sl2-triple and h := [e+, e�] 2 H + Z(L(!�)). Since e� 2
L�2"3, there exist nonzero elementsa, b 2 A� such thate+ = ae3,6 and e� = be6,3.
Since h 2 H + Z(L(!�)), there existfsi j 1 � i � 3g � F and z 2 Z(L(!�)) such that

h =
P3

i =1 si hi + z. Also sinceae3,6 = e+ 2 g � L(!�) and for i = 1, 2, [hi , ae3,6] = 0,
we have

2ae3,6 = 2e+ = [h, e+] = [h, ae3,6] =

"
3X

i =1

si hi + z, ae3,6

#
= [s3h3, ae3,6]

= s3a[h3, e3,6]

= 2s3ae3,6,
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which impliess3 = 1. Therefore we have

(3.21)

2X
i =1

si hi + z = h� s3h3 = h� h3 = [e+, e�] � h3

= [ae3,6, be6,3] � h3

= abe3,3� bae6,6� e3,3 + e6,6

= (ab� 1)e3,3� (ba� 1)e6,6.

Now let d 2 A�, then de3,6 2 L(!�) and so

0 =

"
2X

i =1

si hi + z, de3,6

#
= [(ab� 1)e3,3� (ba� 1)e6,6, de3,6]

= (abd� d)e3,6 + (dba� d)e3,6,

which means that

abd+ dba = 2d; d 2 A�.

This makes a contradiction using Step 1).

Put g := G 0(!�). Then g is a maximal!�-splitting subalgebra andS := Sg =f0,�"1,�"2,�("1�"2)g, an irreducible finite root system of typeB2. We also haveR =
R(!�)\spanZS = f0,�"1,�"2,�2"1,�2"2,�("1�"2)g, an irreducible finite root system
of type BC2. Now thanks to Proposition 2.37,̃L =

P�2R� [L�, L��]�P�2R� L�, the
Lie subalgebra ofL(!�) generated byL�, � 2 R�, is anR-graded Lie algebra. Also
K = [L2"3,L�2"3]�L2"3�L�2"3 is a subalgebra ofL(!�) and we haveL(!�)c = L̃�K.
Moreover Theorem 2.46 implies thatL(!�) = L̃�K�D in which D is a subspace of
L(!�) satisfying [g, D] = f0g.

The following example is adopted from [3]. We ask the reader,who is not familiar
with the notation, to consult [3, Example 3.18].

EXAMPLE 3.22. Let a be a unital alternative algebra with involution� whose�-symmetric elements are in the nucleus,C be an associative lefta-module and�( � , � )
be a nonzero skew-hermitian form onC. ThenA := a3�3 is an algebra with involution� defined bym� := (m�)t , m 2 a3�3. It is well-known that J := H (A, �), the set of
hermitian elements ofA under�, is a unital Jordan algebra under the productm1 �m2 :=
(1=2)(m1m2 + m2m1), m1, m2 2 J. The spaceX := C3 of (3� 1)-column matrices over
C is an associative leftA-module with action given by matrix multiplication. If : X�
X! A is defined by

 ((c1, c2, c3)t , (c01, c02, c03)t ) := (��(ci , c0j ))i , j ,
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then is a skew-hermitian form onX. Now define

a � x := ax,

fx, yg :=  (x, y)�  (y, x),

fx, y, zg :=  (x, y)z + (z, y)x + (z, x)y

for x, y, z 2 X and a 2 J. Then X is a J-ternary algebra. SetN := X � J, the direct
sum of two vector spacesX and J. An element ofN is denoted byhx k ai where
x 2 X and a 2 J. If a = 0 (resp.x = 0), we simply denotehx k ai by x (resp. a).
Consider the Lie algebragl(N) corresponding to the associative algebra End(N). For
a 2 J and x, y 2 X, defineLa, Lx,y 2 gl(N) as follows:

Lahz k a0i = h(1=2)a � z k a � a0i,
Lx,yhz k a0i = hfx, y, zg k fx, a0 � ygi,

a0 2 J, z 2 X.

Put Instr(J, X) := LJ + [LJ , LJ ] + LX,X. Then Instr(J, X) is a Lie subalgebra of
gl(N). The Lie algebraInstr(J, X) has an automorphism" of period 2 defined by
T" := T � 2LT (1). Define

L := Ñ � Instr(J, X)� N

where Ñ := fñ j n 2 Ng is a copy ofN. Extend the Lie bracket onInstr(J, X) to an
anti-commutative product [� , � ] on L as follows:

[T , n] := T(n), [T , ñ] := (T"(n))�,

[hx k ai, hx0 k a0i] := h0 k �fx, x0gi, [hx k ai�, hx0 k a0i�] := h0 k fx, x0gi�,

[hx k ai, hx0 k a0i�] := h�a0 � x k 0i� + Lx,x0 + 2(La�a0 + [La, La0 ]) + ha � x0 k 0i
for T 2 Instr(J, X), n 2 N, x, x0 2 X, a, a0 2 J. Relative to this product,L is a Lie
algebra. For 1� i � 3, definehi := Lei ,i and H :=

P3
i =1 Fhi . Take G to be theTits-

Kantor-Koecher Lie algebraof fA 2 F3�3 j At = Ag. Then G is a finite dimensional
split simple Lie algebra of typeC3 with splitting Cartan subalgebraH and the root
systemS := f�("i � " j ) j 1� i , j � 3g. For 1� i � 3, define"i by:

"i (h j ) :=
1

2
Æi , j ; 1� j � 3.
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ThenL has a weight space decomposition with respect toH:

L =
M
�2R

L� where R = f�"i , �("i � " j ) : 1� i , j � 3g
and

L0 +
X

1�i 6= j�3

L"i�" j = Instr(J, X),

3X
i =1

L"i = hC3 k 0i, 3X
i =1

L2"i +
X

1�i< j�3

L"i +" j = h0kJi,
3X

i =1

L�"i = hC3 k 0i�,
3X

i =1

L�2"i +
X

1�i< j�3

L�"i�" j = h0 k Ji�.

One can see thatL is an (R, S)-graded Lie algebra for whichG is a grading subalgebra.
Now let � : hRi ! F n f0g be the group homomorphism defined by (3.2) and consider
the automorphism!� of L defined as in (3.1). Considering (3.3) together with (3.11),
we have

L(!�) =
X

�2R(!� )

L� where R(!�) = f�2"3, �"i , �("i � " j ) j 1� i � j � 2g.
It follows from Proposition 2.32 that the perfect Lie algebra G(!�) is an!�-splitting

subalgebra ofL(!�) with !�-splitting Cartan subalgebraH and the root systemf0,�2"i ,�("1� "2) j 1� i � 3g which is a finite root system of typeA1[C2. Now as
two times of a root of a finite dimensional split semisimple Lie algebra is not a root,
one concludes thatG(!�) is a maximal splitting subalgebra. Now we haveS := SG(!� ) =f0,�2"i , �("1 � "2) j 1 � i � 3g andR = spanZ S \ R(!�) = S. Now L(!�)c = L̃ + K

where L̃ is the Lie subalgebra ofL(!�) generated byL(!�)� = L�, � 2 R� and

K =
2X

i =1

L"i +
2X

i =1

L�"i +
2X

i =1

[L"i , L�"i ].

MoreoverL̃ is anR-graded Lie algebra, also by Theorem 2.46, there is a subspace D

of L(!�) satisfying [D, G(!�)] = f0g and L(!�) = (L̃ + K) � D. Now note that since� is nonzero, there existc, d 2 a such that�(c, d) 6= 0. Therefore forx := (c, 0, 0)t ,
x0 := (d, 0, 0)t , fx, x0g is a 3� 3 matrix whose (1, 1)-entry is the nonzero element��(c, d). So we have

0 6= h0 k �fx, x0gi = [h(c, 0, 0)t k 0i, h(0, d, 0)t k 0i] 2 [L"1, L"1] � L2"1.

This implies thatK is not a subalgebra.
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EXAMPLE 3.23. Let (A, )̄ be a unital associative star algebra andl be a positive
integer. We know thatA(l+1)�(l+1) is a unital associative algebra, so under the commu-
tator product, it is a Lie algebra denoted bygll+1(A). The subalgebraL := el+1(A) of
gll+1(A) generated byfaei , j j a 2 A, 1� i 6= j � l + 1g is a perfect ideal ofgll+1(A).

For 1� i � l , set hi := ei ,i � ei +1,i +1 and takeH :=
Pl

i =1 Fhi . Define

" j 2 H?; hi 7! Æi , j � Æi +1, j ; 1� j � l + 1, 1� i � l .

Now L has a weight space decomposition with respect toH. In fact L =
P�2R L�

where R := f�("i � " j ) j 1� i � j � l + 1g and

L"i�" j = Aei , j ; 1� i 6= j � l + 1 and L0 =
X
�2R�[L�, L��].

One can easily see thatL is an R-graded Lie algebra with a grading subalgebraG :=
L \ F(l+1)�(l+1). Now define an involution on the associative algebraA(l+1)�(l+1) as fol-
lows:

� : A(l+1)�(l+1)! A(l+1)�(l+1); (ai , j ) 7! (al+2� j ,l+2�i )

and then define

� : gll+1(A)! gll+1(A); X 7! �X�.
which is an automorphism ofgll+1(A) of period 2. Since� maps the generating set of
L = el+1(A) to itself, the restriction of� to L is an automorphism ofL of period 2
which we denote it again by� . So L satisfies (GC1). One can easily check that

H(� ) =

8>>>>><
>>>>>:

(l�1)=2X
i =1

F(hi + hl�i +1) + Fh(l+1)=2, if l is odd,

l=2X
i =1

F(hi + hl�i +1), if l is even.

Now for 1� i � [(l + 1)=2], put "0i := (1=2)("i � "l�i +2), then

R(� ) :=

8>><
>>:

��("0i � "0j ) 1� i , j � l + 1

2

�
, if l is odd,��"0i , �("0i � "0j ) 1� i , j � l

2

�
, if l is even

is an irreducible finite root system of typeC(l+1)=2 if l is odd and of typeBCl=2 if l
is even. Also it is easy to see thatL(� ) has a weight space decompositionL(� ) =
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P�2R(� ) L(� )� with respect toH(� ) in which for 1� i 6= j � [(l + 1)=2],

L(� )"0i�"0j = faei , j � āel+2� j ,l+2�i j a 2 Ag,
L(� )"0i +"0j = faei ,l+2� j � āej ,l+2�i j a 2 Ag,
L(� )�"0i�"0j = fael+2�i , j � āel+2� j ,i j a 2 Ag,
L(� )2"0i = faei ,l+2�i j a 2 A�g,
L(� )�2"0i = fael+2�i ,i j a 2 A�g,

and if l is even,

L(� )"0i = faei ,(l+2)=2 � āe(l+2)=2,l+2�i , a 2 Ag,
L(� )�"0i = fael+2�i ,(l+2)=2 � āe(l+2)=2,i , a 2 Ag.

Now set

(3.24) S :=

8>><
>>:

�
0,�("0i � "0j ) 1� i 6= j � l + 1

2

�
, if l is odd,�

0,�"0i , �("0i � "0j ) 1� i 6= j � l

2

�
, if l is even.

Then G(� ) = L(� ) \ G has a weight space decompositionG(� ) =
P�2S G(� )� with

respect toH(� ) where for 1� i 6= j � [(l + 1)=2],

G(� )"0i�"0j = F(ei , j � el+2� j ,l+2�i ), G(� )�"0i�"0j = F(el+2�i , j � el+2� j ,i ),

G(� )"0i +"0j = F(ei ,l+2� j � ej ,l+2�i ), G(� )0 = H(� )

and if l is even,

G(� )"0i = F(ei ,(l+2)=2 � e(l+2)=2,l+2�i ),

G(� )�"0i = F(el+2�i ,(l+2)=2� e(l+2)=2,i ),

in particular the centralizer ofH(� ) in G(� ) coincides withH(� ) which means that
(GC2) is satisfied. Next we note that as� mapsG to G and� (H) � H, the restriction
of the Killing form of G to G(� ) is non-degenerate. Therefore (GC3) is also satis-
fied. Also since the element ofH representing an element� of H(� )? (identifying as
a subset ofH?) through the Killing form is the same as the element ofH(� ) repre-
senting� through the�( � , � )jH(� )�H(� ), (GC4) is also satisfied. Therefore� satisfies
(GC1)–(GC5).

Proposition 3.25. The derived algebraG 0(� ) of G(� ) is a maximal� -splitting
subalgebra ofL(� ).
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Proof. By Proposition 2.32,G 0(� ) is a � -splitting subalgebra ofL(� ). If it is not
a maximal one, then there exist a� -splitting subalgebrag of L(� ) with splitting Cartan
subalgebraC and the root system1g such thatG 0(� ) ( g. So by Lemma 2.31,S =
SG0(� ) ( Sg, so there exists 1� t � [(l +1)=2] such that 2"0t 2 Sg. If l is even,"0t 2 S �
Sg which makes a contradiction as 2"0t 2 Sg andSg is an indivisible finite root system.
Now let l be odd, since 2"0t =2 S, for 1 � i � (l + 1)=2, [G 0(� ) \ L(� )"0t�"0i , G 0(� ) \
L(� )"0t�"0i ] = f0g. Also sinceG 0(� ) � g, Remark 2.30 (iii) implies that for� 2 S, f0g 6=
G 0(� )\L(� )� = g\L(� )�. We recall that 2"0t 2 Sg and use Remark 2.30 (iii), then we
conclude that for 1� i � (l + 1)=2,

f0g = [G 0(� ) \ L(� )"0t�"0i , G 0(� ) \ L(� )"0t�"0i ]
= [g \ L(� )"0t�"0i , g \ L(� )"0t�"0i ]
= g \ L(� )2"0t 6= f0g

which is a contradiction. This completes the proof.

Theorem 3.26. L(� )c is an (R(� ),S)-graded Lie algebra andL(� ) is decomposed
into L(� ) = L(� )c �D, whereD is a subspace ofL(� ) satisfying[D, G 0(� )] = f0g.

Proof. We note that spanZ S \ R(� ) = R(� ). Therefore we are done, using Propo-
sition 2.37 together with Theorem 2.46.
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